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1. Introduction

Let P_{m}(C) be a complex projective space of complex dimension m with
the Fubini-Study metric of constant holomorphic sectional curvature 1. Re-
cently S. Tanno [6] has proved the following result.

PROPOSITION A. Let M be an n-dimensional complete complex sub-
manifold immersed in P_{n+p}(C) . If every holomorphic sectional curvature of
M with respect to the induced metric is greater than 1- \frac{n+2}{6n^{2}} , then M is

complex analytically ismetric to a linear subspace P_{n}(C) .
In this paper we shall prove the following theorems.
THEOREM 1. Let M be an n-dimensional complete complex submanifold

immersed in P_{n+p}(C) . If every Ricci curvature of M with respect to the
induced metric is greater than n/2, then M is complex analytically isometric
to a linear subspace P_{n}(C) .

Theorem 1 is the best possible in this direction.
THEOREM 2. Let M be an n-dimensional complete submanifold im-

mersed in P_{n+p}(C) . If every holomorphic sectional curvature of M with
respect to the induced metric is greater than \delta , then M is complex analy-
tically isometric to a linear subspace P_{n}(C’) , where

\delta=\{

\frac{s_{rl}-1}{3n+1} (n\leq 5)

\frac{2n-3}{2n-2} (n>5) .

Theorem 2 is an improvement of Proposition A.
THEOREM 3. Let M be an n-dimensional complete complex submanifold

immersed in P_{n+p}(C) . If n\geq 2 and if every sectional curvature of M with
respect to the induced metric is greater than \delta , then M is complex analytically
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isometric to a linear subspace P_{n}(C) , where

\delta=\{

\frac{5}{23} (n=5)

\frac{5n-2-\mapsto 9n^{2}+60n+4}{8(n-5)} (n\neq 5) .

2. Preliminaries

Let J (resp. \tilde{J}) be the complex structure of M (resp. P_{n+p}(C)) and g
(resp. \tilde{c’} ) be the Kaehler metric of M (resp. P_{n+p}(C)). We denote by \nabla (resp.
\tilde{\nabla}) the covariant differentiation with respect to g (resp..\tilde{q}). Then the second
fundamental form \sigma of the immersion is given by

\sigma(X, Y)=\overline{\nabla}_{X}Y-\nabla_{X}Y

Let R be the curvature tensor field of M. Then the equation of Gauss is

g (R(X, Y)Z, W)=\tilde{.q}(\sigma(X, W), \sigma(Y, Z))-\tilde{.q}(\sigma(X, Z) , \sigma(Y, W))

+ \frac{1}{4}\{g(X, W)g (Y9Z) -g(X, Z)g(Y, W)

+g(JX, W)g(Y9 Z)-g(JX, Z)g(Y9 W)+2g(X, JY)g(JZ, W)\} .

Let \xi_{1} , \cdots , \xi_{p},\tilde{J}\xi_{1} , \cdots,\tilde{J}\xi_{p} be local fields of orthonormal vectors normal to M.
If we set, for i=1, \cdots,p,

g(A_{i}X, Y)=\tilde{g}(\sigma(X, Y), \xi_{i})

g(A_{i*}X, Y)=.\tilde{q}(\sigma(X, Y),\tilde{J}\xi_{i}) ,

then A_{1} , \cdots , A_{p} , A_{1*} , \cdots , A_{p*} are local fields of symmetric linear transforma-
tions. We can easily see that A_{i*}=JA_{i} and JA_{i}=-A_{i}J so that, in par-
ticular, trA_{i}=trA_{i*}=0. The equation of Gauss can be written in terms of
A_{i}’s as

g (R(X, Y)Z, W)= \sum\{g(A_{i}X, W)g(AiY9 Z)-g (X, Z)g (A_{i} Y,\cdot W)

g (JAiX,W) g(JA_{i}Y, Z)-g(JA_{i}X, Z)g(AiY9 W)\}

+ \frac{1}{4}\{g(X, W)g (Y9Z) -g(X, Z)g (Y9W)

g(JX, W)g (Y9 Z)-g(JX, Z)g(Y9 W)+2g(X, JY)g(JZ, W)\} .
Let S be the Ricci tensor of M. Then we have
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(1) S(X, Y)= \frac{n+1}{2}g(X, Y)-2g(\sum A_{i}^{2}X, Y) .

Let ||\sigma|| be the length of the second fundamental form of the immersion so
that || \sigma||^{2}=2\sum tr4_{i}^{2} .

We know that the second fundamental form \sigma satisfies the following
differential equation ([4]).

\frac{1}{2}\Delta||\sigma||^{2}=||\tilde{\nabla}\sigma||^{2}+\sum tr (A_{\lambda}A_{\mu}-A,‘ A_{\lambda})^{2}- \sum(trA_{\lambda}A_{\mu})^{2}+\frac{n+2}{2}||\sigma||^{2} ,

where \Delta denotes the Laplacian and \lambda, \mu=1 , \cdots,p, 1^{*} , \cdots,p* . For a suitable
choice of \xi_{1} , \cdots , \xi_{p} , {

\tilde{7}\xi_{1} , \cdots , \tilde{r}\xi_{p} , the above differential equation can be written
as follows ([5, 6]).

(2) \frac{1}{2}\Delta||\sigma||^{2}=||\overline{\nabla}\sigma||^{2}-8 tr ( \sum A_{i}^{2})^{2}-2\sum(trA_{i}^{2})^{2}+\frac{n+2}{2}||\sigma||^{2} .

3. Proof of Theorm 1

First we note that, by a theorem of Myers ([3]), M is compact.

Since S- \frac{n}{2}g is positive definite, we can see from (1) that I-4 \sum A_{i}^{2}

is positive definite, where I denotes the identity transformation. This implies

(3) ||\sigma||^{2}<n .

Moreover, since A_{i}’s are symmetric linear transformations, \sum A_{i}^{2} is posi-
tive semi-definite. Since \sum A_{i}^{2} and I-4 \sum A_{i}^{2} can be transformed simultane-
ously by an orthogonal matrix into diagonal forms at each point of M,
( \sum A_{i}^{2})(I-4\sum A_{i}^{2}) is positive semi-definite. Hence we have

(4) 8 tr ( \sum A_{i}^{2})^{2}\leq||\sigma||^{2}

On the other hand, we can see

(5) \Sigma(trA_{i}^{2})^{2}\leq(\Sigma trA_{i}^{2})^{2}=\frac{1}{4}||\sigma||^{4} .

From (2), (3), (4) and (5), we have

(6) \frac{1}{2}\Delta||\sigma||^{2}\geq\frac{1}{2}||\sigma||^{2}(n-||\sigma||^{2})\geq 0 .

Hence, by a well-known theorem of E. Hopf, ||\sigma||^{2} is a constant. This,

together with (3) and (6), implies ||\sigma||=0 . Therefore M is a totally geodesic
submanifold.
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4. Proof of Theorem 2 and Theorem 3

To prove Theorem 2, we need the following Proposition due to Bishop
and Goldberg (Theorem 8. 1 in [2]).

PROPOSITION 1. If every holomorphic sectional curvature ofM is greater
than \delta , then every Ricci curvature of M is greater than \mu, where

\mu=\{

\frac{(3n+1)\delta-(n-1)}{4} (n\leq 5)

(n-1) \delta-\frac{n-3}{2} (n>5) .

We can see that if

\delta=\{

\frac{3n-1}{3n+1} (n\leq 5)

\frac{2n-3}{2n-2} (n>5) ,

then \mu=\frac{n}{2} .
This, combined with Theorem 1, implies Theorem 2.
To prove Theorem 3, we need the following Proposition due to Berger

([1]).

PROPOSITION 2. If n\geq 2 and if the sectional curvature K of M satis-
fies \delta<K\leq 1 , then every holomorphic sectional curvature of M is greater

than \underline{\delta(8\delta+1)} .
1-\delta

Let x be an arbitrary point of M and X be an arbitrary unit vector
in T_{x}(M) . If e_{1}=X, e_{2} , \cdots , e_{n} , Je_{1} , \cdots , Je_{n} is an orthonormal basis of T_{x}(M),
then

S(X, X)=H(X)+ \sum_{i=2}^{n}\{K(X, e_{i})+K(X, Je_{i})\} ,

where H(X) is the holomorphic sectional curvature of M determined by X
and K(X, Y) is the sectional curvature of M determined by X and Y. Hence,
by Proposition 2, K>\delta implies

S(X, X)> \frac{\delta(8\delta+1)}{1-\delta}+2(n-1)\delta .

We can see that if
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\delta=\{

\frac{5}{23} (n=5)

\frac{5n-2-\sqrt{9n^{2}+60n+4}}{8(n-5)} (n\neq 5)’.

then S(X, X)>\frac{n}{2} .

This, combined with Theorem 1, implies Theorem 3.
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