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Introduction

Let $M$ be a manifold of dimension $n$ with a projective structure. It
is well known that the group $\mathfrak{P}$ $(M)$ of projective transformations of $M$ is
a Lie transformation group such that dim $\mathfrak{P}(M)\leqq n^{2}+2n([2], [3])$ .

The main purpose of this paper is to determine globally projectively
connected manifolds admitting groups of projective transformations of the
second largest dimension $n^{2}+n$ .

Our main result is stated as follows;

THEOREM 7. 11. Let $M$ be a connected manifold of dimension $n(n\geqq$

$3)$ with a projective structure. If $M$ admits a group of projective trans-

formations of dimension $n^{2}+n$ , then $M$ is projectively equivalent to one of
the following spaces ;

(1) $P^{n}(R)$ ; the real projective space,
(2) $S^{n}$ ; the universal covering space of (1),
(3) $S^{n}\backslash$ {one point),
(4) $R^{n}$ ; the affiffiffine space,
(5) $Q=P^{n}(R)\backslash$ {one point),
(6) $\tilde{Q}$ ; the universal covering space of (5).

The local version of this theorem is obtained by S. Ishihara [1].
Our main emphasis is that the method, developed by the author [6],

for Cartan connections associated with graded Lie algebras works equally
well to the projective and conformal geometry.

Throughout this paper we always assume the differentiability of class
$C^{\infty}$ We use the notations and terminology in S. Kobayashi [2] without
special references.

\S 1. Projective connection

In this section we will recall the notion of the normal projective con-
nection and fix our terminology, following [2] and [3].
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Let $P^{n}(R)=L/L_{0}$ be the real projective space of dimension $n$ with its
homogeneous coordinate $(x_{0}, x_{1^{ }},\cdots, x_{n})$ , where

$L=PGL(n, R)=GL(n+1, R)/center$ ,
$L_{0}$ ; the isotropy subgroup of $L$ at $0=(0, \cdots, 0,1)\in P^{n}(R)$ .

The Lie algebra $\mathfrak{l}$ of $L$ has a gradation given by
$\mathfrak{l}=8\mathfrak{l}(n+1, R)$ . $\mathfrak{l}_{0}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$ ,

$\mathfrak{g}_{-1}=\{$ $(\begin{array}{ll}0 v00 \end{array})$ $\}$ , $\mathfrak{g}_{0}=\{$ $(\begin{array}{lll}A 0 0 -tr A\end{array})$ $\}’$. $\mathfrak{g}_{1}=\{$ $(\begin{array}{l}00{}^{t}\xi 0\end{array})$ $\}$ ,

where $v$ , $\xi\in R^{n}$ , $A\in \mathfrak{g}\mathfrak{l}(n, R)$ . Moreover the graded Lie algebra $\mathfrak{l}$ can be
described as follows. Let $V(=R^{n})$ be the $n$ -dimensional vector space and
$V^{*}$ be the dual space of $V$. Then

$\mathfrak{l}=V+\mathfrak{g}\mathfrak{l}(V)+V^{*}$ .

under the identification (p. 132 [2]);

$(\begin{array}{ll}0 v00 \end{array})\in \mathfrak{g}_{-1^{I}}arrow v\in V$ . $(\begin{array}{l}00{}^{t}\xi 0\end{array})\in \mathfrak{g}_{1^{1}}arrow\xi\in V^{*}$ ,

$(\begin{array}{ll}A 00 a\end{array})\in \mathfrak{g}_{0^{1}}arrow A-aI_{n}\in \mathfrak{g}\mathfrak{l}(V)$

The element $E\in \mathfrak{g}_{0}$ , which defines the gradation of $\mathfrak{l}$ , is given by $-id_{V}\in$

$\mathfrak{g}\mathfrak{l}(V)$ .
Let $G^{2}(n)$ be the group of 2-frames at $0\in R^{n}$ . $L_{0}$ can be considered as

a subgroup of $G^{2}(n)([2], [3])$ . Let $M$ be a manifold of dimension $n$ and
$P^{2}(M)$ be the bundle of 2-frames over $M$. Then a projective structure on
$M$ is, by definition, a subbundle $P$ of $P^{2}(M)$ with structure group $L_{0}$ . Let

$\theta$ be the canonical form on $P^{2}(M)$ . Then $(P, \omega)$ is called a projective con-
nection if $(P, \omega)$ is a Cartan connection of type $(L, L_{0})$ (cf. Definition 1. 9
[6] I) and $\omega_{-1}+\omega_{0}$ coincides with the restriction of $\theta$ to $P$, where $\omega_{i}$ is the

$\mathfrak{g}_{i}$ -component of $\omega$ .
THEOREM A ([2], [3]). Let $M$ be a manifold of dimension $n(n\geqq 2)$ .

For each projective structure $P$ of $M$, there exists a unique projective con-
vect or $\omega$ such that the curvature $\Omega$ satisfifies the following condition;

$\Sigma K_{jil}^{i}=0i$ where $\Omega_{j}^{i}=\frac{1}{2}\Sigma K_{jkl}^{i}\omega^{k}\wedge\omega^{l}$ , $\omega_{-1}=(\omega^{i})$ . $\Omega_{0}=(\Omega_{j}^{i})$

This unique projective connection is called the normal projective connection.
Let $\mathfrak{P}(M)$ be the group of projective transformations of $M$. We consider

the Lie algebra $\mathfrak{p}(M)$ of infinitesimal projective transformations of $M$ that
generate (global) 1-parameter subgroups of $\mathfrak{P}(M)$ . $\mathfrak{p}(M)$ is naturally isomor-
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phic with the Lie algebra of $\mathfrak{P}(M)$ . Set $\mathfrak{p}(P)=\{X\in \mathfrak{X}(P)|L_{X}\omega=0$ , $R_{a_{*}}X=X$

for $a\in L_{0}$ , and $X$ is complete}. Then Theorem $A$ implies that $\mathfrak{p}(P)$ is is0-
morphic with $\mathfrak{p}(M)$ under the bundle projection.

\S 2. Filtration of $\mathfrak{p}(M)$

In this section we will define a filtration of $\mathfrak{p}(M)$ at $x\in M$, following
[6], and give an isomorphism of the associated graded Lie algebra of $\mathfrak{p}(M)$

(at $x$) into $\mathfrak{l}$ .
First we set $\mathfrak{l}_{-1}=\mathfrak{l}$ , $\mathfrak{l}_{0}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$ and $\mathfrak{l}_{1}=\mathfrak{g}_{1}$ . With respect to this filtration

$\mathfrak{l}=\mathfrak{l}_{-1}$ becomes a filtered Lie algebra. Note that $L_{0}$ preserves this filtration.
Let $M$ be a manifold of dimension $n$ . And let $(P, \omega)$ be the normal

porjective connection over $M$.
Lemma 2. 1. (Lemmas 2. 2 and 2. 3 [6] $I$). For $X$, $Y\in \mathfrak{p}(P)$ , and $u\in$

$P$, we have
(1) $\omega_{u}(X)\in \mathfrak{l}_{0}$ if and only if $\pi_{*_{u}}(X)=0$ ,

(2) $\Omega_{u}(X, Y)=0$ if $\pi_{*_{u}}(X)=0$ or $\pi_{*_{u}}(Y)=0$ ,
(3) $-\omega_{u}([X, Y])=[-\omega_{u}(X), -\omega_{u}(Y)]-2\Omega_{u}(X, Y)$ ,

where $\Omega$ is the curvature form of the connection and $\pi$ is the bundle prO-

jection of $PontoM$.
The proof is immediate, hence is omitted.
Now let us fix a point $x$ of $M$ and choose a point $u$ of the fibre $\pi^{-1}(x)$

over $x$. We set

$\mathfrak{h}_{k}(x)=\mathfrak{p}(P)\cap\omega_{u}^{-1}(\mathfrak{l}_{k})$ , for $k=-1$ , 0 and 1.

Note that this definition is independent of the choice of $u$ in $\pi^{-1}(x)$ . Hence
the above defines a filtration of $\mathfrak{p}(M)$ at $x$ . From Lemma 2. 1 we have

PROPOSITION 2. 2. With respect to the above fifiltration, $\mathfrak{p}(M)$ becomes
$a$ fifiltered Lie algebra.

Let $\tilde{\mathfrak{h}}(x)$ be the associated graded Lie algebra of the filtered Lie algebra
$\mathfrak{h}_{-1}(x)=\mathfrak{p}(P)$ . Setting $\tilde{\mathfrak{h}}_{k}=\mathfrak{h}_{k}/\mathfrak{h}_{k+1}$ for $k=-1,0$ and 1, we have $\tilde{\mathfrak{h}}(x)=\tilde{\mathfrak{h}}_{-1}+$

$\mathfrak{h}_{0}+\mathfrak{h}_{1}$ .
First observe that there exists an injective linear map $\nu_{u}^{k}$ of $\tilde{\mathfrak{h}}_{k}(x)$ into

$\mathfrak{g}_{k}$ which satisfies the following commutative diagram

$\mu_{k}\downarrow\downarrow p_{k}\mathfrak{h}_{k}(x)\mathfrak{l}\underline{-\omega_{u}}$

$\mathfrak{h}_{k}(x)\mathfrak{g}_{k}\underline{\nu_{u}^{k}}$
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where $\mu_{k}$ is the natural projection of $\mathfrak{h}_{k}$ onto $\tilde{\mathfrak{h}}_{k}=\mathfrak{h}_{k}/\mathfrak{h}_{k+1}$ and $p_{k}$ is the pr0-
jection of I onto $\mathfrak{g}_{k}$ corresponding to $\mathfrak{l}=\Sigma \mathfrak{g}_{k}$ . We define an injective linear
map $\nu_{u}$ of $\tilde{\mathfrak{h}}(x)$ into $\mathfrak{l}$ by setting;

$\nu_{u}=\nu_{u}^{-1}\cross\nu_{u}^{0}\cross\nu_{u}^{1}$

Lemma 2. 3. (Lemma 2. 5. [6] $I$). Notations being as above, $\nu_{u}$ is an
isomorphism of $\tilde{\mathfrak{h}}(x)$ into $\mathfrak{l}$ .

This is immediate from Lemma 2. 1. Hence setting $\tilde{\mathfrak{h}}(u)=\nu_{u}(\tilde{\mathfrak{h}}(x))$ , we
see that $\tilde{\mathfrak{h}}(u)$ is a graded subalgebra of $\mathfrak{l}$ such that dim $\tilde{\mathfrak{l}\}}(u)=din\mathfrak{p}(M)$ .

REMARK 2. 4. It is easily seen that the above filtration is nothing but
the filtration in terms of jets (or Taylor expansions).

\S 3. Graded subalgebras of $\mathfrak{l}$

First recall that the bracket operation of $\mathfrak{l}=V+\mathfrak{g}\mathfrak{l}(V)+V^{*}$ can be de-
scribed as follows (p. 133 [2]) ;

$[v, v’]=0$ , $[\xi, \xi’]=0$ , $[U, v]=Uv$ , $[\xi, U]=U^{*}\xi$ .
$[U, U]=UU’-U’$ U. $[v, \xi]=v\xi+\langle\xi, v\rangle I_{n},\cdot$

where $v$ , $v’\in V$, $\xi$, $\xi’\in V^{*}$ , $U$, $U’\in \mathfrak{g}\mathfrak{l}(V)U^{*}$ is the adjoint linear map of
$U$ and $\langle$

,$\cdot$
$\rangle$ is the canonical pairing of $V$ and $V^{*}$ . Hence we have

(3.1) $[[v, \xi],$ $v’]=\langle\xi, v’\rangle v+\langle\xi, v\rangle v’$ ,

(3. 2) $[\xi’,$ $[v, \xi]]=\langle\xi’. v\rangle\xi+\langle\xi, v\rangle\xi’$

Now we will consider a graded subalgebra $f’=f_{-1}+f_{0}+f_{1}$ of $\mathfrak{l}$ . First,
from $\mathfrak{g}_{0}=[\mathfrak{g}_{-1}, \mathfrak{g}_{1}]$ , we have

Lemma 3. 1. If $f_{-1}=\mathfrak{g}_{-1}$ and $f_{1}=\mathfrak{g}_{1}$ , then $f=\mathfrak{l}$ .
We set $b(f_{-1})=f_{-1}+\mathfrak{g}\mathfrak{l}(V, f_{-1})+V^{*}$ , where $\mathfrak{g}\mathfrak{l}(V, f_{-1})=\{A\in \mathfrak{g}\mathfrak{l}|(V)|A(f_{-1})\subset$

$f_{-1}\}$ . Then we have
Lemma 3. 2. $b(f_{-1})$ is a graded subalgebra of $\mathfrak{l}$ containing $f$ and dim

$b(f_{-1})=r^{2}-(n-1)r+n^{2}+n$ , where $r=\dim f_{-1}$ .
PROOF. From (3. 1), we have $[f_{-1}, V^{*}]\subset \mathfrak{g}\mathfrak{l}(V, f_{-1})$ . Hence $b(f_{-1})$ is a

graded subalgebra of $\mathfrak{l}$ , which obviously contains $f$ . Last assertion follows
from dim $\mathfrak{g}\mathfrak{l}(V, f_{-1})=r^{2}+n(n-r)$ . $q$ . $e$ . $d$ .

Similarly setting $b(f_{1})=V+\mathfrak{g}\mathfrak{l}(V, f_{1}^{*})+f_{1}$ , where

$\mathfrak{g}\mathfrak{l}(V, f_{1^{*}})=\{A\in \mathfrak{g}\mathfrak{l}(V)|A^{*}(f_{1})\subset f_{1}\}$ :

we have
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Lemma 3. 3. $b(f_{1}^{\alpha})$ is a graded subalgebra of $\mathfrak{l}$ containing $f$ and dim
$b(f_{1})=r^{2}-(n-1)r+n^{2}+n$ , where $r=\dim f_{1}$ .

Take the natural base $\{e_{i}\}_{1\leqq i\leqq n}$ of $V=R^{n}$ . We denote by $H$ (resp. $W$)

the linear subspace of $V$ spanned by the vectors $e_{2}$, $\cdots$ , $e_{n}$ (resp. $e_{1}$). Let
$W^{\perp}$ be the annihilator of $W$ in $V^{*}$ . We set

$b_{*}=V+\mathfrak{g}\mathfrak{l}(V)$ ,

$b_{o}=V+\mathfrak{g}\mathfrak{l}(V, W)+W^{\perp}$ ,

$b_{**}=H+\mathfrak{g}\mathfrak{l}(V, H)+7^{\gamma*}$ ,

where gl $(V, W)=\{A\in \mathfrak{g}\mathfrak{l}(V)|A(W)\subset W\}$ and $\mathfrak{g}\mathfrak{l}(V, H)=\{A\in \mathfrak{g}\mathfrak{l}(V)|A(H)\subset H\}$ .
$b_{*}$ , $b_{o}$ and $b_{**}$ are graded subalgebras of $\mathfrak{l}$ . We set $G_{0}=\{\sigma\in L_{0}|Ad(\sigma)(\mathfrak{g}_{i})=\mathfrak{g}_{i}$

for $i=-1,0,1$} $(\cong GL(V))$ .
Summarizing above discussion we obtain
PROPOSITION 3. 4. Let $f$ be a proper graded subalgebra of $\mathfrak{l}$ . Then

dim $f\leqq n^{2}+n$ . The equality holds if and only if there exists $\sigma\in G_{0}$ such
that Ad (a) $f=b_{*}$ , $b_{o}$, $b_{**}$ or $\mathfrak{l}_{0}$ .

REMARK 3. 5. $H$ and $W$ being as above, we denote by $S$ (resp. $R$)
the linear subspace of $V$ spanned by the vectors $e_{\acute{\theta}}$ , $\cdots$ , $e_{n}$ (resp. $e_{1}$ , $e_{2}$). Then
using Proposition 5. 7, Lemmas 3. 2 and 3. 3, we can obtain the following

PROPOSITION 3. 6. Let $f$ be a proper graded subalgebra of $\mathfrak{l}=V+\mathfrak{g}\mathfrak{l}(V)+$

$V^{*_{\backslash }}$ . If dim $f\geqq n^{2}+2(n\geqq 4)$ , then dim $f=n^{2}+n$ , $n^{2}+n-1$ or $n^{2}+2$ and there
exists $\sigma\in G_{0}$ such that Ad $(\sigma)$ $t$ coincides witfi one of the following subalgebras
of $\mathfrak{l}$ ;

(1) dim $f=n^{2}+n$ $b_{*}$ , $b_{o}$, $b_{**}$ or $\mathfrak{l}_{0}$ ,
(2) dim $f=n^{2}+n-1V+8\mathfrak{l}(V)$ , $V+[V, W^{\perp}]+W^{\perp}$ ,

$H+[H, V^{*}]+V^{*}$ or $\mathfrak{s}\mathfrak{l}(V)+V^{*}$ ,

(3) dim $f=n^{2}+2$ $V+\mathfrak{g}\mathfrak{l}(V, H)+H^{\perp}$ , $V+\mathfrak{g}\mathfrak{l}(V, R)+R^{\perp}$ ,
$W+\mathfrak{g}\mathfrak{l}(V, W)+V^{*}$ or $S+\mathfrak{g}\mathfrak{l}(V, S)+V^{*}$ .

\S 4. Structure of $\mathfrak{g}$

In this section we will consider a subalgebra $\mathfrak{g}$ of $\mathfrak{p}(M)$ , and will deter-
mine the structure of $\mathfrak{g}$ with dim $\mathfrak{g}\geqq n^{2}+n$ , following the method of [6] I.

Let $M$ be a manifold of dimension $n$ and $(P, \omega)$ be the normal projec-
tive connection over $M$. We will consider a subalgebra $\mathfrak{g}$ of $\mathfrak{p}(M)$ . We
set $\hat{\mathfrak{g}}=\pi_{*}^{-1}(\mathfrak{g})\subset \mathfrak{p}(P)$ .

Now let us fix a poit $x$ of $M$. As in \S 2, we introduce the filtration
of $\mathfrak{p}(M)$ (hence of $\mathfrak{g}$) at $x$ through the connection. We first consider the
associated graded Lie algebra $\tilde{\mathfrak{g}}(x)$ of $\mathfrak{g}$ at $x$ . Setting $\tilde{\mathfrak{g}}(u)=\nu_{u}(\tilde{\llcorner q}(x))$ , where
$u\in\pi^{-1}(x)$ , we have
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Lemma 4. 1. (1) If dim $\mathfrak{g}=n^{2}+2n$ , then $\tilde{\mathfrak{g}}(u)=\mathfrak{l}$ for any $u\in\pi^{-1}(x)$ ,
(2) If dim $\mathfrak{g}<n^{2}+2n$ , then we have dim $\mathfrak{g}\leqq n^{2}+n$ . The equality holds

if and only if there exists $u\in\pi^{-1}(x)$ such that

$\tilde{\mathfrak{g}}(u)=b_{*}$ , $b_{o}$, $b_{**}$ or $\mathfrak{l}_{0}$ .

This is immediate from Proposition 3. 4 and dim $\mathfrak{g}=\dim\tilde{\mathfrak{g}}(u)$ .
In order to determine the structure of $\mathfrak{g}$ , we have
Lemma 4. 2. (Lemma 5. 5 [6] $I$). If $\tilde{\mathfrak{g}}(u’)$ contains $E$ for some point $u^{r}$

of $\pi^{-1}(x)$ , then there exists a point $u$ of $\pi^{-1}(x)$ such that $\mathfrak{g}(u)=\omega_{u}(\hat{\mathfrak{g}})$ coincides
with $\tilde{cs}(u’)$ as a vector subspace of $\mathfrak{l}$ , where $E$ is the element of $\mathfrak{l}$ which
defifines the gradation of $\mathfrak{l}$ .

Lemma 4. 3. (IV Theorem 3. 2 [2]). If $\mathfrak{g}(u_{0})$ contains $E$ for some point
$u_{o}$ of $\pi^{-1}(x)$ , then $\Omega_{u}=0$ for any $u\in\pi^{-1}(x)$ , where $\Omega$ is the curvature form
of the connection.

For the proofs of these lemmas, see those of Lemma 5. 5 and PrO-
position 5. 6 [6] I.

Summarizing the above results we obtain
PROPOSITION 4. 4. Let $M$ be a manifold of dimension $n$ and $(P, \omega)$ be

the $no\tau$ $mal$ projective connection over M. Let $\mathfrak{g}$ be a subalgebra of $\mathfrak{p}(M)$ .
Let $x$ be an arbitrary point of $M$.

(1) If dim $\mathfrak{g}=n^{2}+2n$ , then $M$ is projectively $f$ or and $\mathfrak{g}=\mathfrak{p}(M)$ . MoreO-
ver $-\omega_{u}$ is a Lie algebra isomorphism of $\mathfrak{p}(P)(\equiv \mathfrak{p}(M))$ onto $\mathfrak{l}Jor$ any
$u\in\pi^{-1}(x)$ .

(2) If $\dim \mathfrak{g}<n^{2}+2n$ , then $\dim \mathfrak{g}\leqq n^{2}+n$ . The equality holds if and
only if $M$ is projectively flat and there exists $u\in\pi^{-1}(x)$ such that $-\omega_{u}$ is
a Lie algebra isomorphism of $\dot{\mathfrak{g}}\nearrow(\equiv \mathfrak{g})$ onto $b_{*}$ , $b_{o}$, $b_{**}$ or $\mathfrak{l}_{0}$ .

(1) is now well known ([1], [2]) and (2) is first obtained by S. Ishihara
by a different method (cf. Theorem 1 and Remark 3 [1]).

\S 5. Model spaces

Let $\mathfrak{g}$ be a graded subalgebra of $\mathfrak{l}$ satisfying dim $\mathfrak{g}\geqq n^{2}+n$ . We will
construct a model space for $\mathfrak{g}$ .

5. 1. The case dim $\mathfrak{g}=n^{2}+2n$ . We consider $P^{n}(R)=L’/L_{0}$ as the model
space for $\mathfrak{g}=\mathfrak{l}$ . Let $\chi$ be the natural projection of $GL(n 1, R)$ onto $L=$

$GL(n+1, R)/R^{\cross}$ . We set

$L_{\Delta}=\{$ $(\begin{array}{ll}A 0{}^{t}\xi a\end{array})\in SL(n+1, R)|a=\det A^{-1}$, $A\in GL(n, R)$ , $\xi\in R^{n}\}$
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First we observe
LEMMA 5. 1. If $n$ is even, we have
(1) $L$ is isomorphic with $SL(n 1, R)$ under $\chi$ .
(2) $L_{0}$ is isomorphic with the group $A(n, R)$ of affiffiffine transformations

of $R^{n}$ . Moreover $L_{0}$ is identifified, under $\chi$ , with $L_{\Delta}$ .
(3) The center $Z(L)$ of $L$ is reduced to the unit.
(4) The normalizer $N_{L}(B)$ of $B$ in $L$ coincides with $L_{0}$ , where $B$ is

the identity component of $L_{0}$ .

PROOF. (1), (2) and (3) are elementary. In order to prove (4), we con-
sider $L/B=S^{n}$ . The action of $L=SL(n+1, R)$ on $S^{n}$ is given through iden-
tifying $S^{n}$ with $R^{n+1}\backslash \{0\}/R^{+}1$ It is easily seen that the orbital decomposition
of $S^{n}$ by $B$ consists of two fixed points and an open orbit (cf. Lemma 5. 5
(1) and (3) $)$ . From this we conclude that the identity component of $N_{L}(B)$

coincides with $B$ and the number of connected components $N_{L}(B)$ is at
most two. On the other hand it is obvious $L_{0}\subset N_{L}(B)$ . Hence we must
have $L_{0}=N_{L}(B)$ . $q$ . $e$ . $d$ .

Lemma 5. 2. If $n$ is odd, we have
(1) $L$ has two connected components. Let $L^{0}$ be the identity compoenet

of L. $\chi$ is a covering homomorphism of $SL(n+1, R)$ onto $L^{o}$ with Ker
$\chi=Z_{2}$ , where $Z_{2}=\{I_{n}, - I_{n}\}$ is the center of $SL(n 1, R)$ .

(2) $L_{0}$ is isomorphic with $A(n, R)$ . Moreover $B=L^{0}\cap L_{0}$ is connected
and is identifified, under $\chi$ , with the identity component $L_{\Delta}^{+}$ of $L_{\Delta}$ .

$\backslash /3)$ The center $Z(L^{0})$ of $L^{o}$ is reduced to the unit.
(4) The normalizer $N_{L^{0}}(B)$ of $B$ in $L^{o}$ coincides with $B$ .
PROOF. (1) and (2) are elementary. (3) and (4) can be proved quite

analogously as in Proposition 6. 7 [6] $I$ , hence the proofs are omitted, $q$ . $e$ . $d$ .
Moreover we note

Lemma 5. 3. If $\phi$ is an automorphism of $L_{0}$ satisfying $\phi_{*}=id_{I_{0}}$ , then
$\phi=id_{L_{0}}$ .

PROOF. Since $L_{0}\equiv A(n, R)$ , we can replace $L_{0}$ by $A(n, R)$ . We iden-
tify $A(n, R)$ with a closed subgroup of $GL(n 1, R)$ consisting of the matrices
of the following form;

$(\begin{array}{ll}A \xi 0 1\end{array})$ $A\in GL(n R)$ , $\xi\in R^{n}$

Take an element $\sigma_{o}\in A(n, R)$ , which does not belong to the identity com-
ponent $A^{+}(n, R)$ ;
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$\sigma_{o}=\{$

$J0\backslash$

0 $1_{/}^{1}$
’

$J=(\begin{array}{ll}-1 00 I_{n-1}\end{array})$

Then $\sigma_{o}$ is characterized by the following relations ;

(1) $\sigma_{o}^{2}=I_{n+1}$ and $\sigma_{o}\not\in A^{+}(n, R)$ ,
(2) $\sigma_{o}$ commutes with the following elements of $A^{+}(n, R)$ ;

$(\begin{array}{ll}I_{n} e_{i}0 1\end{array})$ $1\leqq i\leqq n-1$ : $(\begin{array}{ll}I 001 \end{array})-$

,
$I=(\begin{array}{ll}2 00 I_{n-1}\end{array})$

Let $\phi$ be an automorphism of $A(n, R)$ satisfying $\phi*=id_{Q(n,R)}$ . Obviously
we have $\phi|_{A(n,R)}+=id_{A(n,R)}+$ . Then $\phi(\sigma_{o})$ also satisfies the above relations
(1) and (2). Hence we get $\phi(\sigma_{0})=\sigma_{o}$ . Therefore we have $\phi=id_{A(n,P)}.$ .

$q$ . $e$ . $d$ .
Now we consider the normal projective connection over $P^{n}(R)$ or $S^{n}$ .

$S^{n}$ has the natural projective structure induced by the covering projection;
$p:S^{n}arrow P^{n}(R)$ (p. 144 [2]). Let $\omega_{L}$ and $\omega_{SL}$ be the Maurer-Cartan form on
$L$ and $SL(n+1, R)$ respectively. Recall that the principal bundle $L$ over
$L/L_{0}=P^{n}(R)$ can be naturally identified with the projective structure on
$P^{n}(R)$ , and $(L, \omega_{L})$ defines the normal projective connection on $P^{n}(R)$ . More-
over the principal bundle $SL(n+1, R)$ over $S^{n}=SL(n+1, R)/L_{\Delta}^{+}$ can be iden-
tified with a connected component of the projective structure on $S^{n}$ , and
$(SL(n+1, R)$ , $\omega_{SL})$ defines the normal projective connection on $S^{n}([2])$ .

5. 2. The case dim $\mathfrak{g}=n^{2}+n$ . We will first consider the model space
for $b_{*}$ . Let $B_{*}$ be the analytic subgroup of $L$ corresponding to $b_{*}$ . We
consider the (open) orbit $Q_{*}$ of $B_{*}$ passing through $0\in P^{n}(R)$ as the model
space corresponding to $b_{*}$ .

Lemma 5. 4. (1) $B_{*}$ is isomorphic with $A^{+}(n, R)$ .
(2) The orbital decomposition of $P^{n}(R)=L/L_{0}$ by $B_{*}$ is given by;

$P^{n}(R)=Q_{*}\cup P^{n-1}(R)’\circ$

where $P^{n-1}(R)$ is the hyperplane defifined by $x_{n}=0$ .
(3) $Q_{*}$ is projective equivalent to the affiffiffine space $R^{n}$ .
(4) The center $Z(B_{*})$ of $B_{*}$ is reduced to the unit.
(5) The normalizer $N_{B_{*}}(C_{*})$ of $C_{*}$ in $B_{*}$ coincides with $C_{*}$ , where

$C_{*}$ is the isotropy subgroup of $B_{*}$ at $0\in Q_{*}$ .

PROOF. (1) Since $b_{*}=\{$ $(\begin{array}{lll}A v 0 -tr A\end{array})\in 6\mathfrak{l}(n+1, R)\}$ , we have $B_{*}=identity$

component of $\{$ $(\begin{array}{ll}A \xi 0 a\end{array})\in GL(n+1, R)\}/R^{\cross}=\{$ $(\begin{array}{ll}A \xi 0 a\end{array})\in GL^{+}(n+1, R)|a>0\}/R^{+}$ .
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From $\{$ $(\begin{array}{ll}A \xi 0 a\end{array})\in GL^{+}(n+1, R)|a>0\}=R^{+}\cdot A^{+}(n, R)$ , we have

$B_{*}=R^{+}\cdot A^{+}(n, R)/R^{+}\equiv A^{+}(n, R)$

(2), (3) and (4) are elementary. (5) can be shown quite analogously as
in Proposition 6. 7 [6] I. $q$ . $e$ . $d$ .

Let $B_{o}$ be the analytic subgroup of $L$ corresponding to $b_{o}$ . Let $Q$ be
the (open) orbit of $B_{o}$ passing through $0\in P^{n}(R)$ and $C$ be the isotropy sub-
group of $B_{o}$ at $0$ . Moreover let $\tilde{B}_{o}$ be the analytic subgroup of $SL(n+1, R)$

corresponding to $b_{o}(\subset@\mathfrak{l}(n+1, R))$ . Let $\tilde{Q}$ be the (open) orbit of $\tilde{B}_{o}$ passing
through $e_{n}\in S^{n}$ and $\tilde{C}$ be the isotropy subgroup of $\tilde{B}_{o}$ at $e_{n}$ .

Lemma 5. 5. (1) $B_{0}$ is the identity component of the isotropy sub-
group of $L$ at $0’=(1,0, \cdots, 0)\in P^{n}(R)$ . $\tilde{B}_{o}$ is isomorphic with $B_{o}$ under $\chi$ .

(2) The orbital decomposition of $P^{n}(R)$ by $B_{0}$ is given by;

$P^{n}(R)=Q\cup\{0’\}$

(3) The orbital decomposition of $S^{n}=SL(n+1, R)/L_{\Delta}^{+}$ by $\tilde{B}_{0}$ is given by;

$S^{n}=\tilde{Q}\cup\{e_{0}\}\cup\{-e_{0}\}$

$\tilde{Q}$ is the (2-fold) universal covering space of $Q(n\geqq 3)$ .
(4) $C$ is isomorphic with the identity component $C_{o}$ of $C$ under $\chi$ .

And $C$ has two connected components.
(5) The center $Z(B_{o})$ of $B_{o}$ is reduced to the unit.
(6) The normalizer $N_{B_{0}}(C_{o})$ of $C_{o}$ in $B_{0}$ coincides with $C$.
(7) If $\phi$ is an automorphism of $C$ satisfying $\phi_{*}=id_{c}$ , then $\phi=id_{C}$ .
PROOF. (1) From $b_{o}=V+\mathfrak{g}\mathfrak{l}(V, W)+W^{\perp}$ , we have more explicitly

$b_{o}=\{$ $(\begin{array}{lll}A v {}^{t}\xi -tr A\end{array})\in@\mathfrak{l}(n+1, R)|\xi=(\begin{array}{l}0\xi,\end{array})$ $\in R^{n}$, $A=(\begin{array}{l}a*0A,\end{array})$ $\in \mathfrak{g}\mathfrak{l}(n, R)\}$ ,

$=\{$ $(\begin{array}{ll}-trB \eta 0 B\end{array})\in@\mathfrak{l}(n+1, R)|\eta\in R^{n}$, $B\in \mathfrak{g}\mathfrak{l}(n, R)\}$

Hence $B_{o}$ is the identity component of the isotropy subgroup of $L$ at $0’\in$

$P^{n}(R)$ . Moreover from Lemma 5. 1 (2) and Lemma 5. 2 (2) we see that $\tilde{B}_{o}$

is isomorphic with $B_{o}$ under $\chi$ .
(2), (3) and (4) are elementary. (5) can be proved quite analogously as

in Proposition 6. 7 [6] I. In order to prove (6) we consider the orbital de-
composition of $\tilde{Q}=\tilde{B}_{o}/\tilde{C}$ by $\tilde{C}$. From
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$\tilde{C}=\{(\begin{array}{lll}a {}^{t}v 0\backslash 0 B 0\backslash 0\backslash {}^{t}\xi b\end{array})\in GL(n+1, R)|a=(b\cdot$ det $B)^{-1}>0$ , $b>0$ ,

$B\in GL^{+}(n-1, R)$ , $v$ , $\xi\in R^{n-1}|\sim$
,

we easily see that the orbital decomposition of $\tilde{Q}$ by $\tilde{C}$ is given by;

$\tilde{Q}=W\cup R_{1}\cup R_{2}\cup R_{3}\cup R_{4}\cup\{e_{n}\}\cup\{-e_{n}\}$ $(n\geqq 3)$ ,

where

$W=\{(x_{0}, x, x_{n})\in\tilde{Q}\subset S^{n}|x_{0}$, $x_{n}\in R$, $x’\in R^{n-1}\backslash \{0\}\}$ ,

$R_{1}=\{(x_{0},0, x_{n})\in\tilde{Q}|x_{0}>0$ , $x_{n}>0\}-$,

$R_{2}=\{(x_{0},0, x_{n})\in\tilde{Q}|x_{0}<0$ , $x_{n}>0\}$ ,

$R_{3}=\{(x_{0},0, x_{n})\in\tilde{Q}|x_{0}<0$ , $x_{n}<0\}$ ,

and

$R_{4}=\{(x_{0},0, x_{n})\in\tilde{Q}|x_{0}>0$ , $x_{n}<0\}$

Hence as in the proof of Lemma 5. 1 (4), we get $N_{B_{O}}(C_{o})=C$.
(7) can be proved quite analogously as in Lemma 5. 3, hence its proof

is omitted. $q$ . $e$ . $d$ .
It is obvious that $B_{*}$ , $B_{o}$ and $\tilde{B}_{o}$ are the identity component of the

group of projective transformations of $Q_{*}$ , $Q$ and $\tilde{Q}$ respectively. Here
$Q_{*}$ , $Q$ and $\tilde{Q}$ are endowed with the natural projective structure induced
from those of $P^{n}(R)$ and $S^{n}$ .

As for $b_{**}$ and $\mathfrak{l}_{0}$ we note

Lemma 5. 6. (1) $b_{*}$ , $b_{**}$ , $b_{o}$ and $\mathfrak{l}_{0}$ are all isomorphic with $a(n, R)$ .
(2) $b_{*}$ and $b_{**}$ are conjugate under an element of $L$ .
(3) $b_{o}$ and $\mathfrak{l}_{0}$ are conjugate under an element of $L$ .
This is easily seen from the orbital decompositions of $P^{n}(R)$ by $B_{*}$

and $B_{0}$ (cf. Proposition 3. 2 [6] $II$).
Moreover forgetting about the gradation of $\mathfrak{l}=\mathfrak{Z}\mathfrak{l}(n+1, R)$ , we have

PROPOSITION 5. 7. Let $\mathfrak{g}$ be a proper subalgebra of @1 $(n+1, R)$ $(n\geqq 2)$ .
Then dim $\mathfrak{g}\leqq n^{2}+n$ , and the equality holds if and only if $\mathfrak{g}$ is conjugate
to $b_{*}$ or $b_{o}$ under an inner automorphism of $6\mathfrak{l}(n+1, R)$ .
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PROOF. If we identify $(L, \omega_{L})$ with the normal projective connection
over $P^{n}(R)$ , $\mathfrak{p}(L)$ coincides with the Lie algebra of right invariant vector
fields on $L$ . Let $\hat{\mathfrak{g}}$ be the subalgebra of $\mathfrak{p}$ $(L)$ correspoding to $\mathfrak{g}\subset \mathfrak{l}=6\mathfrak{l}(n+1, R)$ .
Let $e$ be the unit element of $L$ and set $\pi_{L}(e)=x$, where $\pi_{L}$ is the bundle
projection of $L$ onto $P^{n}(R)$ . Then from Proposition 4. 4, dim $\mathfrak{g}\leqq n^{2}+n$ and
the equality holds if and only if there exists $\sigma\in\pi_{L}^{-1}(x)=L_{0}$ such that $-\omega_{\sigma}$

is a Lie algebra isomorphism of $\acute{\mathfrak{g}}$ onto $b_{*}$ , $b_{o}$ , $b_{**}$ or $\mathfrak{l}_{0}$ .
Let $A\in\hat{\mathfrak{g}}$ and set $X=-\omega_{e}(A)\in \mathfrak{g}\subset \mathfrak{l}$ , $Y=-\omega_{\sigma}(A)$ . Since $A$ is a right

invariant vector field we get

$Y=-\omega_{\sigma}(A)=-R_{\sigma}^{*}\omega(A)=-$ Ad $(\sigma^{-1})\omega_{e}(A)=Ad(\sigma^{-1})(X)$

Hence Ad $(\sigma^{-1})\mathfrak{g}=b_{*}$ , $b_{o}$ , $b_{**}$ or $\mathfrak{l}_{0}$ . Therefore from Lemma 5. 6, $\mathfrak{g}$ is con-
jugate to $b_{*}$ or $b_{o}$ under an element of $L^{o}=Int(8\mathfrak{l}(n+1, R))$ . $q$ . $e$ . $d$ .

\S 6. Transitive case

6. 1. Let $M$ be a connected manifold of dimension $n$ and $(P, \omega)$ be
the normal projective connection over $M$. We denote by $\tilde{\sigma}$ the connection
preserving bundle isomorphism of $P(M, L_{0})$ induced by $\sigma\in\psi(M)$ .

Let us fix a point $x\in M$ and take a point $u\in\pi^{-1}(x)$ . And we define
$\iota_{u}$

.
$\mathfrak{P}(M)arrow P$ by $\iota_{u}(\sigma)=\tilde{\sigma}(u)$ , $\sigma\in \mathfrak{P}(M)$ . Then it is well known ([2]) that

$\iota_{u}$ is an imbedding of $\mathfrak{P}(M)$ as a closed submanifold of $P$ .
Let $\mathfrak{P}_{x}(M)$ be the isotropy subgroup of $\mathfrak{P}(M)$ at $x\in M$. Obviously we

have

$’.u(\mathfrak{P}_{x}(M))\subset\pi^{-1}(x)$

On the other hand the fiber $\pi^{-1}(x)$ of $P(M, L_{0})$ is diffeomorphic with $L_{0}$

via a diffeomorphism $\gamma_{u}$ of $L_{0}$ onto $\pi^{-1}(x)$ , where $\gamma_{u}(a)=ua$, $a\in L_{0}$ . There-
fore the composite map $\rho_{u}=\gamma_{u}^{-1}\cdot\iota_{u}$ is an imbedding of $\mathfrak{P}_{x}(M)$ into $L_{0}$ and
$\rho_{u}(\mathfrak{P}_{x}(M))$ is closed in $L_{0}$ . Moreover we have

Lemma 6. 1. $\rho_{u}$ ; $\mathfrak{P}_{x}(M)arrow L_{0}$ is an injective homomorphism. And
$\rho_{u}(\mathfrak{P}_{x}(M))$ is a closed subgroup of $L_{0}$ . Moreover $(\rho_{u_{*}})_{e}=\omega_{u}\cdot(\iota_{u}J_{e}$, where $e$

is the unit of $\mathfrak{P}_{x}(M)$ .
If we assume that $\mathfrak{P}(M)$ acts transitively on $M$, $\mathfrak{P}(M)$ is a principal

$\mathfrak{P}_{x}(M)$ -bundle over $M$. Then we have
Lemma 6. 2. The imbedding $\iota_{u}$ ; $\mathfrak{P}(M)$- $P$ is an injective bundle homO-

morphism of $\mathfrak{P}(M)(M, \mathfrak{P}_{x}(M))$ into $P(M, L_{0})$ corresponding to $\rho_{u}$ ; $\mathfrak{P}_{x}(M)-L_{0}$ ,
which preserves the base space $M$.

When the curvature of the normal projective connection vanishes, we
have
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PROPOSITION 6. 3. Suppose that the curvature form $\Omega$ of the normal
projective connection vanishes identically. Then the linear map $\iota_{u}^{*}\omega;\mathfrak{p}(M)arrow$

$\mathfrak{l}$ is a Lie algebra isomorphism of $\mathfrak{p}(M)$ into $\mathfrak{l}$ . Hence $\mathfrak{h}(u)=\iota_{u}^{*}\omega(\mathfrak{p}(M))$

$(=\omega_{u}(\mathfrak{p}(P)))$ is a subalgebra of $\mathfrak{l}$ which is isomorphic with $\mathfrak{p}(M)$ . MoreO-
ver if we identify $\mathfrak{p}$ $(M)$ with $\mathfrak{h}(u)$ , $\iota_{u}^{*}\omega$ is the Maurer-Cartan form of $\mathfrak{P}(M)$ .

For the proofs of above lemmas and proposition, see those of Lemma
3. 1, Proposition 3. 2 and Proposition 3. 4 of [6] I.

Now we will consider an equivalence of two projectively connected hom0-
geneous manifolds. Let $M$ (resp. $M’$ ) be a connected manifold of dimension
$nv_{\backslash }^{\gamma}ith$ the normal projective connection $(P, \omega)$ (resp. ($P$ , $\omega’$ )). We assume
that $\mathfrak{P}$ $(M)$ (resp. $\mathfrak{P}$ $(M_{/}^{\prime\backslash })$ acts transitively on $M$ (resp. $M’$ ). We denote by
$\mathfrak{P}^{0}(M)$ the identity component of $\mathfrak{P}$ $(M)$ , and set $\mathfrak{P}_{x}^{0}(M)=\mathfrak{P}^{0}(M)\cap \mathfrak{P}_{x}(M)$ .
Note that the identity component $\mathfrak{P}^{0}(M)$ acts transitively on $M$.

PROPOSITION 6. 4. Notations being as above, let $x\in M$ and $x\acute{\in}M’$ .

Snppose that for points, $u\in\pi^{-1}(x)$ , $u’\in\pi^{-1}(x’)$ suitably chosen, there exists
a group isomorphism $\phi$ of $\mathfrak{P}^{0}(M))$ onto $\mathfrak{P}^{0}(M’)$ satisfying $i$), $ii$);

i) $\phi(\mathfrak{P}_{x}^{0}(M))=\mathfrak{P}_{x}^{0}$ , $(M’)$ and $\rho_{u}=\rho_{u’}\cdot\phi|_{\mathfrak{P}_{x}^{0(M)}}$ ,
$ii)$ $\phi^{*}\iota_{u}^{*},\omega’=\iota_{u}^{*}\omega$ .
Then the bundle isomorphism $\phi$ of $\mathfrak{P}^{0}(M)(M, \mathfrak{P}_{x}^{0}(M))$ onto $\mathfrak{P}^{0}(M’)$

$(M’. \mathfrak{P}_{x^{J}}^{0}(M’))$ induces a projective isomorphism of $M$ onto $M’$ .
For the proof, see that of Proposition 3. 5 [6] I.
6. 2. In this paragraph we will determine projectively connected mani-

folds $M$ with dim $\mathfrak{P}(M)=n^{2}+2n$ . Though the sketch of the proof of the
following theorem is already given in [2], we will give another proof for
the sake of completeness.

THEOREM 6. 5. (cf. Theorem 6. 2 [2], Theorem 3 [1]). Let $M$ be $a$

connected manifold of dimension $n(n\geqq 2)$ with a projective structure. Let
$\mathfrak{P}(M)$ be the group of projective transformations of M. If dim $\mathfrak{P}(M)=$

$n^{2}+2n$ , then $M$ is projectively equivalent to the real projective space $P^{n}(R)$

or its universal covering space $S^{n}$ .
PROOF. From Proposition 4. 4 (1), it is obvious that $\mathfrak{P}^{0}(M)$ acts tran-

sitively on $M$. Let $(P, \omega)$ be the normal projective connection over $M$. Let
us fix a point $x\in M$ and take a point $u\in\pi^{-1}(x)$ . Then from Proposition
4. 4 and Proposition 6. 3, we see that $\iota_{u}^{*}\omega$ is a Lie algebra isomorphism of
$\mathfrak{p}(M)$ onto $\mathfrak{l}$ , where $\mathfrak{p}(M)$ is the Lie algebra of $\mathfrak{P}(M)$ . In particular we
have $\iota_{u}^{*}\omega(\mathfrak{p}_{x}(M)=\mathfrak{l}_{0}$ .

Now we compare $\mathfrak{P}^{0}(M)$ with $L^{o}$ . Since $L^{o}$ is connected and $Z(L^{o})=$

$\{e\}$ , the adjoint representation $Ad_{L^{O}}$ of $L^{o}$ is a isomorphism of $L^{o}$ onto
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the adjoint group Int $(\mathfrak{l})$ . On the other hand the adjoint representation
$Ad_{b^{0}(M)}$ of $\mathfrak{P}^{0}(M)$ is a homomorphism of $\mathfrak{P}^{0}(M)$ onto Int $(\mathfrak{p}(M))$ . Set $h=\iota_{u}^{*}\omega$ .
Then since $h$ is a Lie algebra isomorphism of $\mathfrak{p}(M)$ onto $\mathfrak{l}$ , $h$ naturally in-
duces a group isomorphism $\tilde{h}$ of Int $(\mathfrak{p}(M))$ onto Int $(\mathfrak{l})$ . More precisely we
set $(\tilde{h}(\tau))(X)=h\cdot\tau\cdot h^{-1}(X)$ for $\tau\in Int(\mathfrak{p}(M))$ , $X\in \mathfrak{l}$ . Then we have $\tilde{h}_{*}\cdot ad_{0^{(M)}}=$

$ad_{I}\cdot h$ . We set $\phi=(Ad_{L})^{-1}\cdot\tilde{h}\cdot Ad_{\mathfrak{P}^{0}(M)}$ . Then $\phi$ is a covering homomorphism,
of $\mathfrak{P}^{0}(M)$ onto $L^{0}$ such that $\phi_{*}=h$ .

In the following we divide the proof according as $n$ is even or odd.
(1) The case $n$ is even. From Lemma 5. 1, we identify $SL(n 1, R)$

with $L$ through $\chi$ . Let $\omega_{L}$ be the Maurer-Cartan form on $L$ . Then $(L, \omega_{L})$

can be identified with the normal projective connection over $P^{n}(R)=L/L_{0}$ .
Moreover $(L, \omega_{L})$ can be identified with a connected component of the normal
projective connection over $S^{n}=L/B$, where $B$ is the identity component of $L_{0}$ .

Let $(\mathfrak{P}_{x}(M))^{0}$ be the identity component of $\mathfrak{P}_{x}(M)$ . Since $\phi_{*}=\iota_{u}^{*}\omega$ as
a Lie algebra isomorphism, we have $\phi((\mathfrak{P}_{x}(M))^{0})=B$, $i$ . $e$ . $(\mathfrak{P}_{x}(M))^{0}\subset\phi^{-1}(B)$ .
On the other hand we have $\mathfrak{P}^{0}(M)/\phi^{-1}(B)=L/B=S^{n}$ . Since $S^{n}$ is simply
connected, $\phi^{-1}(B)$ is connected. Hence we have $(\mathfrak{P}_{x}(M))^{0}=\phi^{-1}(B)$ . In par-
ticular Ker $\phi\subset \mathfrak{P}_{x}^{0}(M)=\psi^{0}(M)\cap \mathfrak{P}_{x}(M)$ . Hence Ker $\phi$ is a normal subgroup
of $\mathfrak{P}^{0}(M)$ contained in $\mathfrak{P}_{x}^{0}(M)$ . Since $\mathfrak{P}^{0}(M)$ acts effectively on $M=\mathfrak{P}^{0}(M)/$

$\mathfrak{P}_{x}^{0}(M)$ , we conclude that Ker $\phi$ is trivial, $i$ . $e$ . $\phi$ is an isomorphism of ,
$\mathfrak{P}^{0}(M)$

onto $L$ .
From Lemma 5. 1 (4), we know that $N_{L}(B)=L_{0}$ . Hence Lie subgroups

of $L$ with Lie algebra $\mathfrak{l}_{0}\subset \mathfrak{l}$ are $B$ and $L_{0}$ . Then it follows that $\phi(\mathfrak{P}_{x}^{0}(M))$

coincides with $B$ or $L_{0}$ .
(1. 1) In case $\phi(\mathfrak{P}_{x}^{0}(M))=B$ . $\phi$ is a bundle isomorphism, of $\mathfrak{P}^{0}(M)(M$,

$\mathfrak{P}_{x}^{0}(M))$ onto $L(S^{n}, B)$ . Moreover from Lemma 6. 1 and $\phi_{*}=\iota_{u}^{*}\omega$ , we have
$\rho_{u}=\phi|_{\mathfrak{P}_{x^{(M)}}^{C}}$ . Therefore from Proposition 6. 4, we conclude that $M$ is From
jectively equivalent to $S^{n}$ .

(1. 2) In case $\phi(\mathfrak{P}_{x}^{0}(M))=L_{0}$ . $\phi$ is a bundle isomorphism, of $\mathfrak{P}^{0}(M)(M$,
$\mathfrak{P}_{x}^{0}(M))$ onto $L(P^{n}(R), L_{0})$ . Moreover from Lemma 5. 3, Lemma 6. 1 and
$\phi_{*}=\iota_{u}^{*}\omega$ , we have $\rho_{u}=\phi|_{\mathfrak{P}_{x}^{0}(M)}$ . Therefore from Proposition 6. 4, $M$ is pr0-
jectively equivalent to $P^{n}(R)$ .

(2) The case $n$ is odd. Recall from Lemma 5. 2 that $\chi$ is a covering
homorphism of $SL(n 1, R)$ onto $L^{o}$ with Ker $\chi=Z_{2}$ (the center of $SL’(n+1$ ,
$R))$ . And $\chi$ induces an isomorphism of $L_{\Delta}^{+}$ onto $B$ . Let $\omega_{L^{O}}$ and $\omega_{SL}$ be
the Maurer-Cartan form on $L^{o}$ and $SL(n+1, R)$ . Then $(L^{o}, \omega_{L^{O}})$ (resp. $(SL$

$(n+1, R)$ , $\omega_{SL}))$ can be identified with a connected component of the normal
projective connection over $P^{n}(R)=L^{o}/B$ (resp. $S^{n}=SL$ ($n+1$ , $R)/L_{\Delta}^{+}$).

From $N_{L^{O}}(B)=B$ ( (4) of Lemma 5. 2) and the connectedness of $B$, we
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see that $B$ is the only Lie subgroup of $L^{o}$ with Lie algebra $\mathfrak{l}_{0}=\phi_{*}(\mathfrak{p}_{x}(M))$ .
Hence we have $\phi(\mathfrak{P}_{x}^{0}(M))=B$ . Let $\phi’$ be the restriction of $\phi$ to $\mathfrak{P}_{x}^{0}(M)$ .
Since Ker $\phi’=$ Ker $\phi\cap \mathfrak{P}_{x}^{0}(M)$ is a central subgroup of $\mathfrak{P}^{0}(M)$ , the effectiveness
of the action of $\mathfrak{P}^{0}(M)$ on $M$ implies that Ker $\phi’$ is trivial, $i$ . $e$ . $\phi’$ is an
isomorphism of $\mathfrak{P}_{x}^{0}(M)$ onto $B$ . Moreover from Lemma 5. 3, Lemma 6. 1
and $\phi_{*}=\iota_{u}^{*}\omega$ , we have $\rho_{u}=\phi’$ . Since $\mathfrak{P}_{x}^{0}(M)$ is the identity component of
$\phi^{-1}(B)$ , $M=\mathfrak{P}^{0}(M)/\mathfrak{P}_{x}^{0}(M)$ is a covering space over $\mathfrak{P}^{0}(M)/\phi^{-1}(B)=L^{0}/B=$

$P^{n}(R)$ . From $\pi_{1}(P^{n}(R))\equiv Z_{2}(n\geqq 2)$ , we see that $\phi^{-1}(B)$ has at most two
connected components, $i$ . $e$ . Ker $\phi=\{e\}$ or $Z_{2}$ .

(2. 1) In case Ker $\phi=\{e\}$ . $\phi$ induces a bundle isomorphism of $\psi^{0}(M)$

$(M, \mathfrak{P}_{x}^{0}(M))$ onto $L^{o}(P^{n}(R), B)$ . Therefore $M$ is projectively equivalent to
$P^{n}(R)$ .

(2. 2) In case Ker $\phi=Z_{2}$ . $M=\mathfrak{P}^{0}(M)/\mathfrak{P}_{x}^{0}(M)$ is homeomorphic with
$S^{n}$ . Hence the natural inclusion $\iota$ of $\mathfrak{P}_{x}^{0}(M)$ into $\mathfrak{P}^{0}(M)$ induces a hom0-
morphism $\iota_{*}$, of $\pi_{1}(\mathfrak{P}_{x}^{0}(M), e)$ onto $\pi_{1}(\mathfrak{P}^{0}(M), e)$ . Then we have

$\phi_{*}(\pi_{1}$ ( $\mathfrak{P}^{0}(M)$ , $e))=\phi_{*}’(\pi_{1}(\mathfrak{P}_{x}^{0}(M),$ $e))=\pi_{1}(B, e)$

Similarly we have

$\chi_{*}(\pi_{1}$ ($SL(n+1, R)$ , $I_{n}))=\pi_{1}(B, e)$ .

Hence we get

$\phi_{*}(\pi_{1}$ ( $\mathfrak{P}^{0}(M)$ , $e))=\chi_{*}(\pi_{1}(SL(n+1, R),$ $I_{n}))$

From this there exists a unique isomorphism $\tilde{\phi}$ of $\mathfrak{P}^{0}(M)$ onto $SL(n+1, R)$

satisfying $\phi=\chi\cdot\tilde{\phi}$ . Then $\tilde{\phi}$ induces a bundle isomorphism of $\mathfrak{P}^{0}(M)(M$,
$\mathfrak{P}_{x}^{0}(M))$ onto $5L(n 1, R)$ $(S^{n}, L_{\Delta}^{+})$ . Therefore $M$ is projectively equivalent
to $S^{n}$ . $q$ . $e$ . $d$ .

6. 3. In this paragraph we will determine projectively connected hom0-
geneous manifolds $M$ with dim $\mathfrak{P}(M)=n^{2}+n$ .

THEOREM 6. 6. Let $M$ be a connected manifold of dimension $n(n\geqq 3)$

with a projective structure. Let $\mathfrak{P}(M)$ be the group of projective transfor-
mations of M. If dim $\mathfrak{P}(M)<n^{2}+2n$ , then dim $\mathfrak{P}(M)\leqq n^{2}+n$ . Moreover
if dim $\mathfrak{P}(M)=n^{2}+n$ and $\mathfrak{P}(M)$ acts transitively on $M$, then $M$ is projectively
equivalent to the affine space $R^{n}$ , $Q$ or $\tilde{Q}$ , there $Q=P^{n}(R)\backslash \{0\}$ and $\tilde{Q}=$

$S^{n}\backslash (\{e\}\cup\{-e\})$ {the universal covering space of $Q$).

PROOF. First assertion is clear from Proposition 4. 4. Let $(P, \omega)$ be
the normal projective connection over $M$. Let us fix a point $x$ of $M$. Then
from Proposition 4. 4 and Proposition 6. 3, there exists $u\in\pi^{-1}(x)$ such that
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$\iota_{u}^{\star}\omega$ is a Lie algebra isomorphism of $\mathfrak{p}(M)$ onto $b_{*}$ or $b_{o}$ .
(1) The case $\iota_{u}^{\star}\omega(\mathfrak{p}(M))=b_{*}$ . From $Z(B_{*})=\{e\}$ ( (4) of Lemma 5. 4),

we get a covering homomorphism $\phi$ of $\sigma \mathfrak{P}^{0}(M)$ onto $B_{*}$ satisfying $\phi_{*}=\iota_{u}^{*}\omega$ ,
as in the proof of Theorem 6. 5. From $N_{B_{*}}(C_{*})=C_{*}$ ( $(5)$ of Lemma 5. 4)
and the connectedness of $C_{*}$ , we have $\phi(\mathfrak{P}_{x}^{0}(M))=C_{*}$ . On the other hand
$\mathfrak{P}^{0}(M))/\phi^{-1}(C_{*})$ is homeomorphic with $B_{*}/C_{*}=Q_{*}=R^{n}$ . Since $R^{n}$ is simply
connected we see that $\phi^{-1}(C_{*})$ is connected. Hence we have $\mathfrak{P}_{x}^{0}(M)=\phi^{-1}(C_{*})$ .
In particular Ker $\phi\subset \mathfrak{P}_{x}^{0}(M)$ . Then the effectiveness of the action of $\mathfrak{P}^{0}(M)$

on $M$ implies that Ker $\phi$ is trivial, $i$ . $e$ . $\phi$ is an isomorphism of $\mathfrak{P}^{0}(M)$ onto
$B_{*}$ . Therefore $\phi$ induces a bundle isomorphism of $\mathfrak{P}^{0}(M)(M, \mathfrak{P}_{x}^{0}(M))$ onto
$B_{*}(R^{n}, C_{*})$ such that $\phi_{*}=\iota_{u}^{*}\omega$ . From Proposition 6. 4, we conclude that
$M$ is projectively equivalent to the affine space $R^{n}$ .

(2) The case $\iota_{u}^{*}.\omega(\mathfrak{p}(M))=b_{o}$ . From $Z(B_{o})=\{e\}$ ((5) of Lemma 5. 5),
we get a covering homomorphism $\phi$ of $\mathfrak{P}^{0}(M)$ onto $B_{o}$ satisfying $\phi_{*}=\iota_{u}^{*}\omega$ .
Let $(\mathfrak{P}_{x}(M))^{0}$ be the identity component of $\mathfrak{P}_{x}(M)$ . Then we have $\phi(\mathfrak{P}_{x}(M))^{0})$

$=C_{o}$ . On the other hand $\mathfrak{P}^{0}(M)/\phi^{-1}(C_{o})$ is homeomorphic with $B_{o}/C_{o}=\tilde{Q}$

(Lemma 5. 5). Since $\tilde{Q}$ is simply connected $(n\geqq 3)$ , we see that $\phi^{-1}(C_{o})$ is
connected. Hence we have $\phi^{-1}(C_{0})=(\mathfrak{P}_{x}(M))^{0}$ . In particular Ker $\phi\subset \mathfrak{P}_{x}^{0}(M)$ .
From this we see that $\phi$ is an isomorphism of $\mathfrak{P}^{0}(M)$ onto $B_{o}$ . From
$N_{B_{O}}(C_{o})=C$ ( (6) of Lemma 5. 5), we have $\phi(\mathfrak{P}_{x}^{0}(M))=C_{o}$ or $C$.

(2. 1) In case $\phi(\mathfrak{P}(_{x}^{0}M))=C_{o}$ . $\phi$ is a bundle isomorphism of $\mathfrak{P}^{0}(M)$

$(M, \mathfrak{P}_{x}^{0}(M))$ onto $B_{o}(\tilde{Q}, C_{o})((1), (4)$ of Lemma 5. 5). Moreover from Lemma
6. 1 and $\phi_{*}=\iota_{u}^{*}\omega$ , we have $\rho_{u}=\phi|_{\mathfrak{P}_{x}^{0(M)}}$ . Therefore $M$ is projectively equivalent
to $\tilde{Q}$ .

(2. 2) In case $\phi(\mathfrak{P}_{x}^{0}(M))=C$ . $\phi$ is a bundle isomorphism of $\mathfrak{P}^{0}(M)(M$,
$\mathfrak{P}_{x}^{0}(M))$ onto $B_{0}(Q, C)$ . Moreover from Lemma 5. 5 (7), Lemma 6. 1 and
$\phi_{*}=\iota_{u}^{*}\omega$ , we have $\rho_{u}=\phi|_{\mathfrak{P}_{x^{(M)}}^{0}}$ . Therefore $M$ is projectively equivalent to $Q$ .

$q$ . $e$ . $d$ .

\S 7. Intransitive case

In this section we will determine $n$ -dimensional projectively connected
manifolds admitting groups of projective transformations of dimension $n^{2}+n$ .

7. 1. Let $M$ be a connected manifold of dimension $n(n\geqq 3)$ and $(P, \omega)$

be the normal projective connection over $M$. We assume that $M$ admits
a group of projective transormations of dimension $n^{2}+n$ . Then without
loss of generality we may assume that there exists a connected Lie subgroup
$G$ of $\mathfrak{P}(M)$ of dimension $n^{2}+n$ . Let $\mathfrak{g}$ be the subalgebra of $\mathfrak{p}(M)$ cor-
responding to $G\subset \mathfrak{P}(M)$ . Let us fix a point $x\in M$. From Proposition 4. 4
and Proposition 6. 3, we have
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(1) $M$ is projectively fiat,
(2) There exists a point $u\in\pi^{-1}(x)$ such that $\iota_{u}^{*}\omega$ is a Lie algebra is0-

morphism of $\mathfrak{g}$ onto one of the following four subalgebras of $\mathfrak{l}$ ;
(a) $b_{*}=V+\mathfrak{g}\mathfrak{l}(V)$ ,
(b) $b_{o}=V+\mathfrak{g}\mathfrak{l}(V, W)+W^{\perp}$ ,
(c) $b_{**}=H+\mathfrak{g}\mathfrak{l}(V, H)+V^{*}$ ,
(d) $\mathfrak{l}_{0}=\mathfrak{g}\mathfrak{l}(V)+V^{*}$ .
Hence the orbit of $G$ passing through $x$ is an open orbit (in case

$\iota_{u}^{*}\omega(\mathfrak{g})=b_{*}$ or $b_{o}$), a hyperorbit (in case $\iota_{u}^{*}\omega(\mathfrak{g})=b_{**}$ ) or a fixed point (in case
$\iota_{u}^{*}\omega(\mathfrak{g})=\mathfrak{l}_{0})$ . We say that an open orbit $O$ is of type (a) (resp. of type (b)),
if $\iota_{u}^{*}\omega(\mathfrak{g})=b_{*}$ (resp. $=b_{0}$ ) for $x\in O$ .

As for open orbits we have

Lemma 7. 1. (1) The open orbit of $G$ of type (a) is projectively equiva-
lent to the affiffiffine space $R^{n}$ .

(2) The open orbit of $G$ of type (b) is projectively equivalent to $Q$

or $\tilde{Q}$ .
PROOF. It is easily seen that $G$ acts effectively and transitively on the

open orbit $O$ . Hence $O$ is a projectively connected homogeneous manifold
with dim $\mathfrak{P}(O)\geqq n^{2}+n$ . On the other hand from Lemma 5. 4, Lemma 5. 5
and Proposition 5. 7 it is easily seen that a connected Lie subgroup of $L$

(resp. $SL$ ($n+1$ , $R$)) of dimension $n^{2}+n$ never acts transitively on $P^{n}(R)$ (resp.
on $S^{n}$). Hence we get dim $\mathfrak{P}(O)=n^{2}+n$ . Then the lemma follows from
Theorem 6. 6. $q$ . $e$ . $d$ .

7. 2. Now we will recall the notion of the (projective) normal coordinates
of $M$. Let $L(M)$ be the linear frame bundle over $M$. Let $\overline{l}$ be the bundle
homomorphism of $P$ onto $L(M)$ corresponding to the linear isotropy repre-
sentation $l$ of $L_{0}$ onto $GL(n, R)$ (cf. \S 5 of Chapter IV [2]). $l$ can be iden-
tified with the homomorphism of $L_{0}$ onto $GL(\mathfrak{g}_{-1})$ defined by the following
commutative diagram;

$\mathfrak{l}\underline{Ad(a)}\mathfrak{l}$

$p\downarrow$

$l(a)$

$\downarrow p$ $a\in L_{0}$ ,

$\mathfrak{g}_{-1}-\mathfrak{g}_{-1}$

where $p$ is the projection corresponding to $\mathfrak{l}=\mathfrak{g}_{-1}+\mathfrak{l}_{0}$ . We set $G_{0}=\{a\in$

$L_{0}|Ad(a)$ preserves the gradation of $\mathfrak{l}$ }. Then $l$ induces an isomorphism
of $G_{0}$ onto $GL(\mathfrak{g}_{-1})$ .

Let us fix a point $u$ of $P$. Let $U$ be a sufficiently small neighbourhood
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of $T_{x}(M)$ around 0, where $x=\pi(u)$ . For a vector $X\in U$, we consider the
horizontal vector field $B(\xi)$ such that $X=\overline{l}(u)\xi$ . Let $\phi_{t}^{\xi}$ be the (local) 1-
parameter subgroup generated by $B(\xi)$ . Then the exponential map $\exp_{u}$

of $U$ into $M$ is defined by

$\exp_{u}X=\pi(\phi_{1}^{\rho}(u))$

It is clear that $\exp_{u}$ is a local diffeomorphism around $0\in T_{x}(M)$ . $(U, \exp_{u})$

is called the normal ocordinate relative to $u$ (cf. \S 5 [1] or \S 7 [3]).

Lemma 7. 2. Notations being as above, we have
(1) $\sigma\cdot\exp_{u}=\exp_{\tilde{\sigma}(u)}\cdot\sigma_{*}$ for $\sigma\in \mathfrak{P}(M)$ ,
(2) $\exp_{u}=\exp_{ua}$ for $a\in G_{0}$ ,
(3) $\sigma\cdot\exp_{u}=\exp_{u}\cdot\sigma_{*}$ for $\sigma\in\rho_{u}^{-1}(G_{0})\subset \mathfrak{P}_{x}(M)$ .

PROOF. (1) $\sigma\cdot\exp_{u}X=\sigma\cdot\pi\cdot\phi_{1}^{\xi}(u)=\pi\cdot\tilde{\sigma}\cdot\phi^{\rho}i(u)$ . Hence from $\tilde{\sigma}_{*}(B(\xi))=$

$B(\xi)$ , we have $\sigma\cdot\exp_{u}X=\pi\cdot\phi_{1}^{\xi}(\tilde{\sigma}(u))$ . On the other hand $\sigma_{*}(X)=\sigma_{*}\cdot\overline{l}(u)\xi=$

$\overline{l}(\tilde{\sigma}(u))\xi$ . Therefore we get $\sigma\cdot\exp_{u}X=\exp_{\tilde{\sigma}(u)}\sigma_{*}X$.
(2) $\omega(R_{a_{*}}B(\xi))=R_{a}^{*}\omega(B(\xi))=Ad(a^{-1})\omega(B(\xi))=Ad(a^{-1})\xi$ . Since $a\in G_{0}$

we get Ad $(a^{-1})\xi\in \mathfrak{g}_{-1}$ . Hence we have $R_{a_{*}}B(\xi)=B(a^{-1}\xi)$ , $i$ . $e$ . $R_{a}\cdot\phi_{t}^{\xi}\cdot R_{a^{-1}}=$

$\phi_{t}^{a^{-1}\xi}$ . From $X=\overline{l}(u)\xi=\overline{l}(ua)a^{-1}\xi$ , we have $\exp_{ua}X=\pi\cdot\phi_{1}^{a^{-1}\xi}(ua)=\pi\cdot R_{a}$ .
$\phi_{1}^{\xi}(u)=\pi\cdot\phi_{\grave{1}}^{\epsilon}(u)=\exp_{u}X$.

(3) follows from (1) and (2). $q$ . $e$ . $d$ .
Now we will consider the orbital decomposition of $M$ by $G$ . The fol-

lowing Lemmas 7. 3, 7. 4 and 7. 5 are due to S. Ishihara [1],

Lemma 7. 3. (cf. Remark 2 [1]). If $M$ has $a$ fifixed point $x$ of $G$, then
there exists a neighbourhood $W$ of $z$ such that $W\backslash \{x\}$ belongs to an open
orbit of $G$ of type (b). In particular $x$ is an isolated fifixed point of $G$ .

PROOF. We consider a normal coordinate $(U, \exp_{u})$ around $x=\pi(u)$ . We
set $W=\exp_{u}(U)$ . First we have $\rho_{u}(G)=B$. Hence setting $\tilde{G}=G\cap\rho_{u}^{-1}(G_{0})$ ,
we see that $\rho_{u}(\tilde{G})$ coincides with the identity component of $G_{0}$ , which is
identified with $GL^{+}(\mathfrak{g}_{-1})$ through $l$ . From (3) of Lemma 7. 2, it is seen
that the action of $\tilde{G}$ on $M$ is realized on $U$ as the linear isotropy action
of $\tilde{G}$ . Moreover from $\sigma_{*}(X)=\overline{l}(\tilde{\sigma}(u))(\xi)=\overline{l}(u)(l\cdot\rho_{u}(\sigma)(\xi))$ , we see that the
linear isotropy action of $\tilde{G}$ on $T_{x}(M)$ is identified, through the frame $\overline{l}(u)$ ,
with the action of $GL^{+}(\mathfrak{g}_{-1})$ on $\mathfrak{g}_{-1}$ . Hence in order to see the action of
$\tilde{G}$ around $x$, we have only to see the action of $GL^{+}(\mathfrak{g}_{-1})$ on $U$ through
$\overline{l}(u)$ . Then it is easily seen that $W\backslash \{x\}$ belongs to an open orbit of $\tilde{G}$ ,
hence of $G$ .

Now we consider the isotropy subgroup $G_{y}$ of $G$ at $y\in W\backslash \{x\}$ . Since
$\tau\in G_{y}$ fixes the points $x$ and $y$ , $\tau$ carries a geodesic $C$ joining $x$ and $y$ into
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$C$. Hence $\tau_{*}$ leaves invariant the 1-dimensional subspace $\langle C’(y)\rangle$ . On the
other hand if $G/G_{y}$ is an open orbit of type (a), the linear isotropy repre-
sentation at $y$ is irreducible, which is easily seen from $b_{*}=V+\mathfrak{g}\mathfrak{l}(V)$ . there
fore $G/G_{y}$ is an open orbit of type (b). $q$ . $e$ . $d$ .

Lemma 7. 4. (cf. Remark 1 [1]). If $M$ has a hyperorbit $S$ of $G$ , then
for each point $x$ of $S$ there exists a neighbourhood $W$ of $z$ such that $W\backslash S$

belongs to one or two open orbits of $G$ of type (a).

PROOF. Let us fix $x\in S$. From Proposition 4. 4, there exists $u\in\pi^{-1}(x)$

such that $\iota_{u}^{*}\omega$ is a Lie algebra isomorphism of $\mathfrak{g}$ onto $b_{**}$ . We consider a
normal coordinate $(U, \exp_{u})$ around $x$ . We set $W=\exp_{u}(U)$ . Let $G_{x}$ be
the isotropy subgroup of $G$ at $x$ . We denote by $\tilde{G}_{x}$ the identity component
of $G_{x}\cap\rho_{u}^{-1}(G_{0})$ . Then from $\iota_{u}^{*}\omega(\mathfrak{g})=b_{**}=H+\mathfrak{g}\mathfrak{l}(V, H)+V^{*}$ , we get $l\cdot\rho_{u}(\tilde{G}_{x})$

$=\{a\in GL^{+}(V)|a(H)=H\}$ . Obviously we have $\overline{l}(u)(H)=T_{x}(S)\subset T_{x}(M)$ . The
orbital decomposition of $V$ by $l\cdot\rho_{u}(\tilde{G}_{u})$ consists of the hyperplane $H$ and
two open orbits divided by $H$. Hence as in the proof of Lemma 7. 3, we
conclude that $W\backslash S$ belongs to one or two open orbits of $G$ .

Recall that $H$ is spanned by the vectors $e_{2}$ , $\cdots$ , $e_{n}$ of $V$. Take a point
$y=\exp_{u}\overline{l}(u)(\epsilon e_{1})\in W$. We consider the subgroup $K_{y}=\{\sigma\in\tilde{G}_{x}|\sigma(y)=y\}$ of
$\tilde{G}_{x}$ . Note that $l\cdot\rho_{u}(K_{y})$ fixes each point on the line $\langle e_{1}\rangle$ and carries each
hyperplane parallel to $H$ into itself. Now assume that $y$ belongs to an
open orbit of type (b). Then there exists a 1-dimensional subspace of $T_{y}(M)$

which is invariant by $G_{y}$ . Since $K_{y}\subset G_{y}$ , this subspace must coincide with
$\langle\overline{l}(u)(e_{1})\rangle$ . We consider a geodesic $C$ joining $y$ and $x$ defined by $C(t)=$
$\exp_{u}\overline{l}(u)((1-t)\epsilon e_{1})$ . Let $G_{y}^{0}$ be the identity component of $G_{y}$ . Then $\sigma\in G_{y}^{0}$

preserves the direction $\dot{C}(0)$ . Hence we have $\sigma(C(t))=C(t)$ . In particular
$\sigma(x)=x$, $i$ . $e$ . $G_{y}^{0}\subset G_{x}$ . On the other hand we have $K_{y}=\tilde{G}_{x}\cap G_{y}$ . Moreover,
under the isomorphism $\iota_{u}^{A_{1}’}\omega$ of $\mathfrak{g}$ onto $b_{**}$ , $\mathfrak{g}\mathfrak{l}(V, H)+V^{*}$ (resp. $\mathfrak{g}\mathfrak{l}$ ( $V$, $H$))
corresponds to $G_{x}$ (resp. $\tilde{G}_{x}$). Let $\mathfrak{g}’$ be the subalgebra of $b_{**}$ corresponding
to $G_{y}^{0}\subset G_{x}$ . Then we have $\mathfrak{g}’\subset \mathfrak{g}\mathfrak{l}(V, H)+V^{*}$ and dim $\mathfrak{g}\mathfrak{l}(V, H)\cap \mathfrak{g}’=\dim$

$K_{y}=(n-1)^{2}$ . Let $p_{1}$ be the projection of $\mathfrak{g}1$ (V. $H$) $+V^{*}$ onto $V^{*}$ . Since
Ker $p_{1}=\mathfrak{g}\mathfrak{l}(V, H)$ , we have

dim $p_{1}(\mathfrak{g}’)=\dim \mathfrak{g}’-$ dim Ker $p_{1}\cap \mathfrak{g}’$

$=n^{2}-(n-1)^{2}=2n-1>n=\dim V^{*}$

This contradiction shows that $y$ belongs to an open orbit of type (a).
$q$ . $e$ . $d$ .

Summarizing the above discussion we obtain
Lemma 7. 5. (cf. Remark 4 [1]). (1) If $M$ has $a$ fifixed point of $G$,
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then the orbital decomposition of $M$ by $G$ consists of isolated fifixed points
and a unique open orbit of type (b).

(2) If $M$ has a hyperorbit of $G$ , then the orbital decomposition of $M$

by $G$ consists of hyperorbits and open orbits of type (a).

7. 3. In this paragraph we will prove the main theorem of this paper.

First we have
PROPOSITION 7. 6. Let $M$ be a connected manifold of dimension $n$

$(n\geqq 3)$ with a projectiove structure. Let $G$ be $a$ [connected) Lie subgroup

of $\mathfrak{P}(M)$ with dim $G=n^{2}+n$ . If $M$ has $a$ fifixed point of $G$ , then $M$ is
projectively equivalent to $P^{n}(R)$ , $S^{n}$ or $S^{n}\backslash \{e\}$ .

PROOF. From Lemma 7. 5, $M$ has a unique open orbit $O$ of type (b),

This open orbit is projectively equivalent to $Q$ or $\tilde{Q}$ according to Lemma

7. 1. Then as in the proof of Theorem 3. 4 [6] $II$ , this equivalence induces
aprojective imbedding of $M$ into $P^{n}(R)$ or $S^{n}$ according as $O=Q$ or $\tilde{Q}$ ,

which is compatible with the action of $G$ and $B_{o}$ . Since $M$ has a fixed
point of $G$ , we conclude that $M$ is projectively equivalent to $P^{n}(R)$ , $S^{n}$ or
$S^{n}\backslash$ {one point}. $q$ . $e$ . $d$ .

PROPOSITION 7. 7. Let $M$ be a connected manifold of dimension $n$

$(n\geqq 3)$ with a projective structure. Let $G$ be a connected Lie subgroup of
$\mathfrak{P}(M)$ with dim $G=n^{2}+n$ . If $M$ has a hyperorbit of $G$ , then $M$ is prO-

jectively equivalent to $P^{n}(R)$ or $S^{n}$ .

PROOF. From Lemma 7. 1, 7. 4 and 7. 5, there exists an open orbit
$O_{1}$ of $G$ , which is projectively equivalent to the affine space $R^{n}$ .

Now the proof is divided into several lemmas.

Lemma 7. 8. Each hyperorbit $H$ of $G$ in $M$ is diffeomorphic with
$P^{n-1}(R)$ or $S^{n-1}$ . In particular each hyperorbit is compact.

PROOF. Let $\nabla$ be a torsion free affine connection of $M$ which induces
the given projective structure on $M$. Then from the consideration of normal
coordinates around $H$ it is easily seen that $H$ is a totally geodesic submanifold
of $M$. Since $\nabla$ is torsion free, $H$ is an autoparallel submanifold of $M$ (cf.

Theorem 8. 4 of Chapter VII [4] $)$ . Hence $\nabla$ induces a torsion free affine
connection $\nabla^{H}$ on $H$, which finally induces a projective structure on $H$.
Moreover $G$ acts on $H$ as a group of projective transformations with respect

to this projective structure on $H$. It is easily seen that the effective kernel
of $G$ is of dimension $n+1$ , which is the radical of $G$ . Hence $H$ is a con-
nected $(n-1)$ -dimensional projectively connected manifold with dim $\mathfrak{P}(H)=$

$n^{2}-1=(n-1)^{2}+2(n-1)$ . Therefore from Theorem 6. 5, $H$ is projectively
equivalent to $P^{n-1}(R)$ or $S^{n-1}$ . $q$ . $e$ . $d$ .
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From Lemma 7. 4 it is obvious that $\overline{O}_{1}\backslash O_{1}$ consists of hyperorbits of
$G$ . Take a hyperorbit $H$ which is a member of $\overline{O}_{1}\backslash O_{1}$ . Then since $H$ is
connected we see that the following two cases can occur;

(1) $N=O_{1}\cup H$ is an open submanifold of $M$,
(2) $N=O_{1}\cup H$ is a manifold with a boundary $H$.
We will study the above two cases separately.

Case (1). First we have
Lemma 7. 9. $M=O_{1}\cup H$.

Then since $M$ has a unique

PROOF. we have only to show that $N$ is compact. Let $D(H)$ be the
normal disk bundle of $H$ in $N$ and $D^{L}(H)$ be the interior of $D(H)$ . Then
if we identify $O_{1}=N\backslash H$ with $R^{n}$ , $N\backslash [mathring]_{D}(H)$ is identified with a bounded
closed subset of $R^{n}$ . Hence $N\backslash D^{c}(H)$ is compact. On the other hand since
$H$ is compact, $D(H)$ is compact. Therefore $N$ is compact. $q$ . $e$ . $d$ .

Let $\hat{p}(M)$ be the Lie algebra of all infinitesimal projective transformations
of $M$. Since $O_{1}$ is projectively equivalent to $R^{n}$ , we have dim $\hat{p}(O_{1})=n^{2}+2n$ .
Moreover since $M$ is flat, for each point $x$ of $H$, there exists an open neigh-
bourhood $U_{x}$ of $x$ such that $\dim\hat{p}(U_{x})=n^{2}+2n$ . On the other hand two
(local) infinitesimal projective transformations coincide in the whole inter-
section of their domains if they coincide in an open subset. Hence from
dim $\hat{p}(O_{1})=\dim\hat{p}(U_{x})=n^{2}+2n$ for $x\in H$,, we get dim $\hat{p}(M)=n^{2}+2n$ . In
other words each element of $\hat{p}(O_{1})$ can be continued wholly on $M$. Since
$M$ is compact, we conclude that dim $\mathfrak{P}(M)=n^{2}+2n$ .

From Proposition 5. 7, we see easily that a $(n^{2}+n)$ -dimensional con-
nected Lie subgroup of $L$ (resp. $SL$ ($n+1$ , $R$)) is conjugate to $B_{*}$ or $B_{o}$

$(resp.\tilde{B}_{o}$ or $\tilde{B}_{*}=;|$ $(\begin{array}{ll}A \xi 0 a\end{array})\in SL(n+1, R)\}^{+})$

open orbit, $M$ is projectively equivalent to $P^{n}(R)$ .

Case (2). First we have
Lemma 7. 10. (1) $N$ is compact.
(2) There exists another open orbit $O_{2}$ of $G$ such that $M=O_{1}\cup H\cup O_{2}$ .

PROOF. (1) By considering a collar neighbourhood of $\partial N=H$ in $N$,
we easily see that $N$ is compact as in Lemma 7. 9.

(2) Considering a normal coordinate around $x\in H$, we see that there
exists another open orbit $O_{2}$ of $G$ such that $H\subset\overline{O}_{2}$ . Then $O_{2}\cup H$ is a
manifold with boundary, since otherwise we have $M=O_{2}\cup H.$ $O_{1}\cup H\cup O_{2}$

is an open submanifold of $M$ which is compact. Hence we get $M=O_{1}\cup$

$H\cup O_{2}$ . $q$ . $e$ . $d$ .
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Similarly as in Case (1), we have $\dim \mathfrak{P}$. $(M)=n^{2}+2n$ . Since $M$ has
two open orbits we see that $M$ is projectively equivalent to $S^{n}$ . $q$ . $e$ . $d$ .

Summarizing the above propositions and Theorem 6. 6, we obtain the

main theorem of this paper.

THEOREM 7. 11. Let $M$ be a connected manifold of dimension $n(n\geqq 3)$

with a projective structure. If $M$ admits a group of projective transfor-
mations of dimension $n^{2}+n$ , then $M$ is projectively equivalent to one of
the following spaces;

(1) $P^{n}(R)$ ; the real projective space,
(2) $S^{n}$ ; the universal covering space of (1),
(3) $S^{n}\backslash$ {one point),
(4) $R^{n}$ ; the affiffiffine space,
(5) $Q=P^{n}(R)\backslash$ {one point),
(6) $\tilde{Q}$ ; the universal covering space of (5).

\S 8. Remarks on the conformal case

In this section we will obseve that we can determine Riemannian mani-
folds of dimension $n$ admitting groups of conformal transformations of the

second largest dimension $\frac{1}{2}n(n+1)+1$ by the same method as above. In

particular we note that this case has a close resemblance to the case of
strongly pseud0-convex hypersurfaces (cf. [6]).

Let $S^{n}=\{(x_{0}, \cdots, x_{n+1})\in P^{n+1}(R)|2x_{0}\cdot x_{n+1}=x_{1}^{2}+\cdots+x_{n}^{2}\}$

be the M\"obius space of dimension $n$ , where $(x_{0}, \cdots, x_{n+1})$ is the homogenous
coordinate of $P^{n+1}(R)$ . Then $S^{n}=L/L_{0}$ , where

$L=O(n+1,1)$ .
$L_{0}$ ; the isotropy subgroup of $L$ at $0=(0, \cdots, 0,1)\in S^{n}$ .

The Lie algebra $\mathfrak{l}$ of $L$ has a gradation given by

$\mathfrak{l}=\{X\in \mathfrak{g}\mathfrak{l}(n+2, R)|X=\{$ $-a\xi 0At{}^{t}\xi vv)0A\in o(n)a’\xi$, $v\in R^{n}$ , $a\in R\}$ .

$\mathfrak{g}_{0}=\{(\begin{array}{lll}-a 0 00 A 0\backslash 0 0 a\end{array})$ $1$ , $\mathfrak{g}_{1}=\{($$\mathfrak{g}_{-1}=\{(_{\backslash }00/000{}^{t}vv)0\}0^{\cdot}$ $/0\xi 000{}^{t}\xi 0^{\backslash }0)0\}$ .

$1_{0}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$
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Moreover the graded Lie algebra $\mathfrak{l}$ can be described as follows. Let $V(\equiv R^{n})$

be the $n$-dimensional euclidean vector space and $V^{*}$ be the dual space of
$V$. We denote by $\xi_{*}$ the image of $\xi\in V$ under the isomorphism of $V$ onto
$V^{*}$ induced from the innerproduct of $V$, $i$ . $e$ . $\langle\xi^{*}, v\rangle=(\xi, v)$ for $v\in V$, where
(:) is the innersproduct of $V$. Then

I $=V+co(V)+V^{*}$ ,

under the identification $(p134[2])$ ;

$(\begin{array}{lll}0 {}^{t}v 00 0 v0 0 0\end{array})\in \mathfrak{g}_{-1^{I}}arrow v\in V\wedge$
,

$(\begin{array}{lll}0 0 0\xi 0 0\backslash 0 {}^{t}\xi 0\end{array})\in \mathfrak{g}_{1}|-arrow\xi_{*}\in V^{*}$

$(\begin{array}{lll}-a 0 00 A 00 0 a,\end{array})\in \mathfrak{g}_{0^{I}}arrow A-aI_{n}\in c\mathfrak{o}(V)$ .

Then we have

$[v, v’]=0$ , $[\xi_{*}, \xi_{*}’]=0$ , $[U, v]=Uv$ , $[\xi_{*}, U]=(^{t}U\xi)_{*}$

$[U, U’]=UU’-U’U$, $[v, \xi_{*}]=v\xi_{*}-{}^{t}(v\xi_{*})+(v, \xi)I_{n}$

where $v$ , $v’$ , $\xi$, $\xi’\in V$ and $U$, $U’\in co(V)$ . Hence we have

(8. 1) $[\mathfrak{g}_{-1}, \mathfrak{g}_{1}]=\mathfrak{g}_{0}$ .

(8. 2) $[[v, \xi_{*}],$ $\xi_{*}’]=(\xi, \xi’)v_{*}-(v, \xi’)\xi_{*}-(v, \xi)\xi_{*r}’$,

(8. 3) $[v,$ $[v’, \xi_{*}]]=(v, \xi)v’-(v, v’)\xi+(v’, \xi)v$ .

Let $f$ be a graded subalgebra of I. Then we get easily
Lemma 8. 1. Assume that $f_{-1}\neq\{0\}$ and $f_{1}\neq\{0\}$ , then we have
(1) $(f_{-1})_{*}=f_{1}$ . In particular if $f_{-1}=\mathfrak{g}_{-1}$ or $I_{1}=\mathfrak{g}_{1}$ , then $f=\mathfrak{l}$ .
(2) Set co $(V, f_{-1})=\{U\in co(V)|U(I_{-1})\subset f_{-1}\}$ , then $\tilde{k}=I_{-1}+c\mathfrak{d}(V, I_{-1})+f_{1}$ is

a graded subalgebra of $\mathfrak{l}$ containing $f^{\mu}$ such that dim $\tilde{f}=\dim \mathfrak{l}-(n-s)(s+2)$ ,
where $s=\dim I_{-1}$ .

From this lemma we get

PROPOSITION 8.2. Let $f$ be a proper graded subalgebra of $\mathfrak{l}$ . Then

dim $I\leqq\frac{1}{2}n(n+1)+1(=\dim \mathfrak{l}-n)$ . The equality holds if and only if $I=1_{0}$

or $b=\mathfrak{g}_{-1}+\mathfrak{g}_{0}$ .
Let $B$ be the analytic subgroup of $L$ corresponding to $b\subset I$ . Then we

have
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PROPOSITION 8. 3. (1) $B$ is the identity component of the isotropy
subgroup of $L$ at $0’=(1,0, \cdots, 0)\in S^{n}$ .

(2) The orbital decomposition of $S^{n}$ by $B$ consists of a unique open
orbit $Q$ and $a$ fifixed point $o’r$ $Q$ is conformally equivalent $io$ the equclidean
space $R^{n}$ .

(3) There exists $\sigma\in B$ such that $0$ is the only fifixed point of $\sigma$ in $Q$ .

Now using the above propositions in the proofs of Proposition 7. 1 [6]
I and Theorem 3. 4 [6] II and form the unique existence theorem of the
normal conformal connection (Theorem 4. 2 [2]), we obtain

THEOREM 8. 4. Let $M$ be a connected manifold of dimension $n(n\geqq 3)$

with a conformal structure. If $M$ admits a group of conformal transfor-
mations of the second largest dimension $\frac{1}{2}n(n+1)+1$ , then $M$ is conformally
equivalent to the M\"obius space $S^{n}$ or the euclidean space $R^{n}$ .

The above theorem is first obtained by T. Nagano [5] by a different
method.
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