On a class of pseudo-differential operators and hypoellipticity

By Junichi Aramaki

(Received January 9, 1979; Revised April 11, 1979)

0. Introduction

In this paper we shall consider a class of pseudo-differential operators P whose characteristic set Σ is the union of closed conic submanifolds Σ_1 , $\Sigma_2, \dots, \Sigma_n$. Under some transversarity conditions and involutiveness, we shall give the necessary and sufficient condition for hypoellipticity of P.

When n=1, our class coincides with $L^{m,M}(X,\Sigma)$ introduced by Helffer [5] and moreover if k=2, it coincides with $L^{m,M}(X,\Sigma)$ introduced by Sjöstrand [8] (see also [4]). In the case where n=1, M=2, k=2 and Σ is involutive, Boutet de Monvel [1] gives a necessary and sufficient condition for the existence of a parametrix of P in $OPS^{-m,-M}$ (more general class than ours OPL), which is also equivalent to the hypoellipticity of P with loss of 1-derivative. For general M and k, [5] constructs a left parametrix and then proves hypoellipticity with loss of M/k-derivatives, which is a generalization of [1].

In § 1, using the technique developed by [5], we introduce an invariance of P (Theorem 1.3) and state a necessary and sufficient condition for the hypoellipticity of P (Theorem 1.5). In § 2 and § 3, we give their proofs. § 4 is devoted to the study of hypoellipticity for another class of pseudo-differential operators on \mathbb{R}^N .

1. Notations, Definitions and Statements of the results

Let X be a paracompact C^{∞} manifold of dimension N and let $T^*(X)$ — $\{0\}$ be the cotangent bundle minus the zero section.

DEFINITION 1. 1. Let $\Sigma_1, \Sigma_2, \dots, \Sigma_n$ be closed conic submanifolds of codimension p_1, p_2, \dots, p_n respectively in $T^*(X) - \{0\}$ and let $m \in \mathbb{R}$, $M_1, M_2, \dots, M_n \in \mathbb{Z}^+$, $k_1, k_2, \dots, k_n \in \mathbb{Z}^+$ and $k_j \geq 2$, $j = 1, 2, \dots, n$. Then we define $OPL^{m, M_1, M_2, \dots, M_n}(X; \Sigma_1, \Sigma_2, \dots, \Sigma_n)$ to be the space of pseudo-differential operators P which, in every local coordinate system $U \subset X$, has a symbol of the form

(1.1) $p(x,\xi) \sim \sum_{j=0}^{\infty} p_{m-j}(x,\xi)$, where $p_{m-j}(x,\xi)$ are elements of $C^{\infty}(\mathbf{R}^{N} \times (\mathbf{R}^{N} - \{0\}))$ and positively-homogeneous of degree m-j and satisfy:

(1.2) For every $K \subseteq U$, there exists a constant $C_K > 0$ such that $\frac{|p_{m-j}(x,\xi)|}{|\xi|^{m-j}} \leq C_K \prod_{l=1}^n d_l(x,\xi)^{(M_l-k_lj)_+}, \quad (x,\xi) \in K \times (\mathbb{R}^N - \{0\})$

and $|\xi| \ge 1$.

(1.3) For every $K \subseteq U$, there exists $C'_{K} > 0$ such that

$$rac{|p_m(x,\xi)|}{|\xi|^m} \ge C_K' \prod_{l=1}^n d_l(x,\xi)^{M_l}, \quad (x,\xi) \in K imes \left(R^N - \{0\}
ight)$$

and $|\xi| \ge 1$. Here

$$d_{l}(x,\xi) = \inf_{(y,\eta) \in \Sigma_{l}} \left(|x-y| + \left| \eta - \frac{\xi}{|\xi|} \right| \right)$$

and $(s)_+ = \sup(0, s)$ for $s \in \mathbb{R}$.

For example, let $P(x, D) = D_1^{M_1} D_2^{M_2} \cdots D_n^{M_n} + \lambda(x, D)$ in \mathbb{R}^N $(n \leq N)$ where $\lambda(x, D)$ is a pseudo-differential operator of order $M_1 + M_2 + \cdots + M_n - 1$. In this case taking $\Sigma_i = \{\xi_i = 0\}$, $M_i = k_i$, $i = 1, 2, \dots, n$, we find that p belongs to $OPL^{m, M_1, M_2, \dots, M_n}_{k_1, k_2, \dots, k_n}(X; \Sigma_1, \Sigma_2, \dots, \Sigma_n)$.

Remark 1.2. If $M_i=0$ for some i, we have

$$\begin{split} OPL^{m,\underbrace{M_{1},M_{2},\cdots,M_{n}}_{k_{1},k_{2},\cdots,k_{n}}}(X\,;\;\; \Sigma_{1},\; \Sigma_{2},\; \cdots,\; \Sigma_{n}) \\ &= OPL^{m,\underbrace{M_{1},\cdots,M_{i-1},M_{i+1},\cdots,M_{n}}_{k_{1},\cdots,k_{i-1},k_{i+1},\cdots,k_{n}}}(X\,;\;\; \Sigma_{1},\; \cdots,\; \Sigma_{i-1},\; \Sigma_{i+1},\; \cdots,\; \Sigma_{n}) \end{split}$$

and $OPL^{m,M}_{2}(X; \Sigma_{1})$ coincides with $L^{m,M}_{c}(X; \Sigma_{1})$ in [5], [8]. (We shall write $OPL^{m,M_{1},\cdots,M_{n}}_{k_{1},\cdots,k_{n}}$ in stead of $OPL^{m,M_{1},\cdots,M_{n}}_{k_{1},\cdots,k_{n}}(X; \Sigma_{1},\cdots,\Sigma_{n})$ if this does not lead to confusions.) Moreover note that the characteristic set Σ of P which belongs to $OPL^{m,M_{1},\cdots,M_{n}}_{k_{1},\cdots,k_{n}}$ is the union of $\Sigma_{1},\cdots,\Sigma_{n}$.

For every $\rho \in \Sigma$, we write $I_{\rho} = \{i : \rho \in \Sigma_i\}$.

Next we assume the transversality condition and involutiveness in the following sense:

(H.1) For every $\rho \in \Sigma$, if we put $I_{\rho} = (i_1, i_2, \dots, i_s)$ there exist $p_{i_1} + p_{i_2} + \dots + p_{i_s}$ C^{∞} real homogeneous functions $u_{i_j}^k$, $1 \le k \le p_{i_j}$, $1 \le j \le s$, defined in a conic neighbourhood of ρ such that

$$\Sigma_{i_j} = \{u_{i_j}^1 = u_{i_j}^2 = \dots = u_{i_j}^{p_{i_j}} = 0\}$$

and the $du_{i_j}^k$ $(1 \le k \le p_{i_j}, 1 \le j \le s)$ being linearly independent at ρ .

J. Aramaki

(*H*. 2) Σ_i and $\Sigma_i \cap \Sigma_j$ are involutive, *i. e.* if $u_i^1, u_i^2, \dots, u_i^{p_i}, u_j^1, u_j^2, u_j^{p_j}$ are as above, then

$$\{u_i^k,\,u_i^l\}=0$$
 at Σ_i $\{u_i^k,\,u_j^l\}=0$ at $\Sigma_i\cap\Sigma_j$ $(i\!\neq\! j)$

(H. 3) The radial vector $\sum_{l=1}^{N} \xi_{j} \frac{\partial}{\partial \xi_{j}}$ is linearly independent of $H_{u_{i_{j}}}^{k}$, $1 \leq k \leq p_{i_{j}}$, $1 \leq j \leq s$, at every point near ρ , where Hamilton-Jacobi field H_{f} and Poisson bracket $\{f,g\}$ are defined by the following formulas respectively:

$$H_f = \sum_{j=1}^{N} \left(\frac{\partial f}{\partial \xi_j} \frac{\partial}{\partial x_j} - \frac{\partial f}{\partial x_j} \frac{\partial}{\partial \xi_j} \right),$$
 $\{f, g\} = \sum_{j=1}^{N} \left(\frac{\partial f}{\partial \xi_j} \frac{\partial g}{\partial x_j} - \frac{\partial f}{\partial x_j} \frac{\partial g}{\partial \xi_j} \right).$

If q_1 , q_2 are elements in $L^{m,M_1,\cdots,M_n}_{k_1,\cdots,k_n}$, we define the following equivalence relation: $q_1 \equiv q_2$ in a conic neighbourhood U in $T^*(X) - \{0\}$ if and only if $q_1 - q_2 \in L^{m,M_1 + (k_1 - 1),\cdots,M_n + (k_n - 1)}_{k_n}$ in U

We suppose that there exist integers $l_j \ge 0$ such that $M_j = k_j l_j$, $j = 1, 2, \dots, n$.

Theorem 1.3. Let p be a symbol satisfying (1.1) and (1.2) and let $\rho \in \Sigma$, $I_{\rho} = (i_1, i_2, \dots, i_s)$. Then there exists a conic neighbourhood U of ρ such that in U

defined by:

$$(1.4) q \equiv \exp\left(-\frac{1}{2i}\sum_{l=1}^{N}\left(\frac{\partial}{\partial x_{l}}\frac{\partial}{\partial \xi_{l}}\right)\right)p = \sum_{t=0}^{\infty}\frac{(-1)^{t}}{t!}\left(\frac{1}{2i}\sum_{l=1}^{N}\frac{\partial}{\partial x_{l}}\frac{\partial}{\partial \xi_{l}}\right)^{t}p$$

is invariant under a locally homogeneous canonical transformation: τ ; $T^*(X) - \{0\} \rightarrow T^*(\mathbf{R}^N) - \{0\}$ such that Σ_{i_j} is mapped to Σ'_{i_j} . This means that if F is an elliptic Fourier integral operator associated with τ and p' is a symbol of $P' = FPF^{-1}$ and q' is the symbol associated with P' by the formula (1,4), then we have $q'(\tau(\rho')) = q(\rho')$ for every ρ' in a conic neighbourhood of ρ .

Let
$$q \left(\sim \sum_{j=0}^{\infty} q_{m-j} \right) \in L^{m, M_{i_1}, \dots, M_{i_s}, M_{i_s}} / L^{m, M_{i_1} + (k_{i_1}^i - 1), \dots, M_{i_s} + (k_{i_s}^i - 1)}$$

be a symbol associated with p in a conic neighbourhood of $\rho \in \Sigma$, where

 $I_{\rho} = (i_1, \, \cdots, \, i_s)$. Then we define $\sum\limits_{l=1}^s (M_{i_l} - k_{i_l} \cdot j)$ linear form, denoted by \tilde{q}_{m-j} , on

$$\left(T_{\rho}\!\left(T^{*}(X)-\{0\}\right)\right)\!\iota^{\sum\limits_{i=1}^{s}(M_{i}\iota^{-k}\iota^{i})}$$

by: For any

$$\begin{split} X_{i_1}^1,\,X_{i_1}^2,\,\cdots,\,X_{i_1^{l_1}-k_{i_1}\cdot j}^{\mathit{M}_{l_1}-k_{i_1}\cdot j},\,\cdots,\,X_{i_s}^1,\,\cdots X_{i_s^{l_s}s}^{\mathit{M}_{l_s}-k_{i_s}\cdot j} &\in T_{\rho}\Big(T^*(X)-\{0\}\Big)\,,\\ \tilde{q}_{m-j}(\rho)\,(X_{i_1}^1,\,\cdots,\,X_{i_s^{l_s}s}^{\mathit{M}_{l_s}-k_{i_s}\cdot j}) &=\\ &=\prod\limits_{l=1}^s\frac{1}{(M_{i_l}-k_{i_l}\cdot j)\,!}(\tilde{X}_{i_1}^1\!\cdots\!\tilde{X}_{i_s^{l_s}s}^{\mathit{M}_{l_s}-k_{i_s}\cdot j}q_{m-j})\,(\rho) \end{split}$$

where \tilde{X} designs an extension of X to a neighbourhood of ρ .

Remark 1.4. (1) The above definition of \tilde{q}_{m-j} is independent of the choice of a class of q and \tilde{q}_{m-j} is symmetric.

(2) If n=1 and $M_1=k_1$, $q_m(x,\xi)=p_m(x,\xi)$ and $q_{m-1}(x,\xi)=p_{m-1}(x,\xi)-\frac{1}{2i}\sum_{l=1}^N\frac{\partial}{\partial x_l}\frac{\partial}{\partial \xi_l}p_m(x,\xi)$. In this case $\tilde{q}(\rho,X)$ (which is defined below) is the sum of the transversal hessian of p_m and subprincipal symbol of P at ρ . Next for every $\rho\in\Sigma$, we define

$$\tilde{q}(\rho,X) = \sum_{j=0}^{J_{I_{\rho}}} \tilde{q}_{m-j}(\rho) \left(X,\,\cdots,\,X\right), \qquad \text{for all} \quad X {\in}\, T_{\rho} \Big(T^*(X) - \{0\}\Big)$$

where

$$J_{I_{
ho}} = \max_{1 \leq l \leq s} \left(rac{M_{i_l}}{k_{i_l}}
ight) \quad ext{if} \quad I_{
ho} = (i_1, \, \cdots, \, i_s) \; ,$$

and also define

$$\varGamma_{\scriptscriptstyle \rho} \! = \! \left\{ \! \tilde{q}(\rho, X) \, ; \; X \! \in \! T_{\scriptscriptstyle \rho} \left(T \! * \! (X) \! - \! \{0\} \right) \! \right\}.$$

Then we obtain the following:

Theorem 1.5. Assume that (H.1), (H.2) and (H.3) are satisfied. Let $P \in OPL^{m,M_1,M_2,\cdots,M_n}(X; \Sigma_1,\Sigma_2,\cdots,\Sigma_n)$. Then P is hypoelliptic at $\rho \in \Sigma$ with loss of M_{I_ρ} -derivatives if and only if Γ_ρ does not meet the origin for $\rho \in \Sigma$. Here $M_{I_\rho} = \frac{M_{i_1} + \cdots + M_{i_s}}{k_{i_1} + \cdots + k_{i_s}}$ if $I_\rho = (i_1,\cdots,i_s)$ and we say that P is hypoelliptic at ρ with loss of M_{I_ρ} -derivatives if $u \in \mathcal{D}'(X)$ and $Pu \in H^s$ at ρ implies $u \in H^{s+m-M_{I_\rho}}$ at ρ .

Therefore we obtain a sufficient condition for the usual hypoellipticity: COROLLARY 1.5'. Assume that the hypotheses in the above theorem are

J. Aramaki

satisfied. If Γ_{ρ} does not meet the origin for every $\rho \in \Sigma$, then P is hypoelliptic with loss of M-derivatives where $M = \max\{M_{I_{\rho}}: \rho \in \Sigma\}$. (Here we say that P is hypoelliptic with loss of M-derivatives if for all open set O in X, $u \in \mathcal{D}'(X)$ and $Pu \in H^s_{loc}(O)$ implies $u \in H^{s+m-M}_{loc}(O)$.)

REMARK 1.6. (1) In the proof, we shall construct a left parametrix of P in $L_{\rho,\delta}^{M-m}$ with $\rho=1-\frac{1}{k}$, $\delta=0$ where $k=\min\{k_j;\ 1\leq j\leq n\}$. For the definition of $L_{\rho,\delta}^{M-m}$, we refer to [6].

- (2) If $M_{I_{\rho}}$ are constant for $\rho \in \Sigma$, the condition in Corollary 1.5' is also necessary.
- (3) In the case when n=1, this theorem is proved by Helffer [5] and moreover for the case when M=2 and k=2, we refer to [1].

2. Proof of Theorem 1.3

Let $\rho = (x, \xi) \in \Sigma$, $I_{\rho} = (i_1, i_2, \dots, i_s)$ and choose C^{∞} real homogeneous functions $u_{i_l}^k$ $(1 \le l \le s, 1 \le k \le p_{i_l})$ such that Σ_{i_l} 's are defined locally by $u_{i_l}^1 = u_{i_l}^2 = \dots = u_{i_l}^{p_{i_l}} = 0$. We may assume that $u_{i_l}^k$ are positively-homogeneous of degree $\frac{1}{k_{i_1} + k_{i_2} + \dots + k_{i_s}}$. Let $U_{i_l}^k$ $(1 \le l \le s, 1 \le k \le p_{i_l})$ be classical pseudo-differential operators with principal symbol $u_{i_l}^k$. Then if $P \in L^{m, M_{i_1}, M_{i_2}, \dots, M_{i_s}}$, by using Taylor's formula, P can be written as follows:

$$(2.1) P = \sum_{j=0}^{J_{I_{\rho}}} \sum_{\substack{(\alpha)_{l} \in [1,2,\cdots,p_{i_{l}}]\\ 1 \leq l \leq s}} M_{i_{l}}^{-k} i_{l}^{\cdot j} A_{\alpha_{1}}^{}, \dots, \alpha_{s}, j}(U)_{i_{1}}^{(\alpha)_{1}} \cdots (U)_{i_{s}}^{(\alpha)_{s}} s$$

where

50

$$J_{I_{\rho}} = \max\left\{\frac{M_{i_{l}}}{k_{i_{l}}}; \ 1 \leq l \leq s\right\}, \ (\alpha)_{l} = (\alpha_{l}^{1}, \cdots, \alpha_{l}^{M_{i_{l}}-k_{i_{l}}\cdot j}), \ \alpha_{l}^{k} \in \{1, \cdots, p_{i_{l}}\}$$

and

$$(U)_{i_l}^{\scriptscriptstyle(\alpha)}\iota=U_{i_l}^{\scriptscriptstyle\alpha_l^1}\cdots U_{i_l}^{\scriptscriptstyle\alpha_l^M}\iota^{^{-k}}\iota^{^{}}.$$

Thus $A_{\alpha_1,\dots,\alpha_8,j}$ are classical pseudo-differential operators of order

$$m - rac{M_{i_1} + M_{i_2} + \cdots + M_{i_s}}{k_{i_1} + k_{i_2} + \cdots + k_{i_s}}$$

and separately symmetric in the following sense:

$$A_{\alpha_1,\dots,\alpha_l,\dots,\alpha_s,j} = A_{\alpha_1,\dots,\alpha'_l,\dots,\alpha'_l,\dots,\alpha_s,j} \quad \text{if}$$

$$(\alpha)_l = (\alpha_l^1, \, ullet \, \cdot \, , \, \alpha_l^i, \, ullet \, \cdot \, , \, \alpha_l^{M_l} \, _l^{-k_l} \, _l^{\cdot \, j}) \quad \text{and}$$

$$(\alpha)'_l = (\alpha_l^1, \, ullet \, \cdot \, , \, \alpha_l^j, \, ullet \, , \, \alpha_l^i, \, ullet \, , \, \alpha_l^{M_l} \, _l^{-k_l} \, _l^{\cdot \, j}) \, .$$

Then we define

$$q_{m-j} = \sigma_{m-j} \left(\sum_{\substack{(\alpha)_l \in [1,2,\cdots,p_{i_l}]^{M_i} - k_{i_l} \cdot j \\ 1 \le l \le s}} A_{\alpha_1,\cdots,\alpha_s,j}(U)_{i_1}^{(\alpha)_1} \bullet \bullet (U)_{i_s}^{(\alpha)_s} \right)$$

for $j=0, 1, ..., J_{I_{a}}$.

Remark 2.1. The other terms do not affect to the equivalence class of q. Moreover we see that q does not depend on the choice of local coodinate systems (x, ξ) , but needless to say, it depends on the choice of $u_{i_l}^k$, $U_{i_l}^k$ and $A_{\alpha_1, \dots, \alpha_8, j}$.

In order to prove Theorem 1.3, we need the following

LEMMA 2.2. Let (for fixed j)

$$(2.2) \qquad Q = \sum_{\substack{(\alpha)_l \in [1,2,\cdots,p_{i_l}]^{\mathcal{M}_i} - k_{i_l} \cdot j \\ 1 \le l \le s}} A_{\alpha_1,\cdots\alpha_s,j}(U)_{i_1}^{(\alpha)_1} \cdots (U)_{i_s}^{(\alpha)_s}$$

$$\in L^{m,M_i,\cdots,M_i}_{k_i}(X; \Sigma_i,\cdots,\Sigma_i)$$

where

$$A_{\alpha_1,\cdots,\alpha_s,j} \in L^{m-rac{ extbf{ extit{M}}_{i_1}+\cdots+ extbf{ extit{M}}_{i_s}}{k_{i_1}+\cdots+k_{i_s}}}$$

is separately symmetric in the above sense. Then the complete symbol q of Q in

$$L^{m,M_{i_1},\cdots,M_{i_s}}_{k_{i_1}^{i_1},\cdots,k_{i_s}^{i_s}} L^{m,M_{i_1}+(k_{i_1}^{i_1}-1),\cdots,M_{i_s}+(k_{i_s}^{i_s}-1)}_{k_{i_s}^{i_s}}$$

is given by the formula:

$$q \equiv \exp\left(rac{1}{2i}\sum\limits_{l=1}^{N}rac{\partial}{\partial x_{l}}\,rac{\partial}{\partial \xi_{l}}
ight)\sigma_{m-j}(Q)$$
 .

For the proof we only give an outline here. (cf. [5]). First by multiplication of p by an elliptic symbol and separately symmetricity of $A_{\alpha_1,\dots,\alpha_g,j}$, it is sufficient to consider the following type:

$$Q = V_{i_1}^{\mathit{M}} i_1 \cdots V_{i_s}^{\mathit{M}} i_s$$

where

$$V_{i_{j}}^{M_{i_{j}}} \in L^{\frac{1}{k_{i_{1}} + \dots + k_{i_{s}}}, 1}(X; \Sigma_{i_{j}}).$$

We note the inclusion

$$(2.3) L^{m,M_{i_1},\dots,M_{i_s}} \subset L^{m+1,M_{i_1}+k_{i_1},\dots,M_{i_s}+k_{i_s}}.$$

Then we prove by induction on $M_{i_1}+\cdots+M_{i_s}$; it is evident for $M_{i_1}+\cdots+M_{i_s}=1$ by (2.3). Suppose that the lemma is true for $M_{i_1}+\cdots+M_{i_s}=M$, and we prove it for $M_{i_1}+\cdots+M_{i_s}=M+1$. For example

If we denote the complete symbol of $V_{i_1}^{M_{i_1}} \cdots V_{i_s}^{M_{i_s}}$ by $q_{M_{i_1}, \cdots, M_{i_s}}$, thus we see

$$\begin{split} q_{\texttt{\textit{M}}_{i_1}+1,\texttt{\textit{M}}_{i_2},\cdots,\texttt{\textit{M}}_{i_s}} &\equiv q_{\texttt{\textit{M}}_{i_1},\cdots,\texttt{\textit{M}}_{i_s}} \cdot v_{i_1} + \\ &+ \frac{1}{2i} \sum_{l=1}^{N} \left(\frac{\partial}{\partial \xi_l} \, q_{\texttt{\textit{M}}_{i_1},\cdots,\texttt{\textit{M}}_{i_s}} \frac{\partial}{\partial x_l} \, v_{i_1} + \frac{\partial}{\partial x_l} \, q_{\texttt{\textit{M}}_{i_1},\cdots,\texttt{\textit{M}}_{i_s}} \frac{\partial}{\partial \xi_l} \, v_{i_1} \right). \end{split}$$

On the other hand we have

$$egin{aligned} \exp\left(rac{1}{2i}\sum_{l=1}^{N}rac{\partial}{\partial x_{l}}\;rac{\partial}{\partial \xi_{l}}
ight)v_{i_{1}}^{M_{i_{1}}+1}\cdots v_{i_{s}}^{M_{i_{s}}} \ &\equiv v_{i_{1}}\exp\left(rac{1}{2i}\sum_{l=1}^{N}rac{\partial}{\partial x_{l}}\;rac{\partial}{\partial \xi_{l}}
ight)v_{i_{1}}^{M_{i_{1}}}\cdots v_{i_{s}}^{M_{i_{s}}} + \ &+rac{1}{2i}igg(\sum_{l=1}^{N}rac{\partial v_{i_{1}}}{\partial \xi_{l}}\;rac{\partial}{\partial x_{l}}+rac{\partial v_{i_{1}}}{\partial x_{l}}\;rac{\partial}{\partial \xi_{l}}igg)q_{M_{i_{1}},\cdots,M_{i_{s}}} \end{aligned}$$

by the hypothesis of induction and (2.3). Thus we obtain the conclusion. Now using the above lemma, the complete symbol p of P can be written by:

$$\begin{split} &\exp\left(\frac{1}{2i}\sum_{l=1}^{N}\frac{\partial}{\partial x_{l}}\ \frac{\partial}{\partial \xi_{l}}\right)q\\ &\text{in } L^{m,\underset{k_{i_{1}}}{M_{i_{1}}},\cdots,\underset{k_{i_{s}}}{M_{i_{s}}}/L^{m,\underset{M_{i_{1}}+(\underset{k_{i_{1}}}{k_{i_{1}}}-1),\cdots,\underset{m,k_{i_{s}}+(\underset{k_{i_{s}}}{k_{i_{s}}}-1)}{\dots,\underset{m,k_{i_{s}}+(\underset{k_{i_{s}}}{k_{i_{s}}}-1)}{\dots,}}. \end{split}$$

Since $\exp\left(\frac{1}{2i}\sum_{i=1}^{N}\frac{\partial}{\partial x_{i}}\frac{\partial}{\partial \xi_{i}}\right)$ is bijective on

$$L^{m,M_{i_1},\cdots,M_{i_s},\dots,M_{i_s}/L^{m,M_{i_1}+(k_{i_1}-1),\cdots,M_{i_s}+(k_{i_s}-1)}} \times L^{m,M_{i_1}+(k_{i_1}-1),\cdots,M_{i_s}+(k_{i_s}-1)}$$

and its inverse is $\exp\left(-\frac{1}{2i}\sum_{t=1}^{N}\frac{\partial}{\partial x_{t}}\frac{\partial}{\partial \xi_{t}}\right)$, this completes the proof of Theorem 1.3.

3. Proof of Theorem 1.5. (1) Sufficiency.

Let $P \in OPL^{m,M_1,M_2,\cdots,M_n}_{k_1,k_2,\cdots,k_n}(X; \Sigma_1, \Sigma_2, \cdots, \Sigma_n)$ and let $\rho \in \Sigma$ where $I_{\rho} = (i_1, i_2, \cdots, i_s)$. By the Hamilton-Jacobi theory, we see that, under the hypotheses (H. 1), (H. 2) and (H. 3), there exists locally a homogeneous canonical transformation $\tau: T^*(X) - \{0\} \to T^*(\mathbf{R}^N) - \{0\}$ which maps Σ_{i_l} into

$$\varSigma_{i_l}' = \left\{ (x, \xi) \in T^*(\mathbf{R}^{N}) - \{0\} \; ; \; \xi_{p_1 + \dots + p_{i_{l-1} + 1}} = \dots = \xi_{p_1 + \dots + p_{i_l}} = 0 \right\}$$

 $(l=1,2,\cdots,s)$. (cf. Grigis and Lascar [3]) Since the hypotheses and the conclusion of theorem 1.5 is invariant under the canonical transformation τ , denoting $\Gamma'_{\tau(\rho)}$ by the set associated to $P'=FPF^{-1}$, we have $\Gamma'_{\tau(\rho)}=\Gamma_{\rho}$. Thus we are reduced to the case where $X=\mathbb{R}^N$ and

$$\varSigma_{i_l} = \left\{ (x, \xi) \in T^*(I\!\!R^N) - \{0\} \; ; \; \xi_{p_1 + \dots + p_{i_{l-1}} + 1} = \dots = \xi_{p_1 + \dots + p_{i_l}} = 0 \right\} \, .$$

For brevity, we denote $(\xi_{p_1+\cdots+p_{i_{l-1}}+1}, \cdots, \xi_{p_1+\cdots+p_{i_l}})$ by $(\xi)_{i_l}$ similar to the notation for $(U)_{i_l}$. In this case, P can be written by:

$$(3.1) P = \sum_{j=0}^{J_{I_{\rho}}} \sum_{\substack{(\alpha)_{l} \in [1,2,\cdots,p_{i_{l}}]^{M_{i_{l}}-k_{i_{l}}\cdot j}} A_{\alpha_{1},\cdots,\alpha_{s},j} (D_{x})_{i_{1}}^{(\alpha)_{1}} \cdot \cdot (D_{x})_{i_{s}}^{(\alpha)_{s}}$$

where $A_{\alpha_1,\cdots,\alpha_g,j}$ are classical pseudo-differential operators of order

$$m-\sum\limits_{l=1}^{s}M_{i_{l}}+j\Bigl(\sum\limits_{l=1}^{s}k_{i_{l}}-1\Bigr)$$

defined in a conic neighbourhood of $\rho \in \Sigma$, where $I_{\rho} = (i_1, \dots, i_s)$. Then the conclusion of theorem 1.3 gives

(3.2)
$$p' = \sum_{j=0}^{J_{I_{\rho}}} p_{m-j}$$

does not vanish in some conic neighbourhood of ρ .

Next we shall modify the class of pseudo-differential operators in [1] so as to agree with our situation and list up the fact which we shall need.

Let
$$\Sigma_i = \{(x, \xi) \in T^*(X) - \{0\} ; \xi_i^1 = \dots = \xi_i^{p_i} = 0\}$$
 $(i = 1, \dots, n)$

and let U be an open conic set in $T^*(X) - \{0\}$. If $\xi \in \mathbb{R}^N$ and α is a multi-index, we set

$$\xi = ((\xi)_1, \dots, (\xi)_n, \xi'')$$
 where $(\xi)_i = (\xi_i^1, \dots, \xi_i^{p_i})$

$$\alpha = ((\alpha)_1, \dots, (\alpha)_n, \alpha'') \quad \text{where} \quad (\alpha)_i = (\alpha_i^1, \dots, \alpha_i^{p_i}), \ \alpha_i^j \in Z^+$$

$$|(\alpha)_i| = \sum_{j=1}^{p_i} \alpha_i^j, \ \left(\frac{\partial}{\partial (\xi)_i}\right)^{\alpha_i} = \left(\frac{\partial}{\partial \xi_i^1}\right)^{\alpha_i^1} \dots \left(\frac{\partial}{\partial \xi_i^{p_i}}\right)^{\alpha_i^{p_i}}$$

and we set

$$\rho_i(\xi) = \left\{ \! \left(\frac{|(\xi)_i|}{|\xi|} \right)^{\! 2} \! + |\xi|^{-\frac{2}{k_1 + \dots + k_n}} \right\}^{\! 1/2}.$$

Then the space $S^{m,M_1,\cdots,M_n}_{k_1,\cdots,k_n}(X; \Sigma_1,\cdots,\Sigma_n)$ where m and M_i are real numbers is the set of all C^{∞} functions $a(x,\xi)$ on $T^*(X)-\{0\}$ such that for any compact set $K\subset X$ and for any multi-indices α , β , there exists a constant $C_K>0$ such that

$$(3.3) \qquad \left| \left(\frac{\partial}{\partial x} \right)^{\beta} \left(\frac{\partial}{\partial (\xi)_{1}} \right)^{(\alpha)_{1}} \cdots \left(\frac{\partial}{\partial (\xi)_{n}} \right)^{(\alpha)_{n}} \left(\frac{\partial}{\partial \xi''} \right)^{\alpha''} a \right| \leq$$

$$\leq C_{K} |\xi|^{m - \sum_{i=1}^{L} |\langle \alpha \rangle_{i}| - |\alpha''|} \prod_{i=1}^{n} \rho_{i} (\xi)^{M_{i} - |\langle \alpha \rangle_{i}|}$$

for all $(x, \xi) \in K \times (\mathbb{R}^N - \{0\})$ and $|\xi| \ge 1$. Then we have

$$(3.4) S_{k_1, \dots, k_n}^{m, M_1, \dots, M_n} \subset S_{\rho, \delta}^{m - \frac{(M_1)_+ + \dots + (M_n)_-}{k_1 + \dots + k_n}}$$

with $\rho = 1 - \frac{1}{k_1 + \dots + k_n}$, $\delta = 0$ where $(s)_- = \inf(0, s)$ for $s \in \mathbb{R}$. (Here $S_{\rho, \delta}^m$ is the symbol class of Hörmander [6], [7])

In fact, since $|\xi|^{-\frac{1}{k_1+\cdots+k_n}} \leq \rho_i(\xi) \leq \text{const.}$, the right hand side in (3.3) is estimated by

$$\text{const. } |\xi|^{m-\frac{(M_1)_-+\cdots+(M_n)_-}{k_1+\cdots+k_n}-\left(1-\frac{1}{k_1+\cdots+k_n}\right)\left(\sum\limits_{i=1}^n|\left(\alpha\right)_i|+|\alpha''|\right)}.$$

(3.5) If
$$a \in S^{m, M_1, \dots, M_n}$$

and for any compact set $K \subseteq X$, there exists a constant C > 0 such that

$$\left| a(x,\xi) \right| \ge C |\xi|^m \prod_{i=1}^n \rho_i^{M_i} \quad \text{for} \quad (x,\xi) \in K \times \left(\mathbf{R}^N - \{0\} \right)$$

and $|\xi| \ge 1$, then $a^{-1} \in S^{-m, -M_1, \dots, -M_n}$

End of the proof of sufficiency in Theorem 1.5.

Since $d_i(x,\xi) \leq \rho_i(\xi)$, p' in (3.2) belongs to $S^{m,M_{i_1},\dots,M_{i_s}}$ in a conic neibourhood of ρ where $I_{\rho} = (i_1, \dots, i_s)$. (In fact we have only to repeat above argument by replacing $(1, 2, \dots, n)$ with (i_1, \dots, i_s) .) Moreover since $p'/|\xi|^m$ has the same semi-homogeneous behavior as $\prod_{l=1}^s \rho_{i_l}^{M_{i_l}}$ and (3.2) is satisfied,

$$q' = p'^{-1} \in S^{-m, -M_{i_1}, \dots, -M_{i_s}}$$
 by (3.5)

Now let $Q' = q'(x, D) \in OPS^{-m, -M_{i_1}, \dots, -M_{i_s}}$ (the class of pseudo-differential operators with symbols satisfying (3.3)). Then we have Q'P = I - R, where

$$R \in OPS^{-\frac{1}{k_{i_1} + \dots + k_{i_s}}, 0, \dots, 0}_{k_{i_1}, \dots, k_{i_s}}.$$

This proves that P has a left parametrix $Q \in OPS^{-m,-M_{i_1},\cdots,-M_{i_s}}$. By (3.4), we see that P is hypoelliptic at ρ with loss of $M_{I_{\rho}}$ -derivatives where

$$M_{I_{
ho}}=rac{M_{i_1}+\cdots+M_{i_s}}{k_{i_1}+\cdots+k_{i_s}}$$
 ,

 $I_{\rho} = (i_1, \dots, i_s)$ and $\rho \in \Sigma$. This completes the proof of sufficiency in Theorem 1.5 and Corollary 1.5'.

(2) Necessity. We suppose that Γ_{ρ} contains zero at a point $\rho = (x^0, \xi^0) \in \Sigma$ and let $I_{\rho} = (i_1, \dots, i_s)$. Then, in a conic neighbourhood of ρ , P has the form:

$$P = \sum_{j=0}^{J_{I_{\rho}}} \sum_{\substack{(\alpha)_{l} \in [1,2,\cdots,p_{i_{l}}]^{M_{i_{l}}-k_{i_{l}}\cdot j}\\1 \leq l \leq s}} A_{\alpha_{1},\cdots,\alpha_{s},j} (D_{x})_{i_{1}}^{(\alpha)_{1}} \cdots (D_{x})_{i_{s}}^{(\alpha)_{s}}$$

where $A_{\alpha_1,\cdots,\alpha_s,j}$ is of degree $m-\sum\limits_{l=1}^s M_{i_l}+j\Big(\sum\limits_{l=1}^s k_{i_l}-1\Big)$. (In the following argument we put $M=\sum\limits_{l=1}^s M_{i_l}$, $K=\sum\limits_{l=1}^s k_{i_l}$.) Then it is sufficient to prove that there exists a distribution u such that the wave front set $WF(u)\subset\{(x^0,\,\lambda\xi^0)\,;\,\lambda>0\}$, $Pu\in H^s$ at ρ , but $u \in H^{s+m-M_{I_\rho}}$ at ρ .

For brevity, we write $x=(\langle x\rangle_{i_1},\cdots,\langle x\rangle_{i_s},t)$, the dual variable $\xi=(\langle \xi\rangle_{i_1},\cdots,\langle \xi\rangle_{i_s},\tau)$ and we may assume $x^0=0,\ \xi^0=(\langle 0\rangle_{i_1},\cdots,\langle 0\rangle_{i_s},0,\cdots,0,1)\ (\tau_N=1)$. Then our hypothesis on $q(\rho,X)$ means:

$$q(\rho, X) = \sum_{j=0}^{J_{I_{\rho}}} \sum_{(\alpha)_{l}} a_{\alpha_{1}, \dots, \alpha_{s}, j}(0, \dots, 0, \tau_{N}) (\xi)_{i_{1}}^{(\alpha)_{1}} \dots (\xi)_{i_{s}}^{(\alpha)_{s}} = 0$$

for some $((\xi)_{i_1}, \dots, (\xi)_{i_s})$. Here $a_{\alpha_1, \dots, \alpha_s, j}$ is the homogeneous term of degree m-M+j(K-1) of $A_{\alpha_1, \dots, \alpha_s, j}$. Therefore if we assign to $((\xi)_{i_1}, \dots, (\xi)_{i_s})$ the weight 1 and to τ the weight K/(K-1) respectively, we find that $q(\rho, X)$ is quasi-homogeneous of degree (Km-M)/(K-1) of type (1, K/(K-1)). For the terms "quasi-homogeneous symbols", see Lascar [9]. Then we have

Proposition 3.1. Under the above assumptions, we can construct a distribution u such that the wave front set $WF(u) \subset \{(x^0, \lambda \xi^0); \lambda > 0\}$, $Pu \in H^s$ at ρ , but $u \in H^{s+m-M_{I_\rho}}$ at ρ .

For the proof, if we regard $q(\rho, X)$ as quasi-homogeneous symbol of degree (Km-M)/(K-1) of type (1, K/(K-1)), we can apply [9: Lemma 7.1] to P.

This completes the proof of Theorem 1.5 and Corollary 1.5'.

Example 3.2. (1) $P(x,D) = D_1^{M_1} D_2^{M_2} \cdots D_n^{M_n} + \lambda(x,D)$ in $\mathbb{R}^N(n \leq N)$ where $\lambda(x,D)$ is a pseudo-differential operator of order $\sum_{i=1}^n M_i - 1$ $(M_i \geq 2)$. In this case, taking $k_i = M_i$, $i = 1, \dots, n$, we find that P is hypoelliptic with loss of 1-derivative if and only if $\xi_1^{M_1} \xi_2^{M_2} \cdots \xi_n^{M_n} + \lambda^0(x,\xi) \neq 0$ for all $(\xi_1, \xi_2, \cdots \xi_n) \in \mathbb{R}^n$. Here $\lambda^0(x,\xi)$ is the principal symbol of $\lambda(x,D)$.

(2) $P(x, D) = D_1^6(D_2^2 + D_3^2) + iD_1^3(D_1^4 + D_2^4 + D_3^4) + D_1^6 + D_2^6 + D_3^6$ in \mathbb{R}^3 . In this case, taking $M_1 = 6$, $k_1 = 3$, $M_2 = k_2 = 2$, we find P is hypoelliptic with loss of 2-derivatives.

4. Other results

In this section we consider pseudo-differential operators on an open set Ω in \mathbb{R}^N . For $(x, \xi) \in T^*(\Omega) = \Omega \times \mathbb{R}^N$, we set up the following notations:

$$x = (x', x'', x'''), \qquad \text{dual variable } \xi = (\xi', \xi'', \xi''')$$
 where
$$x' = (x'_1, \cdots, x'_{\mu'}), \qquad \xi' = (\xi'_1, \cdots, \xi'_{\mu'})$$

$$x'' = (x''_1, \cdots, x''_{\mu''}), \qquad \xi'' = (\xi''_1, \cdots, \xi''_{\mu''})$$

$$\Sigma'_1 = \{\xi'_1 = \cdots = \xi'_{i_1} = 0\}, \cdots, \Sigma'_{n'} = \{\xi'_{i_1} + \cdots + i_{n'-1} + 1 = \cdots = \xi'_{i_1} + \cdots + i_{n'} = 0\}$$
 where
$$i_1 + \cdots + i_{n'} = \mu'$$

$$\Sigma''_1 = \{x''_1 = \cdots = x''_{j_1} = 0\}, \cdots, \Sigma''_{n''} = \{x''_{j_1} + \cdots + j_{n''-1} + 1 = \cdots = x_{j_1} + \cdots + j_{n''} = 0\}$$
 where
$$j_1 + \cdots + j_{n''} = \mu''$$
.

For brevity we use the notations $(x'')_l$, $(\xi')_l$ similar to those in section 3 and define

$$\begin{split} \left| (\xi')_l \right| &= (\xi'^2_{i_1 + \dots + i_{l-1} + 1} + \dots + \xi'^2_{i_1 + \dots + i_l})^{1/2} \\ \left| (x'')_l \right| &= (x''^2_{j_1 + \dots + j_{l-1} + 1} + \dots + x''^2_{j_1 + \dots + j_l})^{1/2} \,. \end{split}$$
 Then
$$OPL^{m, M'_1, \dots, M'_{n'}; \ M'_1', \dots, M''_{n''}}_{k'_1, \dots, \ k'_{n'}; \ k''_1', \dots, \ k''_{n''}} (\Omega \; ; \; \Sigma'_1, \, \dots, \, \Sigma''_{n'} \; : \; \Sigma''_1, \, \dots, \, \Sigma''_{n''}) \end{split}$$

is the space of pseudo-differential operators such that:

- (4.1) $p(x,\xi) \sim \sum_{j=0}^{\infty} p_{m-j}(x,\xi)$ where p_{m-j} 's are positively-homogeneous of degree m-j and satisfy:
- (4.2) For every $K \subseteq \Omega$, there exists a constant $C_K > 0$ such that

$$\frac{|p_{m-j}(x,\xi)|}{|\xi|^{m-j}} \leq C_K \prod_{l=1}^{n''} \left| (x'')_l \right|^{M_l''-k_l'' \cdot j} \prod_{l=1}^{n'} \left| (\xi')_l \right|^{M_l'-k_l' \cdot j}$$

$$(x,\xi) \in K \times \left(\mathbf{R}^N - \{0\} \right), \qquad |\xi| \geq 1$$

(4.3) For every $K \subseteq \Omega$, there exists a constant $C'_{K} > 0$ such that

$$\frac{|p_m(x,\xi)|}{|\xi|^m} \ge C_K \prod_{l=1}^{n''} \left| (x'')_l \right|^{M_l^{l'}} \prod_{l=1}^{n'} \left| (\xi')_l \right|^{M_l^{l}},$$

$$(x,\xi) \in K \times \left(\mathbf{R}^N - \{0\} \right), \qquad |\xi| \ge 1.$$

Then we note that the characteristic set Σ of P is the union of $\Sigma'_1, \dots, \Sigma''_{n'}, \Sigma''_1, \dots, \Sigma''_{n''}$. As before we denote I_{ρ} by the set of indices which $\rho \in \Sigma'_i$ or $\rho \in \Sigma''_i$ and we suppose that there exist integers l'_j, l''_j such that $M'_j = k'_j l'_j$ and $M''_j = k''_j l''_j$. Then for every $\rho \in \Sigma$ (where $I_{\rho} = (i'_1, \dots, i'_{s'}: i''_1, \dots, i''_{s''})$) there exists a conic neighbourhood U of ρ such that in U

$$P \equiv \sum_{j=0}^{J_{I_{\rho}}} \sum_{\substack{(\alpha)_{l} \in [1, \cdots, i_{l}^{\prime \prime}] M_{i_{l}^{\prime}}^{\prime \prime} - k_{i_{l}^{\prime}}^{\prime \prime} j \\ (\beta)_{l} \in [1, \cdots, i_{l}^{\prime}] M_{i_{l}^{\prime}}^{\prime \prime} - k_{i_{l}^{\prime}}^{\prime \prime} j}} A_{\alpha_{i_{1}^{\prime \prime}}, \cdots, \alpha_{i_{s^{\prime \prime}}^{\prime \prime}} : \beta_{i_{1}^{\prime}}, \cdots, \beta_{i_{s}^{\prime}}, j}(x^{\prime \prime})_{i_{1}^{\prime \prime}}^{(\alpha)_{1}} \cdots (x^{\prime \prime})_{i_{s^{\prime \prime}}^{\prime \prime}}^{(\alpha)_{s} \circ \prime} (D_{x})_{i_{1}^{\prime}}^{(\beta)_{1}} \cdots (D_{x})_{i_{s^{\prime}}^{\prime}}^{(\beta)_{s} \circ \prime}}$$

$$\mod L^{m,M'_{i_1'}+(k'_{i_1'}-1),\cdots,M'_{i_{s'}}+(k'_{i_{s'}}-1):M'_{i_1'}+(k'_{i_1'},-1),\cdots,M''_{i_{s'}}+(k''_{i_{s'}},-1)}_{k'_{i_1'},\cdots,k'_{i_{s'}}}$$

where
$$J_{I_{\boldsymbol{\rho}}} = \max_{\substack{1 \leq l \leq s' \\ 1 \leq m < s''}} \{l'_{i_l}, l''_{i_m}\}.$$

Then we obtain

Theorem 4.1. Let P be a pseudo-differential operator satisfying (4.1), (4.2) and (4.3). Assume that for every $\rho \in \Sigma$ (where $I_{\rho} = (i'_1, \dots, i'_{s'}: i''_1, \dots, i''_{s''})$),

$$\sum_{j=0}^{J_{I_{\rho}}} \sum_{\substack{(\alpha)_{l} \\ (\beta)_{l}}} \sigma_{m-\sum_{\ell=1}^{s''} (M'_{i'}, -k''_{i'}, j)+j} (A_{\alpha''_{1'}}, ..., \alpha''_{i''_{s''}}; \beta'_{i'_{1}}, ..., \beta'_{i'_{s'}}) \times \\ \times (x'')_{i''_{1}}^{(\alpha)_{1}} \cdots (x'')_{i''_{s''}}^{(\alpha)_{s}} s''(\xi')_{i'_{1}}^{(\beta)_{1}} \cdots (\xi')_{i''_{s'}}^{(\beta)_{s'}} \neq 0$$

for all $x'' \in \mathbb{R}^{\mu''}$, $\xi' \in \mathbb{R}^{\mu'}$. Then P is hypoelliptic with loss of M derivatives where

$$M = \max \left\{ \frac{M'_{i'_1} + \dots + M'_{i'_{s'}} + M''_{i''_1} + \dots + M''_{i''_{s''}}}{k'_{i'_1} + \dots + k'_{i'_{s'}} + k''_{i''_1} + \dots + k''_{i''_{s''}}};$$

$$(i'_1, \dots, i'_{s'}) \subset (1, \dots, \mu') (i''_1, \dots, i''_{s''}) \subset (1, \dots, \mu'') \right\}.$$

In fact we can construct a left parametrix in $S_{\rho,\delta}^{M-m}$ with $\rho=1-1/k$, $\delta=1/k$

where $k = \min_{\substack{1 \leq j' \leq n' \\ 1 \leq j'' \leq n''}} \{\dot{k}'_{j'}, k''_{j''}\}$

The proof is similar to that of section 3.

EXAMPLE 4.2. (1) $P(x, D) = x_2^2 D_{x_1}^2 + \lambda(x, D)$ where λ is a pseudo-differential operator of order 1. In this case, taking $M_1' = k_1' = 2$, $M_1'' = k_1'' = 2$, we find that P is hypoelliptic with loss of 1-derivative if $x_2^2 \xi_2^2 + \lambda^0(x, \xi) \neq 0$ for all $x_2, \xi_1 \in \mathbb{R}$ where $\lambda^0(x, \xi)$ is the principal symbol of $\lambda(x, D)$.

(2) $P(x, t, D_x, D_t) = t^{2k} |D_x|^4 + |D_x|^2 + D_t^2$ $(k \ge 2, \text{ integer})$ where $(x, t) \in \mathbb{R}^n \times \mathbb{R}$. In this case, taking $M_1' = 2k$, $k_1' = k$, $M_1'' = k_1'' = 4$, we find that P is hypoelliptic with loss of 2-derivatives.

References

- [1] BOUTET DE MONVEL, L.: Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure and Appl. Math., 27 (1974), 585-639.
 - [2] DUISTERMAAT, J. J. and HÖRMANDER, L.: Fourier integral operators II, Acta Math., 128 (1972), 183-269.
 - [3] GRIGIS, M. A. and LASCAR, R.: Équations locales d'un système de sousvariétés involutives, C. R. Acad. Sc. Paris, 283 (1976) 503-506.
 - [4] HELFFER, B.: Sur une classe d'opérateurs hypoelliptiques à caractérisques multiples, J. Math. pures et appl., 55 (1975), 207-215.
 - [5] HELFFER, B.: Invariant associés à une classe d'opérateurs pseudo-différentiels et applications à L'hypoellipticité, Ann. Inst. Fourier, Grenoble, 26 (1976), 55-70.
 - [6] HÖRMANDER, L.: Pseudo-differential operators and hypoelliptic equations, Amer. Math. Soc. Symp. Pure Math. 10 (1966), Singular integrals 138-183.
 - [7] HÖRMANDER, L.: Fourier integral operators I, Acta Math., 127 (1971), 79-183.
 - [8] SJÖSTRAND, J.: Parametrices for pseudo-differential operators with multiple characteristics, Arkiv för Mat. 12 (1974), 85-130.
 - [9] LASCAR, R.: Propagation des singularités des solutions d'équations pseudo-différentielles quasi homogénes, Ann. Inst. Fourier, Grenoble, 27 (1977), 79– 123.

Department of Mathematical Science Faculty of Science and Engineering Tokyo Denki University Hatoyama-mura Hiki-gun Saitama-ken, Japan 350-03