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\S 1. Introduction and results

In this paper we are concerned with an existence theorem of a solution
u\in H_{1,-1;\gamma}(R^{1}\cross\Omega) of the boundary value problem (P, B) :

P(x, D)u(x)=f(x) in R^{1}\cross\Omega ,

B(x, D)u(x)=g(x) on \Gamma,\cdot

where f\in H_{0,\gamma}(R^{1}\cross\Omega) and q\in H_{1_{J}’2,\gamma}(\Gamma) . Here we assume that P is an x_{0}

-hyperbolic 2\cross 2 system of pseud0-differential operators of order 1 and B
is a 1\cross 2 system of those of order 0 on the smooth boundary \Gamma of R^{1}\cross\Omega .

While we try to extend the results in [7, section 7] to more general
cases being inspired by the works of R. Agemi [2] and S. Miyatake [6],

we find that there are certain gaps between L^{2}-well posedness for (P, B)

(see [4]) and their conditions which is described in terms of symbols of P
and B. In the present note, applying a concept of modified symmetrizers,
we shall clarify the differences mentioned above and difficulties of mixed
problems for hyperbolic systems. By localizations and coordinate transfor-
mations we may restrict ourselves to the case where

R^{1}\cross\Omega=R_{+}^{n+1}=\{x=(x’, x_{n});x_{n}>0\}.
,

\Gamma=\{(x’, 0);x’=(x_{0}, x’)\in R^{n}\}

Let (\tau, \sigma, \lambda) be a covariable of x=(x_{0}, x’, x_{n}) such that Im \tau\leq 0 . We assume
that symbols of the principal part P^{o} of P and B are independent of x
if |x| is sufficiently large, homogeneous in (\tau, \sigma, \lambda) and (\tau, \sigma) respectively,
analytic in \tau and the determinant det P^{o} of P^{o} is an x_{0}-strictly hyperbolic
polynomial of order 2. Moreover \Gamma is non-characteristic with respect to
det P^{o} and B(x’, \tau, \sigma) is of rank 1 for any (x’, \tau, \sigma)\in R^{n}\cross(C\cross R^{n}\backslash 0) . Finally
any problems {P,B)_{x} obtained by freezing their coefficients at x\in\Gamma are L^{2}-

well posed.
As it is well known, the difficulties in our problem (P, B) arise from

the following: there is a point (x^{o}, \tau^{o}, \sigma^{o})\in\Gamma\cross(R^{n}\backslash 0) such that the char-
acteristic equation det P^{o}(x^{o}, \tau^{o}, \sigma^{o}, \lambda)=0 has a real double root \lambda=\lambda^{o} and
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the Lopatinskii determinant L(x^{o}, \tau^{o}, \sigma^{o})=0 . In a neighborhood of such
a point (x^{o}, \tau^{o}, \sigma^{o})L(x’, \tau, \sigma) can be written in the form:

L (x’, \zeta+\theta(x, \sigma) , \sigma)=(\sqrt{\zeta}-D(x’, \sigma))l(x’, \sqrt{\zeta} , \sigma)(

Here we shall use the same terminologies as in [7] if there is no ambi-
guity, but we denote by \sqrt{\zeta} the branch of square roots of \zeta such that
\sqrt{1}=1 . Now we shall consider mianly about the following condition:

In some neighborhood of the point (x^{o}, \sigma^{o}) described above

Re D(x’, \sigma)\leq 0 in the case (a) or
(L)

Im D(x’, \sigma)\geq 0 in the case (b).

That is, for fixed (x’, \sigma) the analytic continuation of L(x’, \zeta+\theta(x’, \sigma), \sigma)

through the half line \{\zeta ; \zeta,>0\} or \{\zeta ; \zeta<0\} does not vanish in the neigh-
borhood of 0 up to and except the half line \{\zeta;\zeta<0\} or \{\zeta;\zeta>0\} , accord-
ing to the case (a) or (b) respectively.

Then we have our main
THEOREM 1. There exists a modifified symmetrizer iff the condition (L)

is valid.
[For the defifinition of a modifified symmetrizer see section 3.)

THEOREM 2. Under the condition (L) the problem (P, B) is L^{2}-well
posed.

The plan of the paper is as follows. In section 2 we remark the
necessity of the semi-def miteness with respect to the symbol in the sharp
form of G_{a}^{Q}rding inequality and the decomposition of the Lopatinskii deter-
minant. In section 3 we give the definition of a modified symmetrizer and
construct a suitable one in order to prove Theorem 1. In section 4 we
prove Theorem 2 by obtaining an a priori estimate from the existence of
a modified symmetrizer. Finally in section 5 we describe the necessary
and sufficient condition for (P, B) to be L^{2}-well posed in terms of D(\sigma) in
the case of constant coefficients and give a sufficient condition which is
also valid in the case of [2] and [6].

\S 2. Notations and lemmas

I. In this paper we use the function spaces with a real parameter
\gamma(\gamma\neq 0), H_{k,\gamma}(R_{+}^{n+1}), H_{s,\gamma}(R^{n}) with norms ||\cdot||_{k,\gamma}, |\cdot|_{s,\gamma} and inner products
(\cdot, \cdot)_{k,\gamma}, \langle \cdot, \cdot\rangle_{s,\gamma} respectively. Hereafter let \tau=\eta-i\gamma and regard neighbor-
hoods of \tau^{o} as complex those even if \tau^{o} is real. Furthermore let \Sigma_{-} and
\partial\Sigma_{-} be the open hemisphere {( \tau, \sigma)\in C\cross R^{n-1} ; |\tau|^{2}+|\sigma|^{2}=1 , Im \tau<0} and
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its boundary respectively.
Then we consider the same symbol class S_{+}^{k}=S_{+}^{k}(R_{+}^{n+1}\cross(C_{-}\cross R^{n-1}\backslash 0))

of pseud0-differential operators with positive parameters x_{n} and \gamma as in [7]
and denote by S_{+}^{k}(U) the set of all restrictions of symbols in S_{+}^{k} to an open
set U of R_{+}^{n+1}\cross(C_{-}\cross R^{n-1}\backslash 0), where C_{-}= {\tau\in C ; Im \tau<0}. We denote by
a(x, D’) simply the pseud0-differential operator a(x, D’, \gamma) corresponding to
a(x, \eta, \mathcal{T}, \sigma)\in S_{+}^{k} , which is always denoted by a(x, \tau, \sigma) .

LEMMA 2. 1. Let A(x, \tau, \sigma)\in S_{+}^{k} be hemitian and homogmeous of degree
k in (\tau, \sigma) . For a point (x^{o}, \tau^{o}, \sigma^{o})\in\Gamma\cross\partial\Sigma_{-} there exist its neighborhood U
and positive constants C, \gamma_{0} such that for any \gamma\geq\gamma_{0}, any u\in H_{k,\gamma}(R_{+}^{n+1}) and
a \phi(x, \tau, \sigma)\in S_{+}^{o} with supp \phi\cap\overline{R_{+}^{n+1}\cross\Sigma_{-}}\subset U the estimate

(2. 1) Re \langle A(x, D’)\phi(x, D’)u , \phi(x, D’)u\rangle_{0,\gamma}\geq-C|u|_{\frac{2k-1}{2},\gamma}

is valid for u=u(\cdot, x_{n}), iff there exists a neighborhood U_{1}(x^{o}, \tau^{o}, \sigma^{o})\subset U such
that for any (x, \tau, \sigma)\in U_{1}\cap\overline{R_{+}^{n+1}\cross\Sigma_{-}}

(2 2) A(x \tau \sigma)\geq 0. ,,
PROOF. It suffices to prove ‘only if part. Let \phi be real and \phi(x^{o}, \tau^{o},

\sigma^{o})\neq 0 . Replacing A by A\phi^{2} and \phi u by u in (2. 1) we may consider only
the case where \phi\equiv 1 . Using the coordinate transformation x=\epsilon y(\epsilon>0) we
difine Asv by

A‘
(y, D_{y}’)v(y)=\epsilon^{k}(A(x, D_{x}’)u)(\epsilon y)

where u(x)=v(\epsilon^{-1}x) . Then the symbol of A. is A.(y, \theta, \omega)=A(\epsilon y, \theta, \omega),
where (\theta, \omega) is a covariable of y=(y_{0}, y’), \rho=- Im \theta, (\theta, \omega)=(\epsilon\tau, \epsilon\sigma) and
\rho=\epsilon\gamma .

Since for any fixed x_{n}\geq 0

\langle A(x, D_{x}’)u, u\rangle_{0,\mathcal{T}}=\epsilon^{n-k}\langle A.(y, D_{y}’)v, v\rangle_{0,\rho}

and |u|_{\frac{2k-1}{2},\gamma}=\epsilon^{n-k+1}|v|_{\frac{2k-1}{2},\rho} ,

it follows from (2. 1) that
(2. 1)’ Re \langle A.(y, U_{y})v, v\rangle_{0,\rho}\geq-C’\epsilon|v|_{\frac{2k-1}{2},\rho}

for some C’>0, any \rho\geq\epsilon\gamma_{0} and any v\in H_{k,\rho}(R_{+}^{n+1}) . Therefore letting \epsilonarrow 0

in (2. 1)’ we see that

\int\langle A(0, \theta, \omega)\hat{v}(\theta, \omega, y_{n}) , \hat{v}(\theta, \omega, y_{n})\rangle d({\rm Re}\theta)d\omega\geq 0 ,
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which implies that A(0, \theta, \omega)\geq 0 for any (\theta, \omega)\in\overline{C}_{-}\cross R^{n-1} . This means (2. 2)
at x=0. Similarly we have (2. 2) for any fixed x.

II. Now let (x^{o}, \tau^{o}, \sigma^{o}) be a point in \Gamma\cross\partial\Sigma-where \lambda^{o} is a real double
root of det P^{o}(x^{o}, \tau^{o}, \sigma^{o}, \lambda)=0 . Then we recall first the following facts \alpha)
and \beta) (see [7, section 3 and 6]).

\alpha) There exist a neighborhood U(x^{o}, \tau^{o}, \sigma^{o}) and functions \lambda^{\pm}(x, \tau, \sigma)

continuous in U such that

(i) Im \lambda^{\pm}(x, \tau, \sigma)>\circ< if Im \tau<0 respectively, and

(ii) det P^{o}(x, \tau, \sigma, \lambda^{\pm}(x, \tau, \sigma))=0 if Im \tau\leq 0 .

Furthermore, they are represented by

(a) \lambda^{\pm}(x, \tau, \sigma)=\lambda_{1}(x, \zeta, \sigma)\mp\sqrt{\zeta}\lambda_{2}(x, \zeta, \sigma)

or
(b) \lambda^{\pm}(x, \tau, \sigma)=\lambda_{1}(x, \zeta, \sigma)\pm i\sqrt{\zeta}\lambda_{2}’(x, \zeta, \sigma)

according as the normal surface cut by x=x^{0} and \sigma=\sigma^{o} is convex or con-
cave with respect to \tau at (\tau^{o}, \lambda^{o}) respectively. Here \zeta=\zeta(x, \tau, \sigma)=\tau-\theta(x, \sigma),
\theta is a real valued smooth function of (x, \sigma), analytic and homogeneous of
degree 1 in \sigma belonging to a conic neighborhood of (x^{o}, \sigma^{o}) and \theta(x^{o}, \sigma^{o})=\tau^{o} .
Furthermore \lambda_{1} , \lambda_{2} and \lambda_{2}’ are analytic in (\zeta, \sigma), real for real \zeta in a conic
neighborhood of (x^{o}, 0, \sigma^{o}) such that

\lambda_{1} (x, \tau-\theta(x, \sigma) , \sigma)\in S_{+}^{1}(U(x^{o}, \tau^{o}, \sigma^{o})) ,

\lambda_{2} (x, \tau-\theta(x, \sigma), \sigma), \lambda_{2}’(x, \tau-\theta(x, \sigma), \sigma)\in S\ddagger(U(x^{o}, \tau^{o}, \sigma^{o})) ,

\lambda_{1}(x^{o}, 0, \sigma^{o})=\lambda^{o}, \lambda_{2}(x^{o}, 0, \sigma^{o})>0 , \lambda_{2}’(x^{o}, 0, \sigma^{o})>0

and \sqrt{\zeta} denotes the branch with negative imaginary part when Im \zeta<0

(this branch is different from the one in [7]).

Hereafter we use the following notations:
\tau=\eta-i\gamma , \zeta=\tau-\theta(x, \sigma)=\epsilon-i\gamma ,

\Lambda_{\gamma}=(|\tau|^{2}+|\sigma|^{2})^{*}.
,

\tau’=\tau\Lambda_{\gamma}^{-1} and etc.

Furthermore we denote a(x, \zeta+\theta(x, \sigma), \sigma) also by a(x, \zeta, \sigma) for (x, \zeta, \sigma)

belonging to some neighborhood of (x^{o}, 0, \sigma^{o}) and conversely we do b(x,
\tau-\theta(x, \sigma), \sigma) by b(x, \tau, \sigma) defined in a neighborhood of (x^{o}, \tau^{o}, \sigma^{o}) . Moreover
b(x, \zeta, \sigma)\in S_{+}^{k}(U(x^{o}, 0, \sigma^{o})) means that b(x, \tau, \sigma)\in S_{+}^{k}(U(x^{o}, \tau^{o}, \sigma^{o})) for the cor-
responding neighborhood U(x^{o}, \tau^{o}, \sigma^{o}) and we denote boundary points (x’, 0)

by x’.
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Finally we assume that
P^{o}(x, \tau, \sigma, \lambda)=\lambda I-A(x, \tau, \sigma) ,

where I is the unit matrix, the symbol A(x, \tau, \sigma) is in S_{+}^{1} , homogeneous in
(\tau, \sigma) and analytic in \tau .

\beta) There exist a neighborhood U(x^{o}, \tau^{o}, \sigma^{o}) , 2-vectors h’(x, \tau, \sigma) , h’(x,
\tau, \sigma) and a matrix M(x, \tau, \sigma) which are smooth in (x, \tau, \sigma) and analytic in
\tau such that for every (x, \tau, \sigma)\in U(x^{o}, \tau^{o}, \sigma^{o})

(i) h’(x, \theta(x, \sigma), \sigma) and h’(x, \theta(x, \sigma), \sigma) are an eigenvector and a gen-
eralized eigenvector of M(x, \theta(x, \sigma), \sigma) corresponding to \lambda^{+}(x, \theta(x, \sigma), \sigma)=\lambda^{-}

(x, \theta(x, \sigma), \sigma) respectively,

(ii) M=S^{-1}AS , where S=(h’, h’) ,

(iii) M(x, \zeta, \sigma)

=M(x, \epsilon, \sigma)+M(x, \epsilon-i\gamma, \sigma)-M(x, \epsilon, \sigma)

\langle2. 3)

=(\begin{array}{ll}\lambda_{1}(x,0, \sigma), \Lambda_{\gamma}0 , \lambda_{1}(x,0,\sigma)\end{array}) +\epsilon E(x, \epsilon, \sigma)-i\mathcal{T}H(x, \epsilon, \sigma)+O(\mathcal{T}^{2}\Lambda_{\gamma}^{-1}) .

Here
E(x, \epsilon, \sigma), H(x, \epsilon, \sigma)\in S_{+}^{o}(U(x^{o}, 0, \sigma^{o})) and

E(x, \epsilon, \sigma)=(\begin{array}{ll}e_{11} e_{12}e_{21} e_{22}\end{array}) , H(x, \epsilon, \sigma)=(\begin{array}{ll}h_{11} h_{12}h_{21} h_{22}\end{array})

We also have another expansion for M :

(2. 3)’ M(x, \zeta, \sigma)

=(\begin{array}{ll}\lambda_{1}(x,0,\sigma), \Lambda_{0}^{(o)}0 \wedge, \lambda_{1}(x,0,\sigma)\end{array}) +\zeta (\begin{array}{ll}p_{11} p_{12}p_{21} p_{22}\end{array}) (x, \zeta, \sigma) ,

where p_{if} are smooth in (x, \zeta, \sigma), analytic in (\zeta, \sigma) and \Lambda_{0}^{(0)}=(\theta(x, \sigma)^{2}+|\sigma|^{2})^{*} .

Furthermore
\Lambda_{0}^{(0)}p_{21}(x, 0, \sigma)=\Lambda_{0}^{(0)}e_{21}(x, 0, \sigma)=\Lambda_{0}^{(0)}h_{21}(x, 0, \sigma)

\langle2. 4) =\{\begin{array}{l}\lambda_{2}(x,0,\sigma)^{2}>0 (inthecase(a)),-\lambda_{2}’(x,0,\sigma)^{2}<0 (inthecase(b)),\end{array}

(2. 5) \zeta(p_{11}(x, \zeta, \sigma)+p_{22}(x, \zeta, \sigma))=2(\lambda_{1}(x, \zeta, \sigma)-\lambda_{1}(x, 0, \sigma)) .

REMARK 1. As in [8] replacing S(x, \zeta, \sigma) by
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S(x, \zeta, \sigma)(_{\epsilon e_{22}(x,\epsilon,\sigma)}^{\epsilon’e_{12}(x,\epsilon,\sigma)+1},

’
01)

if necessary, we may assume that e_{if}(x, \epsilon, \sigma) in \beta) are real.
In order to define the Lopatinskii determinant, let

(2. 6) s(x, \zeta, \sigma)=\frac{\lambda^{+}(x,\zeta,\sigma)-\lambda_{1}(x,0,\sigma)-\zeta p_{11}(x,\zeta,\sigma)}{\Lambda_{0}^{(0)}+\zeta p_{12}(x,\zeta,\sigma)} .

Then {}^{t}(1, s(x, \zeta, \sigma)) is an eigenvector of M(x, \zeta, \sigma) corresponding to the
eigenvalue \lambda^{+}(x, \zeta, \sigma) if Im \tau<0 .
Let

(2. 7) s(x, \zeta, \sigma)=\zeta s_{1}(x, \zeta, \sigma)-\sqrt{\zeta}s_{2}(x, \zeta, \sigma) ,

where s_{1}(x, \zeta, \sigma)=\frac{\zeta^{-1}(\lambda_{1}(x,\zeta,\sigma)-\lambda_{1}(x,0,\sigma))-p_{11}(x,\zeta,\sigma)}{\Lambda_{0}^{(0)}+\zeta p_{12}(x,\zeta,\sigma)}

and

s_{2}(x, \zeta, \sigma)=\frac{\lambda_{2}(x,\zeta,\sigma)}{\Lambda_{0}^{(0)}+\zeta p_{12}(x,\zeta,\sigma)}

are analytic in (\zeta, \sigma), real for real \zeta in U(x^{o}, 0, \sigma^{o}) . Note that in some real
neighborhood of (x^{o}, 0, \sigma^{o})

(2. 8) |s_{1}(x, \epsilon, \sigma)|\leq C and s_{2}(x, \epsilon, \sigma)>0

for some constant C>0 . Then we see that

(2. 9) L(x’, \tau, \sigma)=B(x’, \tau, \sigma)S(x’, \tau, \sigma)^{t}(1, s(x’, \tau, \sigma))

is the Lopatinskii determinant for (P, B) at (x’, \tau, \sigma) . Here and in the next
section 3 we assume that L(x^{o}, \tau^{o}, \sigma^{o})=0 and we consider only the case (a)

because analogous arguments can be applied to the case (b).

LEMMA 2. 2. Let ( V(x’, \tau, \sigma),V’(x’, \tau, \sigma))=B(x’, \tau, \sigma)S(x’, \tau, \sigma) , then

(i) V’(x^{o}, \tau^{o}, \sigma^{o})=0 and V’(x^{o}, \tau^{o}, \sigma^{o})\neq 0 .
Furthermore we have the follovoing decomposition

(ii) L(x’, \zeta, \sigma)=(\sqrt{\zeta}-D(x’, \sigma))l(x’, \sqrt{\zeta}, \sigma) ,

l(x’, \sqrt{\zeta}, \sigma)=(l_{1}(x’, \zeta, \sigma)+\sqrt{\zeta}l_{2}(x’, \zeta, \sigma))\cdot V’(x’, \zeta, \sigma) ,

where l_{1} , l_{2} and D are smooth in (x, \zeta, \sigma) and analytic in \zeta in U(x^{o}, 0, \sigma^{o}) ,
l_{1}(x^{o}, 0, \sigma^{o})\neq 0 and D(x^{o}, \sigma^{o})=0 .

PROOF. To show (i) see [7, p. 120]. Let z=\sqrt{\zeta} and \mathfrak{L}(x’, z, \sigma)=L
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\langlex’, z^{2}, \sigma) . Then by the L^{2}-well posedness for freezing problems L(x’, \zeta, \sigma)\neq 0

for Im \tau<0, whence \mathfrak{L}(x’, z, \sigma) does not identically vanish. Furthermore
we see from (2. 6)-(2.9) that

\frac{\partial \mathfrak{L}}{\partial z}(x^{o}, 0, \sigma^{o})=-s_{2}(x^{o}, 0, \sigma^{o})V’(x^{o}, \tau^{o}, \sigma^{o})\neq 0 ,

but by our assumption we see that \mathfrak{L}(x^{o}, 0, \sigma^{o})=0 . Therefore the Weiers-
trass preparation theorem implies (ii).

\gamma) Let Q(x’, \tau, \sigma)=V’(x’, \tau, \sigma)/V’(x’, \tau, \sigma) . Then from our assump-

tions we see

LEMMA 2. 3. Suppose that e_{11}=e_{22} in a real neighborhood of (x^{o}, 0, \sigma^{o}).
Then there exists another real neighborhood U(x^{o}, 0, \sigma^{o}) such that, for any

(x’, \epsilon’, \sigma’)\in U(x^{o}, 0, \sigma^{o}) satisfying

(2. 10) |Q|^{2}(x’, \text{\’{e}}’, \sigma’)+\epsilon’(1+\epsilon’e_{12}(x’, \epsilon’, \sigma’))^{-1}\cdot e_{21}(x’, \epsilon’, \sigma’)=0 ,

(2. 11) Re Q(x’, \text{\’{e}}’, \sigma’)\cdot{\rm Re} D(x’, \sigma’)\geq 0 in the case \{a) .

PROOF. From the definitions of Q and L and Lemma 2. 2 it follows
that
(2. 12) Q+s=(\sqrt{\epsilon’}-D)(l_{1}+\sqrt{\epsilon’}l_{2}) ,

which is rewritten by (2. 7) in the following form:
Q+\epsilon’s_{1}-\sqrt{\epsilon’}s_{2}=\epsilon’l_{2}-l_{1}D+\sqrt{\epsilon’}(l_{1}-l_{2}D) .

Comparing both sides of the last equality we have

(2. 13) s_{2}=l_{2}D-l_{1}

and

(2. 14) Q+\epsilon’s_{1}=\epsilon’l_{2}-l_{1}D .
From (2. 12) and (2. 13) we have

(2. 15) Q+s=(\sqrt{\epsilon’}-D)(l_{2}(\sqrt{\epsilon’}+D)-s_{2}) .

Moreover from (2. 7), (2. 13) and (2. 14) it follows that

(2. 16) \overline{Q}+s=(\sqrt{\epsilon’}-\overline{D})(\overline{l_{2}}(\sqrt\overline{\epsilon’}+\overline{D})-s_{2}) .

Therefore we see that
(Q+s)(\overline{Q}+s)=(\epsilon’+|D|^{2})A-4\epsilon’B Re D+

(2. 17)
+2\sqrt{\epsilon’}\{(\epsilon’+|D|^{2})B-A Re D\}-
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where A=s_{2}^{2}-2s_{2} Re (l_{2}D)+|l_{2}|^{2}(\epsilon’+|D|^{2})

and B=|l_{2}|^{2} Re D-s_{2} Re l_{2} .
Furthermore from (2. 8) and Lemma 2. 2 (ii) it follows that
(2. 18) A>0
in a sufficiently small real neighborhood of (x^{o}, 0, \sigma^{o}) .

On the other hand considering the characteristic equation of M(x’, \epsilon’,
\sigma’) we have

\epsilon’\lambda_{2}^{2}=(2^{-1}\epsilon’(e_{11}-e_{22}))^{2}+\epsilon’e_{21}(1+\epsilon’e_{12}) ,

which implies by (2. 5) and (2. 7)

s_{1}=- \frac{e_{11}-e_{22}}{1+\epsilon’e_{12}} , \epsilon’s_{2}^{2}=(\frac{\epsilon’}{2}\frac{e_{11}-e_{22}}{1+\epsilon’e_{12}})^{2}+\frac{\epsilon’e_{21}}{1+\epsilon e_{12}}, .

Hence we have
(2. 19) (Q+s)(\overline{Q}+s)

=|Q|^{2}+ \frac{\epsilon’e_{21}}{1+\epsilon e_{12}},+\frac{\epsilon^{\prime 2}}{2}(\frac{e_{11}-e_{22}}{1+\epsilon’e_{12}})^{2}

- \frac{\epsilon’(e_{11}-e_{22})}{1+\epsilon e_{12}}, Re Q-\sqrt{\epsilon’}s_{2}(2 Re Q- \epsilon’\frac{e_{11}-e_{22}}{1+\text{\’{e}} e_{12}},).
Comparing (2. 17) with (2. 19) and using the hypothesis that e_{11}-e_{22}=0

we obtain

(2. 20) |Q|^{2}+ \frac{\epsilon’e_{21}}{1+\epsilon e_{12}},=(\epsilon’+|D|^{2})A-4\epsilon’B Re D

and

(2. 21) -s_{2} Re Q=(\epsilon’+|D|^{2}) B–A Re D

in some real neighborhood of (x^{o}, 0, \sigma^{o}) . Now let (2. 10) be valid, then
from (2. 20) we have

(\epsilon’+|D|^{2})A=4\epsilon’B Re D.
Thus we see from (2. 21) that
(2. 22) s_{2} A Re Q Re D=(A^{2}-4\epsilon’B^{2}) (Re D)^{2}\geq 0

in some real neighborhood of (x^{o}, 0, \sigma^{o}), which implies our assertion since
(2. 8) and (2. 18) are valid.

\S 3. Modified symmetrizers and Proof of Theorem 1

In the previous section we introduced M(x, \tau, \sigma) and Q(x’, \tau, \sigma) defined
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in some neighborhood of (x^{o}, \tau^{o}, \sigma^{o}) . Here we consider suitable extensions
of these symbols, which we also denote by the same notations, therefore
let M\in S_{+}^{1} , Q\in S_{+}^{0} and let R(x, \tau, \sigma)\in S_{+}^{0} in the following definition.

DEFINITION 3. 1. Let R be a 2\cross 2 system of pseudO-differential opera-
tors whose symbol R(x, \tau, \sigma) is hermitian, homogeneous in (\tau, \sigma) and real
analytic with respect to \epsilon’ in a neighborhood of (x^{o}, 0, \sigma^{o}) . Then we say
that R is a modifified symmetrizer at (x^{o}, \tau^{o}, \sigma^{o}) if the following holds:
there exist a neighborhood U(x^{o}, \tau^{o}, \sigma^{o}) , positive constants C_{1} , C_{2} and \gamma_{0} such
that the estimates

(3. 1) Re ((iRM+(iRM)^{*})\phi u, \phi u)_{0,\gamma}\geq C_{1}\gamma||\phi u||_{0,\gamma}^{2}-C_{\phi}’||u||_{0,\gamma}^{2}

and for x_{n}=0

(3. 2) Re \langle R\phi u, \phi u\rangle_{0,\gamma}\geq-C_{2}\gamma|\phi u_{1}|_{-*,\gamma}^{2}-C_{\phi}’|u_{1}|_{-\,r}^{2}

if Q\phi u_{1}+\phi u_{2}=0 on \Gamma

are valid for any \gamma\geq\gamma_{0}, any u={}^{t}(u_{1}, u_{2})\in H_{1,\gamma}(R_{+}^{n+1}) , any \phi(x, \tau, \sigma)\in S_{+}^{0} with
supp \phi\cap R_{+}^{n+1}\cross\Sigma_{-}\subset U and some constants C_{\phi}’ , C_{\phi}’ independmt of u.

To investigate the structure of R we need following lemmas.

LEMMA 3. 1. Let R be a modifified symmetrizer. Thm in a neighbor-
hood U_{1}(x^{o}, \tau^{o}, \sigma^{o})\subset U(x^{o}, \tau^{o}, \sigma^{o}) the symbol of R is represmted by the fol-
lowing form :

(3. 3) R(x, \zeta, \sigma)

=(_{d_{1}(x,\zeta,\sigma)-i\gamma’f(x,\zeta,\sigma)}^{b(x,\zeta,\sigma)}: d_{1}(x,\zeta,\sigma)+i\gamma’f(x,\zeta, \sigma)d_{2}(x,\zeta,\sigma))

where b, d_{1} , d_{2} and f are real. Furthermore it holds that

(3. 4) b=\epsilon’(1+\epsilon’e_{12})^{-1}(d_{1}(e_{11}-e_{22})+d_{2}e_{21}) for \gamma’=0 ,

(3. 5) 2d_{1} Re h_{21}-C_{1}\geq 0

and
(3. 6) -2d_{1} Re Q+b+d_{2}|Q|^{2}\geq 0 for \gamma’=0 .

PROOF. Generally R(x, \zeta, \sigma) has a following form:

R(x, \zeta, \sigma)=(\begin{array}{ll}b d_{1}d_{1} d_{2}\end{array}) (x, \zeta, \sigma)+i (\begin{array}{ll}0 f-f 0\end{array}) (x, \zeta, \sigma)

where b, d_{1} , d_{2}and^{\backslash }.f are real. Expand b and f in a small neighborhood
U(x^{o}, 0, \sigma^{o}) so that



Remarks on modified symmetrizers for 2\cross 2 hyperbolic mixed problems 129

b=b_{0}(x, \sigma)+\epsilon’b_{1}(x, \epsilon, \sigma)+\gamma’b_{2}(x, \zeta, \sigma)

and f=f_{0}(x, \sigma)+\epsilon’f_{1}(x, \epsilon, \sigma)+\gamma\prime f_{2}(x, \zeta, \sigma) .

From (2. 3) we then obtain

(iRM+(iRM)^{*})(x, \zeta’, \sigma’)

=K_{0}(x, \sigma’)+\epsilon’K_{1}(x, \zeta’, \sigma’)+\gamma\prime K_{2}(x, \zeta’, \sigma’)+O(|_{6’\gamma\prime}|+\gamma^{\prime 2})

where

K_{0}(x, \sigma’)=(\begin{array}{ll}0 ib_{0}-ib_{0} 2f_{0}\end{array}) ,

K_{1}(x, \zeta’, \sigma’)=(\begin{array}{llll}-2e_{21}(f_{0}+ \epsilon’f_{1}) \overline{k}_{1} k_{1} 2f_{0}e_{12}+2f_{1}(1+ \epsilon’e_{12})\end{array})
\sim,

k_{1}=(f_{0}+\epsilon’f_{1})(e_{11}-e_{22})+i\{d_{1}(e_{11}-e_{22})+d_{2}e_{21}-b_{1}(1+\epsilon’e_{12})-b_{0}e_{12}\} ,

K_{2}(x, \zeta’, \sigma’)=(\begin{array}{ll}2(d_{1}Reh_{21}+b_{0}Reh_{11}) \overline{k}_{2}k_{2} 2(d_{1}Reh_{12}+d_{2}Reh_{22}+f_{2})\end{array}) +(*)\cdot f_{0},

(*) is a matrix consisting of some Im h_{ij} and

k_{2}=d_{1}(h_{11}+\overline{h}_{22})+d_{2}h_{21}+b_{0}\overline{h}_{12}-i\{f_{0}(h_{11}+\overline{h}_{22})+b_{2}\}

Applying Lemma 2. 1 to (3. 1) the estimate

(3. 7) K_{0}+\epsilon’K_{1}+\mathcal{T}’K_{2}-C_{1}\gamma’I\geq 0

is valid in some neighborhood of (x^{o}, 0, \sigma^{o}) . Taking \gamma’=0 we have
-2\epsilon’(f_{0}+\epsilon’f_{1})e_{21}\geq 0 and 2 (f_{0}+\epsilon’f_{1})(1+\epsilon’e_{12})\geq 0 .

Since e_{21}\neq 0 and the sign \epsilon’ is not definite, the above inequalities and our
assumption about analyticity imply f_{0}+\epsilon’f_{1}\equiv 0 , that is f_{0}\equiv 0, f_{1}\equiv 0 and b\equiv 0 .

Hence replacing f by \gamma’f, we see that (3. 3), K_{0}=0 and K_{1}=(\begin{array}{l}\prime o\overline{k}_{1}k_{1}0\end{array})

Furthermore from (3. 7) it follows that k_{1}=0 for \gamma’=0 . Therefore we see
that (3. 4) is valid. By the same way as above it also follows from (3. 7)

that (3. 5) is valid.
To prove (3. 6) let Q\phi u_{1}+\phi u_{2}=0 on \Gamma

- then (3. 3) yields

Re \langle R\phi u, \phi u\rangle_{0,\gamma}

\leq{\rm Re} \langle( -2d_{1} Re Q+b+d_{2}|Q|^{2}+2\gamma’f{\rm Im} Q) \phi u_{1} , \phi u_{1}\rangle_{0,\gamma}+C_{\phi}|u_{1}|_{-*,\gamma}^{2}

for_{1}^{v}some constant C_{\delta}>0 . Hence we obtain (3. 6) applying Lemma 2. 1 to

(3. 2) and the above inequality.
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LEMMA 3. 2. A modifified symmetrizer can be constructed iff there
exists a real valued homogeneous function d(x’, \epsilon’, \sigma’) of degree zero, smooth
in (x’, \epsilon’, \sigma’) and analytic in \epsilon’ such that

(3. 8) -2 Re Q+(1+\epsilon’e_{12})^{-1}(e_{11}-e_{22})\epsilon’+d(|Q|^{2}+(1+\epsilon’e_{12})^{-1}e_{21}\epsilon’)\geq 0

for all (x’, \epsilon’, \sigma’) contained in some real neighborhood of (x^{o}, 0, \sigma^{o}) .
PROOF. The ‘only if part follows from (3. 4\vdash(3.6) and (2. 4).

To obtain an a priori estimate we had better construct a modified symme-
trizer R_{\delta} with a parameter \delta(0<\delta<1) instead of R.
Here replacing U(x^{o}, \tau^{o}, \sigma^{o}) , C_{\delta}’ and C_{\phi}’ by U_{\delta}(x^{o}, \tau^{\theta}, \sigma^{o}) , C_{\delta}’ and C_{\delta}’ respec-
tively we impose the following estimates upon R_{\delta} :

(3. 1)’ Re ((iR_{\delta}M+(iR_{\delta}M)^{*})\phi u, \phi u)_{0,\gamma}\geq C_{1}\gamma(||\phi u_{1}||_{0,\gamma}^{2}+\delta^{-1}||\phi u_{2}||_{0,\gamma}^{2})-C_{\delta}’||u||_{0,r}^{2} ,

(3. 2)’ Re \langle R_{\delta}\phi u, \phi u\rangle_{0,f}\geq-C_{2}\gamma|\phi u_{1}|_{-*,\gamma}^{2}-C_{\delta}’|u_{1}|_{-*,\gamma}^{2} ,

where \phi is a function \phi_{\delta} depending on \delta such that \phi_{\delta}=1 in some neigh-
borhood U_{\delta}’\subset\subset U_{\delta} .

Now we can choose, from (2. 4), a positive constant d_{1} such that in
some neighborhood of (x^{o}, 0, \sigma^{o})

(3. 9) d_{1} Re h_{21}>1 .

Let d_{2}(x, \zeta, \sigma)=d_{1}\cdot d(x’, \epsilon’, \sigma’) and let

(3. 10) b(x, \zeta, \sigma)=\epsilon’(1+\epsilon’e_{12})^{-1}(d_{1}(e_{11}-e_{22})+d_{2}e_{21}) .

Furthermore we set

R_{\delta}(x, \zeta, \sigma)=(\begin{array}{lll}b(x, \epsilon’,\sigma’) d_{1}+iT’fd_{1}-i\gamma’f d_{2}(x,\epsilon,,\sigma’)\end{array})

where f is a constant depending on \delta which we are soon going to choose.
Then we see that K_{0}, K_{1} in Lemma 3. 1 are both zero,

K_{2}=(\begin{array}{lllll}2d_{1}Re h_{21} \overline{k}_{2} k_{2} 2(d_{1}Re h_{12}+d_{2}Re h_{22}+fl\end{array})

and
k_{2}=d_{1}(h_{11}+\overline{h}_{22})+d_{2}h_{21} .

Since k_{2} is bounded it follows from (3. 9) that

K_{2}(x, \zeta, \sigma)\geq(\begin{array}{l}1_{n}^{*}00\delta^{-1}\end{array})
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in a neighborhood of (x^{o}, 0, \sigma^{o}) independently of \delta if we take f sufficiently
large depending on \delta . Thus (3. 1)’ is valid by Lemma 2. 1.

Next if Q\phi u_{1}+\phi u_{2}=0 on \Gamma_{} then using (3. 10) we see that

Re \langle R_{\delta}\phi u, \phi u\rangle_{0,r}

={\rm Re}\langle.(R_{0}+\gamma R_{1})\phi u_{1}, \phi u_{1}\rangle_{0,\gamma}+{\rm Re}\langle Tu_{1},u_{1}\rangle_{0,\gamma} ,

where

R_{0}(x’, \epsilon’, \sigma’)+\gamma’R_{1}(x’, \zeta’, \sigma’)=(1,-\overline{Q})R_{\delta} (\begin{array}{l}1-Q\end{array}) (x’, \zeta’, \sigma’)

=\{d_{1}(-2 Re Q+(1+\epsilon’e_{12})^{-1}(e_{11}-e_{22})\epsilon’ ) +d_{2}(|Q|^{2}+

+(1+\epsilon’e_{12})^{-1}e_{21}\epsilon’)+2\mathcal{T}’f{\rm Im} Q\}(x’, \zeta’, \sigma’)

and Tu_{1} is the term arising from commutators, so that |Tu_{1}|_{*,\gamma}\leq C_{\delta}^{1}|u|_{-\},f}

for some constant C_{\delta}^{1}>0 .
Since (3. 8) means R_{0}(x, \epsilon’, \sigma’)\geq 0 it yields for some C_{\delta}^{2}>0

Re \langle R_{0}\phi u_{1}, \phi u_{1}\rangle_{0,\gamma}\geq-C_{\delta}^{2}|u_{1}|_{-*,\gamma}^{2} .

On the other hand all terms except 2fIm Q in R_{1} are bounded. Fur-
thermore there exists a neighborhood U_{\delta}(x^{o}, \tau^{o}, \sigma^{o}) such that |2fIm Q|\leq 1

on U_{\delta} since Q(x^{o}, \tau^{o}, \sigma^{o})=0 . Thus for some constant C_{2}>0 we have

\gamma’R_{1}(x’, \zeta’, \sigma’)\geq-C_{2}\gamma’ in U_{\delta} .

Therefore the corresponding term of \gamma’R_{1}(x’, \zeta’, \sigma’) dominates the right hand
side of (3. 2)’. Here we use that

\langle\gamma’(D’)\phi u_{1}, \phi u_{1}\rangle_{0,\gamma}=\gamma\langle\Lambda^{-1}\phi u_{1}, \phi u_{1}\rangle_{0,\gamma}=\gamma|\phi u_{1}|_{-*,\gamma}^{2} ,

\Lambda being defined by the symbol \Lambda_{\gamma}.
LEMMA 3. 3. Suppose that e_{11}=e_{22} in a neighborhood of (x^{o}, 0, \sigma^{o}) . There

exists a real valued homogmeous function d(x, \epsilon, \sigma) of degree 0 satisfying
(3. 8) iff

Re Q\leq 0

on the surface (2. 10) in some real neighborhood of (x^{o}, 0, \sigma^{o}) .
PROOF. It suffices to prove the ‘if’ part.

Let \omega’(x’, \epsilon’, \sigma’)=|Q|^{2}+\epsilon’(1+\epsilon’e_{12})^{-1}e_{21} .

Then we can take (x’, \omega’, \sigma’) as the new variables instead of (x’, \epsilon’, \sigma’) since
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\frac{\partial\omega’}{\partial\epsilon},(x^{o}, 0, \sigma^{0})=e_{21}(x^{o}, 0, \sigma^{o})\neq 0 .

Now writing
-2 Re Q(x’, \epsilon’, \sigma’)=q_{0}(x’, \sigma’)+q_{1}(x’, \omega’, \sigma’)\omega’

we let
d=-q_{1}(x’, \omega’, \sigma’) .

Then q_{0}(x’, \sigma’) is -2 Re Q on the surface (2. 10), hence it is non-negative,
which implies our assertion (3. 8). Here we remark that d is real analytic
with respect to \epsilon’ .

PROOF OF THEOREM 1. The existence of a modified symmetrizer is
invariant under a similarity transformation by any S(x, \tau, \sigma)\in S_{+}^{0} . We may

assume e_{11}=e_{22} replacing S in section 2, II, \beta) by S (\begin{array}{l}1k01\end{array}) for suitable k .

Then Lemmas 3. 2 and 3. 3 yield that the existence of a modified symme-
trizer is equivalent to that Re Q\leq 0 on the surface (2. 10). Finally by
Lemma 2. 3 the latter is also equivalent to the condition (L) (see (2. 22)).

\S 4. Proof of Theorem 2 and a priori estimates.

In [7] it is shown that a priori estimates for (P, B) and for its dual
problem hold under the stronger conditions and suggested that the assertion
of Theorem 2 is valid. Here we shall give its simple proof. To do it
we shall proceed the same way as in [4] (see also [7]), i . e. , we shall show
a priori estimates for (P, B) :

(4. 1) ||Pu||_{k,\gamma}+|Bu|_{k+*,\gamma}\geq C_{k}\gamma||u||_{k,\gamma} (k : integer \geq 0).

For this purpose we shall use the usual method of a partition of unity.
Then we have only to show the micr0-local estimate as in Lemma 4. 2
with respect to any point (x^{o}, \tau^{o}, \sigma^{o})\in\Gamma\cross\overline{\Sigma}_{-} . If a Lopatinskii determinant
L(x^{o}, \tau^{o}, \sigma^{o}) is not zero, for example if Im \tau^{o}\neq 0 or the roots of det P(x^{o}, \tau^{o},
\sigma^{o} , \lambda)=0 are all real (see [9]), the corresponding symmetrizer exists (see [3]).
Furthermore if the roots of det P^{o}(x^{o}, \tau^{o}, \sigma^{o}, \lambda)=0 are non-real, the a priori
estimate with respect to the point (x^{o}, \tau^{o}, \sigma^{o}) is already known (see [1] and
[7] ) . Accordingly we may consider only the case treated in section 3.

Now let (x^{o}, \tau^{o}, \sigma^{o}) be a point considered in section 3. Let \phi(x, \tau, \sigma)

and \psi(x, \tau, \sigma)\in S_{+}^{o} be real homogeneous in (\tau, \sigma) and \psi=1 on supp \phi. Let
supp \psi\cap\overline{R_{+}^{n+1}\cross\Sigma_{-}} be contained in any neighborhood considered after this.
Let us denote by M, Q and R_{\delta} operators corresponding to those symbols
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\psi M, \psi Q , and \psi R_{\delta} . Finally set v=\phi(x, D’)u, (D_{n}-M)v=f, Qv_{1}+v_{2}=q , w=
{}^{t}(v_{1}, - Qv_{1}) and G={}^{t}(0, q) . Then we have

LEMMA 4. 1. There exist positive constants C, C_{\delta} and \gamma_{\delta} depmding
on \delta such that the estimate

|v_{1}|_{-\,\gamma}^{2}\leq C(\delta||v_{1}||_{0,\gamma}^{2}+\delta^{-1}||v_{2}||_{0,\gamma}^{2}+\delta^{-1}||\Lambda^{-1}f||_{0,\gamma}^{2})

(4. 2)
+C_{\delta}||u||_{-*,\gamma}^{2}

is valid for any \gamma>\gamma_{\delta} and any u\in H_{1,\gamma}(R_{+}^{n+1}) if we take a sufficiently small
neighborhood U_{\delta} of (x^{o}, \tau^{o}, \sigma^{o}) .

PROOF. From integration by parts it holds that
|v_{1}|_{-*,\gamma}^{2}=2 Im (\Lambda^{-1}D_{n}v_{1}, v_{1})_{0,\gamma}

=2 Im (\Lambda^{-1}(m_{11}v_{1}+m_{12}v_{2}+f_{1}), v_{1})_{0,\gamma} ,

where (m_{11}, m_{12}) is the first row of M. For given fixed \delta>0 we can choose
a neighborhood U_{\delta} of (x^{o}, 0, \sigma^{0}) such that

Im (\Lambda_{\gamma}^{-1}m_{11})(x, \zeta, \sigma)=-\gamma’ Re h_{11}(x, \zeta, \sigma)+O(\gamma^{\prime 2})\leq\delta

for all (x, \zeta, \sigma)\in U_{\delta} . Then it follows from Lemma 2. 1 that

Im (\Lambda^{-1}m_{11}v_{1}, v_{1})_{0,r}\leq\delta||v_{1}||_{0,f}^{2}+C_{\delta}||u||_{-*,\gamma}^{2}

for some constant C_{\delta}>0 if \gamma is sufficiently large. Thus we have the esti-
mate (4. 2).

To prove Theorem 2 it suffices to establish the following

Lemma 4. 2. Suppose that there exists a modifified symmetrizer R_{\delta}

satisfying (3. 1)’ and (3. 2)’ at (x^{o}, \tau^{o}, \sigma^{o}) . Then there exist a neighborhood
U(x^{o}, \tau^{o}, \sigma^{o}) and positive constants C, \gamma_{0} such that the a priopri estimate

||(D_{n}-M)v||_{0,\gamma}+|Qv_{1}+v_{2}|_{*,\gamma}+\gamma^{g}(||u||_{0,\gamma}+|u|_{-tr},)

(4. 3)
\geq C\gamma||v||_{0,\gamma}

holds for any \gamma\geq\gamma_{0} and any u\in H_{1,\gamma}(R^{n+1}) .
PROOF. Using integration by parts and the adjoint operator M^{*} of M,

it holds that

(iR_{\delta}v, (D_{n}-M)v)_{0,\gamma}+((D_{n}-M)v, iR_{\delta}v)_{0,\gamma}

=((D_{n}-M^{*})iR_{\delta}v, v)_{0,r}+\langle R_{\delta}v, v\rangle_{0,\gamma}+(-iR_{\delta}^{*}(D_{n}-M)v, v)_{0,r} .

Since -M^{*}iR_{\delta}\equiv(iR_{\delta}M)^{*} , D_{n}iR_{\delta}\equiv iR_{\delta}D_{n} and R_{\delta}\equiv R_{\delta}^{*} (modulo pseud0-differen-
tial operators of lower order respectively), the estimate
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2 Re (iR_{\delta}v, f)_{0,\gamma}+C_{\delta}^{(1)}(||\Lambda^{-1}f||_{0,\gamma}^{2}+||v||_{0,\gamma}^{2})

(4. 4) \geq Re ((iR_{\delta}M+(iR_{\delta}M)^{*})v, v)_{0,\gamma}+{\rm Re}\langle R_{\delta}w, w\rangle_{0,\gamma}

-|\langle R_{\delta}w, G\rangle_{0,\gamma}+\langle R_{\delta}G, w\rangle_{0,\gamma}+\langle R_{\delta}G, G\rangle_{0,\gamma}|

holds for some constant C_{\delta}^{(1)}>0 . Now we have
|\langle R_{\delta}w, G\rangle_{0,\gamma}+\langle R_{\delta}G, w\rangle_{0,\gamma}+\langle R_{\delta}G, G\rangle_{0,\gamma}|

(4. 5) \leq\sqrt{2C_{\delta}^{(2)}}|v_{1}|_{-*,\gamma}|G|_{*,\gamma}+2^{-1}C_{\delta}^{(2)}\gamma^{-1}|G|_{*,\gamma}^{2}

\leq\gamma|v_{1}|_{-\#,r}^{2}+C_{\delta}^{(2)}\gamma^{-1}|g|_{*,t}^{2}

for some constant C_{\delta}^{(2)}>0 . Furthermore we shall use the estimate (4. 2)’

which is obtained from (4. 2) by taking \delta_{1} , C_{3} and C_{\delta_{1}}^{(3)} for \delta, C and C_{\delta} in
Lemma 4. 1 respectively. Finally we see that

(4. 6) 2 Re (iR_{\delta}v, f)_{0\cdot\gamma}\leq\delta_{2}\gamma||v||_{0,\gamma}^{2}+C_{\delta}^{(4)}(\delta_{2}\mathcal{T})^{-1}||f||_{0,r}^{2}

holds for some constant C_{\delta}^{(4)}>0 and any \delta_{2}>0 .
Combining (3. 1)’, (3. 2)’,\cdot\backslash (4.2)’,\cdot(4.3)-(4.6) and noting ||\Lambda^{-1}f||_{0,\gamma}\leq\gamma^{-1} .

||f||_{0,\gamma} , it is obtained that
(C_{\delta}^{(4)}\delta_{2}^{-1}+C_{\delta}^{(1)}\gamma^{-1}+(C_{2}+1)C_{3}\delta_{1}^{-1})||f||_{0,r}^{2}+C_{\delta}^{(2)}|q|_{*,\gamma}^{2}

+(C_{\delta}’+(C_{2}+1)C_{\delta_{1}}^{(3)}\gamma^{-1})\gamma||u||_{0,r}^{2}+C_{\delta}’\gamma|u|_{-*,r}^{2}

\geq(C_{1}-\delta_{2}-C_{\delta}^{(1)}\mathcal{T}^{-1}-(C_{2}+1)C_{3}\delta_{1})\gamma^{2}||v_{1}||_{0,\gamma}^{2}

+(C_{1}\delta^{-1}-\delta_{2}-C_{\delta}^{(1)}\mathcal{T}^{-1}-(C_{2}+1)C_{3}\delta_{1}^{-1})\gamma^{2}||v_{2}||_{0,\gamma}^{2}

in U_{\delta}\cap U_{\delta_{1}} for sufficiently large \gamma . Let C’ and C’ be the coefficients of r^{2} .
||v_{1}||_{0,\gamma}^{2} and \gamma^{2}||v_{2}||_{0,\gamma}^{2} in the above inequality respectively. Then we can
choose \delta_{1}, \delta_{2} and \delta sufficiently small such that \delta\ll\delta_{1} and then \gamma sufficiently
large so that C’ and C’ can be strictly positive. Thus we see that the
desired inequality is valid. Finally (L) is also valid for (P’. B’) since the
Lopatinskii determinant L’(x_{0}, x’, \tau, \sigma) is equal to \overline{L(-x_{0},x’.,-\overline{\tau},\sigma)} except
a nonvanishing factor and there happens the case (a) or (b) for (P, B) cor-
responding to the case (b) or (a) for (P_{-}’ B’) respectively. Therefore we
have a priori estimates for (P’, B’) (see [7, (9. 11)]). Thus we have Theorem
2 by the same way as in [4].

\S 5. Relations between (\bm{L})and L^{2}-well posedness

I. In this section we shall investigate the necessary and sufficient
condition of L^{2}-well posedness for (P, B) whose symbols are independent of
x variables. As is shown in [7] assuming L(\tau, \sigma)\neq 0 when Im \tau<0 we
have only to consider the inequality
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(5. 1) |L(\tau, \sigma)^{-1}|\leq C\gamma^{-1}|{\rm Im}\lambda^{+}(\tau, \sigma)|^{\neq}|{\rm Im}\lambda^{-}(\tau, \sigma)|^{\neq}

in some neighborhood U(\tau^{o}, \sigma^{0}) with Im \tau<0 . Furthermore we may restrict
ourselves to the case where (\tau^{o}, \sigma^{o}) is such a point as considered before.
Then we have the following

PROPOSITION 5. 1. The estimate (5. 1) is valid iff there exist a neighbor-
hood U(\sigma^{o}) and a constant \delta>0 such that for any \sigma\in U(\sigma^{o})

\delta\leq\arg D(\sigma)\leq\frac{3}{2}\pi in the case (a) or
(5. 2)

0 \leq\arg D(\sigma)\leq\frac{3}{2}\pi-\delta in the case (b), respectively.

PROOF. Also here only the case (a) is considered.
Note that

\gamma=|{\rm Im}\zeta|=2|{\rm Re}\sqrt{\zeta}||{\rm Im}\sqrt{\zeta}| .
Hence by Lemma 2.2 (5. 1) is equivalent to that

\frac{|{\rm Im}\lambda^{+}(\zeta,\sigma){\rm Im}\lambda^{-}(\zeta,\sigma)|^{*}}{|{\rm Im}\sqrt{\zeta}|}\frac{|\sqrt{\zeta}-D(\sigma)|}{|{\rm Re}\sqrt{\zeta}|}\geq c’>0

for some constant c’ in U(0, \sigma^{o}) with Im \zeta<0 . Considering the expansions
\lambda^{\pm}(\zeta, \sigma)=a_{0}(\sigma)+a_{1}(\sigma)(\pm\sqrt{\zeta})+a_{2}(\sigma)(\pm\sqrt{\zeta})^{2}+\cdots

where a_{f}(\sigma)(j=0,1,2, \cdots) are real, analytic and a_{1}(\sigma^{0})\neq 0 , it holds that in
a small neighborhood of (0, \sigma^{o})

C^{\prime-1}< \frac{|{\rm Im}\lambda^{\pm}(\zeta,\sigma)|}{|{\rm Im}\sqrt{\zeta}|}<C’

for some constant C’>0 . Therefore (5. 1) is equivalent to that

(5. 3) \frac{|\sqrt{\zeta}-D(\sigma)|}{|{\rm Re}\sqrt{\zeta}|}\geq c

for some constant c>0 .
Now we shall prove the equivalence between (5. 2) and (5. 3).

(5. 2)^{arrow}arrow(5.3) : From our convention it is seen that - \frac{\pi}{2}\leq\arg\sqrt{\zeta}\leq 0

for {\rm Im}\zeta\leq 0 . Let arg \sqrt{\zeta}=-\omega and 0 \leq\omega\leq\frac{\pi}{2} .
Then we have

| \sqrt{\zeta}-D(\sigma)|\geq\min\{|{\rm Re}\sqrt{\zeta}| , |\sqrt{\zeta}|\sin(\omega+\delta)\}



136 S. Sato and T. Shirota

and
|\sqrt{\zeta}|\sin(\omega+\delta)=|\sqrt\overline{\zeta}| ( \sin\omega cos \delta+\cos\omega sin \delta)

\geq|\sqrt{\zeta}|\cos\omega sin \delta=|{\rm Re}\sqrt{\zeta}|\sin\delta .

Hence it follows that

\frac{|\sqrt{\zeta}-D(\sigma)|}{|{\rm Re}\sqrt{\zeta}|}\geq sin \delta>0 ,

which implies that (5. 3) holds.

(5. 3)_{arrow}^{arrow}(5.2) : Let arg D(\sigma)=\delta(\sigma) and 0\leq\delta(\sigma)<_{t}^{\frac{\pi}{2}}

Put \sqrt{\zeta(\sigma,\omega)}=\frac{|D(\sigma)|}{\cos(\omega+\delta(\sigma))}e^{-i\omega} for 0 \leq\omega<\frac{\pi}{2}-\delta(\sigma) .

Since

| \sqrt{\zeta(\sigma,\omega)}-D(\sigma)|=\frac{|D(\sigma)|}{\cos(\omega+\delta(\sigma))}\sin(\omega+\delta(\sigma))

= \frac{{\rm Re}\sqrt{\zeta(\sigma,\omega)}}{\cos\omega}\sin(\omega+\delta(\sigma)) ,

then we have from (5. 3)

\frac{\sin(\omega+\delta(\sigma))}{\cos\omega}=\frac{|\sqrt{\zeta(\sigma,\omega)}-D(\sigma)|}{|{\rm Re}\sqrt{\zeta(\sigma,\omega)}|}\geq c .

Hence it is obtained that

sin \delta(\sigma)=\lim_{\omegaarrow 0}\frac{\sin(\omega+\delta(\sigma))}{\cos\omega}\geq c ,

which implies (5. 2).

II . At first let us consider the case where P^{o}(x, D)=D_{n}-A(x, 1\mathcal{Y}) is
a differential operator of order 1 and B(x’, D’) is a function B(x’) of x’ .
Let (x^{o}, \tau^{o}, \sigma^{o}) be a point considered above. Continue analytically \lambda^{\pm}(x, \zeta+

\theta(x, \sigma), \sigma) and S(x, \zeta+\theta(x, \sigma), \sigma)=(h’, h’) from \zeta=\epsilon-i\gamma to \zeta=\epsilon+i\gamma for \gamma>0 ,

fixed (x, \sigma) in some neighborhood of (x^{o}, \sigma^{o}) and small \epsilon>0 . Recall that
we can take

h’(x, \zeta+\theta(x, \sigma), \sigma)=\frac{1}{2\pi i}\oint_{C}(\lambda-A(x, \zeta+\theta(x, \sigma), \sigma))^{-1}

. h_{1} (x, \theta(x, \sigma), \sigma) d\lambda 1

and
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\Lambda_{\gamma}h’ (x, \zeta+\theta(x, \sigma), \sigma)=(\lambda^{+}(x, \theta(x, \sigma), \sigma)-A(x, \zeta+\theta(x, \sigma\rangle, \sigma))

.h’ (x, \zeta+\theta(x, \sigma), \sigma),
where h_{1}(x, \theta(x, \sigma), \sigma) is a generalized eigenvector of A(x, \theta(x, \sigma), \sigma) cor-
responding to \lambda^{+}=\lambda^{-}(x, \theta(x, \sigma), \sigma) and C is acircle enclosing \lambda^{\pm}(x, \zeta+\theta(x,
\sigma), \sigma) (see [7, Lemma 3.2]). Furthermore let us take note of the fact that
\theta(x, -\sigma)=-\theta(x, \sigma) . Then it follows from the definitions of M and Q that

M(x, -(\epsilon+i\gamma+\theta(x, \sigma)), -\sigma)

(5. 4) =(\begin{array}{ll}1 00 -1\end{array}) M(x, \epsilon+i\gamma+\theta(x, \sigma), \sigma) (\begin{array}{ll}-1 00 1\end{array}) ,

Q (x’, -(\epsilon+i\gamma+\theta(x’, \sigma)) , -\sigma)=-Q(x’, \epsilon+i\gamma+\theta(x’, \sigma), \sigma)

for small \epsilon+i\gamma(\gamma>0) and any (x, \sigma) in some neighborhood of (x^{o}, \sigma^{o}) .
Here we remark that (5. 4) is also valid if M and Q are those reduced
from differential operators of order 2 and 1 respectively, that is in the case
treated in [1], [2] and [6].

Finally we give a certain sufficient condition for (P, B) to be L^{2}-well
posed in terms of M and Q.

PROPOSITION 5. 2. Suppose that (5. 4) is valid. Thm the condition (L)
is satisfified.

PROOF. In order to prove (L) it suffices to show that L(x’, \zeta+\theta(x’, \sigma),
\sigma) can be continued analytically through the half line \{\zeta>0\} and does not
vanish over C\backslash \{\zeta=\epsilon-i\mathcal{T};\epsilon\leq 0, \mathcal{T}=0\} . To show this fact, from (2. 7), (2. 9)
and the definition of Q, we may rewrite L as follows: for \gamma\geq 0

L(x’, \zeta+\theta(x’, \sigma), \sigma)

=(\lambda^{+}(x’, \zeta+\theta(x’, \sigma), \sigma)-\lambda^{+}(x’, \theta(x’, \sigma), \sigma)

-\zeta p_{11}(x’, \zeta, \sigma))(\Lambda_{0}^{(0)}+\zeta p_{12}(x’, \zeta, \sigma))^{-1}+Q(x’, \zeta+\theta(x’, \sigma), \sigma) .
By the analytic continuation and the relations (5. 4) we see that the result-
ing L(x’, \epsilon+i\gamma+\theta(x’, \sigma), \sigma) is equal to -L(x’, -(\epsilon+i\gamma+\theta(x’, \sigma)), -\sigma) . The
latter does not vanish whenever \gamma\neq 0 by the L^{2}-well posedness at the point
(x^{o}, -\theta(x^{o}, \sigma^{o}), -\sigma^{o}) . Finally by [9, Theorem 3] we conclude that our asser-
tion is valid.
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ADDED 1N proof. Removing the requirement for the analyticity w. r.
t. \epsilon in the definition of modified symmetrizers the former author has ob-
tained the result that the condition (L) in Theorm 1 and 2 can be re-
placed by (\tilde{L}) : in a neighborhood of any (x^{0}, \sigma^{0}) considered mainly Re D
\leq\chi (Im D) or Im D\geq-\chi (–Re D) in the case {a) or (b) respectively for
some (0\leq)\chi\in C^{\infty}(R^{1}) with supp \chi\subset\overline{R}_{+}^{1} .
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