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1. Introduction. Recently many suthors have studied rational ap-
proximations by various methods [3, 7, 8, etc.].

Let K be a compact subset of the complex plane C, let U be the
interior of K,[mathring]_{K}=U, and let \partial K be the topological boundary of K. Let
C(K) be the algebra of all complex-valued continuous functions on K, let
A(K) be the algebra of all continuous functions on K, analytic in U, and
let R(K) be the uniform closure of rational functions with poles off K.
By H^{\infty}(U) we denote the algebra of all bounded analytic functions on U,
and by H a subalgebra of H^{\infty}(U) which is pointwise boundedly closed on
U. In this paper, we will consider rational approximations under the
condition: C(\partial K)=R(\partial K) . First, we will give a sufficent condition under
which H\cap C(K)=R(K) . This result is an extension of Theorem 4 in [9]
in some sense. Next, by proving that the set of non-peak points for R(K)
is included in \overline{U}, the closure of U, we will obtain two conditions each of
which is equivalent to the coincidence of R(K) and A(K). Our main tool
is A. M. Davie’s theorem [2] on pointwise bounded closure.

The author wishes to thank Professor T. Ando for his advice and
encouragement.

2. Notations. All norms will be supremum norms. By measures
we mean finite regular complex Borel measures and all measures considered
will be supported on compact plane sets. By an annihilating measures for
R(K) we mean a measure \tau on K satisfying

\int_{K}fd\tau=0 for all f\in R(K) .

We denote the set of annihilating measures by R(K)^{1} . If w \in K we define
a positive or complex representing measure of w for R(K) to be a measure
\nu on K satisfying

f(w)= \int_{K}fd\nu for all f\in R(K) .

Let \sigma be a positive measure on K. By H^{\infty}(\sigma) we denote the weak-star
closure of R(K) in L^{\infty}(\sigma) . A point w in K is called a peak point if there
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exists a function f in R(K) such that f(w)=1, while |f(w’)|<1 for w’\in K,
w’\neq w . Denote by Q the set of all non-peak points for R(K). Let \lambda_{Q} and
\lambda_{U} be the area measures \lambda=dxdy restricted to Q and U respectively. Let
\mu be a measure on K, and set

\hat{\mu}(z)=\int_{K}\frac{1}{\xi-z}d\mu(\xi) .

Then since \tilde{\mu}(z)=\int_{K}|\xi-z|^{-1}d|\mu|(\zeta)<\infty almost everywhere (\lambda),\hat{\mu} is defined
a.e. (\lambda) . It is well known that \hat{\mu}=0a.e . (\lambda) off Q if and only if \mu\in R(K)^{\perp}

(cf. [1. Corollary 3. 3. 2.]). Let A(U) and R(U) be the restrictions of A(K)

and R(K) to U respectively. If h\in C(\overline{U}), the distance from h to R(U)

(over U) is defined by

d (h, R(U))= \inf\{||h-f||_{U} : f\in R(U)\}

and the distances d(h, A(U)) and d(h, H^{\infty}(U)) are defined similarly. Then
it is clear that d(h, H^{\infty}(U))\leqq d(h, A(U))\leqq d(h, R(U)) for all h\in C(\overline{U}) . Let
H be a subalgebra of H^{\infty}(U) . We say that H is pointwise boundedly
closed if every pointwise limit on U of a bounded sequeuce in H also
belongs to H. We notice that R(U) is provided with the norm ||\cdot||_{U} (not

with the norm ||\cdot||_{K}). We say that R(U) is pointwise boundedly dense in
H if for each f\in H there exists a sequence \{f_{n}\} in R(U) such that sup
||f_{n}||_{U}<\infty and f_{n}(z)arrow f(z) pointwise on U. Two points w_{1} and w_{2} in K
(as functionals on R(K)) are said to be in the same part if

||w_{1}-w_{2}||= \sup\{|f(w_{1})-f(w_{2})|:||f||\leqq 1 , f\in R(K)\}<2

(cf. [5], p. 143). If w_{1} and w_{2} in K are in the same part for R(K), we put

w_{1}\sim w_{2} , otherwise w_{1}+w_{2} , For a point w in K, we define the part

through w by Q_{w} , that is,

Q_{w}=\{w’\in K;||w-w’||<2\}

3. Some lemmas. In this section, we will show some lemmas nec-
essary to prove the main results.
The following lemma is due to Wilken [10].

Lemma 1. If m is a positive representing measure of a point w in K

for R(K) then the measure \mu=(z-w)\cdot m is supported on \overline{Q}_{w} and \mu\in R(e_{w})^{\perp} .
PROOF. It is known [1; Theorem 3. 2. 1.] that \mu is supported on \overline{Q}_{w}

and \mu\in R(\overline{\overline{Q}}_{w})^{\perp} if and only if the set

\{y;\tilde{\mu}(y)<\infty and \hat{\mu}(y)\neq 0\}
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is contained in \overline{\overline{Q}}_{w} . Since m represents the point w for R(K), the func-
tion \hat{\mu} vanishes outsides K. Now take any point y\in K such that \tilde{\mu}(y)<\infty

and \hat{\mu}(y)\neq 0 . Since the measure \nu=\frac{\mu}{\hat{\mu}(y)(z-y)} represents the point y for
R(K) it is known [1; Theorem 2. 2. 1] that there is a positive representing
measure m_{y} of y for R(K) such that m_{y}\ll|\nu| , that is, m_{y} is absolutely
continuous with respect to \nu . This implies m_{y}\ll m . Hence y\sim w, that is,
y\in Q_{w} by a well known theorem [1, p. 131]. This completes the proof.

The following lemma is used by Gamelin [8; heorem 4. 1]. We give
a proof for completeness.

Lemma 2. Under the condition C(\partial K)=R(\partial K), for each nonpeak point
w of R(K) there is a point w_{0} in U with w\sim w_{0} .

PROOF. Suppose that w+z for any point z\in U. Then the part Q_{w}

through w is contained in \partial K and so is its closure \overline{Q}_{w} . Since w is not
a peak point, by a well-known theorem (cf. [5, p. 56]) there is a positive
representing measure m of w with m(\{w\})=0 . By Lemma 1 the measure
\mu=(z-w)\cdot m is supported on \overline{Q}_{w} and \mu\in R(\overline{Q}_{w})^{\perp} . On the other hand, since
C(\partial K)=R(\partial K) by hypothsis and \overline{Q}_{w}\subseteqq\partial K, it follows that C(\overline{\overline{Q}}_{w})=R(\overline{Q}_{w}) .
Therefore \mu\in C(Q_{w})^{L} and consequently m=0 because of m(\{w\})=0 . This
contradicts m(K)=1 .

This lemma means that each point w in K, for which ww’ all
w’\in U, is a peak point for R(K).

LEMMA 3. If C(\partial K)=R(\partial K) then Q is contained in \overline{U}.
PROOF. Suppose that Q\backslash \overline{U} contains a point w. Since w is a non-peak

point, by a well-known theorem (cf. [1, p. 87]) there is a representing
measure m with m(\{w\})=0 . Consider the measure \mu=m-\delta_{w} where \delta_{w} is
the Dirac measure concentrated at w. Then obviously \mu\in R(K)^{\perp} and
\mu(\{w\})\neq 0 . Choose an open disc \Delta with center w which is disjoint from
\overline{U}, and a smooth function h which is identically equal to 1 on some neigh-
borhood of w and vanishes outsides \Delta . It is known (cf. [1; Lemma 3. 1.8])
that the measure \nu defined by

\nu=h\mu-^{\frac{1}{\pi}\frac{\partial h}{\partial\overline{z}}}
\hat{\mu}\lambda ( \lambda is the Lebesgne measure)

has the prorerty: \hat{\nu}=h\hat{\mu} . This implies, just as in the proof of Lemma 1,
that \nu is supported on \overline{\Delta}\cap K and \nu\in R(\overline{\Delta}\cap K)^{\perp} . Since R(\partial K)=C(\partial K) by
hypothesis and \overline{\Delta}\cap K\subseteqq\partial K, it follows that C(\overline{\Delta}\cap K)=R(\overline{\Delta}\cap K), and \nu\in

C(\overline{\Delta}\cap K)^{\perp} , that is, \nu=0 . This is a contradiction because \nu(\{w\})=\mu(\{w\})\neq 0.
This lemma means that any point w in \partial K-\overline{U} is a peak point for

R(K).
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Lemma 4. Under the condition C(\partial K)=R(_{\backslash }\partial K), each function in H^{\infty}(\lambda_{Q}),
which vanishes on U, vanishes on Ka.e. (\lambda_{Q}) .

PROOF. Suppose that f\in H^{\infty}(\lambda_{Q}) and f=0 on U. Since R(K) is point
wise boundedly dense in H^{\infty}(\lambda_{Q}) by Davie’s theorem [3; Theorem 2] there
is a sequence \{f_{n}\} in R(K) such that ||f_{n}||_{K}\leqq||f|| and f_{n}arrow fa.e . (\lambda_{Q}) . Now
since f=0 on U by assumption, f_{n}arrow 0a . e . (\lambda_{U}) . Therefore there is a dense
subset D of U such that f_{n}(w)arrow 0 for w\in D. For each fixed w\in D the
sequence \{(z-w)^{-1}(f_{n}(z)-f_{n}(w))\} is norm-bounded in R(K) and converges
to (z-w)^{-1}f(z)a.e . (\lambda_{Q}) . This implies that f(z)(z-w)^{-1} belongs to the
weak-star closure of R(K), that is, f(z)(z-w)^{-1}\in H^{\infty}(\lambda_{Q}) . Since f vanishes
on U and w can run over the set D, dense in U, it follows that for every
w\in U the function (z-w)^{-1}f(z) belongs to H^{\infty}(\lambda_{Q}) . Repetition of this
methods shows that g\cdot f belongs to H^{\infty}(\lambda_{Q}) for every rational function g

with poles in U. Hence g\cdot f belongs to H^{\infty}(\lambda_{Q}) for every rational function
g with poles off \partial K. Take any function h in C(K). Since C(\partial K)=R(\partial K)

by hypothesis, there is a sequence \{g_{n}\} of rational functions with poles off
\partial K such that ||h-g_{n}||_{K}arrow 0 . Since f vanishes on U,

||h\cdot f-g_{n}\cdot f||_{K}=||h\cdot f-g_{n}\cdot f||_{\partial K}\leqq||f||_{K}\cdot||h-g_{n}||_{\partial K} .
Each g_{n}\cdot f belongs to H^{\infty}(\lambda_{Q}), hence so does h\cdot f. Since C(K) is weak-star
dense in L^{\infty}(\lambda_{Q}), it follows that h\cdot f\in H^{\infty}(\lambda_{Q}.) for every h\in L^{\infty}(\lambda_{Q}) . For each
\epsilon>0 , consider the well-defined function f^{-1}\cdot\chi_{E} where E is the set \{z;|f(z)|

\geqq e\} and \chi_{E} is the characteristic fuction of E. Since \chi_{E}=(f^{-1}\cdot\chi_{E})\cdot f belongs
to H^{\infty}(\lambda_{Q}), by Davie’s theorem cited above there is a sequence \{g_{n}\} in R(K)
such that ||g_{n}||\leqq||\chi_{E}||\leqq 1 and g_{n}-\chi_{E}a.e. (\lambda_{Q}) . Since \chi_{E} vanishes on U as

f and since g_{n} is a normal family on U, g_{n}arrow 0 everywhere on U while
g_{n}arrow 1 on Ea. e. (\lambda_{Q}) . Then by a well-known theorem [1; Lemma 2. 6. 2]
any z in U and any w in E with g_{n}(w)-1 do not belong to one and the
same part. Then Lemma 2 shows that almost every point of E lies outside
Q, hence \lambda_{Q}(E)=0 . Since \epsilon>0 is arbitrary, this implies that f vanishes on
Ka. e. (\lambda_{Q}) .

LEMMA 5. Under the condition C(\partial K)=R(\partial K), for each closed subal-
gebra H of H^{\infty}(U), which is contained in the pointwise bounded closure
of R(U), there is a closed subalgebra H_{Q} of H^{\infty}(\lambda_{Q}) such that the restriction
map garrow g|U gives an isometric isomorphism of H_{Q} onto H.

PROOF. Lemma 4 shows that the restriction T:garrow g|U maps H^{\infty}(\lambda_{Q})

injectively into H^{\infty}(U) . Take any f in H. By hypothesis there is a bounded
ed sequence \{f_{n}\} in R(U) such that f_{n}arrow f on U. Choose any weak-star
limiting function g of \{f_{n}\} in H^{\infty}(\lambda_{Q}) . Obviously g coincides with f on U,
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that is, Tg=f. This means that H is contained in the image of H^{\infty}(\lambda_{Q}\rangle

under T. Since H is closed and T is continuous, H_{Q}=T^{-1}(H) is a closed
subalgebra of H^{\infty}(\lambda_{Q}) and T gives rise an isomorphism between the uniform
algebras H_{Q} and H, hence T is isometric.

4. The algebra H which is pointwise boundedly closed. In this
section, we will give our first main theorem. First we define a localization
operator: Given a smooth function g with compact support, let us define
the linear operator T_{g} on H^{\infty}(U) by

(T_{g}f)(w)= \frac{1}{\pi}\int\frac{f(z)-f(w)}{z-w}\frac{\partial g}{\partial\overline{z}}d\lambda(z)

where \lambda is the Lebesgue planar measure. For properties of T_{g} , see [5,
VIII, 7. 1]. Let w\in(\beta and \delta>0 . By \Delta(w;\delta) we denote an open disc cen-
tered at w with radius \delta . We begin with the following lemma.

LEMMA 6. Let H be a subalgebra of H^{\infty}(U) which is pointwise
boundedly closed and satisfies the following conditions:

(1) H\underline{-\supseteq}R(U)

(2) R(U) is pointwise boundedly dense in H.
If f\in H is analytic at w\in\triangleleft.), then (f(z)-f(w))(z-w)^{-1} is contained in H.

REMARK. By “analyticity of f at w” we mean that f is analytic on
a neighborhood of w.

PROOF. If w\leq K, then (z-w)^{-1} is contained in R(U). So the asser-
tion is evident. If w\in U, and f is the pointwise bounded limit of \{f_{n}\} in
R(U), then (f_{n}(z)-f_{n}(w))(z-w)^{-1} is norm-bounded in R(U) and is a normal
family on U. Thus (f(z)-f(w))(z-w)^{-1} is the pointwise bounded limit of
some subsequence of (f_{n}(z)-f_{n}(w))(z-w)^{-1}, and is contained in H. If
w\in\partial K, there exist \delta>0 and M>0 such that |(f(z)-f(z’))(z-z’)^{-1}|\leqq M for
every z and z’ in \Delta(w;\delta), z\neq z’ . Then for every sequence \{z_{n}\} in \Delta(w;\delta)

such that z_{n}\neq w and z_{n}arrow w , (f(z)-f(z_{n})(z-z_{n})^{-1} is contained in H, norm-
bounded and thus a normal family on U. Hence some subsequence of
(f(z)-f(z_{n}))(z-z_{n})^{-1} converges pointwise on U to (f(z)-f(w))(z-w)^{-1} .
Now (f(z)-f(w))(z-w)^{-1} is contained in H because H is pointwise bound-
edly closed. This completes the proof.

Let M(H) be the maximal ideal space of H. Then the coordinate
function Z projcets M(H) onto \overline{U}. Let \hat{Z} be the Gelfand transform of Z
in H. Then the following lemma is valid.

Lemma 7. Let H be a subalgebra of H^{\infty}(U) which is pointwise bounded
edly closed. If H has the following properties:
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(1) H\supseteqq R(U)

(2) H is invariant under T_{g} for every smooth function g with com-
pact support.

(3) R(U) is pointwise boundedly dense in H.
Let f\in H and w_{0}\in\partial U. Then

\lim_{U\ni zarrow w_{0}}\sup|f(z)|=\sup\{|\varphi(f)|;\varphi\in M(H) with \hat{Z}(\varphi)=w_{0}\}

PROOF. Set M_{0}(H)=\{\varphi\in M(H) : \hat{Z}(\varphi)=w_{0}\} and ||f||_{M_{0}(H)}= \sup\{|\varphi(f)| ;
\varphi\in M(H) with \hat{Z}(\varphi)=w_{0}\} . For each sequence \{z_{n}\} in U such that z_{n}arrow w_{0} ,
there exists a element \varphi_{0} in M(H) satisfying \varphi_{0}(f)=\lim_{narrow\infty}f(z_{n}) for fixed f\in

H. Then clearly \varphi_{0}(Z)=\hat{Z}(\varphi_{0})=w_{0} . Hence

||f||_{M_{0}(H)} \geqq\lim_{U\ni zarrow w_{0}}\sup|f(z)| .

Suppose there exists positive unmber \delta>0 such that |f|\leqq 1 on U\cap\Delta(w_{0} ; \delta).
We must show that ||f||_{M_{0}(H)}\leqq 1 . Let g be a smooth function with compact
support which is identically equal to 1 on some neighborhood of w_{0} ,

vanishes outsides \Delta(w_{0} ; \delta), || \frac{\partial g}{\partial\overline{z}}||\leqq\frac{4}{\delta} and 0\leqq g\leqq 1 . Then T_{g}f\in H by

hypothesis and ||T_{g}f||\leqq 16 . Since f-T_{q}f is analytic at w_{0} , then f-T_{g}f

assumes a constant on M_{0}(H) from Lemma 6. That is, \varphi(f-T_{g}f)=(f-

T_{g}f)(w_{0}) for all \varphi\in M_{0}(H) . Then ||f-T_{g}f||_{M_{0}(H)}\leqq 8 . Thus ||f||_{M_{0}(H)}\leqq 8+

||T_{g}f||_{M_{0}(H)}\leqq 24 . Then the same argument shows that ||f^{n}||_{M_{0}(H)}\leqq 24 for
every positive integer n. Taking nth roots and letting n tend to \infty , we
obtain ||f||_{M_{0}(H)}\leqq 1 . Then the lemma is proved.

THEOREM 1. Suppose C(\partial K)=R(\partial K) . Let H be a subalgebra of
H^{\infty}(U) which is pointwise boundedly closed. If H satisfies the conditions:

(1) H\supseteqq R(U) .
(2) H is invariant under T_{g} for every smooth function with compact

support.
(3) R(U) is pointxvise boundedly dense in H.

Then H\cap C(K)=R(K), that is, every continuous functions on K whose
restriction to U belongs to H lies in R(K).

PROOF. Since H satisfies the condition in Lemma 5, by (3), there is
an isometric-isomorphism T of H into H^{\infty}(\lambda_{Q}) such that the restriction of
Tf to U coincides with f. Let M denote the maximal ideal space of the
uniform algebra L^{\infty}(\lambda_{Q}) . Then the adjoint of T induces a map S of M to
M(H) such that

\hat{Tf}(\Phi)=\hat{f}(S\Phi) for \Phi\in M and f\in H .
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It follows that
\hat{Tf}((\hat{Z}\cdot S)^{-1}(w))\subset f=(\hat{Z}^{-1}(w)) for w\in\overline{U} .

Now take any function g in H\cap C(K) , that is g is continuously extended
over K. Let us denote the continuous extension by the same letter g.
Since \lim_{U\in zarrow w}g(z)=g(w) for each w\in\overline{U} by continuity, g assumes the constant

q(w) on \hat{Z}^{-1}(w) form the above lemma. It follows that from the above that

\hat{Tg}(\Phi)\subseteqq\hat{g}(\hat{Z}^{-1}(\hat{Z}\cdot S(\Phi)))=g(\hat{Z}\cdot S(\Phi)) for \Phi\in M .

That is, \hat{Tg}(\Phi) assumes the value g(\hat{Z}\cdot S(\Phi)) . While g, as a function in
L^{\infty}(\lambda_{Q}), assumes the value g(w) on (\hat{Z}\cdot S)^{-1}(w) for each w\in\overline{U}=\overline{Q} . This
shows that

g(\Phi)=g(\hat{Z}\cdot S(\Phi)) for \Phi\in M .

Then it is proved that
\hat{Tg}(\Phi)=\hat{g}(\Phi) for every \Phi\in M_{\Gamma}

where g is considered as a function in L^{\infty}(\lambda_{Q}). Since M separates func-
tions of L^{\infty}(\lambda_{Q}), the function Tg and g coincide a.e. (\lambda_{Q}), hence g belongs

to H^{\infty}(\lambda_{Q}). Now the assertion of the theorem follows from a result of
Gamelin-Garnett [8 ; Theorem 1.1] : H^{\infty}(\lambda_{Q})\cap C(K)=R(K) .

REMARK. The weak-star closure of A(U) in L^{\infty}(\lambda_{U}) satisfies the condi-
tion (1) and (2) of Theorem 1, and so does H^{\infty}(U) itself.

5. The algebra A(U). In this section, we will give our second main
result.

The following lemma is due to Davie-Gamelin-Garnett [4].

Lemma 8. Let H be a closed subalgebra of H^{\infty}(U) satisfying the fol-
lowing condition :

(1) H\supseteqq A(U)

(2) If f\in H and w\in U, then (f(z)-f(w))(z-w)^{-1}\in H. Then if f\in H

and w_{0}\in\overline{U},

lim sup |f(z)|= \sup\{|f(\varphi)|:\varphi\in\hat{Z}^{-1}(w_{0})\}

\sigma\epsilon xarrow w_{0}

PROOF. See [4; Theorem 3. 3].

THEOREM 2. Suppose C(\partial K)=R(\partial K) . Let H be a closed subalgebra

of H^{\infty}(U) which satisfies the conditions:
(1) H\supseteqq A(U)

(2) If f\in H and w\in U, then (f(z)-f(w))(z-w)^{-1}\in H.
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(3) R(U) is pointwise boundedly dense in H.
Then H\cap C(K)=R(K) .

PROOF. Since in view of (3) the algebra H satisfies the condition in
Lemma 5, there is an isometric-isomorphism T of H into H^{\infty}(\lambda_{Q}) such that
the restriction Tf to U coincides with f. Moreover, since in view of (1)
and (2) the algebra H satisfies the condition in Lemma 8,

\lim_{U\ni zarrow w} sup |f(z)|= \sup\{|\hat{f}(\varphi)|:\varphi\in\hat{Z}^{-1}(w)\}

for w\in\overline{U} and f\in H. Especially, if g is continuously extended to w\in\overline{U}

(over U), g assumes tne constant value \lim_{U\ni zarrow w}g(z) on \hat{Z}^{-1}(w). Then the rest

of the theorem is proved as in the proof of Theorem 1.
We will show that A(U) is a closed subalgebra of H^{\infty}(U) . Let f\in

H^{\infty}(U) be the uniform limit on U of \{f_{n}\} in A(K). That is, ||f_{n}-f||_{U}arrow 0 .
Then \{f_{n}\} is a Cauchy sequence on \overline{U} and thus there is a function g in
A(U) such that ||f_{n}-g||_{U}arrow 0 and g=f on U. Since g can be continuously
extended to K, we can assume g\in A(K) . Thus f=g|U\in A(U) and A(U)
is a closed subalgebra of H^{\infty}(U).

Now we can obtain the following second main theorem.
THEOREM 3. Suppose C(\partial K)=R(\partial K) . Then the following conditions

are mutually equivalent:
(1) R(K)=A(K)
(2) d(h, R(U))=d(h, A(U)) for all h\in C(\overline{U}) .
(3) R(U) is boundedly pointxvise dense in A(U).
PROOF. (1)\Rightarrow(^{\underline{9}}) is evident. To see (2)\Rightarrow(3), it suffices to show that

A(K) is contained in H^{\infty}(\lambda_{Q}) by Davie’s Theorem [8, p. 129]. Take any fin A(K). Then by (2) there is a sequence \{f_{n}\} in R(K) such that ||f_{n}-f||_{U}

arrow 0. Since Q is contained in \overline{U} by Lemma 3, it follows that
||f_{n}-f||_{Q}\leqq||f_{n}-f||_{\overline{U}}=||f_{n}-f||_{U}arrow 0 ,

hence f belongs to H^{\infty}(\lambda_{Q}) .
Suppose that (3) is valid. Then A(U) satisfies all the condition (im-

posed on H) in Theorem 2, hence

A(K)=A(U)\cap C(K)=R(K) ,

that is, (3)\Rightarrow(1) . Therefore (1), (2) and (3) are mutually equivalent.
COROLLARY. Suppose C(\partial K)=R(\partial K) . Tnen the following conditions

are equivalent :
(1) d(h, R(U))=d(h, H^{\infty}(U)) for all h\in C(\overline{U}) .
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(2) R(U) is boundedly pointwise dense in H^{\infty}(U) .
PROOF. (2) implies boundedly pointwise density of A(U) in H^{\infty}(U) .

Davie-Gamelin-Garnett [4, Theorem 1. 1] showed that this last condition is
equivalent to that

d (h, A(U))=d(h, H^{\infty}(U)) for all h\in C(\overline{U}) .

Therefore (2) implies (1). Finally (1) implies boundedly pointwise density
of R(U) in A(U) by Theorem 3 as well as in that of A(U) in H^{\infty}(U) as
mentioned above. Hence (1) implies (2).

REMARK. We already know that the condition A(K)=R(K) implies
C(\partial K)=R(\partial K). (cf. Gamelin [5, p. 227]). Practically, we can construct an
example such that C(\partial K)\neq R(\partial K), R(U) is pointwise boundedly dense in
A(U) (also in H^{\infty}(U)), and thus A(K)\neq R(K) . Let E_{1} be the Swiss cheese.
So [mathring]_{1}_{E}=\phi. Hence A(E_{1})=C(E_{1})\neq R(E_{1}) . Let E_{2} be a closed disc such that
E_{1}\cap E_{2}=\phi. Hence A([mathring]_{2}_{E})=R([mathring]_{2}_{E}) is pointwise boundedly dense in H^{\infty}([mathring]_{2}_{E}).
Moreover, let E3 be a closed interval which intersects only one point with
E_{1} and E_{2} respectively. We put K= \bigcup_{i=1}^{3}E_{i} . Then K is a compact set and
[mathring]_{K}=[mathring]_{2}_{E} . Since each point of E3 is clearly a peak point for R(K), R(E_{3})=

C(E_{3}) . Then every point w in E_{1} is not contained in the same part con-
taining each point of E_{2} because of the connectivity of the closure of
a part [10]. That is, w\leq Q_{z} , for all z\in E_{2} . Hence

R(K)=\{f\in C(K):f|E_{i}\in R(E2) i=1,2,3\} and R([mathring]_{K}) is pointwise bound-
edly dense in H^{\infty}(K^{Q})=H^{\infty}([mathring]_{2}_{E}) . On the other hand, R(E_{1})\neq A(E_{1})=C(E_{1}),
we can obtain that R(\partial K)\neq C(\partial K) and R(K)\neq A(K) .

References

[1] A. BROWDER: Introduction to Function Algebras, W. A. Benjamin. Inc., 1969.
[2] A. M. DAVIE: Bounded approximation and Dirichlet sets, J. Func. Anal. , 6

(1970), 460-467.
[3] A. M. DAVIE: Bounded limits of analytic functions, Proc. Amer. Math. Soc,

32 (1972), 127-133.
[4] A. M. DAVIE, T. W. GAMELIN and J. GARNETT: Distance estimates and point-

wise bounded density, Trans. Amer. Math. Soc, 175 (1973), 37-68.
[5] T. W. GAMELIN: Uniform Algebras, Prentice Hall, 1969.
[6] T. W. GAMELIN and J. GARNETT: Constructive techniques in rational approxi-

mation, Trans. Amer. Math. Soc, 143 (1969), 187-200.
[7] T. W. GAMELIN and J. GARNETT: Pointwise bounded approximation and Diri-

chlet algebras, J. Func. Anal., 8 (1971), 360-404.



80 Y. Izuchi

[8] T. W. GAMELIN and J. GARNETT: Bounded approximation by rational func-
tions, Pycific J. Math., 45 (1973), 129-150.

[9] Y. KOBAYASHI: One condition for R(K)=A(K), Proc. Japan Acad., 48 (1972),
578-580.

[10] D. WILKEN: The support of representing measures for R(K). Pacific J. Math.,
26 (1968), 621-626;

Department of Mathematics
Hokkaido University


	1. Introduction.
	2. Notations.
	3. Some lemmas.
	4. The algebra H which ...
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...

	References

