Q-projective transformations of an almost quaternion manifold

By Shigeyoshi Fujimura
(Received June 2, 1978 ; Revised August 25, 1978)

Introduction.

The transformations of an almost quaternion manifold preserving the quaternion structure have been investigated by M. Obata, S. Ishihara, Y. Takemura and others. M. Obata ([6]) obtained the conditions for such transformations to be affine transformations with respect to a certain affine connection, S. Ishihara ([4]) proved some results concerning infinitesimal transformations preserving the quaternion structure of a quaternion Kählerian manifold, and automorphism groups of quaternion Kählerian manifolds were studied by Y. Takemura ([7]).

In this paper, we shall study the transformations which preserve a certain kind of curves on an almost quaternion manifold or a quaternion Kählerian manifold. They are analogous to projective transformations of a Riemannian manifold or holomorphically projective transformations of a Kählerian manifold.

§ 1. Preliminaries.

Let (M, V) be an almost quaternion manifold ${ }^{11}$ of dimension $4 m$, that is, a manifold M which admits a 3 -dimensional vector bundle V consisting of tensors of type $(1,1)$ over M satisying the following condition: In any coordinate neighborhood U of M, there is a local base $\left\{J_{1}, J_{2}, J_{3}\right\}$ of V such that

$$
\begin{equation*}
J_{p} J_{q}=-\delta_{p q} I+\delta_{p q r} J_{r}{ }^{2} \tag{1.1}
\end{equation*}
$$

1) Throughout this paper, we assume that manifolds are connected and every geometric object is differentiable and of class C^{∞}.
2) We use the summation convention. For example, we denote $\sum_{p=1}^{3} J_{p} \otimes J_{p}$ by $J_{p} \otimes J_{p}$ or $\sum_{i=1}^{4 m} g\left(e_{i}, e_{i}\right)$ by $g\left(e_{i}, e_{i}\right)$. And sum indices run over the following ranges:

$$
\begin{aligned}
& p, q, r, s=1,2,3 ; \\
& a, b, c=0,1,2,3 ; \\
& h, i, j, k, l=1, \cdots, 4 m .
\end{aligned}
$$

where $I, \delta_{p q}$ and $\delta_{p q r}$ denote the identity tensor field of type $(1,1)$ on M, the Kronecker's delta and the generalized Kronecker's delta defined by

$$
\delta_{p q r}=\operatorname{det}\left(\begin{array}{lll}
\delta_{1 p} & \delta_{1 q} & \delta_{1 r} \\
\delta_{2 p} & \delta_{2 q} & \delta_{2 r} \\
\delta_{3 p} & \delta_{3 q} & \delta_{3 r}
\end{array}\right),
$$

respectively. Such a local base $\left\{J_{1}, J_{2}, J_{3}\right\}$ of V is called a canonical local base of V in U. And it is well known that $\Lambda=J_{p} \otimes J_{p}$ is a tensor field of type (2,2) defined globally on M ([3]).

We now consider an affine connection Γ and a curve $x(t)$ on (M, V) satisfying

$$
\begin{equation*}
\nabla_{\dot{x}(t)} \dot{x}(t)=\phi_{a}(t) J_{a} \dot{x}(t) \tag{1.2}
\end{equation*}
$$

where $\dot{x}(t)$ is the vector tangent to $x(t), \phi_{a}(t)(a=0,1,2,3)$ are certain functions of the parameter $t, J_{0}=I$ and V is an operator of covariant differentiation with respect to Γ. Such a curve is called a Q-planar curve with respect to Γ. And two affine connections Γ and Γ^{\prime} on (M, V) are called to be Q projectively related if they have all Q-planar curves in common. In [1] and [2], the present author proved

Theorem A ([1], [2]). In an almost quaternion manifold (M, V) of dimension $4 m(\geqq 8)$, the following conditions are equivalent to each other:
(1) Affine connections Γ and $\Gamma^{\prime \prime}$ on (M, V) are Q-projectively related.
(2) There exist local 1-forms $\psi_{a}(a=0,1,2,3)$ on M satisfying

$$
S(X, Y)+S(Y, X)=\psi_{a}(X) J_{a} Y+\psi_{a}(Y) J_{a} X
$$

for any vector fields X and Y on M.
(3) There exist local functions $\eta_{a}(a=0,1,2,3)$ on the tangent bundle of M such that

$$
Q(X)=\eta_{a}(X) J_{a} X
$$

for any vector field X on M, where ∇ and ∇^{\prime} are operators of covariant differentiation with respect to Γ and $\Gamma^{\prime \prime}$ respectively, $S(X, Y)=\nabla_{X}^{\prime} Y-\nabla_{X} Y$ and $Q(X)=S(X, X)$.

Next, if a transformation f of M onto itself leaves the bundle V invariant, then f is called a Q-transformation of $(M, V)([4])$. And a vector field X on M is called an infinitesimal Q-transformation of (M, V) if $\exp (t X)(|t|<$ ε, ε being a certain positive number) is a Q-transformation of (M, V). S. Ishihara proved

Theorem B ([4]). Let f be a transformation of an almost quaternion manifold (M, V) onto itself. Then the following conditions are equivalent to each other:
(1) f is a Q-transformation of (M, V).
(2) f preserves the tensor field Λ.
(3) $f^{*} \bar{J}_{p}=s_{p q} J_{q}$ in $U \cap f^{-1} U^{\prime}$,
where U and U^{\prime} are any coordinate neighborhoods of M such that $U \cap f^{-1} U^{\prime}$ is not empty, $\left\{J_{1}, J_{2}, J_{3}\right\}$ and $\left\{\bar{J}_{1}, \bar{J}_{2}, \bar{J}_{3}\right\}$ are local canonical bases of V in U and U^{\prime} respectively, $f^{*} \bar{J}_{p}$ denotes the tensor field induced by from \bar{J}_{p} and $\left(s_{p q}\right) \in S O(3)$ at each point in $U \cap f^{-1} U^{\prime}$.

Theorem C ([4]). Let X be a vector field on an almost quaternion manifold (M, V). Then the following conditions are equivalent to each other :
(1) X is an infinitesimal Q-transformation of (M, V).
(2) $\mathscr{L}_{X} \Lambda=0$.
(3) $\mathscr{L}_{X} J_{p}=\alpha_{p q} J_{q}$ and $\alpha_{p q}+\alpha_{q p}=0$ in each coordinate neighborhood U, where \mathscr{L}_{X} is the Lie derivative with respect to $X,\left\{J_{1}, J_{2}, J_{3}\right\}$ is a local canonical base of V in U and $\alpha_{p q}(p, q=1,2,3)$ are certain functions on U.

§ 2. Q-projective transformations.

Let f and Γ be a transformation of an almost quaternion manifold (M, V) onto itself and an affine connection on M, respectively. If f maps any Q-planar curve with respect to Γ into another one with respect to Γ, f is called a Q-projective transformation with respect to Γ of (M, V). Now let $x(t)$ be a Q-planar curve such that

$$
\begin{equation*}
\nabla_{\dot{x}(t)} \dot{x}(t)=\phi_{a}(t) J_{a} \dot{x}(t), x\left(t_{0}\right)=x_{0} \quad \text { and } \quad \dot{x}\left(t_{0}\right)=u \tag{2.1}
\end{equation*}
$$

for a point $x_{0} \in M$, a tangent vector u at x_{0} and functions $\phi_{a}(t)(a=0,1,2,3)$ of the parameter t, where ∇ and $\left\{J_{1}, J_{2}, J_{3}\right\}$ denote the operator of covariant differentiation with respect to Γ and a canonical local base of V in the coordinate neighborhood U of M containing x_{0}, respectively.

Assume that f is a Q-projective transformation with respect to Γ of (M, V) and put $\bar{x}(t)=f(x(t))$. Then, since $\bar{x}(t)$ is a Q-planar curve with respect to Γ, we have

$$
\begin{equation*}
\nabla_{\dot{\bar{x}}(t)} \dot{\bar{x}}(t)=\bar{\phi}_{a} \bar{J}_{a} \dot{\bar{x}}(t) \tag{2.2}
\end{equation*}
$$

for certain functions $\bar{\phi}_{a}(a=0,1,2,3)$ depending upon $x(t)$, where $\bar{J}_{0}=I$ and $\left\{\bar{J}_{1}, \bar{J}_{2}, \bar{J}_{3}\right\}$ is the canonical local base of V in a coordinate neighborhood U^{\prime} such that $f\left(x_{0}\right) \in U^{\prime}$. Denoting by $\stackrel{*}{\nabla}$ the operator of covariant differentia-
tion with respect to an affine connection induced from Γ by f, we have

$$
\begin{equation*}
f_{*}(\stackrel{*}{\dot{x}}(t) \dot{x}(t))=\nabla_{\dot{\bar{x}}(t)} \dot{\bar{x}}(t) . \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), we have

$$
\begin{equation*}
\stackrel{*}{\nabla}_{\dot{x}(t)} \dot{x}(t)=\bar{\phi}_{a}\left(f^{*} \bar{J}_{a}\right) \dot{x}(t) \tag{2.4}
\end{equation*}
$$

Hence, from (2.1) and (2, 4), we have

$$
Q(\dot{x}(t))=\left(\phi_{a}(t) J_{a}-\bar{\phi}_{a}\left(f^{*} \bar{J}_{a}\right)\right) \dot{x}(t)
$$

where $Q(\dot{x}(t))=\nabla_{\dot{x}(t)} \dot{x}(t)-\stackrel{*}{\nabla_{\dot{x}}(t)} \dot{x}(t)$. Since $\phi_{a}(t) \quad(a=0,1,2,3)$ are arbitrary functions of $t, u=\dot{x}\left(t_{0}\right)$ is an arbitrary vector in $T_{x_{0}}(M)$ and $(Q(\dot{x}(t)))_{t=t_{0}}$ depends upon u but not $\phi_{a}(t)$, we have

$$
\begin{align*}
& \left(f^{*} \bar{J}_{a}\right) u=\psi_{a b}(u) J_{b} u \tag{2.5}\\
& Q(u)=\psi_{a}(u) J_{a} u
\end{align*}
$$

for any vector $u \in T_{x_{0}}(M)$ and certain functions $\psi_{a b}$ and $\psi_{a}(a, b=0,1,2,3)$ on $T_{x_{0}}(M)$. From (2,5), we have

$$
\left(\psi_{a b}\right) \in\left(\begin{array}{cc}
1 & 0 \\
0 & S O(3)
\end{array}\right)
$$

Therefore, from Theorems A and B, we can obtain
ThEOREM 1. Let (M, V) be an almost quaternion manifold of dimension $4 m(\geqq 8)$ with an affine connection Γ. Then, a transformation f of M onto itself is a Q-projective transformation with respect to Γ of (M, V) if and only if
(1) f is a Q-transformation of (M, V)
and
(2) Γ and the affine connection induced by f from Γ are Q-projectively related.

Let X be a vector field on (M, V) with an affine connection Γ. If $\exp (t X)(|t|<\varepsilon, \varepsilon$ being a certain positive number) is a Q-projective transformation with respect to Γ of $(M, V), X$ is called an infinitesimal Q-projective transformation with respect to Γ of (M, V). From Theorem 1, we can obtain

THEOREM 2. Let (M, V) be an almost quaternion manifold of dimension $4 m(\geqq 8)$ with an affine connection Γ. Then, a vector field X on M is an infinitesimal Q-projective transformation with respect to Γ if and only if
(1) X is an infinitesimal Q-transformation of (M, V)
and
(2) X satisfies

$$
\mathscr{L}_{X}\left(\Gamma_{j i}^{h}+\Gamma_{i j}^{h}\right) / 2=\psi_{a, j} J_{a, i}^{h}+\psi_{a, i} J_{a,{ }_{j}^{h}}^{h}
$$

for certain local 1-forms $\psi_{a}(a=0,1,2,3)$ on each coordinate neighborhood U, where $\Gamma_{j i}^{h}, \psi_{a, i}$ and $J_{a, i}^{h}$ denote coefficients of Γ, components of ψ_{a} and ones of a canonical local base $\left\{J_{1}, J_{2}, J_{3}\right\}$ of V in U with respect to local coordinates, respectively.

§ 3. Infinitesimal Q-projective transformations on a compact quaternion Kählerian manifold.

Let (M, g, V) be a quaternion Kählerian manifold of dimension $4 m(\geqq 8)$, that is, an almost quaternion manifold (M, V) which admits a Riemannian metric g satisfying

$$
\begin{align*}
& g(X, \phi Y)+g(\phi X, Y)=0 \tag{3.1}\\
& \nabla_{X} \Lambda=0
\end{align*}
$$

for any cross-section ϕ of V and any vector fields X and Y on M, where Λ is the tensor field mentioned in $\S 1$. And (3.2) is equivalent that there exist local 1-forms $\beta_{p q}(p, q=1,2,3)$ such that

$$
\begin{equation*}
\nabla_{X} J_{p}=\beta_{p q}(X) J_{q} \quad \text { and } \quad \beta_{p q}+\beta_{q p}=0 \tag{3.3}
\end{equation*}
$$

for any vector field X and a canonical local base $\left\{J_{1}, J_{2}, J_{3}\right\}$ of V.
Let X be an infinitesimal Q-projective transformation with respect to the Riemannian connection of (M, g, V) and $\left\{\begin{array}{l}h \\ j i\end{array}\right\}$ be local coefficients of its connection. From Theorem 3 in [1] and Theorem 2 in the present paper, we see that there exists a local 1 -form η such that

$$
\mathscr{L}_{X}\left\{\begin{array}{c}
h \tag{3.4}\\
j i
\end{array}\right\}=I_{j}^{h} \eta_{i}+I_{i}^{h} \eta_{j}-\Lambda_{j i}^{k h} \eta_{k}-\Lambda_{i j}^{k h} \eta_{k}
$$

where η_{i} and $\Lambda_{j i}^{k h}$ are local components of η and Λ, respectively. On the other hand, we have known that

$$
\mathscr{L}_{X}\left\{\begin{array}{l}
h \tag{3.5}\\
j i
\end{array}\right\}=\nabla_{j} \nabla_{i} X^{h}+R_{k j i}^{h} X^{k}
$$

where $\left\{\partial / \partial x^{1}, \cdots, \partial / \partial x^{4 m}\right\}$ is a local natural frame, $\nabla_{i}=\nabla_{\partial / \partial x^{i}}$ and $R_{k j i}{ }^{h}$ denote local components of the curvature tensor field of (M, g, V). Transvecting (3.4) and (3.5) by $g^{j i}$, we have

$$
\begin{equation*}
\nabla^{k} \nabla_{k} X^{h}+S X^{h} / 4 m=-4 \eta^{h}, \tag{3.6}
\end{equation*}
$$

because (M, g, V) is an Einstein space ([3]), where $g_{j i},\left(g^{j i}\right)$ and S denote local components of g, the inverse matrix of $\left(g_{j i}\right)$ and the scalar curvature, respectively, $\nabla^{k}=g^{k j} \nabla_{j}$ and $\eta^{h}=g^{k h} \eta_{k}$. Contracting (3.4) and (3.5) for h and i, we have

$$
\begin{equation*}
\nabla_{j} \nabla_{h} X^{h}=4(m+1) \eta_{j} . \tag{3.7}
\end{equation*}
$$

Therefore, from (3.6) and (3.7), we have

$$
\begin{aligned}
\nabla^{i} \nabla_{i}\|X\|^{2} / 2= & \|\nabla X\|^{2}+X^{h} \nabla^{i} \nabla_{i} X_{h} \\
= & \|\nabla X\|^{2}-S\|X\|^{2} / 4 m-4 X^{h} \eta_{h} \\
= & \|\nabla X\|^{2}-S\|X\|^{2} / 4 m+\left(\nabla_{h} X^{h}\right)^{2} /(m+1) \\
& \quad-\nabla_{h}\left(X^{h} \nabla_{i} X^{i}\right) /(m+1),
\end{aligned}
$$

where $\|X\|^{2}=g_{j i} X^{j} X^{i}$ and $\|\nabla X\|^{2}=g_{k j} g_{i h} \nabla^{k} X^{i} \cdot \nabla^{j} X^{h} \quad$ Assume that M is compact. Since a quaternion Kählerian manifold is orientable ([3]), we have

$$
\int_{M}\left[\|\nabla X\|^{2}-S\|X\|^{2} / 4 m+\left(\nabla_{h} X^{h}\right)^{2} /(m+1)\right] * 1=0
$$

where $* 1$ is the volume element of (M, g, V). Thus, we can obtain
Theorem 3. Let (M, g, V) be a compact quaternion Kählerian manifold of dimension $4 m(\geqq 8)$. If the scalar curvature S is negative, an infinitesimal Q-projective transformation X of (M, g, V) is a zero vector field, and if S is vanishes, X is a parallel vector field.

§ 4. Remarks.

Remark 1. In [5], Y. Maeda obtained the following theorem :
Theorem D. Let (M, g, V) be a complete quaternion Kählerian manifold of dimension $4 m(\geqq 8)$. In order that (M, g, V) be isometric to the quaternion projective space with constant Q-sectional curvature $4 K(>0)$, it is necessary and sufficient that (M, g, V) admits a non-trivial solution f of the following differential equations:

$$
\nabla_{j} \nabla_{i} f_{h}+K\left(2 f_{j} g_{i h}+f_{i} g_{j h}+f_{h} g_{j i}-g_{k i} \Lambda_{j h}^{k l} f_{l}-g_{k h} \Lambda_{j i}^{k l} f_{l}\right)=0,
$$

and such a $\operatorname{grad} f$ is a non-trivial infinitesimal Q-transformation of $(M$, $g, V)$, where $f_{h}=\partial f / \partial x^{h}$.

Now let $\left\{\begin{array}{l}h \\ j i\end{array}\right\}$ be a Riemannian-Christoffel's symbol induced from g. Then we have

$$
\mathscr{L}_{\operatorname{grad} f}\left\{\begin{array}{l}
h \\
j i
\end{array}\right\}=-2 K\left(I_{j}^{h} f_{i}+I_{i}^{h} f_{j}-\Lambda_{j i}^{k h} f_{k}-\Lambda_{i j}^{k h} f_{k}\right),
$$

from which, it follows that such a grad f is a non-trivial infinitesimal Q projective transformation of (M, g, V).

REmARK 2. Let Γ be an affine connection on an almost quaternion manifold (M, V) of dimension $4 m(\geqq 8) . \quad \Gamma$ is called a Q-connection on (M, $V)$ if Γ satisfies (3.2). By virture of Theorem 1.3 in [6], we see that the affine connection induced from a Q-connection by a Q-transformation of (M, V) is a Q-connection. And it is easy to see that the set consisting of all infinitesimal Q-projective transformations with respect to a symmetric Q-connection of (M, V) is a Lie subalgebra of the Lie algebra consisting of all infinitesimal Q-transformations of (M, V).

Remark 3. Let (M, V) be an almost quaternion manifold of dimension $4 m$. If two symmetric Q-connections Γ and $\bar{\Gamma}$ are projectively related, that is, if there exists a 1 -form ω on M such that

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+\omega(X) Y+\omega(Y) X
$$

for any vector fields X and Y, we see easily that Γ and $\bar{\Gamma}$ are affinely related, where $\bar{\nabla}$ and \bar{V} are operators of covariant differentiation with respect to $\bar{\Gamma}$ and Γ, respectively.

Remark 4. Let (M, g, V) be a quaternion Kählerian manifold of dimension $4 m$ and $\bar{g}=\exp (2 \rho) \cdot g$ be a conformal change of g for a certain function ρ on M. Then, we have

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+X(\rho) Y+Y(\rho) X-g(X, Y) \operatorname{grad} \rho \tag{4.1}
\end{equation*}
$$

for any vector fields X and Y on M, where $\bar{\nabla}$ and ∇ denote the operators of covariant differentiation with respect to the Riemannian connections induced from \bar{g} and g, respectively, and $\operatorname{grad} \rho$ is a gradient vector field of ρ with respect to g, that is, a vector field such that

$$
g(\operatorname{grad} \rho, X)=X(\rho)
$$

From (4. 1), we have

$$
\begin{align*}
\left(\bar{\nabla}_{X} J_{p}\right) Y & =\left(\nabla_{X} J_{p}\right) Y+\left(J_{p} Y\right)(\rho) X-Y(\rho) J_{p} X \tag{4.2}\\
& -g\left(X, J_{p} Y\right) \operatorname{grad} \rho+g(X, Y) J_{p} \operatorname{grad} \rho
\end{align*}
$$

Now assume that $m>1$ and (M, \bar{g}, V) is a quaternion Kählerian manifold. Let vectors $J_{a} u$ and $J_{a} v(a=0,1,2,3)$ be mutually orthogonal with respect to g. Then, from (3.3) and (4.2), we have

$$
\bar{\beta}_{p q}(u) J_{q} v=\beta_{p q}(u) J_{q} v+\left(J_{q} v\right)(\rho) u-v(\rho) J_{p} u
$$

from which, we see that ρ is constant, that is, \bar{g} is a homothetic change of g.

Next assume that $m=1$ and $\left\{Y, J_{1} Y, J_{2} Y, J_{3} Y\right\}$ is a local frame field on an arbitrary coordinate neighborhood of M which is orthonormal with respect to g. Then, from (4.2), we have

$$
\begin{aligned}
g\left(\left(\bar{\nabla}_{X} J_{p}\right) Y, Y\right)= & g\left(\left(\nabla_{X} J_{p}\right) Y, Y\right) \\
g\left(\left(\overline{(}_{X} J_{p}\right) Y, J_{q} Y\right)= & g\left(\left(\nabla_{X} J_{p}\right) Y, J_{q} Y\right)+\left(J_{p} Y\right)(\rho) g\left(X, J_{q} Y\right) \\
& -\left(J_{q} Y\right)(\rho) g\left(X, J_{p} Y\right) \\
& +\delta_{p q r}\left\{Y(\rho) g\left(X, J_{r} Y\right)-\left(J_{r} Y\right)(\rho) g(X, Y)\right\},
\end{aligned}
$$

from which, we have

$$
\bar{\nabla}_{X} J_{p}=\nabla_{X} J_{p}-\delta_{p q r}\left(J_{r} d \rho\right)(X) J_{q} .
$$

Therefore, we see that (M, \bar{g}, V) is a quaternion Kählerian manifold. Really, this fact is obvious because all orientable Riemannian manifolds of dimension 4 are quaternion Kählerian manifolds.

References

[1] S. FUJImURA: Q-connections and their changes on an almost quaternion manifold, Hokkaido Math. J., 5 (1976), 239-248.
[2] S. FUjimura: On a certain change of affine connections on an almost quaternion manifold, Hokkaido Math. J., 6 (1977), 249-254.
[3] S. Ishihara: Quaternion Kählerian manifolds, J. Diff. Geom., 9 (1974), 483-500.
[4] S. ISHIHARA: Integral formulas and their applications in quaternionic Kählerian manifolds, Kōdai Math. Sem. Rep., 28 (1976), 63-71.
[5] Y. MAEDA: On a characterization of quaternion projective space by differential equations, Kōdai Math. Sem. Rep., 27 (1976), 421-431.
[6] M. Obata: Affine connections in a quaternion manifold and transformations preserving the structure, J. Math. Soc. Japan, 9 (1957), 406-416.
[7] Y. TAKEMURA: On automorphism groups of quaternion Kähler manifolds, Kōdai Math. Sem. Rep., 27 (1976), 353-361.

Department of Mathematics
Ritsumeikan University
Kyoto, Japan

