A note on symmetric codes over GF(3)

By Noboru Ito*

(Received September 26, 1979)

Let q be a prime power such that $q \equiv 2 \pmod{3}$ and $q \equiv 1 \pmod{4}$, GF(q) a field of q elements and μ the quadratic character of $GF(q)^x$ with $\mu(0)=0$.

Let T be a matrix of degree q defined by $T(a,b) = \mu(b-a)$, where $a, b \in GF(q)$, and

$$S = \begin{pmatrix} 0 & 1 & \cdots & 1 & 1 \\ 1 & & & & \\ \vdots & & T & & \\ 1 & & & & \\ 1 & & & & \end{pmatrix}.$$

Let C(q) be the code generated by (I, S) over GF(3), which is introduced by V. Pless in [3] and I denotes the identity matrix of degree q+1.

The purpose of this note is to show that the minimum weight of C(q) is not smallet than \sqrt{q} .

§ 1. Let $C^*(q)$ be the code generated by (I, S) over $GF(3^2)$. Let i be a primitive fourth root of unity in $GF(3^2)$. Then we may choose

$$\begin{pmatrix} -I-iS, & iI-S \\ -I+iS, & -iI-S \end{pmatrix}$$

as generators of $C^*(q)$, since (-S, I) is contained in C(q) (See [3]). We notice that -i(-I-iS)=iI-S and i(-I+iS)=-iI-S. Let U and L be the subcodes of $C^*(q)$ generated by $(-I-iS,\ iI-S)$ and $(-I+iS,\ -iI-S)$ respectively. Then any codevector of $C^*(q)$ has a form $(x+y,\ -i(x-y))$, where $(x,\ -ix)\in U$ and $(y,\ iy)\in L$.

LEMMA 1. Let w denote the weight function. Then we have that

$$w(x+y, -i(x-y)) \ge w(x)$$
 and $w(y)$.

PROOF. We may label elements of $GF(3^2)$ as follows: $a_1=0$, $a_2=1$, $a_3=-1$, $a_4=i$, $a_5=i+1$, $a_6=i-1$, $a_7=-i$, $a_8=-i+1$ and $a_9=-i-1$. Now

let n_i be the number of a_i in x and n_{ij} the number of a_j in the portion of y which corresponds to n_i coordinates of x giving a_i $(i, j = 1, \dots, 9)$. Then we have that $w(x) = n_2 + \dots + n_9$, $w(y) = n_{12} + \dots + n_{19} + n_{22} + \dots + n_{29} + \dots + n_{92} + \dots + n_{99}$, $w(x+y) = n_{12} + \dots + n_{19} + n_{21} + n_{22} + n_{24} + \dots + n_{29} + \dots + n_{91} + \dots + n_{94} + \dots + n_{96} + \dots + n_{99}$ and $w(x-y) = n_{12} + \dots + n_{19} + n_{21} + n_{23} + \dots + n_{29} + \dots + n_{91} + \dots + n_{98}$. Thus we have that $w(x+y, -i(x-y)) = 2(n_{12} + \dots + n_{19}) + (2(n_{21} + \dots + n_{29}) - n_{22} - n_{23} + \dots + 2(n_{91} + \dots + n_{99}) - n_{95} - n_{99} \ge w(x)$ and w(y).

- -I-iS and -I+iS are equivalent under the field automorphism, and so they have the same minimum weight.
- § 2. The minimum weight of $-I_1-iT$ is equal to or smaller than by one that of -I-iS, where I_1 is the identity matrix of degree q. Now let G be a generalized quadratic residue code of J. H. van Lint and F. J. Mc-Williams [2] of GF(q) over $GF(3^2)$. Since $(1, \dots, 1)$ belongs to both $-I_1-iT$ and G, and since G=(-I-iT)+J, where J is the all 1 matrix of degree q, we see that $-I_1-iT$ is a generator for G. Thus by a theorem of J. H. van Lint and F. J. McWilliams [2, Theorem 2, i] the minimum weight of -I-iT is at least \sqrt{q} .

Remark. The case $q \equiv 3 \pmod{4}$ is treated in [1].

Bibliography

- [1] N. ITO: Note on symmetry code over GF(3), to appear in JCT (A).
- [2] J. H. van LINT and F. J. MACWILLIAMS: Generalized quadratic residue codes, IEEE Trans. Inf. Th. IT 24 (1978) 730-737.
- [3] V. PLESS: Symmetry codes over GF(3) and new five-designs, JCT (A) 12 (1972), 119-142.

Department of Mathematics
University of Illinois at Chicago Circle

* This work is partially supported by NSF Grant MCS 7902750