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1. Introduction

In this paper we study the initial-Dirichlet problem for parabolic equa-
tions of the form

Lu=f’.
L=a_{ik}(x) \frac{\partial^{2}}{\partial x_{i}\partial x_{k}}+a_{i}(x, t)\frac{\partial}{\partial x_{i}}+a(x, t)-\frac{\partial}{\partial t}

(1. 1)

Here f depends on x=(X_{1}^{ },\cdots, x_{n}) and t, and we use the summation conven-
tion (summations from 1 to n).

Equation (1. 1) will be considered in a region \Omega=G\cross J\subset R^{n+1} , where
J=\{t|0<t\leqq T\} and G\subset R^{n} has edges satisfying conditions to be specified
below. L is assumed to have C^{a}(\overline{\Omega}) -coefficients, where 0<\alpha<1 , and f\in C^{\alpha}(\overline{\Omega}) ,
too.

We shall prove that, under these assumptions and suitable conditions
concerning the initial and boundary data, for bounded solutions u of that
problem we have D_{x}u\in C^{\nu}(\overline{\Omega}) , where 0<\nu<1 and D_{x} denotes partial differen-
tiation with respect to any x_{i} , i=1 , \cdots , n . Also D_{x^{2}}u\in C^{0}(\overline{\Omega}) under an ad-
ditional assumption.

Our method is based on Schauder type estimates and barrier functions,

and the results will extend those in [3] for n=2.
Furthermore, it is interesting to note that the method can be modified

so that it yields similar results for bounded solutions of the Dirichlet problem
for elliptic equations in n-dimensional regions with edges. This will be
explained at the end of this paper.

We mention that an early paper on regions with edges was T. Carleman’s
thesis [4] for the n-dimensional Laplace equation. Mixed boundary value
problems in tw0-dimensional regions with corners were also considered by
N. M. Wigley [10]. Systems of the form \Delta u=F (x, u , grad u) in such regions
were recently studied by G. Dziuk [5], who obtained results on the smooth-
ness of solutions. Publications on elliptic equations with n=2 in regions
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with corners are numerous (cf. the references in [7]), whereas for general
n comparatively little is known, in particular with respect to parabolic equa-
tions. In the case of the Dirichlet problem for elliptic equations in n varia-
bles, a Sobolev space approach is due to V. A. Kondrat’ev [8].

The material in this paper is arranged as follows. Our main result
(Theorem 1) is stated in Sec. 3. It will be obtained from Theorems 2-4
in Sees. 4-6. Theorem 2 in Sec. 4 concerns bounds for solutions u, and
Theorem 3 in Sec. 5 gives bounds for partial derivatives of u . In both
sections the region is of a special type, namely, a sector of a cylinder. In
Theorem 4 (Sec. 6) we prove that D_{x}u is of class C^{\nu} in the closure of such
a special region. In Sec. 7, Theorem 1 will then be obtained from Theorem
4. Finally, in Sec. 8 we shall be concerned with the Dirichlet problem for
elliptic equations to which the present method, in a modified form, is also
applicable.

We want to thank the referee of this paper for suggesting a modification
of our barrier function, which entailed the additional result (3. 5 b) .

2. Some notations

This section contains some general notations needed throughout the
paper. Let G\subset R^{n} be any bounded domain, J=\{t|0<t\leqq T\} with constant
T>0 , and set \Omega=G\cross J\subset R^{n+1} . In \Omega we use the metric defined by

d(P, Q)=(|x-\tilde{x}|^{2}+|t-\tilde{t}|)^{1/2}

where P:(x, t) , Q:(\tilde{x},\tilde{t}) and

|x|^{2}= \sum_{i=1}^{n}x_{i}^{2} x=(X_{1}^{ },\cdots, x_{n})t

For a function u on \Omega we define, as usual (cf. [6]),

||u||_{0}^{\Omega}= \sup_{\Omega}|u(x, t)|

H_{\alpha}^{\Omega}(u)= \sup_{P,Q\epsilon 0,P\neq Q},\frac{|u(x,t)-u(\tilde{x},\tilde{t})|}{d(P,Q)^{\alpha}} (0<\alpha<1)

||u||_{\alpha}^{\Omega}=||u||_{0}^{\Omega}+H_{\alpha}^{\Omega}(u)

||u||_{2+\alpha}^{\Omega}=||u||_{a}^{\Omega}+ \sum||D_{x}u||_{\alpha}^{\Omega}+\sum||D_{x^{2}}u||_{\alpha}^{\Omega}+||D_{t}u||_{\alpha}^{\Omega}

provided each expression in the right-hand sides exists and is finite. Here,
D_{t}=\partial/\partial t and D_{x^{j}} denotes any partial derivative of order j with respect to
x_{1} , \cdots , x_{n} .

Let G_{0}=G\cross\{t|t=0\} and S=\partial G\cross J. Then
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\psi\in C^{2+\alpha}(A)[mathring]_{\prime} A=\overline{G}_{0}\cup S

means that \psi is defined on A and there exists a function \Psi\in C^{2+\alpha}(\overline{\sqrt}) such
that \Psi|_{A}=\psi . We then define

|| \psi||_{2+\alpha}=\inf_{\Psi}||\Psi||_{2+\alpha} ,

the infimum being taken over all those functions \Psi .

3. Main result

We shall now state our main theorem (Theorem 1, below), which is
concerned with the smoothness of solutions of parabolic equations in regions
with edges. The proof will be based on results to be obtained in the next
three sections and will be given in Sec. 7.

We start from a bounded domain G\subset R^{n} , n\geqq 2 , whose boundary \partial G

consists of hypersurfaces \Gamma_{1} , \cdots , \Gamma_{m} of class C^{2+\alpha} , where 0<\alpha<1 . We assume
that \Gamma_{i} intersects only with \Gamma_{i-1} and \Gamma_{i+1} , these intersections being (n-2)-
dimensional edges E_{i-1} and E_{i} , respectively. (Here \Gamma_{m+1} means \Gamma_{1}). We
now introduce \Omega=G\cross J, where J=\{t|0<t\leqq T\} . In \Omega we consider the initial
Dirichlet problem

Lu=f (3. 1)

u(x, 0)=0 , x\in\overline{G} (3. 2 a)

u|_{\partial G\cross\overline{J}}=\phi(x, t)
; (3. 2b)

assuming that
(i) a_{ik}\in C^{\alpha}(\overline{G})

(ii) a_{i} , a, f\in C_{\backslash }^{\alpha/}\overline{\Omega})

(iii) \phi(x, 0)=0 and

\phi\in C^{2+a}[(\partial G\backslash \bigcup_{i}E_{i})\cross\overline{J}]\cap C^{0}(\partial G\cross\overline{J})

It is known (cf. [6]) that any solution of (3. 1), (3. 2) satisfying (i)-(iii) is of
class

C^{2+\alpha}[( \overline{G}\backslash \bigcup_{i}E_{i})\cross\overline{J}]\cap C^{0}(\overline{\Omega})\iota

The presence of the edges E_{i} affects only the smoothness of the functions
D_{x}u and D_{x^{2}}u . In Theorem 1 we give sufficient conditions for D_{x}u to be
H\"older continuous. This needs a short preparation, as follows.

Let P:x^{0} he any point on E_{i} . Let \pi_{1} and \pi_{2} be the two hyperplanes
which touch \Gamma_{i} and \Gamma_{i+1} at P making there an angle \gamma(P) . We now trans-



On parabolic equations in n space variables and their solutions in regions with edges 143

form the equation

a_{ik}(x^{0})u_{x_{i^{x}k}}^{*}=0 (3. 3)

to canonical form. Note that this is an equation with constant coefficients,
since P is fixed. That transformation maps \pi_{1} and \pi_{2} onto two hyperplanes
which at the image of P make an angle \omega(P) . It is this angle that we
need for stating Theorem 1. In fact, the theorem shows that \omega(P) plays
a significant role in determining the smoothness of the solution u of our
problem near \cup E_{i}\cross\overline{J}.

THEOREM 1. Let u be a solution of (3. 1), (3. 2) in \Omega=G\cross J, and
assume (i)-(iii) to be satisfied. Suppose further that \omega(P)<\pi for every
P \in\bigcup_{i}E_{i} . Then there exist numbers \nu, \kappa, \chi , 0<\nu, \kappa, \chi<1 , such that

D_{x}u\in C^{\nu}(\overline{\Omega}) (3. 4)

and
\tilde{u}\in C^{\chi}(\overline{\Omega}) where \tilde{u}(x, t)=\delta^{\kappa}D_{x^{2}}u(x, t) (3. 5a)

\chi=\min(\alpha, \kappa+\nu-1) and \delta is the distance from (x, t) to \bigcup_{i}E_{i}\cross\overline{J}. Further-
more, if \omega(P)<\pi/2 for every P \in\bigcup_{i}E_{i} , then

D_{x^{2}}u\in C^{0}(\overline{\Omega}) (3. 5b)

4. Bounds for solutions

As indicated in the Introduction, in this and the next two sections we
shall obtain results for special regions, from which the theorem on the
smoothness of solutions in a general region with edges will then follow in
Sec. 7.

Let x_{1}=r cos \theta , x_{2}=r sin \theta, x’=(X_{3}^{ },\cdots, X_{n}) and

B_{\sigma}=\{(r, \theta, x\acute{)}|r<\sigma, \beta<\theta<\beta+\omega, |x_{i}|<\sigma, i>2\}

where \sigma>0,0<\omega<\pi and \beta=(\pi-\omega)/2 . Let \Pi_{1} and \Pi_{2} denote the two
portions of the hyperplanes

x_{2}=x_{1} tan \beta

x_{2}=x_{1} tan (\beta+\omega)

by which the sector B_{\sigma} is bounded laterally. Furthermore, let

N_{c}=\{x|x\in B_{\sigma} , |x|<c\} (c>0)1

Denote by S_{c} the portion of the boundary of N_{c} which lies on \Pi_{1}\cup\Pi_{2} .
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Let E_{c}=\Pi_{1}\cap\Pi_{2}\cap\overline{N}_{c} , so that E_{c} is the portion of the edge of B_{\sigma} in \overline{N}_{c} .
In N_{c}\cross J we consider the problem

Lu=f (4. 1)

u|_{t=0}=0 (4. 2 a)

u|_{s_{c}}=\psi(x, t) (4.^{2b})

with parabolic L as in (1.1) under the following assumptions.
(i) a_{ik}\in C^{0}(\overline{N}_{c}) and a_{ik}(0)=\delta_{ik} when i, k=1,2 .
(ii) a_{ik} (i>2 or k>2), a_{i} , a and f are bounded in \overline{N}_{c}\cross J .
(ii) \psi\in C^{2}((S_{c}\backslash E_{c})\cross J)\cap C^{0}(S_{c}\cross J) , \psi(x, 0)=0 .
(iv) On E_{c} the function \psi is zero together with its first partial deriva-

tives in the directions perpendicular to E_{c} and such that \theta=\beta or \theta=\beta+\omega,
and its second derivatives in those directions are bounded.

Note that, by (ii), in this and the next two sections the coefficients
a_{ik} with i>2 or k>2 may also depend on t.

In the present section we shall obtain bounds for solutions of the problem
(4. 1), (4. 2) and in the next section bounds for partial derivatives of these
solutions with respect to the x_{i}’s .

THEOREM 2. Let u be a bounded solution of the problem (4. 1), (4. 2)

in N_{c}\cross J. Suppose that the assumptions (i)-(iv) are satisfied. Then there
exists a number c_{1}<c/3 such that in \overline{N}_{c_{1}}\cross J we have

|u(x, t)|\leqq Kr^{\mu}

where K>0 is constant, r^{2}=x_{1}^{2}+x_{2}^{2}, and

\mu=\{\begin{array}{l}2 if\underline{\pi}-\epsilon\end{array}\omega

\omega<\pi/2

if \omega\geqq\pi/2

with arbitrarily small \epsilon>0 .
PROOF. Let \xi\in C^{3}(\overline{N}_{3c_{1}}) with c_{1} to be determined later and

\xi(|x|)=J^{1}|0 ifif 0\leqq|x|\leqq c_{1}2c_{1}\leqq|x|\leqq 3_{C_{1}r}

Then w=\xi u is defined in the region N_{3c_{1}}\cross J, which in this proof will be
simply denoted by \mathscr{N} In \mathscr{N} the function w satisfies the equation

Lw=F (4. 3)

where



On parabolic equations in n space variables and their solutions in regions zvith edges 145

F=\xi f-2a_{ik}\xi_{x_{i}}u_{x_{k}}-a_{ik}\xi_{x_{i}x_{k}}u-a_{i}\xi_{x_{i}}u .
Furthermore, the function \psi_{1}=w|_{S_{C}} satisfies the above conditions (iii) and (iv).

We now introduce the function

v(x)=-Kr^{\mu} cos \lambda(\theta-\frac{\pi}{2})

defined in N_{3c_{1}} , where K>0 will be specified later and

1< \mu<\lambda=\frac{\pi-2\eta}{\omega}

with 0<\eta<\pi/2 . Here, if \pi/\omega\leqq 2 , we take \eta>0 arbitrarily small, whereas
if \pi/\omega>2 , we take \eta<\pi/2-\omega and \mu=2 .

We can rewrite Lw in the form

Lw=w_{x_{1}x_{1}}+w_{x_{2}x_{2}}+\tilde{a}_{ik}w_{x_{i}x_{k}}+a_{i}w_{x_{i}}+aw-w_{t}

where

\tilde{a}_{ik}=/a_{ik}-\delta_{ik}
if i, k=1,2

\mathfrak{l}a_{ik} otherwise.

In particular,

Lv(x)=K(\lambda^{2}-\mu^{2})r^{\mu-2} cos \lambda(\theta-\frac{\pi}{2})

+K\tilde{a}_{ik}(x)h_{ik}(x)r^{\mu-2}+Kh_{1}(x, t)r^{\mu-1}+Kh_{2}(x, t)r^{\mu} ,

where h_{ik} and h_{i} are bounded functions, say,

\sum_{i=1}^{n}\sum_{k=1}^{n}|h_{ik}(x)|+\sum_{i=1}^{n}|h_{i}(x, t)|\leqq K_{0} (x, t)\in \mathscr{N}

Since the \tilde{a}_{ik} are continuous in \overline{N}_{3c_{1}} and zero at x=0, we can find a positive
c_{1} so small that

|\tilde{a}_{ik}(x)|<\epsilon/4K_{0} when |x|<3c_{1}

Also, for \beta\leqq\theta\leqq\beta+\omega we have cos \lambda(\theta-\frac{\pi}{2})\geqq\sin\eta . Hence in \mathscr{N} we

obtain

Lv(x)\geqq K[(\lambda^{2}-\mu^{2}) sin \eta-\epsilon-K_{0}r-K_{0}r^{2}]r^{\mu-2} . (4. 4)

We now take \epsilon<(\lambda^{2}-\mu^{2}) sin \eta and then c_{1} so small that the expression in
the brackets [\cdots] in (4. 4) is positive. Since \mu\leqq 2 , by taking c_{1} sufficiently
small and K sufficiently large we get
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Lv(x)\geqq F(x, t)

in \mathscr{N} It follows that

L(w-v)(x, t)\leqq 0 in \mathscr{N}

We now show that w-v can be made nonnegative on \partial N_{3c_{1}}\cross J by taking
K sufficiently large. We first consider S_{3c_{1}}\cross J, which in this proof we simply
denote by \mathscr{S} . On \mathscr{S} we have w=\psi_{1} , where

\psi_{1}(0,0, x, t)=D_{\beta}\psi_{1}(0,0, x, t)=D_{\rho+\omega}\psi_{1}(0,0, x, t)=0 ; (4. 5)

here D_{\beta}\psi_{1} and D_{\rho+\omega}\psi_{1} are the derivatives of \psi_{1} in the directions perpendicular
to E_{c} and such that \theta=\beta and \theta=\beta+\omega respectively. Hence at any point
(x, t)\in \mathscr{S} we have

D_{l} \psi_{1}(x, t)=\int_{(0,0,x’,t)}^{(x_{1},x_{2\prime}x_{*}’t)}D_{\iota^{2}}\psi_{1}(\tilde{x}_{1},\tilde{x}_{2}, x’, t)d\tilde{r} ,
(4. 6)

l=\beta, \beta+\omega

Now D_{l}^{2}\psi_{1} is bounded, say,

|D_{l}^{2}\psi_{1}(x, t)|\leqq 2\hat{K}_{1} on \mathscr{S} (4. 7 a)

Hence from (4. 6) we obtain

|D_{l}\psi_{1}(x, t)|\leqq 2\hat{K}_{1}r on \mathscr{S} (4.^{7b})

and in a similar fashion

|\psi_{1}(x, t)|\leqq K_{1}r^{2} on \mathscr{S} (4. 7 c)

On \mathscr{S} we thus have

w(x, t)-v(x)=\psi_{1}(x, t)+Kr^{\mu} sin \eta\geqq-\hat{K}_{1}r^{2}+Kr^{\mu} sin \eta

which can be made nonnegative by taking K sufficiently large. On the
remaining part of \partial N_{3c_{1}}\cross J we have w=0 and thus

w(x, t)-v(x)\geqq Kr^{\mu} sin \eta\geqq 0

Our intermediate result is L(w-v)(x, t)\leqq 0 in \mathscr{N} , whereas w(x, t)-v(x)\geqq 0

on \partial N_{3c_{1}}\cross J. Applying the maximum principle for parabolic equations (cf.
[9], pp. 174-175) we conclude that w(x, t)-v(x)\geqq 0 in \mathscr{N} Hence

w(x, t)\geqq-Kr^{\mu} oos \lambda(\theta-\frac{\pi}{2})\geqq-Kr^{\mu}1

By a similar argument we can show that in \mathscr{N} ,
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w(x, t)\leqq Kr^{\mu} :

provided K is taken sufficiently large and c_{1}>0 sufficiently small. Together,

|w(x, t)|\leqq Kr^{\mu}(

Since w=u in N_{c_{1}}\cross J, we obtain the desired result, and the proof is com-
plete.

5. Bounds for D_{x}u and D_{x^{2}}u

Having estimated bounded solutions u of the problem (4. 1), (4. 2), we
now estimate their derivatives u_{x_{i}} and u_{x_{i}x_{k}} .

For this purpose we shall need the following subregions of N_{c_{1}} :

R_{s}=\{x|2^{-s-2}c_{2}\leqq r\leqq 2^{-s-1}c_{2}, |x_{i}|\leqq 2^{-s}c_{2} for i>2\}\cap N_{e_{1}} ;

here s=-1,0,1 , \cdots . We also define
\tilde{R}_{s}=R_{s-1}\cup R_{s}\cup R_{s+1} s=0,1 , \cdots

Here c_{2}>0 is assumed sufficiently small so that R_{0}\subset N_{e_{1}/2} .
Instead of assumptions (i)-(iv) we now make the following ones.

(i^{*}) a_{ik}\in C^{a}(\overline{N}_{c}) and a_{ik}(0)=\delta_{ik} for i, k=1,2
(ii^{*}) a_{ik} (i>2 or k>2), a_{i} , a, f\in C^{\alpha}(\overline{N}_{c}\cross J) .

(iii^{*}) \psi\in C^{2\dagger a}((S_{c}\backslash E_{c})\cross J)\cap C^{0}(S_{c}\cross J) , \psi(x, 0)=0 .
(iv^{*}) Same as (iv) in Sec. 4.
THEOREM 3. Let u be a bounded solution of the problem (4. 1), (4. 2)

in N_{c}\cross J. Suppose that the assumptions (i^{*})-(iv^{*}) are satisfied. Then if
\omega<\pi in B_{\sigma}, in N_{c_{1}/2}\cross J we have

|D_{x^{j}}u(x, t)|\leqq K_{j}r^{\mu-j} j=1,2 ,

with \mu as in Theorem 2.
PROOF. Let \tilde{\Gamma}_{s} denote the portion of the boundary of \tilde{R}_{s} which lies

on \Pi_{1}\cup\Pi_{2} , and let us use in this proof the notations
\mathscr{R}_{s}=R_{s}\cross J,\tilde{\mathscr{B}}_{s}=\tilde{R}_{s}\cross J,\tilde{\mathscr{L}}_{s}=\tilde{\Gamma}_{s}\cross J

We now apply the transformation

x=2^{-s}y y=(y_{1^{ }},\cdots, y_{n}) (5. 1)

which maps R_{s},\tilde{R}_{s} and \tilde{\Gamma}_{s} onto R_{0},\tilde{R}_{0} and \tilde{\Gamma}_{0} , respectively. In \tilde{\mathscr{B}}_{0} the
function U(y, t)–u(2^{-s}y, t) is defined and satisfies the parabolic equation

b_{ik}U_{y_{i}y_{k}}+2^{-s}b_{i}U_{y_{i}}+2^{-2s}bU-2^{-2s}U_{t}=2^{-2S}q (5. 2)
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where b_{ik}, b_{i} and b are the coefficients of L in the new variables, and
g(y, t)=f(x, t) . Clearly U(y, 0)=0 . The boundary value \psi_{2} of U on \tilde{\mathscr{C}}_{0} is
given by

\psi_{2}(y, t)=\psi(2^{-s}y, t) (5. 3)

We now apply a Schauder type estimate for parabolic equations (cf. [6]) to

the solution U of (5. 2) in \mathscr{B}_{0} and \check{\mathscr{B}}_{0} , finding

||U||_{2+a}^{{?}_{0}}\leqq A_{1}(||U||_{0}^{g_{0}}+2^{-2s}||q||_{a}^{\mathscr{H}_{0}}+||\psi_{2}||_{2+\alpha}^{\overline{r}_{0)}} (5. 4)

We estimate each term on the right-hand side of (5. 4). In \tilde{\mathscr{B}}_{s} we have
(cf. Theorem 2)

|u(x, t)|\leqq Kr^{\mu}

and thus in \tilde{\mathscr{B}}_{0},

|U(y, t)|\leqq A_{2}2^{-s\mu}

and
||U||_{0}^{{?}_{0}}\leqq A_{3}2^{-s\mu} (5. 5 a)

Since f\in C^{\alpha}(\tilde{\mathscr{B}}_{s}) , it follows that ||q||_{\alpha}^{g_{Q}} in the next term is indeed finite.
From (5. 3) we have

\frac{\partial\psi_{2}}{\partial y_{i}}=2^{-s}\frac{\partial\psi}{\partial x_{i}} \frac{\partial^{2}\psi_{2}}{\partial y_{i}\partial y_{k}}=2^{-2s}\frac{\partial^{2}\psi}{\partial x_{i}\partial x_{k}}

Similarly,
H_{\alpha}^{\tilde{g}_{0}}(D_{y^{2}}\psi_{2})=2^{-s(2+\alpha)}H_{\alpha}^{\sigma_{s}}(D_{x^{2}}\psi) .

Consequently, by (4. 7) we obtain
||\psi_{2}||_{2+\alpha}^{g_{0}}\leqq A_{4}2^{-2s} (5. 5 b)

Hence (5. 4) and (5. 5) now yield

||U||_{2+\alpha}^{a_{0}}\leqq A_{\mathfrak{g}}2^{-s\mu} (5. 6)

Remembering that u(2^{-s}y, t)=U(y, t) , we see that

\frac{\partial U}{\partial y_{i}}=2^{-s}\frac{\partial u}{\partial x_{i}} , \frac{\partial^{2}U}{\partial y_{i}\partial y_{k}}=2^{-2s}\frac{\partial^{2}u}{\partial x_{i}\partial x_{k}} (5. 7)

Furthermore, in \mathscr{B}_{0} we have

| \frac{\partial U}{\partial y_{i}}|\leqq||U||_{2+\alpha}^{9_{0}} (5.^{8a})
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as well as

| \frac{\partial^{2}U}{\partial y_{i}\partial y_{k}}|\leqq||U||_{2[mathring]_{+}\alpha}^{g} (5. 8b)

From (5. 6)-(5.8) we obtain the estimates for the derivatives u_{x_{i}} and u_{x_{i}x_{k}} ,
i, k=1 , \cdots , n , stated in the theorem, and the proof is complete.

6. Smoothness of solutions

We shall now obtain a theorem on the smoothness of first derivatives
of bounded solutions u of the problem (4. 1), (4. 2), namely, that the D_{x}u

are H\"older continuous, as well as on the smoothness of second derivatives
multiplied by a suitable factor r^{\kappa}, 0<\kappa<1 , which products are proved to be
H\"older continuous. We also show that for small angles, the D_{x^{2}}u are con-
tinuous. In the present section this will be proved for a cylindrical sector
(as considered in Sees. 4 and 5) and in the next section for a general region
\Omega=G\cross J.

THEOREM 4. Under the assumptions of Theorem 3 there exist constants
c_{3}>0 and \kappa, \chi\in(0,1) such that

D_{x}u\in C^{\nu}(\overline{N}_{c_{3}}\cross J) , \nu=\mu-1

and
r^{\kappa}D_{x^{2}}u\in C^{\chi}(\overline{N}_{c_{3}}\cross J) , \chi=\min(\alpha, \kappa+\nu-1)t

If \omega<\pi/2 , then

D_{x^{2}}u\in C^{0}(\overline{N}_{c_{3}}\cross J) .

PROOF. We take c_{3}>0 sufficiently small so that, by Theorem 3, in
\overline{N}_{c_{3}}\cross J we have

|D_{x^{j}}u(x, t)|\leqq K_{j}r^{1+\nu-j} , j=1,2 (6. 1)

In that region we consider any two points P and Q, whose distance from
E_{c_{3}}\cross J we denote by r_{1} and r_{2} , respectively, assuming that 0\leqq r_{2}\leqq r_{1}\leqq c_{3} ,
without restriction. If r_{2}\leqq r_{1}/2 , then d(P, Q)\geqq r_{1}/2 , so that in this case we
have

\frac{|D_{x}u(P)-D_{x}u(Q)|}{d(P,Q)^{\nu}}\leqq\frac{2K_{1}r_{1}^{\nu}}{(r_{1}/2)^{\nu}}=K_{3} . (6. 2)

We show that in the other case, r_{2}>r_{1}/2 , we also have such an inequality.
Let P:(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}, t) . Let
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G_{P}=\{x|x\in N_{c_{3}} , r_{1}/2\leqq r\leqq r_{1} , |x_{i}-x_{i}^{0}|\leqq r_{1}/2 , i>2\} ,

where r^{2}=x_{1}^{2}+x_{2}^{2}, as before. We now apply the transformation

x_{i}=Mz_{i} if i=1,2 ,
M=2r_{1}/c_{3} . (6. 3)

x_{i}-x_{i}^{0}=M(z_{i}-x_{i}^{0}) if i>2r
This transformation maps G_{P} onto the region

G_{P}’=\{z|c_{3}/4\leqq\rho\leqq c_{3}/2 , |z_{i}-x_{i}^{0}|\leqq c_{3}/4 , i>2\}

where \rho^{2}=z_{1}^{2}+z_{2}^{2} . In G_{P}^{1}\cross J the function W(z, t)=u(x, t) satisfies the para-
bolic equation

B_{ik}W_{z_{i}z_{k}}+MB_{i}W_{z_{i}}+M^{2}BW-M^{2}W_{t}=M^{2}F,\cdot (6. 4)

where B_{ik}, B_{i}, B and F are the coefficients in Lu=f, represented in terms
of the new variables. We also consider the region

G_{P}’=\{z|c_{S}/8\leqq\rho\leqq c_{3}, |z_{i}-x_{i}^{0}|\leqq c_{3}/4, i>2\}

We again apply the Schauder-type estimate, writing \Lambda’=G_{P}’\cross J, \Lambda’=G_{P}’\cross J

and \Lambda^{*}=\Gamma_{P}’\cross J, for simplicity; here \Gamma_{P}’ is the part of the boundary of G_{P}’

which h.es on the hyperplanes \Pi_{1} and \Pi_{2} . The estimate is

||W||_{2+\alpha}^{A’}\leqq A_{6}[||W||_{0}^{A’}+M^{2}||F||_{\alpha}^{\Lambda’}+||\psi_{3}||_{2+\alpha}^{A^{*}}] .

Using an idea similar to that in the proof of Theorem 3, we conclude that

||W||_{2+\alpha}^{\Lambda^{l}}\leqq A_{7}r_{1}^{\mu} , \mu=1+\nu t

Furthermore,

||D_{z}W||_{\nu}^{\Lambda^{l}}\leqq||W||_{2+\alpha}^{\Lambda’}

and
||D_{z^{2}}W||^{A’},\leqq||W||_{2+\alpha}^{\Lambda’} (0<\chi\leqq\alpha)t

Also
D_{z}^{k}W=M^{k}D_{x^{k}}u (k=1,2)

and
H_{\nu}^{A^{J}}(D_{z}W)=M^{\mu}H_{\nu}^{f}(D_{x}u) , \tilde{\Lambda}=G_{P}\cross J

Consequently,
H_{\nu}^{f}(D_{x}u)\leqq K_{4}
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as well as
H_{\chi}^{f}(D_{x^{2}}u)\leqq K_{5}r_{c}^{\mu-2-x}

To obtain (6. 2) in the case when r_{2}>r_{1}/2 , besides P and Q we also consider
the point P_{1} defined as follows. If

P :(r_{1} cos \theta_{1} , r_{1} sin \theta_{1} , x^{(1)} ’, t)

and

Q :(r_{2} cos \theta_{2} , r_{2} sin \theta_{2}, x^{(2)’}
,
\cdot t)

then P_{1} has the coordinates

P_{1} : ( r_{1} cos \theta_{2}, r_{1} sin \theta_{2}, x^{(2)’}
,\cdot t).

If d(P, P_{1})\leqq r_{1}/2 , then Q\in\tilde{\Lambda}, where D_{x}u\in C^{\nu}(\tilde{\Lambda}) . If d(P, PJ >r_{1}/2 , then
d(P, Q)\geqq d(P, P_{1})>r_{1}/2 and d(P, Q)\geqq d(P_{1}, Q) . Hence in this case,

\frac{|D_{x}u(P)-D_{x}u(Q)|}{d(P,Q)^{\nu}}\leqq\frac{|D_{x}u(P)-D_{x}u(P_{1})|}{d(P,PJ^{\nu}}

(6. 5)
+ \frac{|D_{x}u(P_{1})-D_{x}u(Q)|}{d(P_{1},Q)^{\nu}}

Since

\frac{|D_{x}u(P)-D_{x}u(P_{1})|}{d(P,P_{1})^{\nu}}\leqq\frac{2K_{1}r_{1}^{\nu}}{(r_{1}/2)^{\nu}}=K

and Q\in G_{P_{1}}\cross J , we conclude that the right-hand side of (6. 5) is bounded.
This proves the first statement of the theorem. The other statements are
obtained in a similar fashion.

7. Proof of Theorem 1

Without loss of generality we can take m=2. Then \partial G=\Gamma_{1}\cup\Gamma_{2} and
\Gamma_{1}\cap\Gamma_{2}=E_{1}=E is the single edge. It suffices to prove the theorem in a
neighborhood of an arbitrary point P:(x_{1}^{0}, \cdots, x_{n}^{0}, t)\in E\cross\overline{J}. To P there
corresponds P_{0} : (x_{1}^{0}, \cdots, x_{n}^{0})\in E. Suppose that in a neighborhood of P_{0} the
two hypersurfaces intersecting at E have the representations

x_{1}=h_{1}(x_{2}, x\acute{)} and x_{2}=h_{2}(x_{1}, x\acute{)} ,

respectively, where h_{1} and h_{2} are of class C^{2+\alpha} . The transformation

y_{i}=\{ x_{i}^{-}x_{\underline{-^{i}}}..-h_{i}-x_{i}^{0^{\underline{--}}}\underline{=}-- ifif
i=1,2

(7. 1)
i>2
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maps P_{0} onto the origin of the y-coordinate system, and transforms those
two hypersurfaces into the hyperplanes y_{1}=0 and y_{2}=0 . Furthermore, from
(3. 1) we obtain another parabolic equation with the y_{i} as the independent
variables. The latter equation we transform again by a linear transformation
such that afterwards the coefficients A_{ik} of the resulting principal part have
the property

A_{ik}(0)=\delta_{ik} i, k=1 , \cdots , n

and the hyperplanes y_{1}=0 and y_{2}=0 are mapped onto two hyperplanes
making an angle \omega=\omega(P_{0})<\pi . Such a transformation exists, and its Jacobian
is not zero. We finally choose \beta=(\pi-\omega)/2 and apply a rotation such that
afterwards the hyperplanes have the representations

z_{2}=z_{1} tan \beta and z_{2}=z_{1} tan (\beta+\omega) (7. 2)

Let N_{P_{0},c_{1}}\subset G be the intersection of G and a ball of radius c_{1} about P_{0} .
In z-space this intersection corresponds to a domain N_{0,C_{2}} bounded by the
two hyperplanes and a surface having a distance c_{2}>0 from the origin of
the z-coordinate system. Let N_{c} , c<c_{2} , denote the intersection of N_{0,c_{2}} and
a ball of radius c>0 about the origin. In N_{c}\cross J the function V(z, t)=u(x, t)

satisfies a parabolic equation of the form (4. 1) with coefficients such that
(i^{*}) and (ii^{*}) (cf. Sec. 5, Theorem 3) hold. Clearly, V(z, 0)=0, and the
boundary function \Phi(z, t) satisfies (iii^{*}) on S_{c}\cross J with S_{c} as in Sec. 4. We
shall now determine a function q(z)\in C^{2+\alpha}(\overline{N}_{c}) such that U=V-q and its
boundary value \psi(z, t) on S_{c}\cross J satisfy all the conditions in Theorem 4.

Indeed, consider the function

q(z, t)=\Phi(0,0, z, t)+ ( z_{1} cos \beta+z_{2} sin \beta) \Phi_{\beta}(0,0, z’, t)

+co\sec\omega(- z_{1} sin \beta+z_{2} cos \beta) [\Phi_{\omega+\beta}(0,0, z’, t)

-\Phi_{\beta}(0,0, z’, t) cos \omega]

where \acute{Z}=(Z_{3}^{ },\cdots, Z_{n}) and \Phi_{\beta} and \Phi_{\omega+\beta} are the first derivatives of \Phi in the
directions \theta=\beta and \theta=\beta+\omega , respectively, and perpendicular to E_{c} . Since
\psi(z, t) now satisfies (iii^{*}) and (iv^{*}) (cf. Sec. 5), and U=V-q is a solution
of an equation of the form (4. 1), all the conditions (4. 2) and (i^{*})-(iv^{*}) hold
true. Hence from Theorem 4 it follows that there exist constants c_{3}>0

and \nu , \kappa, \chi , 0<\nu, \kappa, \chi<1 , such that

D_{z}U\in C^{\nu}(\overline{N}_{c_{3}}\cross\overline{J})

and
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\rho^{\kappa}D_{z^{2}}U\in C^{\chi}(\overline{N}_{e_{3}}\cross\overline{J})

where \rho^{2}=z_{1}^{2}+z_{2}^{2} . We return to the x-space. Since q is of class C^{2+\alpha} and
each of the above transformations is of that class and has a nonzero Jacobian,
we conclude that in a neighborhood N=\overline{N}_{P_{0},c_{4}}\cross\overline{J}, 0<c_{4}<c , we have

D_{x}u\in C^{\nu}(N) as well as \delta^{*}D_{x^{2}}u\in C^{\chi}(N) ,

Furthermore, if \omega(P_{0})<\pi/2 for all P_{0} \in\bigcup_{i}E_{i} , we can take \mu=2 and obtain
D_{x^{2}}u\in C^{0}(N) . Theorem 1 is proved.

8. Dirichlet problem for elliptic equations

As it was mentioned in the Introduction, the present method can also
be applied to the Dirichlet problem

L_{0}u=f in G (8. 1)

u|_{\partial G}=\phi (8. 2)

where L_{0} is an elliptic operator defined by

L_{0}=a_{ik}(x) \frac{\partial^{2}}{\partial x_{i}\partial x_{k}}+a_{i}(x)\frac{\partial}{\partial x_{i}}+a(x)

Here, x=(X_{1}^{ },\cdots, x_{n}) , and G is a domain with edges as in Sec. 3 (and the
other notations used below are as in Sec. 3, too).

Indeed, by suitable modifications of the present method the following
theorem can be obtained (see A. Azzam [2]).

THEOREM 5. Let u be a bounded solution of (8. 1), (8. 2), where a_{ik},

a_{i} , a, f\in C^{\alpha}(\overline{G}) and
\phi\in C^{2+\alpha}(\partial G\backslash \cup E_{i})\cap C^{0}(\partial G) .

For every P\in\cup E_{i} , let \omega(P)<\pi . Then there exist constants \nu, \kappa, \chi , 0<\nu, \kappa, \chi

<1 , such that
u\in C^{1+\nu}(\overline{G})

and
w\in C^{\chi}(\overline{G}) where w(x)=\rho^{\kappa}D^{2}u(x)

and \rho is the distance from x to \bigcup_{i}E_{\dot{t}} .
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