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1. Introduction. The Riemannian curvature tensor R of a locally
symmetric Riemannian manifold (M, g) satisfies

(*) R(X, Y)\cdot R=0 for all tangent vectors X and Y_{-}
,

where R(X, Y) operates on R as a derivation of the tensor algebra at each
point of M. Conversely, does this algebraic condition on the curvature
tensor field R imply that \nabla R=0 ? K. Nomizu conjectured that the answer
is positive in the case where (M, g) is complete irreducible and dim M\geqq 3 .
But, recently, H. Takagi [9] gave an example of 3-dimensional complete,
irreducible real analytic Riemannian manifold (M, g) satisfying (^{*}) and \nabla R\neq 0

as a hypersurface in a 4-dimensional Euclidean space E^{4} . Furthermore,
the present author proved that, in an (m+1)-dimensional Euclidean space
E^{m+1}(m\geqq 4) , there exist some complete, irreducible real analytic hypersurfaces
which satisfy (^{*}) and \nabla R\neq 0 ([6] in references). Let R_{1} be the Ricci tensor
of (M, g). Then, (^{*}) implies in particular

(^{**}) R(X, Y)\cdot R_{1}=0 for all tangent vectors X and Y.

In the present paper, with respect to this problem, we shall give an
affirmative answer in the case where (M, g) is a certain 3-dimensional com-
pact, irreducible real analytic Riemannian manifold, that is

THEOREM. Let (M, g) be a 3-dimensional compact, irreducible real ana-
lytic Riemannian manifold satisfying the condition (^{*}) (or equivalently (^{**})).
If the Ricci form of (M, g) is non-zero, positive semi-definite on M, then
(M, g) is a space of constant cumature.

I should like to express my hearty thanks to Prof. S. Tanno for his
kind suggestions and many valuable criticisms.

2. Lemmas. Let (M g) be a 3-dimmsional real analytic Riemannian,

manifold. Let R^{1} be a field of symmetric endomorphism satisfying R_{1}(X,Y)
=g(R^{1}X,Y). It is known that the cumature tensor of (M, g) is given by

(2. 1) R( X, Y)=R^{1}X\Lambda Y+X\Lambda R^{1}Y-\frac{traceR^{1}}{2}X\wedge Y ,

for all tangent vectors X and Y.
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At each point of M, we may choose an orthonormal basis \{e_{i}\} such
that R^{1}e_{i}=K_{i}e_{i} , 1\leqq i,j, k, h,\cdots\leqq 3 . Then, from (^{*}) (or equivalently (^{**})) and
(2. 1), we see that essentially the following cases are possible;

(I) K_{1}=K_{2}=K_{3}=K , K\neq 0 ,

(II) K_{1}=K_{2}=K , K_{3}=0 , K\neq 0 ,

(III) K_{1}=K_{2}=K_{3}=0 ,

For (I), by [4], we have
PROPOSITION 2. 1. If the rank of the Ricci form R_{1} is 3 at least at

one point of M, then (M, g) is a space of constant cumature.

With respect to our problem, without loss of generality, we may assume
that M is orientable (if necessarily, consider the orientable double covering
space of M). Next, we shall assume that the rank of R_{1} is at most 2 on
M. Then, (II) or (III) is valid on M. If the rank of R_{1} is 2 at some point
of M, then the rank of R_{1} is also 2n ear the point. Thus, let W=\{x\in M ;
the rank of R_{1} is 2 at x}, which is an open set of M. For each point
x_{0}\in W, let W_{0} be the connected component of x_{0} in W. Then, non-zero
eigenvalue of R^{1}, say K, is a real analytic function on W_{0} and we can take
two real analytic distributions T_{1} and T_{0} corresponding to K and 0, respec-
tively on W_{0} . Thus, for each point x\in W_{0} , we may choose a real analytic
orthonormal frame field \{E_{i}\} near x in such a way that \{E_{a}\} and {E3} are
bases for T_{1} and T_{0} , respectively. Here, a, b, c, \cdots=1,2 . From (2. 1) and
(II), we have

LEMMA 2. 2. With respect to the above basis \{E_{i}\} ,

(2. 2) R(E_{1}, E_{2})=KF_{d}1\Lambda E_{2} and otherwise being zero.

In general, for a local real analytic orthonormal frame field \{E_{\dot{b}}\} on an
open set U in a real analytic Riemannian manifold (M, g), we may put

(2. 3) \nabla_{E_{i}}E_{f}=\sum_{k=1}^{m}B_{ifk}E_{k\prime}.

where m=\dim M and B_{ifk}(i,j, k=1,2, \cdots, m) are certain real analytic func-
tions on U satisfying B_{ifk}=-B_{k\sqrt[\dot{\prime}]{}j} .

From (2. 2) and (2. 3), by considering the second Bianchi identity, we have

(2. 4) B_{33a}=0 ,

(2. 5) E_{3}K+K(B_{131}+B_{232})=0 .
From (2. 4), we see that each trajectory of E3 is a geodesic. For each point
x\in W_{0} , let L_{x}^{3} be the geodesic whose initial point is x and initial direction
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is (E_{3})_{x} . And -\rceil ets denote its arc-length parameter. Using the same symbol
for convenience, we shall assume that L_{x}^{3} denotes also the set of the points
on L_{x}^{3} and x(s) denotes the point on L_{x}^{3} corresponding to the value s of the
parameter. For each point x\in W_{0} , we may choose a real analytic orth0-
normal frame field \{E_{i}\} on a neighborhood U_{x}(\subset W_{0}) of x in such a way that

(i) \{E_{a}\} and {E3} are bases for T_{1} and T_{0} , respectively,
(ii) \nabla_{E_{3}}E_{i}=0 , i=1,2,3 .

From (2. 3) and (ii), we have
(2. 6) B_{3ij}=0 on U_{x} .
From (2. 2), (2. 3) and (2. 6), we have

R(E_{a}, E_{3})E_{3}=\nabla_{E_{a}}\nabla_{E_{3}}E_{3}-\nabla_{E_{3}}\nabla_{E_{a}}E_{3}-\nabla_{[E_{a},E_{3}]}E_{3}

=- \sum_{i=1}^{3}(E_{3}B_{a3i}+\sum_{k=1}^{3}B_{a3k}B_{k3i})E_{i}

=- \sum_{j=1}^{3}(E_{3}B_{a3i}+\sum_{b=1}^{2}B_{a3b}B_{b3i})E_{i}=0

Thus, from the above equation and (2. 5), we have

(2. 7) E_{3}B_{131}+(B_{131})^{2}+B_{132}B_{231}=0 .
E_{3}B_{232}+(B_{232})^{2}+B_{231}B_{132}=0j

(2. 8) B_{132}=C_{1}K , B_{231}=C_{2}K .
B_{132}-B_{232}=DK ,

where C_{1} , C_{2} and D are certain real analytic functions on U_{x} satisfying
E_{3}C_{1}=E_{3}C_{2}=E_{3}D=0 .
From (2. 5) and (2. 8), we have

(2. 9) B_{131}= \frac{1}{2}(DK-E_{3}K/K) ,

B_{232}=- \frac{1}{2}(DK+E_{3}K/K)(

Thus, from (2. 5), (2. 7), (2. 8) and (2. 9), putting E_{3}=d/ds or -d/ds along L_{x}^{3} ,
we have
if K>0, then

(2. 10) \frac{d^{2}}{ds^{2}}(1/\sqrt\overline{K})=-H(\sqrt\overline{K})^{3}’.

if K<0 , then
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(2. 11) \frac{d^{2}}{ds^{2}}(1/\sqrt\overline{-K})=-H(\sqrt\overline{-K})^{3},\cdot

where H=D^{2}/4+C_{1}C_{2} .
Solving (2. 10) ((2. 11), resp.), we have

\langle2. 12) 1/\sqrt\overline{K}=\sqrt\overline{(\alpha s-\beta)^{2}-H/\alpha^{2}}

( 1/\sqrt\overline{-K}=\sqrt\overline{(\alpha s-\beta)^{2}-H/\alpha^{2}}, resp.),

where \alpha and \beta are certain real numbers.
Now, for each point x\in W_{0} , let \{E_{i}\} be a real analytic orthonormal frame

field on a neighborhood U_{x} satisfying (i) and (ii). Then, \{U_{x}\}_{x\epsilon W_{0}} is an open
covering of W_{0} .

Since M is orientable, if U_{x}\cap U_{\overline{x}}\neq\emptyset, \{E_{i}\} and \{\overline{E}_{p}i\} are defined on U_{x} and
U_{\overline{x}} , respectively, then we may put

\overline{E}_{1}=(\cos\theta)E_{1}+ ( - sin \theta) E_{2} ,

(2. 13) \overline{E}_{2}=(\sin\theta)E_{1}+(\cos\theta)E_{2} ,
\overline{E}_{3}=E_{3} , on U_{x}\cap U- ,

or
\overline{E}_{1}=(\cos\theta)E_{1}+(\sin\theta)E_{2} ,

(2. 14) \overline{E}_{2}=(\sin\theta)E_{1}+ ( - cos \theta) E_{2} ,
\overline{E}_{3}=-E_{3} , on U_{x}\cap U- ,

where cos \theta and sin \theta are certain real analytic functions on U_{x}\cap U- satisfying
E3 cos \theta=E_{3} sin \theta=0 .

Let C_{1}(E), C_{2}(E), D(E) and H(E) denote the ones defined as in (2. 8)
with respect to \{E_{i}\} on U_{x}(\subset W_{0}) . Then, from (2. 13) and (2. 14), by direct
computation, we have for (2. 13)

C_{1}(\overline{E})=C_{1}(E) cos2 \theta-C_{2}(E) sin2 \theta+D(E)/2) sin 2\theta\tau

(2. 15) C_{2}(\overline{E})=C_{2}(E) cos2 \theta-C_{1}(E)\sin^{2}\theta+(D(E)/2) sin 2\theta ,
D(\overline{E})=D(E) cos 2\theta-(C_{1}(E)+C_{2}(E)) sin 2\theta , on U_{x}\cap U-,

for (2. 14)

C_{1}(\overline{E})=C_{1}(E) cos2 \theta-C_{2}(E) sin2 \theta-(D(E)/2) sin 2\theta ,

(2. 16) C_{2}(\overline{E})=C_{2}(E) cos2 \theta-C_{1}(E) sin2 \theta-(D(E)/2) sin 2\theta ,
D(\overline{E})=-D(E)\cos 2\theta-(C_{1}(E)+C_{2}(E)) sin 2\theta , on U_{x}\cap U-.

From (2. 15) and (2. 16), we have
\langle2. 17) C_{1}(\overline{E})-C_{2}(\overline{E})=C_{1}(E)-C_{2}(E) ,
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(2. 18) H(\overline{E})=D(\overline{E})^{2}/4+C_{1}(\overline{E})C_{2}(\overline{E})

=D(E)^{2}/4+C_{1}(E)C_{2}(E)=H(E) , on U_{x}\cap U-.

From (2. 17), we see that f=(C_{1}(E)-C_{2}(E))K for some \{E_{i}\} on U_{x} , x\epsilon W_{0} ,
is a real analytic functionon W_{0} .

3. Some results. In this section, furthermore, we shall assume that
(M, g) is complete. Then, by (2. 12) and (2. 18), we have

LEMMA 3. 1. For each point x\in W_{0} , L_{x}^{3} is infinitely extendible in W_{0} .
By lemma 3. 1, we see that (1/K)|_{L_{x}^{3}}=(\alpha_{\backslash }\sigma-\beta)^{2}-H/\alpha^{2} must be defined

for all real numbers s along L_{x}^{3} .
PROPOSITION 3. 2. If the distribution T_{1} is involutive on W_{0} , thm

(M, g) is reducible.
PROOF. Assume that T_{1} is involutive. Then, it follows that [E_{1}, E_{2}]\in T_{1} ,

that is

(3. 1) B_{132}-B_{231}=0 .
Thus, from (3. 1), we have H=H(E)=D(E)^{2}/4+C_{1}(E)^{2}\geqq 0 . Thus, from
lemma 3. 1. and (2. 12), by the similar arguments as in [7], we can show
that H=0 and furthermore K is constant along L_{x}^{3} , x\in W_{0} . Therefore,
from (2. 9), (3. 1) and the fact H=H(E)=0, we have B_{131}=B_{132}=B_{231}=B_{232}=0 .
Thus, we see that T_{1} and T_{0} are parallel on W_{0} , that is to say, the open
subspace (W_{0}, g|_{W_{0}}) is reducible. Since (M, g) is real analytic, we can con-
clude that (M, g) is reducible. Q. E. I).

Next, furthermore, we shall assume that M is compact and the rank
of the Ricci form R_{1} is different from 0 everywhere on M. Then, it follows
that W_{0}=M. Then, \alpha can not be 0 in (2. 12). Since 1/K is continuous on
M, it must be bounded on M. But, since 1/K coincides with (\alpha s-\beta)^{2}-H/\alpha^{2}

or -((\alpha s-\beta)^{2}-H/\alpha^{2}) along L_{x}^{3} , x\in M , it can not be bounded on L_{x}^{3}\subset M.
This is a contradiction. Thus, we see that H=H(E)=0 at every point
x\in M with respect to any \{E_{i}\} on U_{x} . Thus, from (2. 10) and (2. 11), by
the similar arguments as in [5], we can see that K is constant along each
L_{x}^{3} , x\in M. That is

PROPOSITION 3. 3. If M is compact and the rank of the Ricci form R_{1}

is different from 0 everywhere on M, then K is constant along each L_{x}^{3} ,
x\in M.

4. Proof of the main theorem. In the sequel, we shall assume that
M is compact and the rank of R_{1} is different from 0 everywhere on M.
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The purpose of this section is to prove the reducibility of (M, g) under these
circumstances. Now, we assume that there exists a point z\in M such that
f(z)\neq 0 . Let V=\{x\in M;f(x)\neq 0\} , which is an open set of M. For any
point x_{0}\in V, let V_{0} be the connected component of x_{0} in V. Now, since
H=H(E)=0 for any \{E_{i}\} on sufficiently small U_{x}(\subset V_{0}), we see that \Lambda(E)

=\sqrt\overline{D(E)^{2}+(C_{1}(E)+C_{2}(E))^{2}}>0 . Thus, we can define a real analytic orth0-
normal frame field \{Ei^{*}(E)\} on U_{x} in such a way that

E_{1}^{*}(E)=(\cos\xi)E_{1}+ ( - sin \xi) E_{2} ,
(4. 1) E_{2}^{*}(E)=(\sin\xi)E_{1}+(\cos\xi)E_{2} ,

E_{3}^{*}(E)=E_{3} ,

where \xi is a certain real analytic function on U_{x} satisfying cos 2\xi=(C_{1}(E)

+C_{2}(E))/\Lambda(E) and sin 2\xi=D(E)/\Lambda(E) .
Next, if U_{x}\cap U_{\overline{x}}\neq\emptyset , \{E_{i}\} and \{\overline{E}_{i}\} are defined on U_{x} and U-, respec-

tively, then, by the similar way as in (4. 1), we may obtain an orthonormal
frame field \{E_{i}^{*}(\overline{E})\} with respect to \{\overline{E}_{i}\} on U-(\subset V_{0}) . Then we have

LEMMA 4. 1. On U_{x}\cap U-, we have

(4. 2) E_{i}^{*}(\overline{E})=\pm E_{i}^{*}(E) , i=1,2,3,

where the plus sign or minus sign in (4. 2) is determined by the orientation
of M.

,PR00F. By the definition of \{E_{i}^{*}(\overline{E})\} , we have
E_{1}^{*}(\overline{E})=(\cos\overline{\xi})\overline{E}_{1}+ ( - sin \overline{\xi} ) F–2 ,

(4. 3) E_{2}^{*}(\overline{E})=(\sin\overline{\xi})\overline{\overline{A_{1}^{\cdot}}}+(\cos\overline{\xi})\overline{F_{2}.} ,
E_{3}^{*}(\overline{E})=\overline{E}_{3} ,

where \overline{\xi} is a certain real analytic function on U- satisfying cos 2\overline{\xi}=(C_{1}(\overline{E})

+C_{2}\{\overline{E}))/\Lambda(\overline{E}) and sin 2\overline{\xi}=D(\acute{\overline{E}})/\Lambda(\overline{\overline{F}}) .
First, for the case (2. 13), from (2. 15), (4. 1) and (4. 3), we have \Lambda(\overline{E})

=\Lambda(E) and furthermore

cos 2\overline{\xi}=(C_{1}(\overline{F_{\lrcorner}})+C_{2}(\overline{E}))/\Lambda(\overline{E})

=(1/\Lambda(E))((\cos^{2}\theta)C_{1}(E)-(\sin^{2}\theta)C_{2}(E)

+ ( \sin\theta cos \theta) D(E)+(\cos^{2}\theta)C_{2}(E)-(\sin^{2}\theta)C_{1}(E)

+ ( \sin\theta cos \theta) D(E))

=(1/\wedge(E))((\cos 2\theta)(C_{1}(E)+C_{2}(E))+(\sin 2\theta)D(E))=\cos 2(\xi-\theta)\sim



On some 3-dimensional Riemannian manifolds 265

similarly

sin 2\xi=\sin 2(\xi-\theta) .
Thus, we have
(4. 4) \xi-\theta=\overline{\xi}+n\pi (n=1,2, \cdots) .
Again, from (2. 13), (2. 15), (4. 1) and (4. 3), we have

E_{1}^{*}(\overline{E})=(\cos\overline{\xi})((\cos\theta)E_{1}+ ( – sin \theta) E_{2})+ ( – sin \overline{\xi}) ((\sin\theta)E_{1}+(\cos\theta)E_{2})

=(\cos(\overline{\xi}+\theta))E_{1}+(- sin (\xi+\theta))E_{2} .

Thus, from (4. 4), we see that E_{1}^{\star}(\overline{E})=E_{1}^{\star}(E) or E_{1}^{*}(\overline{E})=-E_{1}^{*}(E) . Further-
more, we see that E_{2}^{*}(\overline{E})=E_{2}^{*}(E. ) corresponding to E_{1}^{*}(\overline{E})=E_{1}^{*}(E) or E_{2}^{*}(\overline{F_{arrow}})

=-E_{2}^{*}(E) corresponding to E_{1}^{*}(\overline{\Gamma_{\vee}\sqrt})=-E_{1}^{*}(E) . Similarly, considering the
case (2. 14), we see that (4. 2) is valid. Q. E. D.

For each \{E_{i}^{*}=E_{i}^{*}(E)\} on U_{x}(\subset V_{0}) , let T_{ij}=span\{E_{i}^{*}, E_{f}^{*}\}(i\leqq j) . Then,
by the definition of \{E_{f}^{*}(E)\} , we see that
(4. 5) C_{1}(E^{*})C_{2}(E^{*})=0 and D(E^{*})=0 .
Thus, we may assume, for example

(4. 6) C_{1}(E^{*})\neq 0 , C_{2}(E^{*})=0 , D(E^{*})=0 , on V

Thus, from (2. 9) (4. 6) and proposition 3. 3, we have
(4. 7) B_{132}^{*}\neq 0 , B_{231}^{\star}=B_{131}^{*}=B_{232}^{*}.=0 on U_{x} , x\in V_{0} ,

where B_{ijk}^{*}(i,j, k=1,2,3) denote the ones defined as before corresponding
to \{E_{i}^{*}\} . Then, from (4. 7), we have

LEMMA 4. 2. T_{23} is involutive on V_{0} .
Now, from (2. 2), (2. 3), (2. 4), (2. 6) and (4. 7), we have

R(E_{1}^{*}, E_{2}^{*})E_{3}^{*}=\nabla_{E_{1}}^{*}\nabla_{E_{2}}^{*}E_{3}^{*}-\nabla_{E_{l}}^{*}\nabla_{E_{1}}^{*}E_{3}^{*}-\nabla_{\ddagger E_{1}^{*},E_{2^{\lrcorner}}^{*}},E_{3}^{*}

=-((E_{2}^{*}B_{132}^{*})+B_{121}^{*}B_{132}^{*})E_{2}^{*}-(B_{232}^{*}B_{221}^{*})E_{1}^{*}=0 .

Thus, we have
(4. 8) B_{221}^{*}=0 ,

(4. 9) E_{2}^{*}B_{132}^{*}+B_{121}^{*}B_{132}^{*}=0 .
From (4. 8) and (4. 9), we see that \nabla*E_{2}^{*}=0 , that is, each trajectory of E_{2}^{*}

E_{2}

is a geodesic. From (4. 7), since
\nabla_{E^{*}}E_{3}^{*}2=\nabla_{E^{*}}E_{2}^{*}a

.
=\nabla_{E^{*}3}E_{3}^{*}=0, consequently,



266 K. Sekigawa

we have
LEMMA 4. 3. Let M_{23}(x) be the maximal integral submanifold of T_{23}

through x\in V_{0} . Then M_{23}(x) becomes totally geodesic subspace with respect
to the induced metric and hmce locally fiat.

Now, let L_{x}^{2} be the geodesic whose initial point is x, x\in V_{0} , and whose
tangent vector is E_{2}^{*} or -E_{2}^{*} at each point of L_{x}^{2} . And let t denote its arc-
length parameter. Using the same symbol for convenience, we shall assume
that L_{x}^{2} denotes also the set of the points on L_{x}^{2} and x(t) denotes the point
on L_{x}^{2} corresponding to the value t of.the parameter. Again, from (2. 2),
(2. 3), (2. 4), (2. 6) and (4. 7), we have

R(E_{1}^{*}, E_{3}^{*})E_{2}^{*}

=- \sum_{i=1}^{3}E_{3}^{*}B_{i_{2i}}^{+}E_{i}^{*}=0 ,

R(E_{1}^{*}, E_{2}^{*})E_{1}^{*}

=-((E_{2}^{*}B_{112}^{*})+(B_{121}^{*}B_{112}^{*}))E_{2}^{*}

=-KE_{2}^{*}

Thus, we have

(4. 10) E_{3}^{*}B_{121}^{*}=0j

(4. 11) E_{2}^{*}B_{121}^{*}+B(_{121}^{*})^{2}=-K .

From (4. 9) and (4. 11), we have

(4. 12) \frac{d^{2}}{dt^{2}}(B_{132}^{*})+(-K-2(B_{121}^{*})^{2})B_{132}^{*}=0 along L_{x}^{2} .

(4. 12) is equivalent to

\frac{d^{2}f}{dt^{2}}+(-K-2G^{2})f=0 along L_{x}^{2} ,

where G^{2}=(B_{121}^{*})^{2} .
Now, if we put f^{*}=f^{2}, then, from (4. 9) and (4. 11), we have

(4. 13) \frac{d^{2}f^{*}}{dt^{2}}+2(-K-3(G^{2}))f^{*}=0 along L_{x}^{2} .

We can easily see that f=0 on the complement of V_{0} in M. Then we
have

LEMMA 4. 4. For each point x\in V_{0} , L_{x}^{2} is infinitely extmdible in V_{0} .
PROOF. Since (M, g) is complete, as a geodesic in (M, g), L_{x}^{2} is infinitely
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extendible. If this geodesic does not lie in V_{0} , let t_{0} be a point such that
x(t)\in V_{0} for t<t_{0} but x(t_{0})\varphi V_{0} . Then, we see that f(x(t_{0}))=0 . Now, we put
y=f(t)=f(x(t)), x(t)\in L_{x}^{2} , where, using the same symbol for convenience, we
shall assume that L_{x}^{2} denotes also the extention of L_{x}^{2} . Then, f(t) is a real
analytic function defined for all real numbers t. Since f is not identically
0, we may put

(4. 14) y=f(t)=u^{n}f_{1}(u) , for some integer n\geqq 1 ,

where u=t-t_{0},|u|<\epsilon for sufficiently small \epsilon>0 , and f_{1} is a certain real
analytic function defined for |u|<\epsilon satisfying f_{1}(0)\neq 0 . We see that G^{2} is
a real analytic function on V_{0} . Teen, from (4. 9) and (4. 14), we have
(4. 15) G(u)=-(1/u)((u(df_{1}/du)+nf_{1})/f) for E_{2}^{*}=d/dt

or

G(u)=(1/u)((u(df_{1}/du)+nf_{1}))/f) for E_{2}^{*}=-d/dt along L_{x}^{2} ,

where -\epsilon<u<0 , for sufficiently small \epsilon>0 .
From (4. 11) and (4. 15), by direct computing, we have

(4. 16) (1/u)^{2}G_{1}(u)=-K(x(u)) , -\epsilon<u<0 , for sufficienfly

small \epsilon>0, where G_{1} is a real analytic function defined for -\epsilon<u<\epsilon such
that

G_{1}(u)=(1/f_{1})^{2}(n+n^{2})f_{1}^{2}+2nuf_{1}(df_{1}/du)+2u^{2}(df_{1}/du)^{2}-u^{2}f_{1}(d^{2}f_{1}/du^{2})) ,

and hence G_{1}(0)=n+n^{2}.
Thus, for the left hand side of (4. 16), we have \lim_{uarrow-0}(1/u)^{2}G_{1}(u)=+\infty , and

for the right hand side of (4. 16), we have \lim_{uarrow-0}-K(x(u))=-K(x(t_{0})) . This
is a contradiction. Q. E. D.

From (4. 9) and (4. 11), we have
(4. 17) d^{2}(1/f)/dt^{2}+K(1/f)=0 , along L_{x}^{2} .
Next, we shall assume that K>0 on M. Since M is compact, there exists
a point x_{0}\in V\subset M such that f^{*}(x_{0})=Maxf^{*}(x)>0x\epsilon M^{\cdot} Let V_{0} be the connected
component of x_{0} in V. And consider L_{x_{\Phi}}^{2} . Then, from (4. 13), since K>0,
we see that d^{2}f^{*}/dt^{2}>0 for all real numbers t. But, this is a contradiction.
Thus, we can conclude that f=0 on M. Thus, by the same arguments as
in the proof of proposition 3. 2, we can see that (M, g) is reducible. There-
fore, we have the main theorem.
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5. Some remarks.
real analytic Riemannian manifold satisfying the condition (^{*}) (or equivalently
(^{**})) . Now, we shall assume that the scalar curvature, S, of (M, g) is a non-
zero constant. If the rank of the Ricci form R_{1} of (M, g) is 3 at some point
of M, then (M, g) is a space of constant curvature, S/6. In the sequel, we
shall assume that the rank of the Ricci form R_{1} of (M, g) is 2 everywhere
on M. Then, from the constancy of K=S/2, we may apply the similar
arguments to (M, g) in consideration which are independent on compactness
of the manifold treated in the previous sections. First, we assume that
S>0 . Then, from (4. 17), we have

(5. 1) 1/f(t)=c_{1} sin (\sqrt\overline{S/2})t+c_{2} cos (\sqrt\overline{S/2})t , along L_{x}^{2} , x\in V_{0} ,

where c_{1} and c_{2} are certain real numbers.
Since (M, g) is complete, from lemma 4. 4. and (5. 1), we see that there

exists a real number t_{0} such that 1/f(t_{0})=0 . But, this is a contradiction.
Thus, we have

PROPOSITION 5. 1. Let (M, g) be a 3-dimensional complete, irreducible
real analytic Riemannian manifold satisfying (^{*}) (or equivalmtly (^{**})). If
the scalar cumature S of (M, g) is constant and positive, then (M, g) is a
space of constant cumature S/6.

Next, we assume that S<0 . From lemma 4. 3, for each point x\in V_{0} ,
we may choose a local coordinate system.(U_{x} ; (u_{1}, u_{2}, u_{3})) with origin x,
U_{x}\subset V_{0} such that

E_{1}^{*}=\lambda(\partial/\partial u_{1}) ,

(5. 2) E_{2}^{*}=a_{22}(\partial/\partial u_{2})+a_{23}(\partial/\partial u_{3}) ,
E_{3}^{*}=a_{32}(\partial/\partial u_{2})+a_{33}(\partial/\partial u_{3}) , -\epsilon<u_{1} , u_{2} , u_{3}<\epsilon .

where \lambda, a_{22} , a_{23} , a_{32} and a_{33} are certain real analytic functions on U_{x} , \lambda>0,
and a_{22}=a_{33}=1 , a_{23}=a_{32}=0 along M_{23}(x) in U_{x} .

By considering B_{131}^{*}=B_{231}^{*}=B_{232}^{*}=B_{3ij}^{*}=0, i,j=1,2,3, we see that a_{22} ,
a_{23} , a_{32} and a_{33} depend only on u_{1} . By (5. 2), the Riemannian metric tensor
g is represented by

(5. 3) (g); \{

1/\lambda^{2} 0
0 q_{22}

0 g_{32}

g_{33}g_{23}0) on U_{x} ,

where g_{pq}=g(\partial/\partial u_{p}, \partial/\partial u_{q}), p, q=2,3.
. Then we have

Let (M, g) be a 3-dimensional complete, irreducible
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(5. 4) f=\lambda\Phi , t=a_{22}u_{2}+a_{23}u_{3} ,

where \Phi=a^{22} ( \partial a_{32}/\partial u_{1}+\{\begin{array}{l}212\end{array}\} a_{32}+\{\begin{array}{l}213\end{array}\} a_{33})+a^{32}(\partial a_{33}/\partial u_{1}+\{\begin{array}{l}312\end{array}\} a_{32}+\{\begin{array}{l}313\end{array}\} a_{33}) ,

(a^{pq}) denotes the inverse matrix of (a_{pq}), p, q=2,3 and \{\begin{array}{ll} ij k\end{array}\} denote the
Christoffel symbols formed with g_{ij}=g(\partial/\partial u_{i}, \partial/\partial u_{j}), i,j, k=1,2,3.

Then, by direct computing, we see that \Phi depends only on u_{1} . Now,
especially, we put a_{22}=\cos u_{1} , a_{23}=-\sin u_{1} , a_{32}=\sin u_{1} , a_{33}=\cos u_{1} in (5. 2).
Then, frsm (5. 4), we see that \Phi=1 . Thus, the following Riemannian mani-
fold (M, g) is an example of 3-dimensional complete, irreducible real analytic
Riemannian manifolds satisfying (^{*}) and \nabla R\neq 0 :

M=R^{3} (3-dimensional real number space),

(g) : (\begin{array}{lll}1/\lambda^{2} 0 00 1 00 0 1\end{array}) , with respect to

a canonical coordinate system (u_{1}, u_{2}, u_{3}) on R^{3} , where
1/\lambda=c_{1}e^{(\overline{\prime-S/2})t}+c_{2}e^{-(\overline{\prime-S/2})t} , t=(\cos u_{1})u_{2}+ ( - sin u_{1} ) u_{3} ,

c_{1} , c_{2} , S are certain real constant.
The above Riemannian manifold is of the form E^{2}\cross_{f}E^{1}, and the scalar

curvature is S,\cdot where f=1/\lambda , (see [5], [10]). Some results concerning R(X,
Y) \cdot R=0 may be founded inreferences.
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