A note on minimal submanifolds
'in Riemannian manifolds -

By Masahiro KoN

In this note we shall prove the following: - Let M"*? be a Riemannian
manifold of constant curvature ¢, and let M” be a minimal submanifold in
M of constant curvature ¢. Then either M is totally geodesic, i.e. ¢=c,
or ¢=(2p—n+1)c/(p—n+1), in the latter case the equality arising only
when #>0. Our method is based on the Simons’ type formula which has
been given by Simons [4].

On the other hand, we shall study the Laplacian of the Ricci operator
of a minimal submanifold of codimension 1 in a Riemannian manifold of
constant curvature and give some inequality. And combing the theorems
of Lawson [2], we shall prove some theorems for compact minimal hyper-
surfaces in a unit sphere.

1. Preliminaries

In this section we shall summarize the basic formulas for submanifolds
in Riemannian manifolds.

Let M be a Riemannian manifold of dimension n+p, and let M be a
submanifold of M of dimension n. Let {,) be the metric tensor field of
M as well as the metric induced on M. We denote by 7 'the covariant
differentiation in M and by V the covariant differentiation in M determined
by the induced metric on M. Then the Gauss-Weingarten formulas are
given by

F.Y=F,Y+B(X,Y), X Yex(M),

VeN=—A"X)+D:zN, XeX(M), NeX(M)"
Where D is the linear connection in the normal bundle T(M)'. We call
A and B the second fundamental form of M and they satisfy <B(X, Y),
N>=<A¥X),Y>. The Riemannian curvature tensors of M and M will

be denoted by R and R respectively. From the Gauss-Weingarten formulas,
we have

RyyZ = ReyZ—AP(X)+ A%+ (P B)(Y, Z)—("y B)X, Z),

where 7 denotes the covariant differentiation for B. And we obtain the
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Gauss-equation
(1.1) <RyyZ, W> = <Ry yZ, W>—<B(Y, Z), BX, W)>
+<B(X, Z), B(Y, W)> .

If M is of constant curvature, the Codazzi-equation is satisfied, that is
VxB)(Y,Z)=(yB)(X, Z), and we have
(1.2) Ry yZ = Ry yZ— APTD(X)4 ABE2(Y),

Let e, -, e, be a frame for T,(M). Then the mean curvature K of
M is defined by K=§}1B(e¢, e). If K=0, a submanifold M is said to be

minimal in M. Let v, ---,v, be a frame for 7,(M)'. Here we assume
that M is of constant curvature &, and M is minimal in M. Then the
Ricci tensor S of M is given by

(1. 3) Sz, y)=m—1ec<z,y>— Z<A%A’( x), y>

where z,yeT,, (M) and we denote A’ instead of A% to simplify. From
this the scalar curvature Sc of M is represented by

(1. 4) Sc=n(n—1)é—||A|?

where ||A]| is the length of the second fundamental form. If the second
fundamental form is identically zero, M is said to be totally geodesic in M.

2. Minimal submanifolds of constant curvature
In this section we prove the following.

THEOREM 2.1. Let M bhe a Riemannian manifold of dimension n-+p
and constant curvature ¢, and let M be a minimal submanifold of M of
dimension n and constant curvature c. If p>n—1, then either M is totally
geodesic, i.e. e=c, or e=(2p—n+1)c/(p—n+1), in the latter case the equality
arising only when ¢>0. If p=n—1, then M is flat.

Proor. Since M is minimal, the second fyndamental form A of M
satisfies (cf. [5], p 93)

VPA=—AcA—A-A+ncA
where the operators A and A are defined by setting
{=*A-A and A =Y adA'adA*.
2=1

If M and M are both of constant curvature, then the length of the second
fundamental form is constant and we obtain
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2.1) VA VA> =<A-A, A>+<A,°A, A>—ne|Al*.
Let x, ye T, (M) and weT,,(M)*. From (1.2), we have

< AR ) 4> = ;Z‘: <AIA”Al(x), y> + (T —c)<A“(x), y>,
which implies

(2.2) <AoA A> = 21 ; CAIAMAIe), Ae)> +(E—0)| Al

2, J=1

On the other hand, we can see

(2.3) <44, A>= 3|4y A

=23 2 (QAIAIAYe), Ale)> — <AA'A(e), A'le)>).

t=14¢,j=1
By (1.3), the first term of the right hand side of (2.3) becomes 2(n—1)
(¢—o)||A|l> and consequently (2.1), (2.2) and (2. 3) imply

2. 4) <PAVA> =(c—20)n||AlP—<A-A, A>.

Since A is symmetric, positive semi-definite operator, we can choose a frame

vy--v, in T, (M)* such that
Aw)=2v, and |AP=3Z.
¢=1
Then we have the following

. D 1 P 2 1
CAA A> =iz ?(2 zz) = -l

Noticing that <A+A4, A>>0, we have <A-A, A> g—l—lnA][“ by (2.2)
-

and (2.3). Therefore if p<n—1, <A-A, A>=0, which shows that M is
totally geodesic in M. If p=n—1, then <A-A, A>=0 and M has trivial
normal connection and moreover M is flat (see Cartan, Oeuvres Completes,
partie III, vol. 1, p. 417 and John Moore’s Berkeley Thesis).

Let p>n—1. Then the equation (2.4) implies the following

(2.5) <A TA> < 2 ((p—n+ De—(2p—n+1)c) | AJL.

Suppese ¢=(2p—n-+1)c/(p—n+1). Then the right hand side of this in-
. equality is zero. Therefore M is totally geodesic, i.e. é=c, or ¢=(2p—n
+1)c/(p—n+1). Since ¢=c always, the latter case arising only when ¢>0.
Except for these posibilities, we obtain ¢>(2p—n+1)c/(p—n+1). This
completes our assertion. '
COROLLARY 2.2. Under the same assumption as in Theorem 2.1, if
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p=n, then M is totally geodesic, or ¢=(n+1)c, in the latter case the equality
arising only when ¢>0.

REMARK : Len M”™ be a compact minimal submanifold in a unit sphere
S*t? of constant curvature c satisfyisg c=(p—n+1)(2p—n+1). If n=2,
then by the main theorem of Chern, do Carmo and Kobayashi [1], M is
the Veronese surface and ¢=1/3. |

3. Minimal hypersurfaces

First we prepare some lemmas for latter use.

Let M™!' be a Riemannian manifold of constant curvature &, and let
M" be a minimal hypersurface of M. We denote by Q the Ricci operator
of M, which satisfies S(z, y)=<Qx, y>. Generally we have the following

LEmMA 3.1 (Nomizu [3]). If the Ricci operator Q satisfies the Codazzi-
equation

(3.1) Q) Y=0rQX, X YeX(M),

then the scalar curvature Sc is constant.
REMARK : The Ricci operator Q satisfies the Codazzi-equation if and
only if FxS)Y,Z)=F+S)(X, Z) for any X, Y, ZeX(M).

LEmMA 3.2. Let x,yeT,(M), and let e,, -+, e, be a frame for T, (M)
If the Ricci operator Q satisfies the Codazzi-equation, then we have

(3.2) VA(S)(z, y) = i;lRe,;,ac(S )es, v)
Proor. Let E,, -, E, be local, orthonormal vector fields which extend
- e, -, e,, and which are covariant constant with respect to V' at meM. Let

X, Y be local extensions of z, y which are also covariant constant with
respect to V. Using (3.1) and Lemma 3.1, we have

el 2 S) 9) = BF = x(S)ee v)

N
2
)
s
I
Ms

.
it
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ReL )e:, y)+VX<VY(S)(Ei’ Ez)))

IIM§ IIMS

 RepelS)less ) -

Let v be a unit normal. Hereafter we denote A” by A to simplify.
First we have the following

2 RealS)lers ¥) == 33 (S (Repuer, 1)+ Sles, Rpa),

=1
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and (1. 2) implies
(3.3) PHS)x, y)=—2 ( SR, .e,y)+S(AZ=D(e,), y)

+ S(Rei,z Y, eﬁ) + S(AB(x,y) (ef,)’ ei)
—S(AFCe? (), &)

On the other hand, QA =(n—1)¢A—A’=AQ by (1.3), and hence

=2 (S(a%e(e), y) —S(4%w (@), )
=~ <QA@), y>+ <AQA(z), y> =0.
From (1. 3), we obtain
— 3 S( A% (e), ) = TrA< A®), y>,
i=1
and we have also
~ 3 (S(Repuee, 1)+ SRy, €)) = en<Qa, y > —cSc< 3, y>.
On the other hand, we can see easily F*(S)(z, y)=<P*Q)x,y> for any
x,yeT,(M). Consequently (3.3) implies
r*Q =¢nQ—Scl)+(TrA%A.

Here we assume that M is cempact and ¢>0. Then we have

3.9 os| <roro>=-[ <rgo> =[ {e(se—nlQI)+(Tra%).
Using (1. 3) and (1. 4), this becomes |

(3.5) SM< rQ,rQ> — L{{a (TrA% —nTra*) + (Tra%).

Therefore we have the following

THEOREM 3.1. Let M"*' be a Riemannian manifold of constant curva-
ture ¢>0, and let M™ be a compact minimal hypersuface of M. If the
Ricci operator Q of M satisfies the Codazzi-equation, and if the second
Sundamental form A of M satisfies ¢(TrA*Y+(TrA3<enTrA*, then the
Ricci operator Q of M is covariariant constant.

From this and Theorem 2 of Lawson [2], we obtain the following

COROLLARY 3.2. Let M™ be a compact minimal hypersurface in a
unit sphere S™'. If the Ricci operator Q of M satisfies the Codazzi-
equation, and if (TrA*Y +(TrA¥<nTrA", then, up to rotations of S™*', M»
is one of the minimal products of spheres
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Sk(\/§> xS%—k(\/";k ): E=0, -, [%]

THEOREM 3.3. Let M and M be as in Theorem 3.1. [f the Ricci
operator Q of M satisfies the Codazzi-equation, and if TrA*=0, then M
is an Einstein manifold.

Proor. By (3.4), we have

0=, <re.ro> =¢f (se—nlQl).

But we have always S*=<#z||Q||?, hance we get Sc¢®=n|Q|?>, which shows
that M is Einstein.

COROLLARY 3.4. Let M™ be a compact minimal hypersurface in a
unit sphere S™. If Q satisfies the Codazzi-equation, and if TrA*=0,
then M 1is total]y geodesic, or n=2k, and it is

(7))

If the sealar curvature Sc of M is constant, and if the Wey! conformal
tensor fleld satisfies the 2nd Bianchi’s identity, then the Ricci operator
satisfies the Codazzi-equation ([3], p. 344). From this we have the following

COROLLARY 3.5. Let M™ (n=3) be a compact minimal hypersurface
with constant Scalar curvature in a Riemannian manifold M™** of constant
curvature ¢. If M is conformally flat and TrA*=0, then M is totally
geodesic.

Proor. If TrA®*=0, then M is Einstein and hence M is of constant
curvature. Hence by the condition of codimension, M is totally geodesic.

PROPOSITION 3.6. Let M™™' be a Riemannian manifold of constant
curvature ¢<0, and let M™ be a minimal hypersurface in M with parallel
Ricci tensor. Then M is Einstein.

Prcor. If the Ricci tensor of M is parallel, then we get
0=<VQ,VQ>=¢(S*—n||Q|*)+(TrA%,
therefore we obtain
02 @ |Ql*—S¢’)=(TrA’Y 20,
which shows that 7||Q||?*=S8¢® and M is Einstein.
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