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Some studies on group algebras

By Tetsuro OKUYAMA
(Received April 14, 1978; Revised February 21, 1980)

In this paper we study a ring theoretical approach to the theory of
modular representations of finite groups which is studied by several authors
([5], [6], [8], [9], [10], e. t. c.) . Most of results in this note is not new but
is proved by a character-free method.

Let F be a fixed algebraically closed field of characteristic p, a rational
prime. If G is a finite group, we let FG denote the group algebra of G
over F. If X is a subset of G, we let \hat{X} be the sum of elements of X in
FG. Other notations are standard and we refer to [2] and [5],

In section 1 we shall give a proof of the result of Brauer which appears
in [1] without proof. In section 2, using results in section 1 we investigate
the center of a group algebra and an alternating proof of the result of
Osima [7] is given.

1. In this section we give a characterization of elements of the radical
of a group algebra which appears in [1] without proof. Related results
also appear in [12]. Let G be a finite group of order p^{a}k, (p, k)=1 . Choose
an integer b so that p^{b}\equiv 1 (mod k) and b\geqq a . Let U be the F-subspace of
FG generated by all commutators in FG. Then U= \{\sum_{g\in G}agg;\sum_{g\epsilon c}a=0g for

every conjugacy class C of G\} and it holds that (\alpha+\beta)^{p}\equiv\alpha^{p}+\beta^{p} (mod U)
for \alpha and \beta in FG. For these results see [2].

Lemma ( 1. A) . Let e= \sum_{g\in G}a_{g}g be an idempotent of FG. then we have

\sum_{g\epsilon c}a_{g}=0 for every p-singular conjugacy class C of G.

PROOF. As e^{p^{b}}=e , we have \sum_{g\in G}a_{g}g\equiv\sum_{g\in G}a_{g}^{p^{b}}g^{p^{b}} (mod U). Since coefficients
of p\cdot singular elements in the right-hand side of the above equation are all
0, we have the lemma.

Lemma ( 1. B) . Let e= \sum_{g\in G}a_{g}g be a primitive idempotent of FG. Then

there exists a p’conjugacy class C of G such that \sum_{g\epsilon c}a_{g}\neq 0 .

PROOF. Since e is primitive, e\leq U. Thus the lemma follows from (1. B) .
Using the above lemmas, we can prove the assertion of Brauer stated

in the begining of this section. Let S_{1} , S_{2} , \cdots be p’ -sections of G. If X and
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Y are subsets of FG, then we set Ann_{Y}X=\{\alpha\in Y;\alpha X=0\} . We denote
the radical of FG by J\{FG) .

THEOREM (1. C) (Brauer [1]). J(FG)= \bigcap_{i}Ann_{FG}\hat{S}_{i} .

PROOF. First we shall prove the following.

( 1. D) . J(FG) \supseteq\bigcap_{i}Ann_{FG}\hat{S}_{i}

PROOF of ( 1. D) . Since \bigcap_{i}Ann_{FG}\hat{S}_{i} is an ideal of FG, if it contains an

idempotent, then also contains a primitive idempotent e. Considering the
coefficient of 1 in e\hat{S}_{i} this contradicts to (1. A) and ( 1. B) . Thus \bigcap_{i}Ann_{FG}\hat{S}_{i}

contains no idempotent of FG and therefore (1.D) follows.
Next we prove;

( 1. E) . J(FG)\underline{\subset}Ann_{FG}\hat{S}_{i} for each i.
PROOF of ( 1. E) . Let

\alpha=\sum_{b^{g\epsilon G}}a_{g}g\in FG
and assume \alpha^{p^{b}}\in Ann_{FG}\hat{S}_{i} . Then

we have \sum a_{g}^{p^{b}}=0 since \alpha^{p}=\sum_{g\in G}a_{g}^{p^{b}}g^{p^{b}} (mod U), where S_{i}^{-1}=\{s^{-1} ; s\in S_{i}\} .

So
\sum a_{g}^{p^{b}}=(\sum g^{p^{b}}\epsilon s_{i}^{-1}a_{g})^{p^{b}}=0

and \sum a_{g}=0 . This implies that the coefficient of
g\in S_{i}^{-1} g\in S_{i}^{-1} g\in S_{i}^{-1}

1 in \alpha\hat{S}_{i} is 0. Thus FG/Ann_{FG}\hat{S}_{i} has no nilpotent ideal and therefore J(FG)\underline{\subset}

Ann_{FG}\hat{S}_{i} .
COROLLARY ( 1. F) . \sum_{i}\hat{S}_{i}FG is the socle of FG. In particular, for a

primitive idempotent e of FG there exists i such that e\hat{S}_{i}FG is an irre-
ducible FG-module.

PROOF. This follows from the fact that FG is a symmetric algebra
and (1. C) .

COROLLARY ( 1. G) . Let e be a primitive idempotent of FG and \alpha an
element of the form \sum_{i}a_{i}\hat{S}_{i} . Then e\alpha=0 if and only if the coefficient of
1 in e\alpha is 0.

PROOF. It is sufficient to show that if the coefficient of 1 in e\alpha is 0 then
e\alpha=0 . Let t be the F-homomorphism from FG to F defined by the rule;
FG \ni\sum_{g\in G}a_{g}garrow a_{1}\in F. Then the kernel of t has no non-zero right ideal of
FG. Since e\beta=e\beta e+(ee\beta-e\beta e) for \beta\in FG , we have e\alpha FG\underline{\subset}e\alpha FGe+U. eFGe
=Fe+eJ(FG)e as eFGe/eJ(FG)e\cong F . Thus by (1. C) e\alpha FG\subseteq Fe\alpha+U. U\subseteq

Ker t and Fe\alpha\subseteq Kert by our assumption. Therefore e\alpha FG\underline{\subset} Ker t which
implies that e\alpha=0 .

PROPOSITION ( 1. H) . Let \alpha=\sum_{g\in G}a_{g}g be an element of the center of FG
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with a_{g}\neq 0 for some p’ -element g. Then there is a primitive idempotent
e of FG such that the coefficient of 1 in e\alpha is not 0.

PROOF. Let \beta=\sum a_{g}g where G_{0} is the set of all p’ -elements of G. And
write \beta=\sum_{i}b_{i}\hat{C}_{i}wh_{ere}^{g\in G_{0}}C_{i} is the p’ -conjugacy class of G contained in S_{i} and
set \gamma=\sum_{i}b_{i}\hat{S}_{i} . By (1. A) for an idmpotent f of FG the coefficient of 1 in
f\alpha is equal to that in fy. Since \gamma\neq 0 , the result follows from ( 1. G) .

2. Let Z(FG)=Z denote the center of FG. For \alpha=\sum_{g\in G}a_{g}gFG we set

sup \alpha=\{g\in G;a_{g}\neq 0\} . The result of Osima [7] shows that for a central
idempotent e of FG sup e does not contain any p-singular element. Ring-
theoretical proofs of this fact appear in [5] and [8]. Furthermore we have
the following.

THEOREM (2. A) (Osima [7]). Let \alpha be in Z and T a p-section of G.
Then sup \alpha\cap T=\phi if and only if sup e\alpha\cap T=\phi for every idempotent e of Z.

PROOF. If sup e\alpha\cap T=\phi for every idempotent e of Z, then it is clear
that sup \alpha\cap T=\phi . Conversely assume that sup \alpha\cap T=\phi . Let x be a p-
element in T and C the conjugacy class of G containing x. Considering
the Brauer homomorphism from Z to Z(FC_{G}(x)) defined by the rule; Z\ni

\sum_{g\in G}a_{g}garrow\sum_{g\in C_{G}(x)}a_{g}g\in Z(FC_{G}(x)) , we may assume that G=C_{G}(x) and C=\{x\} .
Then we may also assume that x=1 and T is the set of all p’ -elements
of G. Suppose that sup e\alpha\cap T\neq\phi . Then by (1. H) there exists a primitive
idempotent f of FG such that the coefficient of 1 in fe\alpha is not 0. Since

f is primitive, fe=f and then fe\alpha=f\alpha . Thus by (1. A) sup \alpha\cap T\neq\phi which
is a contradiction.

The following is the result of Reynolds and is proved in [11]. We shall
give here an elementary proof of it.

THEOREM(2. B) (Reynolds [11]). Z_{p’}= \sum_{i}F\hat{S}_{i} is an ideal of Z.
PROOF. Let S be a p’ -section and C a conjugacy class of G. Let M

be a p’ -conjugacy class and N a p-singular conjugacy class of G such that
M and N are contained in the same p’ -section of G. Let \hat{S}\hat{C}=a\hat{M}+b\hat{N}

+\cdots To prove the theorem it will suffice to show that a=b. Let z\in N

and z=xy=yx where x is a p-element and y is a p’ -element of G. Since
S\cap C_{G}(x) is a union of p’ -sections of C_{G}(x) , considering the Brauer hom0-
morphism with respect to C_{G}(x) we may assume G=C_{G}(x) . Then \hat{S}x=\hat{S}

and \hat{M}x=\hat{N}. Thus \hat{S}\hat{C}=a\hat{M}+b\hat{N}+\cdots=a\hat{M}x+b\hat{N}x+\cdots and we have
a=b.

LEMMA (2. C) . Let e be an idempotent of FG such that e+J(FG) is
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central in FG/J(FG) . Then e\hat{S}_{i} is in Z_{p’} .

PROOF. By (1. C) e\hat{S}_{i} is in Z. Let e\hat{S}_{i}=\alpha+\beta where \alpha is in Z_{p’} and
sup \beta consists of p-singular elements. Such elements \alpha and \beta can be chosen.
Then for a primitive idempotent f of FG the coefficient of 1 in f(e\hat{S}_{i}-\alpha)

is 0 by (1. A) . Since f is primitive, fe\hat{S}_{i}=0 or =f\hat{S}_{i} . Thus by (1. G) we
have f(e\hat{S}_{i}-\alpha)=0 . Therefore f\beta=0 for every primitive idempotent f of FG
and then \beta=0 . So the proof of the lemma is complete.

PBOPOSITION (2. D) . Let e be an idempotent of FG such that e+J(FG)
is centrally primitive in FG/J(FG) . Then \dim_{F}eZ_{p’}=1 .

PROOF. Let e=e_{1}+\cdots+e_{n} where e_{i}’s are mutually orthogonal primitive
idempotents of FG. Then e_{1}FG\cong e_{i}FG for all i (see [2]). It is easily shown
that there are elements \alpha_{i}\in e_{1}FG and \beta_{i}\in e_{i}FG such that e_{1}=\alpha_{i}\beta_{i} and e_{i}=

\beta_{i}\alpha_{i} . Therefore e_{i}-e_{1}\in U. By (1. G) \dim_{F}e_{1}Z_{p’}=1 and again by (1. G) and
the fact that e_{i}-e_{1}\in U we have \dim_{F}eZ_{p’}=1 .

As a consequence of (2. C) and (2. D) we have the following. For this
result see [3].

THEOREM (2. E) . Let B be a p-block of G with corresponding centrally
primitive idempotent e. Then the number of irreducible FG-modules in
B equals to \dim_{F}eZ_{p’} .

PROOF. Let e=e_{1}+\cdots+e_{n} where e_{i}’s are mutually orthogonal idempot-
ent and e_{i}+J(FG) is centrally primitive. Then n is the number of FG.

modules in B. Thus the result follows from (2. C) and (2. D) .
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