On some 3-dimensional Riemannian manifolds

By Kouei SEkicawa

1. Introduction. The Riemannian curvature tensor R of a locally
symmetric Riemannian manifold (M, g) satisfies

(*) RX,Y)-R=0 for all tangent vectors X and Y,

where R(X, Y) operates on R as a derivation of the tensor algebra at each
point of M. Conversely, does this algebraic condition on the curvature
tensor field R imply that FR=0? K. Nomizu conjectured that the answer
is positive in the case where (M, ¢) is complete irreducible and dim M=3.
But, recently, H. Takagi [9] gave an example of 3-dimensional complete,
irreducible real analytic Riemannian manifold (M, g) satisfying (*) and FR+#0
as a hypersurface in a 4-dimensional Euclidean space E*. Furthermore,
the present author proved that, in an (m+1)-dimensional Euclidean space
E™*'(mz4), there exist some complete, irreducible real analytic hypersurfaces
which satisfy (*) and FR+#0 ([6] in references). Let R, be the Ricci tensor
of (M, g). Then, (*) implies in particular

(*¥*) RX,Y)-R =0 for all tangent vectors X and Y.

In the present paper, with respect to this problem, we shall give an
affirmative answer in the case where (M, g) is a certain 3-dimensional com-
pact, irreducible real analytic Riemannian manifold, that is

- TueoreM. Let (M, g) be a 3-dimensional compact, irreducible real ana-
lytic Riemannian manifold satisfying the condition (*) (or equivalently (**)).
If the Ricci form of (M, g) is non-zero, positive semi-definite on M, then
(M, g) is a space of constant curvature.

I should like to express my hearty thanks to Prof. S. Tanno for his
kind suggestions and many valuable criticisms.

2. Lemmas. Let (M, g) be a 3-dimensional real analytic Riemannian
manifold. Let R' be a field of symmetric endomorphism satisfying R,(X, Y)
=g(R'X,Y). It is known that the curvature tensor of (M, g) is given by

2. 1) RX, Y)=R1XAY+X/\R1Y—1@§_R1X/\Y,

for all tangent vectors X and Y.
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At each point of M, we may choose an orthonormal basis {e;} such
that Rle,=K,e;, 1=4,, k, h,---<3. Then, from (*) (or equivalently (**)) and
(2.1), we see that essentially the following cases are possible;

(I) K1=K2=K3=K, KVEO,
(II) K,=K,=K, K,=0, K=O0,
1) K,=K,=K,=0,

For (I), by [4], we have

ProrosiTION 2.1. If the rank of the Ricci form R, is 3 at least at
one point of M, then (M, g) is a space of constant curvature.

With respect to our problem, without loss of generality, we may assume
that M is orientable (if necessarily, consider the orientable double covering
space of M). Next, we shall assume that the rank of R, is at most 2 on

M. Then, or is valid on M. If the rank of R, is 2 at some point
of M, then the rank of R, is also 2n ear the point. Thus, let W={xeM;
the rank of R, is 2 at z}, which is an open set of M. For each point
z,e W, let W, be the connected component of x, in W. Then, non-zero
eigenvalue of R!, say K, is a real analytic function on W, and we can take
two real analytic distributions 7; and 7, corresponding to K and 0, respec-
tively on W,. Thus, for each point x€ W,, we may choose a real analytic
orthonormal frame field {E;} near x in such a way that {E,} and {E;} are
bases for T, and T,, respectively. Here, a,b,c,---=1,2. From (2.1) and
we have

LeMMA 2.2. With respect to the above basis {E},
(2. 2) R(E,, E,)=KE,ANE, and otherwise being zero.

In general, for a local real analytic orthonormal frame field {E} on an
open set U in a real analytic Riemannian manifold (M, ¢), we may put

(2. 3) VEz;Ej == kZ=IB,ZJkEk 5

where m=dim M and B, (i,j,k=1,2,--,m) are certain real analytic func-
tions on U satisfying B, ;.= —B;;-
From (2. 2) and (2. 3), by considering the second Bianchi identity, we have

(2. 4) B33a = 0 5
(2. 5) E3K+ K(B131+Bz32) = O .

From (2. 4), we see that each trajectory of E; is a geodesic. For each point
xeW,, let L: be the geodesic whose initial point is x and initial direction
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is (E3),. And let s denote its arc-length parameter. Using the same symbol
for convenience, we shall assume that L denotes also the set of the points
on L} and x(s) denotes the point on LI corresponding to the value s of the
parameter. For each point x€W,, we may choose a real analytic ortho-
normal frame field {E;} on a neighborhood U,(C W;) of x in such a way that

(1) {E.} and {E;} are bases for T and T,, respectively,
(i) FgE;=0, i=1,23.
From (2.3) and (ii), we have
(2. 6) B,;;=0 on U,.
From (2.2), (2.3) and (2.6), we have
REq, E)E; =V Vs Es—Vyg Vg Es—Vix, u1Es

—— gjl(EgBa ot él Bus Bes) E
— é(EsBm- + éBaSme)Ei ~0.
Thus, from the above equation and (2.5), we have
(2.7) EB\ 3+ (Bis1)f + By 5By5 =0,
EBy+(Bysf+ BynBis = 0,
(2. 8) Biu=CK, Byy—=CK,

BISZ _stz = DK,

where C,, C, and D are certain real analytic functions on U, satisfying
E3C1 = E3C2 = E3D = O.
From (2.5) and (2.8), we have

(2. 9) By = %(DK—EsK/K) ,
By = — %(DK+E3K/K).
Thus, from (2.5), (2.7), (2.8) and (2. 9), putting E;=d/ds or —d|ds along L3,

we have

if K>0, then

(2. 10) 4 WWK)= -HWEKY,
S

if K<0, then
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dZ

2.11
(2. 11) 70

(14 —K)=—-HW-KY,

where H=D?*4+C,C,.
Solving (2.10) ((2.11), resp.), we have

(2. 12) 1/ K = J(as—Bf— HJa?
(I} —K = ylas—p)—HJa*, resp.),

where @ and B are certain real numbers.

Now, for each point xe€ W,, let {E;} be a real analytic orthonormal frame
field on a neighborhood U, satisfying (i) and (ii). Then, {U,}..», is an open
covering of W,.

Since M is orientable, if U, N U;#0, {E;} and {E,} are defined on U, and
U;:, respectively, then we may put

E,=(cos 0)E,+ (—sin §) E;,

(2. 13) E,=(sin §)E,+(cos ) E,,
FS=E3> on anUf,

or
E,=(cos0)E,+(sin §)E,,
(2. 14) E,=(sin)E,+(—cos )E,,

E,=—E;, on U,NU;,

where cos @ and sin § are certain real analytic functions on U, N U; satisfying
E; cos §=E;sin §=0.
Let C,(E), C,(E), D(E) and H(E) denote the ones defined as in (2. 8)

with respect to {E; on U,(C W;). Then, from (2.13) and (2. 14), by direct
computation, we have for (2.13)

C(E) = Cy(E) cos® §—C,(E) sin® § + D(E)/2) sin 26 ,

(2.15) C,(E)= C,(E) cos*§—C,(E) sin* §+(D(E)/2) sin 26,
D (E)= D(E) cos 20 —(C,(E)+C,(E)) sin 24, on U,NU;,

for (2.14)
C.(E) = C,(E) cos? § —C,(E) sin? 0 —(D(E)/2) sin 26 ,
(2. 16) C,(E) = C,(E) cos? —C,(E) sin® §—(D(E)/2) sin 24 ,
D(E) = —D(E)cos 20 —(C,(E)+ C,(E)) sin 26, on U,NU;.

From (2.15) and (2. 16), we have
(2- 17) C1<E)—C2(E) = C1(E>_C2(E) >
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(2. 18) H(E)= D(Ey/4+C,(E)C,(E)
= D(E)/4+ C,(E)C,(E)= H(E), on U,NUs.
From (2.17), we see that f=(C,(E)—C,(E))K for some {E;} on U,, xeW,,

is a real analytic functionon W,.

3. Some results. In this section, furthermore, we shall assume that
(M, g) is complete. Then, by (2.12) and (2.18), we have

LemMma 3.1. For each point xe W,, L} is infinitely extendible in W,.
By lemma 3.1, we see that (1/K)| ;= (as—pf'—HJo* must be defined

for all real numbers s along L:.

ProrosiTION 3. 2. If the distribution T, is involutive on W,, then
(M, g) is reducible. '

Proor. Assume that T is involutive. Then, it follows that [E,, E,)€ T},
that is

(3- 1) B132_BZSI =0.

Thus, from (3.1), we have H=H(E)=D(E)/4+ C,(E)=0. Thus, from
lemma 3.1. and (2.12), by the similar arguments as in [7], we can show
that H=0 and furthermore K is constant along L}, x€ W,. Therefore,
from (2.9), (3. 1) and the fact H=H(E)=0, we have B,y =B, 3=B;3=B,5,=0.
Thus, we see that 7 and 7, are parallel on W,, that is to say, the open
subspace (W, g|w,) is reducible. Since (M, g) is real analytic, we can con-
clude that (M, g) is reducible. Q. E.D.

Next, furthermore, we shall assume that M is compact and the rank
of the Ricci form R, is different from 0 everywhere on M. Then, it follows
that W,=M. Then, a can not be 0 in (2.12). Since 1/K is continuous on
M, it must be bounded on M. But, since 1/K coincides with (as— p)*— HJo?
or —((as—pBf—H]/a?) along L, xeM, it can not be bounded on LiC M.
This is a contradiction. Thus, we see that H=H(E)=0 at every point
x€M with respect to any {E;} on U,. Thus, from (2.10) and (2.11), by
the similar arguments as in [5], we can see that K is constant along each

L xeM. That is

ProrositioN 3.3. If M is compact and the rank of the Ricci form R,

is different from O everywhere on M, then K is constant along each LE,
xeM.

4. Proof of the main theorem. In the sequel, we shall assume that
M is compact and the rank of R, is different from O everywhere on M.
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The purpose of this section is to prove the reducibility of (M, g) under these
circumstances. Now, we assume that there exists a point €M such that
f(2)#0. Let V={xeM; f(x)#0}, which is an open set of M. For any
point x,€V, let V, be the connected component of x, in V. Now, since
H=H(E)=0 for any {E;} on sufficiently small U,(CV,), we see that A(E)
=4 D(EP+(C,(E)+ C,(E)? >0. Thus, we can define a real analytic ortho-
normal frame field {Ef(E)} on U, in such a way that

E¥(E)=(cos &§)E,+(—sin §)E,,
(4.1) E} (E) = (sin §) E,+(cos §) E,,

E3 (E) E3 >
where ¢ is a certain real analytic function on U, satisfying cos 26=(C,(E)
+Gy(E)/A(E) and sin 26=D(E)/ \(E).

Next, if U,NUs#@, {E} and {E;} are defined on U, and U;, respec-

tively, then, by the similar way as in (4. 1), we may obtain an orthonormal
frame field {E}(E)} with respect to {E;} on U;(cV,. Then we have

LemMma 4.1. On U,NU;z, we have
(4.2) E}(E)= £EXE), i=1,2,3,

where the plus sign or minus sign in (4.2) is determined by the orientation

of M.
Proor. By the definition of (E*(E)}, we have
EX(E)=(cos B)E,+(—sin &),
(4. 3) v Ef(E)=(sin B)E,+(cos §)E,,
Ef(E)=E;,
where~§ is a certain real anzﬂytic function on U; satisfying cos 2E=(C\(E)
+CHE)/ \(E) and sin 2§=D(E)/ \(E).
First, for the case (2.13), from (2.15), (4.1) and (4. 3), we have A(E)
= A(E) and furthermore

cos 2§ = (C1<E)+C2(E))/A(E>

= (1/ A(E))((cos’6) Ci(E) —(sin6) Cy(E)
+(sin 8 cos §) D(E)+ (cos?8) C,(E)—(sin?§) Cy(E)
+(sin @ cos 8) D(E ))

= <1//\ >< (cos 26 <C1 Y+ Co(E > (sin 20)D(E)> = cos 2(§—0),




On some 3-dimensional Riemannian manifolds 265

similarly
sin 2§ = sin 2(6—46).
Thus, we have
(4. 4) E—0=E+nr (n=1,2,--).
Again, from (2.13), (2.15), (4.1) and (4. 3), we have
(co

E (E) = (cos £)((cos 0) Ey +(— sin 6) Ey) +(— sin §)((sin ) E; +(cos 6) E,)

= (cos(§+6)) E + <——sin(§+0)>E

Thus, from (4. 4), we see that E(E)=E}*(E) or E¥(E)=—E*(E). Further-
more, we see that E*(E)=E;(E) corresponding to E*(E)=E}(E) or E(E)
= —E}(E) corresponding to EXE)=—E*(E). Similarly, considering the
case (2.14), we see that (4.2) is valid. Q.E.D.

For each {E*=E*(E)} on U,(CV,), let T;;=span {E}*, E;*} ((<j). Then,
by the definition of {E(E)}, we see that

(4. 5) C(E*)C,(E*)=0 and D(E*)=0.

Thus, we may assume, for example

(4. 6) C(E*)#0, GC(E*=0, D(E*)=0, on V.
Thus, from (2.9) (4.6) and proposition 3.3, we have

(4.7) Bip#0, Biy=Bfy=Bfy=0 on U, zeV,

where B}, (i,7,k=1,2,3) denote the ones defined as before corresponding
to {EF}. Then, from (4.7), we have

LemmMma 4. 2. Ty is involutive on V.
Now, from (2.2), (2.3), (2.4), (2.6) and (4.7), we have

R(ES ENEf =V Vi Ef =V Ve Ef—V 4 ES

L&} B 1
— ((Es*Bt )+ BtuBtz) Ef —(BiuBi) EX = 0.

Thus, we have

(4. 8) By=0,

(4.9) E;Blu+BinBin=0.

From (4.8) and (4.9), we see that V ,E;*=0, that is, each trajectory of Ej}
Z,
is a geodesic. From (4.7), since / B3 =V _«Ef=V _,E&=0, consequently,

3
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we have

LEMMA 4.3. Let My(x) be the maximal integral submanifold of Ty
through z€V,. Then M,y(x) becomes totally geodesic subspace with respect
to the induced metric and hence locally flat.

Now, let L2 be the geodesic whose initial point is x, x€V,, and whose
tangent vector is Ef or —E% at each point of L2. And let ¢ denote its arc-
length parameter. Using the same symbol for convenience, we shall assume
that L2 denotes also the set of the points on L2 and x(¢) denotes the point
on L2 corresponding to the value ¢z of the parameter. Again, from (2. 2),
(2.3), (2.4), (2.6) and (4.7), we have

R(E?, E})E?

__ éEQ‘Bl*%EZ* =0,
R(EY, E?)Ey

= — (B Bfw)+ (BtaBiv)) Ef

— —KE:.

Thus, we have

(4. 10) E;Bfn=0,

(4. 11) E}Bin+B)=—K.

From (4.9) and (4.11), we have

(4.12) “'; (B + (—K —2(Btaf)Bfa=0 along Li.

(4. 12) is equivalent to

‘f;{ +(—K=2G)f=0 along Iz,

where G*=(Bf, ).

Now, if we put f*=f% then, from (4.9) and (4.11), we have
drf*
dr’
We can easily see that f=0 on the complement of V, in M. Then we
have

| (4. 13) %2(-—K—3(G2)>f*=0 along L2.

LEMMA 4.4. For each point x€V,, L. is infinitely extendible in V,.
ProoF. Since (M, g) is complete, as a geodesic in (M, g), L2 is infinitely
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extendible. If this geodesic does not lie in V,, let # be a point such that
z(t)e V, for t<t, but x(4,)¢ V,. Then, we see that f(z(2))=0. Now, we put
y=f(t)=f(z(2)), x(t)e L, where, using the same symbol for convenience, we
shall assume that L. denotes also the extention of L. Then, f(¢) is a real
analytic function defined for all real numbers £ Since f is not identically
0, we may put

(4. 14) y=fO)=u"fi(u), for some integer n=1,

where u=t—1,,|u|<e for sufficiently small ¢>0, and f; is a certain real
analytic function defined for |u|<e satisfying f,(0)#0. We see that G? is
a real analytic function on V,. Teen, from (4.9) and (4.14), we have

(4. 15) Gw)=—(/u)((u(dfijdu)+nf)[f)  for Ef=djds
or
G(w) = (1fu)((w(dfifdu) +nf))[f)  for Ef=—dldt along L,

where —e<u<0, for sufficiently small ¢>0.
From (4.11) and (4. 15), by direct computing, we have

(4. 16) (1/u)fG,(u)= —K <x(u)) , —e<u<0, for sufficienfly

small ¢>0, where G, is a real analytic function defined for —e<u<e¢ such
that

Gi(as) = (LA (n+ n)f2 + 2nuf(dfsfdu) + 20 (dfs | dup— o fy(d *fildas)),

and hence G,(0)=n+7»"
Thus, for the left hand side of (4. 16), we have lim (1/#)G,(x)= + co, and
u—-0

for the right hand side of (4.16), we have lim —K(x(u))= —K(z(z,). This
0

U~

is a contradiction. Q. E.D.
From (4.9) and (4.11), we have

(4.17) d*(1/f)ldé+K(1/f)=0, along L2

Next, we shall assume that K>0 on M. Since M is compact, there exists
a point x,€ VC M such that f*(x,)=Max f*(x)>0. Let V, be the connected
xeM

component of x, in V. And consider L. . Then, from (4.13), since K>0,
we see that d*(*/d*>0 for all real numbers £ But, this is a contradiction.
Thus, we can conclude that /=0 on M. Thus, by the same arguments as
in the proof of proposition 3.2, we can see that (M, g) is reducible. There-
fore, we have the main theorem. :
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5. Some remarks. Let (M, g) be a 3-dimensional completé, irreducible
real analytic Riemannian manifold satisfying the condition (*¥) (or equivalently
(**)). Now, we shall assume that the scalar curvature, S, of (M, g) is a non-
zero constant. If the rank of the Ricci form R, of (M, g) is 3 at some point
of M, then (M, g) is a space of constant curvature, S/6. In the sequel, we
shall assume that the rank of the Ricci form R, of (M, g) is 2 everywhere
on M. Then, from the constancy of K=S§/2, we may apply the similar
arguments to (M, ¢g) in consideration which are independent on compactness
of the manifold treated in the previous sections. First, we assume that
S>0. Then, from (4.17), we have

(5. 1) 1/f(0) =, sin (f S/2)t+c,cos (Y S]2)¢, along L2, zeV,,

where ¢, and ¢, are certain real numbers.

Since (M, g) is complete, from lemma 4. 4. and (5. 1), we see that there
exists a real number #, such that 1/f(#)=0. But, this is a contradiction.
Thus, we have

ProrosiTION 5.1. Let (M, g) be a 3-dimensional complete, irreducible
real analytic Riemannian manifold satisfying (*) (or equivalently (**)). If
the scalar curvature S of (M, g) is constant and positive, then (M, q) is a
space of constant curvature S[6.

Next, we assume that S<0. From lemma 4.3, for each point xeV,,

we may choose a local coordinate system (U,; (u, u,, u;)) with origin zx,
U,cV, such that

(5. 2) Eg* = azg(a/auz)"' azg(a/au;;) ’
E} = aaz(a/auz)+aas(a/aus) » —e<uy, Uy, Uzs<<e.
where A, ay, as, a and ay are certain real analytic functions on U,, >0,
and ap=an=1, ap=ay=0 along My(x) in U,.
By considering Bfy=DByy=DB;»=DB5,;=0, i,j=1,2,3, we see that a,

az, az and az; depend only on #;,. By (5.2), the Riemannian metric tensor
g is represented by

1/2 0 0
(5- 3) (g) > 0 g2z (23 on U,,
0 9= 9

where ¢,,=¢(0/0u,, d/ou,), p,q=2,3.
- Then we have
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(5- 4) f= 2@ 5 t = azzuz + a23u3 5

Where @ =qa* (aa32/au1 + {122} as+ {123} a33) + a32 <6a33/au1 + {132} Az + {133} a33) ’

(@*9) denotes the inverse matrix of (@, P,q=2,3 and {jl/e} denote the
Christoffel symbols formed with g,,=g(8/0u,, 8/ou,), i,j, k=1, 2, 3.

Then, by direct computing, we see that @ depends only on #. Now,
especially, we put ap=cos u;, a;=—sinu,, apz=sinu,, az=cos %, in (5. 2).
Then, frsm (5. 4), we see that ®=1. Thus, the following Riemannian mani-
fold (M, g) is an example of 3-dimensional complete, irreducible real analytic
Riemannian manifolds satisfying (*) and FR+0:

M=R® (3-dimensional real number space),

/2 0 0
(9): 0 1 0 |, with respect to
0O O 1

a canonical coordinate system (u,, #,, ;) on R®, where

1/A= e 5P 4 ==t ¢ = (cos uy)u+(—sin w)uy,

¢, G, S are certain real constant.

The above Riemannian manifold is of the form E?x,E", and the scalar
curvature is S, where f=1/1, (see [5], [I0]). Some results concerning R(X,
Y)-R=0 may be founded inreferences.
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