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0. Introduction

In this paper we shall consider a class of pseudo-differential operators
P whose characteristic set J is the union of closed conic submanifolds 2},
Y, -+, Xa Under some transversarity conditions and involutiveness, we shall
give the necessary and sufficient condition for hypoellipticity of P.

When n=1, our class coincides with L™%(X, %) introduced by Helffer
and moreover if k=2, it coincides with L™ ¥(X, Y) introduced by Sjostrand
(see also [4]). In the case where n=1, M=2, k=2 and X is involutive,
Boutet de Monvel gives a necessary and sufficient condition for the ex-
istence of a parametrix of P in OPS™™ ¥ (more general class than ours
OPL), which is also equivalent to the hypoellipticity of P with loss of 1-
derivative. For general M and £, constructs a left parametrix and then
proves hypoellipticity with loss of M]/k-derivatives, which is a generalization
of [1].

In §1, using the technique developed by [5], we introduce an invariance
of P (Theorem 1.3) and state a necessary and sufficient condition for the
hypoellipticity of P (Theorem 1.5). In §2 and §3, we give their proofs.
§4 is devoted to the study of hypoellipticity for another class of pseudo-
differential operators on RY.

1. Notations, Definitions and Statements of the results

Let X be a paracompact C* manifold of dimension N and let T*(X)—
{0} be the cotangent bundle minus the zero section.

DerintTION 1.1, Let 3, 2, -+, 2, be closed conic submanifolds of
codimension py, ps, +++, pn respectively in T*(X)—{0} and let meR, M, M,
o, M, EZ*, ki ky -k, EZY and k;=2, j=1,2,---,n. Then we define
OPL™ %5 (X 5 Xy, 2, +++, 20) to be the space of pseudo-differential opera-
tors P which, in every local coodinate system UC X, has a symbol of the
form
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(1.1) plx, E)~§opm_j(x, &), where pn_;(x, &) are elements of
Ce(RY X (R¥—{0})) and positively-homogeneous of degree m—j and
satisfy :
(1.2) For every K€U, there exists a constant Cx>0 such that
ot < 4 fl dia gms, (59K x(RY—(0))
and €| =1.
(1. 3) For every Kc U, there exists Cx>0 such that

_'P"Iglc—;”al = C}qﬁl dy(x, £, (z,§)E KX (RN_ {O}>

and |€|=1. Here

dy(z, € = inf <|x—yl +i77— TgTD

(v,mer,;
and (s),=sup (0, s) for s€R.

For example, let P(x, D)=D{ DY:---D¥»+i(x, D) in RY (n<N) where
A(z, D) is a pseudo-differential operator of order M,+M,+---+M,—1. In
this case taking Y;,={§,=0}, M;=k, i=1,2,---,n, we find that p belongs
to OPL™33 (X X, Xy, o0y ).

REMARrRk 1.2. If M;=0 for some 7, we have

My My, M, .
OPLm k:, k:,-'-, kZ<X’ 21, 22, Y Zn)
— ,_M ’.‘.’M._ ,M. ’...,M .
=OPL" Kgreees k,l;_l kili kZ(X’ 21’ T Z’i—19 2i+19 ) Zn)

v Kt

and OPL™%(X;3,) coincides with L™*(X; Y)) in [5], [8]. (We shall write
OPL™: % in stead of OPL™%u (X5 ¥y, -+, X,) if this does not lead to
confusions.) Moreover note that the characteristic set ¥ of P which belongs
to OPL™%+: % is the union of X, ---, %,.

For every pc2, we write I,={i; p=X}}.

Next we assume the transversality condition and involutiveness in the
following sense :
(H.1) For every pel, if we put I,=(4, 1y, -++, i5) there exist p; +p;, +---+ps,
C* real homogeneous functions u{.‘j, 1§k§pij, 1<j<s, defined in a conic
neighbourhood of p such that

{2 _ P
Zij—{uij‘—uij—"'_ui;]—o}

and the dufj (1 §k§p,;j, 1<j<5s) being linearly independent at p.
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(H.2) X, and Y;N2Y; are involutive, z.e. if uj, uf, -+, uli, u, ¥, ufy are as
above, then
{uf, u!} =0 at 2,

N
(H.3) The radial vector > ¢& j% is linearly independent of Hu"l.j, 15k i
t=1 J

1<j<s, at every point near p, where Hamilton-Jacobi field H; and
Poisson bracket {f,g} are defined by the following formulas respec-
tively :

LNl 8 of o
Hf—j21< 0&; ox;  0x; 351)’

_ X (aof a9 af 99
{ﬂg}—_;l(agj ox; N 0x; a§j>'

If g, g, are elements in L™}, we define the following equivalence re-

lation: ¢;=¢q, in a conic neighbourhood U in T*(X)—{0} if and only if
ql__q2eLm,Ml-l-(/]gl—l)»::",Ji{n%-(zn—l) in U

'We suppose that there exist integers /,=0 such that M;=Fk;l, j=1,2,
e, 7

THEOREM 1.3. Let p be a symbol satisfying (1.1) and (1.2) and let
pEX, L=(iy, 15 -+, is). Then there exists a conic neighbourhood U of p
such that in U

qE LM M | L G 700 Mag g™
1: ? 2 7/ ,L b b 1;
1 S 1 S

defined by :

_ Sl xia oy, _e(=1 1 & 9 9y
(1.4) q=eXP< % Z{(axl agl»P";o ‘1 <2i & o, a)P
is invariant under a locally homogeneous canonical transformation :
v; T*(X)—{0}—>T*(R")—{0} such that X, is mapped to Xi,. This means
that if F is an elliptic Fourier integral operator associated with t and p'
is a symbol of PP’=FPF~' and q is the symbol associated with P’ by the

formula (1. 4), then we have ¢ (z(0'))=q(p’) for every o in a conic neigh-
bourhood of p.

o«
VM e M » M ; 1)y, M ;=
Let q(~ Z qm_]>ELm k%l,...’ k%s/Lm Ml1+(£%1 )’".’Mzs—l—(ﬁ%s D
j=0 1 s

1 tg

be a symbol associated with p in a conic neighbourhood of p&2, where
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I,=(1}, --+, 7). Then we define zs](l\lil—kil «j) linear form, denoted by §,_;, on

(T, (T(X)— (055 i~

by: For any
Xi17 Xiz’"" XA'{il_ki ] : Xl klsjET<T*( )_{O}>,
Gn-3(0) (X, -, Xfi™01577) =

s 1 5 5 .
= =yt R R4 o)
’LL ’Ll . $

1=1

where X designs an extension of X to a neighbourhood of p.

ReEMARK 1.4. (1) The above definition of §,_; is independent of the
choice of a class of ¢ and §,_; is symmetric.

(2) If n=1 and M=k, gu(x, &) =pu(z, &) and gu_i(x, & = pu_s(x, & —
Z g —z Pu(x, &). In this case §(p, X) (which is defined below) is
21 i=1 axl 0&;
the sum of the transversal hessian of p, and subprincipal symbol of P at p.
Next for every peJY, we define

40, X)= 5 Gn-s(0) (X, X, for all XeT,(THX)—{0})

JIp:maX( MZ) if I :<i1,"', is);
and also define

r,={a(p, X); XeT,(T*X)—{0})} .

Then we obtain the following :

TueorReEM 1.5. Assume that (H.1), (H.2) and (H.3) are satisfied.
Let PEOPL™ 500Xy 2y, 2y, -+, 2,). Then P is hypoelliptic at peX

297"

with loss of M, -derivatives if and only if I', does not meet the origin for

_ Myt M,
pE2. Here M;= [
hypoelliptic at p with loss of Mj -derivatives if uc %' (X) and Puc H* at p
implies ue H"™ M1 gt p.

if I =iy 1) and we say that P is

Therefore we obtain a sufficient condition for the usual hypoellipticity :

CoroLLARY 1.5. Assume that the hypotheses in the above theorem are
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satisfied. If I', does not meet the origin for every p&X, then P is hypo-
elliptic with loss of M-derivatives where M= max {M;,: p€3}. (Here
we say that P is hypoelliptic with loss of M-derivatives if for all open
set O in X, uc2' (X) and Puc H3,,(0) implies ues Hi;»™(0.))

ReEMARK 1.6. (1) In the proof, we shall construct a left parametrix
1 . .
of P in L);™ with p=1——71, 0=0 where k=min {k;; 1=<j<n}. For the

definition of L™, we refer to [6].

(2) If M;, are constant for p&J), the condition in [Corollary 1.9 is also
necessary.

(3) In the case when n=1, this theorem is proved by Helffer and

moreover for the case when M=2 and k=2, we refer to

2. Proof of Theorem 1.3

Let p=(x, &), I,=(iy, 15, +-+, i;) and choose C*® real homogeneous fun-
ctions uf, (1=[=s, 1=k=p;) such that 2;’s are defined locally by u}zzu%L:
-+=ufi;=0. We may assume that u{, are positively-homogeneous of degree

1
(A A

operators with principal symbol uf,. Then if PELm’i’gl;”{gzjiiij”{gs, by using
1 2 S

Let Ufl 1=ZIss, 15k Piz) be classical pseudo-differential

Taylor’s formula, P can be written as follows :

J
Ip

(2.1) P=3 h Ay erag i (U)21-(U)Ds
J=°(a)le[1,2,~-~,pil]Mil“’“il'j
1158

where

JIP = max { Ml 5 1 é l é 5}9 <a>l - <a'}’ Y af[il_kil.j% a{CE {1, Y Pil}

k;,
and
(U)@ = Ut ... Ut i
Y LI :
Thus A,,... , are classical pseudo-differential operators of order

850

M+ M+ + M,
)

m

and separately symmetric in the following sense :
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if

(a>L — (a%’ R C(%, * % aljy ¢ a?[il—kil‘j) and

Ao romsapmagsi = Ay osay ey

(@) =(az, e =, af, ==, al, oo, ali, %) .

Then we define

Gnes = 0y D A (U (O))
I T
1=I<s

for j=0,1, -, Jy,.
REMARK 2.1. The other terms do not affect to the equivalence class
of g. Moreover we see that ¢ does not depend on the choice of local co-
odinate systems (z, £), but needless to say, it depends on the choice of ui,
U{-Cl and Aal’“"aS’j.
In order to prove [Theorem 1.3, we need the following

LEMMA 2.2. Let (for fixed j)

@2 Q= )3 Ay () (U)0s
(a) &1, 33, 4,7
1=Iss
ELm'JI‘c[f;I:IJ/‘c{;fg (X5 2ip s 25
where
My e My

Aa“...,,,,s,je L™ Fy btk
is separately symmetric in the above sense. Then the complete symbol q
of Q in

M, e M. M, k. —1),-, M, k., —1
Lm kh:...,kl_s/Lm @1+(;¢%1 ),..., ls+(k7:s )
i, ig i1 ig

is given by the formula:

Yy o0 o0
quXp(Z ; axl a—El>0m—j(Q>'

ty

For the proof we only give an outline here. (cf. [5]). First by multi-
plication of p by an elliptic symbol and separately symmetricity of Aaoag, i
it is sufficient to consider the following type :

Q= Vit... Vi,

where

1 1

Vise LFF 7R (X; 5,).
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We note the inclusion

(2.3) Lm’f,‘c’;g;::;‘,fgscLm“’Mil*i oMt
1

s 1y lg
Then we prove by induction on M; +---+M; ; it is evident for M; +---+
M, =1 by (2.3). Suppose that the lemma is true for M; +---+M;=M,
and we prove it for M; +---+M; =M+1. For example
VM VM, VY = VM, VM, VMY
iy iy iy i iy iy

M+1
————M +(k -—1) M +(Ic ——1)
mod L ¥+ Tk 3

7'.9

If we denote the complete symbol of V#,--- V¥ by gy T thus we see
1y ls (21 s

qu, +1,00, o, =qu, o, 2V, T
31 i, 14 ig

1 ¥/ o 0 0 0
+ —ZZTl:l(a—& inl,..,Mis—a;;vil-i- %inl,..,Misa—glﬁv@'l) .

qu ’""Mis

I(N 0v;, 9 0v;, 0
+ 21 Z 8& axl + axz, 65;

by the hypothesis of induction and (2.3). Thus we obtain the conclusion.
Now using the above lemma, the complete symbol p of P can be written

by :

ii o 0

€xXp 221 axl 8& 9

ln L kzl /LmM +(k —1) M +(k —1) .
7,l 1,8

y d ). .. ..
Since exp( % éla—xl 6—51> is bijective on

Lm,]}‘g[ll: le/LMM +(Ic —1) ’M +(k —1)
i zl 1.8

and its inverse is exp(— % %) this completes the proof of The-
l

orem 1. 3.



On a class of pseudo-differential operators and hypoellipticity 53

3. Proof of Theorem 1.5. (1) Sufficiency.
Let PEOPL™ {00 (X5 2, 2y, -+, 2y) and let pEX where I,=(3), i,

-++,5). By the Hamilton-Jacobi theory, we see that, under the hypotheses
(H.1), (H.2) and (H. 3), there exists locally a homogeneous canonical trans-

formation z: T*(X)—{0}—>T*(R")—{0} which maps J; into
2, ={@ ) ETHR) =0} 5 bpvnn, = ZEpsein, =0}

(I=1,2,--+,5). (cf. Grigis and Lascar [3]) Since the hypotheses and the con-
clusion of theorem 1.5 is invariant under the canonical transformation r,

denoting I7, by the set associated to P'=FPF~!, we have I, =I",. Thus
we are reduced to the case where X=R" and

Zil — {(x’ E)ET* (RN>— {O} 5 §p1+...+pil_l+1 — .. — §p1+...+pil = O} .

For brevity, we denote (§p1..ip, 41, % Ep4oin,) DY (€)s, similar to the nota-
tion for (U),-l. In this case, P can be written by :

J
To
(3.1) P=2] 2 Ay g, i (Da)ilr e +(Da)iy)s
T=0 ) jet,2,m; My R0
lslgls

where A.,.....; are classical pseudo-differential operators of order
$ . $
m— 3 My +i( 5k, -1)
=1 =1

defined in a conic neighbourhood of p&2, where I,=(i;, -+, 4;). Then the
conclusion of theorem 1.3 gives

8.2 P =3t

does not vanish in some conic neighbourhood of p.
Next we shall modify the class of pseudo-differential operators in
so as to agree with our situation and list up the fact which we shall need.

Let Zi:{(x, §eT*(X)—{0}; & =-.. zggizo} (i=1,--,n)

and let U be an open conic set in T*(X)—{0}. If £&R” and « is a multi-
index, we set

§=(@ -+ ©On ") where (8;=(, -8



54 J. Aramaki

a= <(a)1, coo (@), a"> where (a); =(aj, -+, al¥), al EZ"

»; ; 0 ai_ 0 a} 0 a%)i
= et (o) =) (o)

o et

Then the space S™%: i (X; 3y, -+, X,) where m and M, are real numbers
is the set of all C* functlons a(z, &) on T*(X)—{0} such that for any com-
pact set KC X and for any multi-indices a, $, there exists a constant Cx>0
such that

o )
<C

e z H@ gl =la’ ]ﬂpi(f)Mi_“")“

i=1

l (@)

and we set

=

for all (x,&) € KX(R¥—{0}) and |§|=1. Then we have

(M) _ -+ (My) _

(3.4) S C ST B Ry
with p—:_l—kl-i-—--l--f_—_k;’ 60=0 where (s)_ =inf (0, s) for s&eR. (Here .S is

the symbol class of Hérmander [6], [7])
In fact, since Iél‘ﬁépi(é)é const., the right hand side in (3. 3) is
estimated by

(M) _ 44 (My) _ ( 1

n
const. lffm_ B R ) (B @),

(3.5) If acS™i

n

and for any compact set KC‘X, there exists a constant C>0 such that
|a(e, | = Cleim [l 0¥ for (x, ) cKx(RY—(0})

and /=1, then a'&S™™ "

End of the proof of sufficiency in [Lheorem 1.5.
Since d;(x,§)=p;(§), ¢’ in (3. 2) belongs to .S™%. %% in a conic neibour-

hood of p where I,=(i;, -++, ;). (In fact we have only to repeat above argu-

ment by replacing (1,2, ---, n) with (¢, --+,75).) Moreover since p'/|&|™ has

S
the same semi-homogeneous behavior as [] /i, and (3. 2) is satisfied,
1=1
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g =p" IES‘m‘kal s by (3.5)

ls

Now let Q' =¢ (x, D)= OPS™ ‘kz, T zs (the class of pseudo-differential

operators with symbols satisfying (3. 3)) Then we have Q'P=I—R, where

1 0,0

REOPS_’%I*""’L’%'S’kil,’...:kis .

This proves that P has a left parametrix Q=OPS™™~ T ”k’ By (3. 4),
we see that P is hypoelliptic at p with loss of M,, derlvaélves Where

]\/[i1+"'+]\/[is
MIP: kzl""‘{_kzs ’

I,=(i;, -+, 15) and p€X. This completes the proof of sufficiency in
1.5 and Corollary 1. 5.
(2) Necessity. We suppose that I, contains zero at a point p=(z% &) &

Y and let I,=(¢;, -+, 7). Then, in a conic neighbourhood of p, P has the
form :

J

Io
P=3 2 Ao ey, i (D) {01 (D) (s
J=0 (a)le[l’z"“’pil]Mil_k%'J

1siss
where A, ... ;is of degree m— i M; +j (i kil—l) (In the following argu-
i=1 i=1

S S
ment we put M= 3, M,, K= Zkil.) Then it is sufficient to prove that there
=1 =1

exists a distribution « such that the wave front set WF(u)C{(x 8% ; 1>0},
Puc H* at p, but uw& H* ™M, at o.

For brevity, we write x=((x);, -**, (x);,, t), the dual variable &=((§);, -,
(€)i 7) and we may assume 2°=0, £°=((0);, --+, (0);,, 0, -+, 0, 1) (ry=1). Then
our hypothesis on ¢(p, X) means :

10 X)= 33 0, 0, 20) BB =0

Jj= O(a)l

for some ((&);, -+, (6);). Here aal,...,',,s,j is the homogeneous term of degree
m—M+j(K—1) of Aal,...,us,,-. Therefore if we assign to ((£);, '"’@is) the
weight 1 and to r the weight K/(K—1) respectively, we find that g(p, X)
is quasi-homogeneous of degree (Km— M)/(K—1) of type (1, K/(K—1)). For
the terms “quasi-homogeneous symbols”, see Lascar [9]. Then we have
ProrosiTioN 3.1. Under the above assumptions, we can construct

a distribution w such that the wave front set WF(u)C{(z° 6% ; 1>0},
Pue H* at p, but u & H*™ 1, at p.
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For the proof, if we regard ¢(po, X) as quasi-homogeneous symbol of
degree (Km—M)/(K—1) of type (1, K/(K—1)), we can apply [9: Lemma
7.1] to P.

This completes the proof of [Theorem 1.5 and Corollary 1. 5.

ExampLE 3.2. (1) Pz, D)=D!D}%---D¥»+ A(z, D) in R"(n<N) where

A(x, D) is a pseudo-differential operator of order i M;—1 (M;=2). In this
i=1

case, taking k,=M,;, i=1,---,n, we find that P is hypoelliptic with loss of
1-derivative if and only if &/&)e---E¥n420(x, £)#0 for all (&, &, ---&,) ER™
Here 2°(z, €) is the principal symbol of i(z, D).

(2) P(x, D)=D{(Dj+ D3 +iD}(Di+ D;+D3)+ D+ D+ D5 in R®.  In this
case, taking M;=6, k=3, M,=k,=2, we find P is hypoelliptic with loss of
2-derivatives. |

4. Other results

In this section we consider pseudo-differetial operators on an open set
2 in R¥. For (2,8 eT*(Q)=2XxR", we set up the following notations :

z=,2", 2", dual variable & = (&, ¢&",¢£")
where o =(af, -, z2h), & =(&, &)

=y ), = 6

2{ = {5{ = :521 - 0}’ *tty E;' - { £,+---+in:_1+1 — ”':521+'"+in' = O}
where 4+ +i, =Y

=Aa'=--=2a =0}, -, 2 =& vsippr_ 1 =" =Zj gt j, =0}

where  ji4-Fj ="

For brevity we use the notations (x');, (§¢), similar to those in section 3

and define
€] = (€ iyt o+ E )
I(x”)ll = (x;"12+---+jl_1+1+ e +x9’12+...+jl)1/2 .

M/ e MI :M" "',M,’
Then ~ OPL™3  mid (@5 X, o, X 5o, 3T0)

s Kt ki,""’

is the space of pseudo-differential operators such that :

(=]

4.1) P, &)~ 3 pm-j(x, &) where pn_,’s are positively-homogeneous of

j=0
degree m—j and satisfy :

4.2) For every KC £, there exists a constant Cx>0 such that
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Ipm—j(x,.f),
&7

<aaer@W—mw, =1

2 lMl —k;"§ T 51 IMZ k'

n’
= Ck
=1

(4. 3) For every K€, there exists a constant C>0 such that

|pn(x, §)| y
HENRR L

(. HeKx (R —{0)),  J&=1.

//n ’
r/ IMZ ' IMl

Then we note that the characteristic set ¥ of P is the union of X, ---,
2y 2V, 37, As before we denote I, by the set of indices which pE]
or p&27 and we suppose that there exist integers 2}, / such that M|=Fk,l,
and M} =Fk/l]. Then for every pcX (where L=, -, 1)
there exists a conic neighbourhood U of p such that in U

Ip
PEE I A )G DI DI
(a)lerl ] "= "
(8) €1, LJM’ ’%J

oMy (g =1, Myr kgt =10 M (K, =1),, M0, +(k]S, =1)
mod L s i1 51 srr s

i’ i oy kl,,g/ : k;_;l, o Ic;;,”
where J;, = max {Z;,, 1.}
1=i<s’ m
I=m<s?

Then we obtain

THEOREM 4.1. Let P be a pseudo-differential operator satisfying (4. 1),
(4.2) and (4.3). Assume that for every pE3 (where L =&}, -+, tl: &/, -+, i),

Z Z 2 —,_; Zl' kzllj)+] (A ’L: AN ;azn ﬂl' ﬁll )X

J= 0(("‘)L = 1 s 1 s

X (1) ”)(“)s"(E')(ﬁ)J (gf)t@zis';ko

1 tgrs
Jor all 'R, & €R”. Then P is hypoelliptic with loss of M deriva-
tives where
M= maxI M Mgt :
l /e’+ +k’ L +---+kgg;, ’

(i{, ey z’g,)c(l’ ceey p’) (i{/’ eey Z'g{,c<]_, “eey )u")l, .

J

In fact we can construct a left parametriz in S¥5™ with p=1—1/k, 6=1/k
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where k= min {k}., k)
1575’ -
1<jr7gn’’

The proof is similar to that of section 3.

ExampLE 4.2. (1) P, D)=x3D% +A(x, D) where 1 is a pseudo-dif-
ferential operator of order 1. In this case, taking Mi==k{=2, M/ =k=2,
we find that P is hypoelliptic with loss of 1-derivative if x3&+2(x, §)#0
for all xz, &R where (z, &) is the principal symbol of (x, D).

(2) Pz, t, Dy, D,)=t%|D,|*+|D,|?+ D} (k=2, integer) where (z, f)E R" X
R. In this case, taking M,=2k, ki=k, M{=Fk’'=4, we find that P is hy-

poelliptic with loss of 2-derivatives.
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