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Introduction.

The transformations of an almost quaternion manifold preserving the
quaternion structure have been investigated by M. Obata, S. Ishihara, Y.
Takemura and others. M. Obata ([6]) obtained the conditions for such
transformations to be affine transformations with respect to a certain affine
connection, S. Ishihara ([4]) proved some results concerning infinitesimal
transformations preserving the quaternion structure of a quaternion K\"ahlerian

manifold, and automorphism groups of quaternion K\"ahlerian manifolds were
studied by Y. Takemura ([7]).

In this paper, we shall study the transformations which preserve a certain
kind of curves on an almost quaternion manifold or a quaternion K\"ahlerian

manifold. They are analogous to projective transformations of a Riemannian
manifold or holomorphically projective transformations of a K\"ahlerian mani-
fold.

\S 1. Preliminaries.

Let (M, V) be an almost quaternion manifo1d^{1)} of dimension 4m, that
is, a manifold M which admits a 3-dimensional vector bundle V consisting
of tensors of type (1, 1) over M satisying the following condition: In any
coordinate neighborhood U of \Lambda \mathcal{T}, there is a local base \{J_{1}, J_{2}, J_{3}\} of V such
that
(1. 1) J_{p}J_{q}=-\delta_{pq}I+\delta_{pqr}J_{r^{2)}}

1) Throughout this paper, we assume that manifolds are connected and every geometric
object is differentiable and of class C^{\infty} .

2) We use the summation convention. For example, we denote \sum_{p=1}^{3}J_{p}\otimes J_{p} by J_{p}\otimes J_{p}

or \sum_{i=1}^{4m}q(e_{i}, e_{i}) by q(e_{i}, e_{i}) . And sum indices run over the following ranges :

p, q, r, s=1,2,3 ;

a, b, c=0,1,2,3 ;

h, i,j, k, l=1 , \cdots,4m .
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where I, \delta_{pq} and \delta_{pqr} denote the identity tensor field of type (1, 1) on M,
the Kronecker’s delta and the generalized Kronecker’s delta defined by

\delta_{pqr}=\det (\begin{array}{lll}\delta_{1p} \delta_{1q} \delta_{1r}\delta_{2p} \delta_{2q} \delta_{2r}\delta_{3p} \delta_{3q} \delta_{3r}\end{array}) ,

respectively. Such a local base \{J_{1}, J_{2}, J_{3}\} of V is called a canonical local
base of V in U. And it is well known that \Lambda=J_{p}\otimes J_{p} is a tensor field of
type (2, 2) defined globally on M([3]) .

We now consider an affine connection \Gamma and a curve x(t) on (M, V)
satisfying

(1. 2) \nabla_{x(t)}\dot{x}(t)=\phi_{a}(t)]_{a}jj(t)

where \dot{x}(t) is the vector tangent to x(t) , \phi_{a}(t)(a=0,1,2, 3) are certain func-
tions of the parameter t, J_{0}=I and \nabla is an operator of covariant differentia-
tion with respect to \Gamma Such a curve is called a Q-planar curve with respect
to \Gamma And two affine connections \Gamma and \Gamma’ on (M, V) are called to be Q-
projectively related if they have all Q-planar curves in common. In [1] and
[2], the present author proved

THEOREM A ([1], [2]). In an almost quaternion manifold (M, V) of
dimension 4m(\geqq 8) , the following conditions are equivalent to each other:

(1) Affiffiffine connections \Gamma and \Gamma’ on (M, V) are Q-projectively related.
(2) There exist local 1-forms \psi_{a}(a=0,1,2,3) on M satisfying

S(X, Y)+S ( Y, X)=\psi_{a}(X)J_{a}Y+\psi_{a}(Y)J_{a}X

for any vector fifields X and Y on M.
(3) There exist local functions \eta_{a}(a=0,1, 2,3) on the tangent bundle

of M such that

Q(X)=\eta_{a}(X)J_{a}X

for any vector fifield X on M, where \nabla and \nabla’ are operator of covariant
differentiation with respect to \Gamma and \Gamma’ respectively, S(X, Y)=\nabla_{X}’Y-\nabla_{X}Y

and Q(X)=S(X, X) .
Next, if a transformation f of M onto itself leaves the bundle V invariant,

then f is called a Q-transformation of (M, V)([4]) . And a vector field X
on M is called an infinitesimal Q-transformation of (M, V) if exp (tX)(|t|<
\epsilon, \epsilon being a certain positive number) is a Q-transformation of (M, V). S.
Ishihara proved
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THEOREM B([4]) . Let f be a transformation of an almost quaternion
manifold (M, V) onto itself. Then the following conditions are equivalent
to each other:

(1) f is a transformation of (M, V) .
(2) f preserves the tensor fifield \Lambda .
(3) f^{*}\overline{J}_{p}=s_{pq}J_{q} in U\cap f^{-1}U’ ,

where U and U’ are any coordinate neighborhoods of M such that U\cap f^{-1}U’

is not empty, \{J_{1}, J_{2}, J_{3}\} and \{\overline{J}_{1},\overline{J}_{2},\overline{J}_{3}\} are local canonical bases of V in
U and U’ respectively, f^{*}\overline{J}_{p} denotes the tensor fifield induced by f from \overline{J}_{p}

and (s_{pq})\in SO(3) at each point in U\cap f^{-1}U’

THEOREM C([4]) . Let X be a vector fifield on an almost quaternion
manifold (M, V). Then the following conditions are equivalent to each
other:

(1) X is an infifinitesimal Q-transformation of (M, V) .
(2) \mathscr{L}_{X}\Lambda=0 .
(3) \mathscr{L}_{X}J_{p}=\alpha_{pq}J_{q} and \alpha_{pq}+\alpha_{qp}=0 in each coordinate neighborhood U,

where \mathscr{L}_{X} is the Lie derivative with respect to X, \{J_{1}, J_{2}, J_{3}\} is a local
canonical base of V in U and \alpha_{pq} (p, q=1,2, 3) are certain functions on U.

\S 2. Q-projective transformations.

Let f and \Gamma be a transformation of an almost quaternion manifold (M,
V) onto itself and an affine connection on M, respectively. If f maps any
Q-planar curve with respect to \Gamma into another one with respect to \Gamma , f is
called a Q-projective transformation with respect to \Gamma of (M, V) . Now let
x(t) be a Q-planar curve such that

(2. 1) \nabla_{x(t)}\dot{x}(t)=\phi_{a}(t)J_{a}\dot{x}(t) , x(t_{0})=x_{0} and \dot{x}(t_{0})=u

for a point x_{0}\in M, a tangent vector u at x_{0} and functions \phi_{a}(t)(a=0,1,2,3)

of the parameter t, where \nabla and \{J_{1}, J_{2}, J_{3}\} denote the operator of covariant
differentiation with respect to \Gamma and a canonical local base of V in the
coordinate neighborhood U of M containing x_{0} , respectively.

Assume that f is a Q-projective transformation with respect to \Gamma of
(M, V) and put \overline{x}(t)=f(x(t)) . Then, since \overline{x}(t) is a Q-planar curve with
respect to \Gamma . we have

(2. 2) \nabla_{i}-(t)\overline{x}(it)=\overline{\phi}_{a}\overline{J}_{a^{X}}^{j}(t)

for certain functions \overline{\phi}_{a} (a=0,1,2, 3) depending upon x(t) , where \overline{J}_{0}=I and
\{\overline{J}_{1},\overline{J}_{2},\overline{J}_{3}\} is the canonical local base of V in a coordinate neighborhood
U’ such that f(x_{0})\in U’ . Denoting by \nabla* the operator of covariant differentia-
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tion with respect to an affine connection induced from \Gamma by f, we have

(2. 3) f_{*}(\nabla_{x(t)}.\dot{\tau}(t))=\nabla_{\overline{x}(’)}\dot{\overline{x}}(t)*.

From (2. 2) and (2. 3), we have

(2. 4) \nabla_{x(t)}\grave{x}(t)=\overline{\phi}_{a}(f^{*}\overline{J}_{a})\grave{x}(t)A_{\downarrow}

Hence, from (2. 1) and (2, 4) , we have

Q(\dot{x}(t))=(\phi_{a}(t)J_{a}-\overline{\phi}_{a}(f^{*}\overline{J}_{a}))\dot{x}(t)

where Q(\dot{x}(t))=\nabla_{x(’)}\grave{x}(t)-\nabla_{x(l)}\grave{x}(t)* . Since \phi_{a}(t)(a=0,1,2, 3) are arbitrary
functions of t, u=\dot{x}(t_{0}) is an arbitrary vector in T_{x_{0}}(M) and (Q(\dot{x}(t)))_{l=t_{0}}

depends upon u but not \phi_{a}(t) , we have

(2. 5) (f^{*}\overline{J}_{a})u=\psi_{ab}(u)J_{b}u .
Q(u)=\psi_{a}(u)J_{a}u

for any vector u\in T_{x_{0}}(M) and certain functions \psi_{ab} and \psi_{a}(a, b=0,1,2, 3)

on T_{x_{0}}(M) . From (2, 5) , we have

(\psi_{ab})\in(\begin{array}{ll}1 00 SO(3)\end{array})

Therefore, from Theorems A and B, we can obtain
THEOREM 1. Let (M, V) be an almost quaternion manifold of dimen-

tion 4m(\geqq 8) with an affiffiffine connection \Gamma Then, a transformation f of
M onto itself is a Q-projective transformation with respect to \Gamma of (M, V)

if and only if
(1) f is a Q-transformation of (M, V)

and
(2) \Gamma and the affiffiffine connection induced by f from \Gamma are Q-projective

vely related.
Let X be a vector field on (M, V) with an affine connection \Gamma- If

exp (tX) ( |t|<\epsilon , \epsilon being a certain positive number) is a Q-projective transfor-
tion with respect to \Gamma of (M, V), X is called an infinitesimal Q-projective

transformation with respect to \Gamma of (M, V) . From Theorem 1, we can
obtain

THEOREM 2. Let (M, V) be an almost quaternion manifold of dimen-
tion 4m(\geqq 8) with an affiffiffine connection \Gamma Then, a vector fifield X on M
is an infifinitesimal Q-projective transformation with respect to \Gamma if and
only if
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(1) X is an infifinitesimal Q-transformation of (M, V)
and

(2) X satisfifies
\mathscr{L}_{X}(\Gamma_{ji}^{h}+\Gamma_{ij}^{h})/2=\psi_{a,j}J_{a,i}^{h}+\psi_{a,i}J_{a,j}h

for certain local 1-forms \psi_{a} (a=0,1,2, 3) on each coordinate neighborhood U,
where \Gamma_{ji}^{h} , \psi_{a,i} and J_{a,i}h denote coeffiffifficients of \Gamma r

, components of \psi_{a} and ones
of a canonical local base \{J_{1}, J_{2}, J_{3}\} of V in U with respect to local coor-
dinates, respectively.

\S 3. Infinitesimal Q-projective transformations on a compact
quaternion K\"ahlerian manifold.

Let (M, g, V) be a quaternion K\"ahlerian manifold of dimension 4m(\geqq 8) ,
that is, an almost quaternion manifold (M, V) which admits a Riemannian
metric g satisfying

(3. 1) g(X, \phi Y)+g(\phi X, Y)=0 ,

(3. 2) \nabla_{X}\Lambda=0

for any cross-section \phi of V and any vector fields X and Y on M, where
\Lambda is the tensor field mentioned in \S 1. And (3. 2) is equivalent that there
exist local 1-forms \beta_{pq}(p, q=1,2,3) such that

(3. 3) \nabla_{X}J_{p}=\beta_{pq}(X)J_{q} and \beta_{pq}+\beta_{qp}=0

for any vector field X and a canonical local base \{J_{1}, J_{2}, J_{3}\} of V.
Let X be an infinitesimal Q-projective transformation with respect to

the Riemannian connection of (M, g, V) and \{\begin{array}{l}hji\end{array}\} be local coefficients of its

connection. From Theorem 3 in [1] and Theorem 2 in the present paper,
we see that there exists a local 1-form \eta such that

(3. 4) \mathscr{L}_{X}\{\begin{array}{l}hji\end{array}\}=I_{j}^{h}\eta_{i}+I_{i}^{h}\eta_{j}-\Lambda_{ji}^{kh}\eta_{k}-\Lambda_{ij}^{kh}\eta_{k}

where \eta_{i} and \Lambda_{ji}^{kh} are local components of \eta and \Lambda , respectively. On the
other hand, we have known that

(3. 5) \mathscr{L}_{X}\{\begin{array}{l}hji\end{array}\}=\nabla_{j}\nabla_{i}X^{h}+R_{kji^{h}}X^{k}

where \{\partial/\partial x^{1}, \cdots, \partial/\partial x^{4m}\} is a local natural frame, \nabla_{i}=\nabla_{\partial/\partial x^{i}} and R_{kji^{h}} denote
local components of the curvature tensor field of (M, g, V) . Transvecting
(3. 4) and (3. 5) by g^{ji} , we have
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(3. 6) \nabla^{k}\nabla_{k}X^{h}+SX^{h}/4m=-4\eta h ,

because (M, g, V) is an Einstein space ([3]), where g_{ji} , (g^{ji}) and S denote
local components of g, the inverse matrix of (g_{ji}) and the scalar curvature,
respectively, \nabla^{k}=g^{kj}\nabla_{j} and \eta^{h}=g^{kh}\eta_{k} . Contracting (3. 4) and (3. 5) for h and
i, we have

(3. 7) \nabla_{j}\nabla_{h}X^{h}=4(m+1)\eta_{j} .

Therefore, from (3. 6) and (3. 7), we have

\nabla^{i}\nabla_{i}||X||^{2}/2=||\nabla X||^{2}+X^{h}\nabla^{i}\nabla_{i}X_{h}

=||\nabla X||^{2}-S||X||^{2}/4m-4X^{h}\eta_{h}

=||\nabla X||^{2}-S||X||^{2}/4m+(\nabla_{h}X^{h})^{2}/(m+1)

-\nabla_{h}(X^{h}\nabla_{i}X^{i})/(m+1)’.

where ||X||^{2}=g_{ji} X^{j} X^{i} and ||\nabla X||^{2}=g_{kj}g_{ih}\nabla^{k}X^{i}\cdot\nabla^{j}X^{h}
. Assume that M is com-

pact. Since a quaternion K\"ahlerian manifold is orientable ([3]), we have

\int_{JI}[||\nabla X||^{2}-S||X||^{2}/4m+(\nabla_{h}X^{h})^{2}/(m+1)]*1=0

where *1 is the volume element of (M, g, V) . Thus, we can obtain
THEOREM 3. Let (M, g, V) be a compact quaternion K\"ahlerian mani-

fold of dimension 4m(\geqq 8) . If the scalar curvature S is negative, an in-
fifinitesimal Q-projective transformation X of (M, g, V) is a zero vector fifield,
and if S is vanishes, X is a parallel vector fifield.

\S 4. Remarks.

REMARK 1. ln [5], Y. Maeda obtained the following theorem :
THEOREM D. Let (M,g, V) be a complete quaternion K\"ahlerian mani-

fold of dimension 4m(\geqq 8) . In order that (M, g, V) be isometric to the
quaternion projective space with constant Q-sectional curvature 4K(>0) ,
it is necessary and suffiffifficient that (M, g, V) admits a non-trivial solution fof the following differential equations:

\nabla_{j}\nabla_{i}f_{h}+K(2f_{j}g_{ih}+f_{i}g_{jh}+f_{h}g_{ji}-g_{ki}\Lambda_{jh}^{kl}f_{l}-g_{kh}\Lambda_{ji}^{kl}f_{l})=0 ,

and such a gradf is a non-trivial infifinitesimal Q-transformation of (M,
g, V), where f_{h}=\partial f/\partial x^{h} .

Now let \{\begin{array}{l}hji\end{array}\} be a Riemannian-Christoffel’s symbol induced from g.
Then we have
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\mathscr{L}_{gradf}\{\begin{array}{l}hji\end{array}\}=-2K(I_{j}^{h}f_{i}+I_{i}^{h}f_{j}-\Lambda_{ji}^{kh}f_{k}-\Lambda_{ij}^{kh}f_{k}) ,

from which, it follows that such a gradf is a non-trivial infinitesimal Q-
projective transformation of (M, g, V) .

REMARK 2. Let \Gamma be an affine connection on an almost quaternion
manifold (M, V) of dimension 4m(\geqq 8) . \Gamma is called a Q connection on (M,
V) if \Gamma satisfies (3. 2). By virture of Theorem 1. 3 in [6], we see that the
affine connection induced from a Q connection by a Q transformation of
(M, V) is a Q-connection. And it is easy to see that the set consisting of
all infinitesimal Q-projective transformations with respect to a symmetric
Q-connection of (M, V) is a Lie subalgebra of the Lie algebra consisting of
all infinitesimal Q-transformations of (M, V) .

REMARK 3. Let (M, V) be an almost quaternion manifold of dimension
Am. If two symmetric Q-connections \Gamma and \overline{\Gamma} are projectively related, that
is, if there exists a 1-form \omega on M such that

\overline{\nabla}_{X}Y=\nabla_{X}Y+\omega(X)Y+\omega(Y)X

for any vector fields X and Y, we see easily that \Gamma and \overline{\Gamma} are affinely related,
where \overline{\nabla} and \nabla are operators of covariant differentiation with respect to \overline{\Gamma}

and \Gamma, respectively.
REMARK 4. Let (M, g, V) be a quaternion K\"ahlerian manifold of dimen-

sion 4m and \overline{g}=\exp(2\rho)\cdot g be a conformal change of g for a certain function
\rho on M. Then, we have
(4. 1) \overline{\nabla}_{X}Y=\nabla_{X}Y+X(\rho)Y+Y(\rho)X-g(X, Y) grad \rho

for any vector fields X and Y on M, where \overline{\nabla} and \nabla denote the operators
of covariant differentiation with respect to the Riemannian connections in-
duced from \overline{g} and g, respectively, and grad \rho is a gradient vector field of
\rho with respect to g, that is, a vector field such that

g grad \rho , X) =X(\rho)

From (4. 1), we have

(4. 2) (\overline{\nabla}_{X}J_{p})Y=(\nabla_{X}J_{p})Y+(J_{p}Y)(\rho)X-Y(\rho)J_{p}X

-g (X, J_{p} Y) grad \rho+g(X, Y)J_{p} grad \rho

Now assume that m>1 and (M,\overline{g}, V) is aquaternion K\"ahlerian manifold.
Let vectors J_{a}u and J_{a}v (a=0,1,2, 3) be mutually orthogonal with respect
to g. Then, from (3. 3) and (4. 2), we have

\overline{\beta}_{pq}(u)J_{q}v=\beta_{pq}(u)J_{q}v+(J_{q}v)(\rho)u-v(\rho)J_{p}u\uparrow
’
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from which, we see that \rho is constant, that is, \overline{g} is a homothetic change
of g.

Next assume that m=1 and \{ Y, J_{1}Y, J_{2}Y, J_{3}Y\} is a local frame field on
an arbitrary coordinate neighborhood of M which is orthonormal with respect

to g . Then, from (4. 2), we have

g ((\overline{\nabla}_{X}J_{p})Y, Y)=g((\nabla_{X}J_{p})Y, Y) .

g ((\overline{\nabla}_{X}J_{p})Y, J_{q}Y)=g((\nabla_{X}J_{p})Y, J_{q}Y)+(J_{p}Y)(\rho)g(X, J_{q}Y)

-(J_{q}Y)(\rho)g(X, J_{p}Y)

+\delta_{pqr}\{Y(\rho)g(X, J_{r}Y)-(J_{r}Y)(\rho)g(X, Y)\} .

from which, we have
\overline{\nabla}_{X}J_{p}=\nabla_{X}J_{p}-\delta_{pqr}(J_{r}d\rho)(X)J_{q}

Therefore, we see that (M,\overline{g}, V) is a quaternion K\"ahlerian manifold. Really,
this fact is obvious because all orientable Riemannian manifolds of dimension
4 are quaternion K\"ahlerian manifolds.
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