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Double integral theorem of Haar measures

By Hidegoro NaKaNO*
(Received July 10, 1980)

On a group G we consider only those uniformities U for which the
right transformation group Ry is equi-continuous, i.e., for any U€U there
is VeU such that xVycayU for every z, yG. A set ACG is said to
be totally bounded for U if for any U=U we can find a finite system

z,eG (v=1,2,---,n) for which we have AC (LJ xz,U. The linear lattice @

v=1
of all uniformly continuous functions ¢ on G for which {z: ¢(x)#0} are
totally bounded for U is called the trunk of U. A positive linear functional
pon @ is called a measure on @ and its value is denoted by [¢(x)p(dx)
for p=0.

For a transformation 7T on G, if both 7" and 7! are uniformly continuous
for U, then for any o=@, setting ¢(x)=¢(zxT) for x€G, we obtain ¢E0.
A measure ¢ on @ is called a Haar measure of G for U if p+#0 and g is
invariant by Rg, 1. e.,

SSD(xw p(dx) = Kgo(x) p(dx) for o=@ and yeG.

v

A uniformity U on G is said to be locally totally bounded if there is
UecU such that zU is totally bounded for every x&G. According to the
Theorem of Existence in [3], if U is locally totally bounded, then there is
a Haar measure of G for U. If every left transformation L,(X&G) is
uniformly continuous for U in addition, then we can apply the of
Uniqueness in [3], and we have that the Haar measures are uniquely deter-
mined except for constant multiplication, i.e., for any two Haar measures
¢ and p there is a positive number a such that

S‘P(x)ﬂ(dx) Zajgo(x) p(dx) for every o<0.

For a topological group G we defined the proper uniformity on G in
[6]. For the proper uniformity the right transformation group Rg is equi-
continuous and every left transformation L,(x<G) is uniformly continuous.
Therefore for a locally compact topological group G there exists a Haar

* This paper was completed by the auther about 1971.
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measure that is uniquely determined except for constant multiplication, as
well known.

For a set S of a group G, the relative uniformity of U on S is denoted
by US, i.e., US={US: UcU} where 2US=zUNS for z&S. If Sis a sub-
group of G, then it is clear by definition that the right transformation group
Ry is equi-continuous on S for US.

For two subgroups .S and H of G, if G=SH and SN H={e}, then we
can consider G the product space of S and H because ux=vy for u, vES
and z, y= H implies #=v and xz=y. In we proved the

PropucT MEASURE THEOREM For two subgroups S and H of a group
G, if G=SH, SN H={e}, U=U*x U% for the relative uniformities U and
UY, and every L, (x€G) is uniformly continuous for U, then for Haar
measures ps and py of S and H respectively, the product measure psX pn
is a Haar measure of G for U; i.e., for the trunk ® and @g of U and
U respectively, setting

(x) = Sgo(ux) ps(du) for o=@ and z€H,

we have ¢y, and setting

[(o(2) 5% patdiz) = [ p(2) rntr)

we obtain a Haar measure psX pu of G for U.

Let .S be a subgroup of a group G. Considering each coast Sz (x€G)
an element, we obtain a space. This space is called the coset space of S
and is denoted by Sg i.e., Se={Szr; x&G}. Setting xMs=Sz for G,
we obtain a mapping My from G onto Sg. This mapping My is called the
coset mapping. We define the coset uniformity Us on Sg by the strongest
uniformity for which Mj is uniformly continuous.

Setting (Sz) C,=Szy for z, y=G, we obtain a transformation group
C; on Sz This transformation group Cg is called the coset transformation
group of S. If the coset mapping My is uniformly open, then Cg is equi-
continuous. If U is locally totally bounded in addition, then the coset
uniformity Uy also is locally totally bounded, and there exists an invariant
measure pg by Cy If the system L, (x&.S) is equi-continuous on G for
U, then My is uniformly open. In this paper we will prove the

DouBLE INTEGRAL THEOREM Let S be a subgroup of a group G. For
a uniformity U on G we suppose that every left transformation L, (xEG)
is uniformly continuous, the system L, (x&S) is equi-continuous, A™' is
totally bounded for any totally bounded set ACG (this condition is satisfied
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if U is complete), and U 1is locally totally bounded. For an invariant
measure , by the coset transformation group Cg for the coset uniformity
Us on S¢ and a Haar measure ps of S for the relative uniformity US
and for the trunks @ and @, of U and Uy respectively, setting

O(Sx) = Sgo(ux) us(du)  for o=@ and z2€G,

we have ¢ =@, and setting

fite) ) = [ 9(52) putas),

we obtain a Haar measure p of G for U.

For two subgroups S and H of a group G such that G=SH and
SN H=/{e}, setting xPy=S8x for x&H, we obtain a one-to-one mapping
Py from H onto Sg, and for the representation T¢ of G on H defined in
[5], we have xPyC,=xT,Py for x&H and 2€G. Setting uxMy=zx for
ueS and x= H, we obtain a mapping My from G onto H. If My is uni-
formly continuous for the relative uniformity U# of U on H, then Py is
a unimorphism from H with U¥ to S; with the coset uniformity Us. For
the trunk @z of U¥X, setting ¢(Sx)=¢(x) for x& H, we can consider @y the
trunk of Us. Since Tx=R, for x& H by definition, every invariant measure
tr by Tg is a Haar measure of H for UZ. Conversely, because of the
uniqueness of Haar measures, a Haar measure py of H for U¥# is invariant
by T4 Thus, considering gy on the trunk @, of U, py is invariant by
Cs. Therefore, applying the Double Integral [Theoreml, we obtain another
product measure theorem.

If S is an invariant subgroup of a group G, then the coset space Sg
forms the quotient group G/S, and C,=Rg, for every x&G. Therefore,
every invariant measure pg by Cg is a Haar measure of G/S for Us.

We already proved the Double Integral generally for a transitive
transformation group G on a space .S in [3]. If we set S=G and G=Rg,
then as a special case we obtain a double integral theorem for an invariant
subgroup, but under the stronger condition that the left transformation group
L is equi-continuous for U.

In this paper we construct an algebraic theory of coset transformation
groups and develop it with uniformities in order to establish the Double

Integral [Theoreml Many papers are listed in refereces for those who are
interested in this field.

1. Coset Transformation Groups Let G be a group. For any subgroup
SCG, the space of all cosets Sz (x=G) is called the coset space of S and



186 H. Nakano

is denoted by Sg; i.e., Se={Szx: z=G}.
For any x&G, setting (Su) C,=Sux for every u=(G, we obtain a trans-
formation C, on S and we have

1.1) C.C,=C,y and C;'=C,-: for z, yeG.

Thus C, (x=G) form a transformation group on Sg that is called the coset
transformation group for a subgroup SCG and is denoted by Cgz or C5 if
we need to indicate S.

(1. 2) C5, (x=G) is a homomorphism from G to the coset transforma-

tion group C%, and Nu~! Su is its kernel, i.e,
ueq

NutSu={x: C5,=E}.

ueq
Proor It is clear by (1.1) that C5, (z€G) is a homomorphism from
G to C5%. By definition C5,=E is equivalent to Sux=Su for every u€G;
i.e, Suzu'=S for every u=G. This is equivalent to wzu™&S, i.e,
rzeu1Su for every uecG.
We say that a subgroup SCG is simple if N u'Su=/{e}, as defined in

ueq
[5]. By (1.2) we have )
(1. 3) CS, (x=G) is an isomorphism if and only if .S is simple.

For any subgroup SCG, setting .S;= N «~*Su, we obtain an invariant
ueqF

subgroup S, of G, and we have
(1.4) .S/S, is a simple subgroup of the quotient group G/.S,.

Proor By definition the quotient group G/S, consists of cosets Spx
(x€G), and for any vu=G we have

(So2)T(S/:So) (Sowe) = (Sow™) (S1.S0) (Sow) = {Soze™ e : &S}

because uS,=Syu for every u€G. If Sy {Syutzu: &S} for every ueG,
then yeS,u~1Su for every u€G. On the other hand, we have

Sor 1S = u 1Sy Su = ' Su
because S,C.S and S;S=.S. Therefore y& N u 1 Su=.S, and we conclude

ueq
that .S/.S, is a simple subgroup of G/S,.
2. Congruence Let M be a transformation from a space S; to another
space S,; i.e., M is a one-to-one mapping from S; onto S, For a trans-
formation T on S,, MTM™ is a transformation on S;. We say that a
transformation group 7} on S, is congruent to a transformation group 75
on S, by M if Ty\=MT, M, i.e, Ty={MTM™: TET,.

We also say that T, is congruent to T, if there is a transformation
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M from S, to S; such that 7 is congruent to 7, by M. It is clear that
if T} is congruent to T, then 7T} is isomorphic to T,. We can easily prove
that congruence is symmetric, i.e., if 7; is congruent to 7T, then T, is
congruent to 77}, and congruence is transitive, i.e., if 7 is congruent to T,
and 7T, is congruent to T, then 7, is congruent to Ts.

Let P be a homomorphism from a group G to another group H. For
a subgroup SCG we have that

(2.1) Setting (Sx) M=(SP) (xP) for =G, we obtain a transformation M
from the coset space .Sz of S in G to the coset space (SP)y of
SP in H if and only if SPP1=.S.

Proor We have (SP)(xP)=(SP)(yP) if and only if zy 'P=(zP)(yP)'c
SP. If SPP'=S, then ay'eSPP =S, and Sx=Sy whenever (SP)(xP)=
(SP)(yP). Thus M is one-to-one. Conversely, if M is one-to-one, then
P& SP implies (Sx) M=(SP)(xP)=SP. On the other hand, we have (Se) M
=(SP)(eP)=SP because P is a homomorphism. Thus Sx=Se, i.e., zES.
Therefore SPP-1C.S, and we have SPP'=S because we always have
SPP1DS.

(2. 2) SPP-1=S§ if and only if S includes the kernel of P.

Proor Let K be the kernel of P. Since xP=e= H for every z=K,
we have xP&SP for every x&K. Thus, if SPP 1=, then Kc.S. Con-
versely, we suppose that KC.S. For any x=G, if xP=SP, then there is
yeS such that xP=yP, and Kxr=Ky because K is the kernel of P. Then
we have x€KyCKS=S by assumption. Therefore SPP'C.S, and we
have SPP1=S.

(2. 3) If SPP1=, then the coset transformation group C¥%; is congruent
to C%4 by M in (2. 1).
Proor For any z, y&G we have
(Sy) MCSop M~ = (SP) (yP) (xP) M~ = (SP) (yxP) M~
= Syx = (Sy) C5, .
Therefore CS¢= MCS? M1,
For an invariant subgroup K of a group G, setting xP=Kx for every

xeG, we obtain a homomorphism P from G to the quotient group G/K,
and K is the kernel of P. Therefore, by (2.1), (2.2), and (2. 3) we have

(2. 4) For a subgroup .S and an invariant subgroup K of a group G,
setting (Sz) M=(S/K) (Kx) we obtain a transformation M from Sg
to (S/K)gx if and only if KC.S, and then the coset transforma-
tion group C%; is congruent to C5%gx by M.
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CoNGRUENCE THEOREM 2.5. For simple subgroups S and K of groups
G and H respectively, the coset transformation group CS¢ is congruent to
CXy if and only if there is an isomorphism P from G to H such that
SP=K.

Proor If CS; is congruent to CXy by a transformation M from Sg
to Kz, then setting
CS, = MCX p, M for zeG,
we obtain an isomorphism P from G to H by (1.3) because both § and K
are simple by assumption and by (1.1) we have
CSxy = CSxCSy = MCKJ;PCK:UP M—]-:MCK(xP) (yP) ]\4_1 and
CS.'L"'l — (CSx)-l — M( K.'EP)-IM-I — M(CK(.‘I:P)_1> M—l .

Since (Se) CS,=Se if and only if &S, we have
SP={aP: (Se) C% = Se} = {u: (Se) MC¥, = (Se) M} .

Since M is a transformation from Sz to Ky, there is uwy&H such that
(Se) M= Kuy, and we have

SP = {u : Kugu = Kuo} = {u : uouuo_‘EK} =u; ' Ku,.

Setting 2Q=u,(xP) u;* for x=G, we obtain an isomorphism Q from G to
H, and SQ=u,(SP)u;'=K.

Conversely, if there is an isomorphism Q from G to H such that SQ=XK,
then setting (Sx) M=K(zQ) for xEG, we obtain a transformation M from
S; to Ky, and for any x, y&G we have

(Sx) MCK,q M1 = K(2Q) CF,o M~ = K ((a3) Q) M
= Szy =(Sz) C5, .
Therefore C8, = MC¥,o M for every y&G.
Referring to (1.3) and (2. 4), by this theorem we obtain
CoNGRUENCE THEOREM 2.6. C8; is congruent to CXy if and only if for

So=Nx 1S and Ky=Nu'Ku

ZTEQ u€H
there is an isomorphism P from G[S, to H|K, such that (S/S) P=K/K,.
3. Representations on Subgroups Let H be an adjoint of a subgroup §
in a group G; i.e.,, H is a subgroup of G, SN H={e}, and G=SH, as
defined in [5]. It is clear by definition that Se={Sz: x=Hj}, and setting
xPy=Sx for x=H, we obtain a transformation Pz from H to the coset
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space Sg.
Since S is an adjoint of H too, we defined the representation Tg of
G on H for S in [5], and we have

T, =R.D,, xu=wS,) (xD,), uS,&S, and zD,€H

for xt&H and u&S. For z, y€ H and u &S we have
(S) Cla = Syzu = S(wS,z) () D) SWR.Du) = ST -

Thus, yT.,=yPyC5,, P7' for every y& H, and we obtain T,=PzCS,Pz* for
2&G. Therefore we can state

REPRESENTATION THEOREM 3.1. For an adjoint H of S in G, setting
xPy=S8x for x&H, we obtain a transformation Py from H to the coset
space Sg.  The representation Ty of G on H for S is congruent to the coset
transformation group CSz by Py, and

(Sz) C5¢=S8(T,) for z€H and yeG.

As an immediate consequence of this theorem, we have

REPRESENTATION THEOREM 3.2. For two adjoints H and K of a
subgroup S in a group G, the representation of G on H for S is congruent
to that of G on K for S by the transformation M from H to K defined
by Sx=S(xM) for x= H.

Referring to Congruence Theorem 2.6, by Representation Theorem 3.2
we obtain

REPRESENTATION THEOREM 3.3. The representation of a group G on
a subgroup S for its adjoint S, is congruent to the representation of a
group H on a subgroup K for its adjoint K, if and only if for S,=
Na 1Sz and Ky=Nu'K,u, there is an isomorphism P from G/S, to

T€EG ueH
H/K, such that (S,/S,) P=K,/K,.
4., Skew-Coset Transformation Groups For a subgroup .S of a group G
the space of all skew-cosets wS (#=G) is called the skew-coset space of S
and is denoted by 4S; i.e., «S={uS: ueG}.

For any z&G, setting (uS) Co=xuS for every u=G, we obtain a trans-
formation C, on S, and we have

(4.1) C¢.C,=C,, and C;'=C,~ for z, y=G.

The transformations C, (x&G) form a transformation group on &S
that is called the skew-coset transformation group for a subgroup SCG and
is denoted by Cy or by C5; if we need to indicate .S.

A mapping P from a group G onto a group H is called a skew-homo-
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morphism if (xy) P=@yP)(zP) for z, y=G. For a skew-homomorphism P
from G to H, setting S={x: xP=e}, we obtain an invariant subgroup .S
of G that is called the kernel of P.

By (4.1) we have

(4.2) 5, (x€G) is a skew-homomorphism from G to CSg, and Nu 1Su
ueq

is its kernel.

A skew-homomorphism is called a skew-isomorphism if it is one-to-one.
By (4.2) we have

(4. 3) 8, (x=G) is a skew-isomorphism if and only if S is simple.

CONGRUENCE THEOREM 4. 4. Setting (Sx) Ps=x1S for x&G, we obtain
a transformation Pg from Sg to ¢S such that C(5g is congruent to s, by
P, and PyCS,P5'=C5,- for every x=G.

Proor We have Sz=Sy if and only if 2y '&.S, and we have z71S=
y~1S if and only if 2y *€S. Thus Py is a transformation. Furthermore,
for z, y&G we have

(Sz) PsCS, Pst = (yz1S) Ps' = Sxy~t = (Sz) C5y-+ .

Thus, PyC8;Pst=C5.

Let .S be an invariant subgroup of G; i.e., £ 1Sxz=.S for every z=G.
Since zS=Sx for every &G, we have ¢S=S; Furthermore, S; forms
the quotient group G/S, and (Sz) (Sy)=Szy for z, y€G. We also have

(Sz) C, = Sxy = (Sz)(Sy) = (Sx) Rs;, and
(Sz) €, =ySzx = Syzx = (Sy) (Sx) = (Sz) Ls,

for z, y=G where Ry, is the right transformation on G/S and Lg, is the
left transformation on G/, as defined in [3].

Now we can state

QuotieNt GRouP THEOREM 4.5. For an invariant subgroup S of a
group G, the coset space Sg forms the quotient group G/S and we have
oS=Ss S=Sx for every x=G, and

C,=Ry, and C,=Lg, for x=G on the quotient group G/S.

5. Strong Uniformities Let M,(Ac/4) be a mapping from a space .S, to
a space R for each A€/, and a uniformity U, is defined on S, for each
l=/A. For the trivial uniformity on R that consists of only one connector
every M, is uniformly continuous. Let V,(y&I') be the system of all uni-
formities on R for which M, is uniformly continuous for every 2&€4. For
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the weakest stronger uniformity \/ V¥, on R every M, is uniformly continuous
rel’

by Theorem 21.1 in [3]. Therefore there exists the strongest among the
uniformities on R for which M, is uniformly continuous for every A€ /.
This strongest uniformity on R is called the strong wuniformity on R by
M,(2€ 4) for U;,(A€ A).

Let M be a full mapping from S to R; i.e.,, M is a mapping from S
onto R. For uniformities U and V on § and R respectively, M is said to
be uniformly open if for any U U there is V€V such that zUM>DxMV

for every x&.S, as defined in [3].

(5.1) If M is uniformly continuous and uniformly open, then V is the
strong uniformity by M for U.

Proor If M is uniformly continuous for another uniformity ¥, on R,
then for any VeV, we can find U U by definition such that ztUMCxMV
for every x&S. Since M is uniformly open for V by assumption, for this
U we can find W&V by definition such that xZUM>D MW for every x&S.
Since M is full, we obtain V=W, and we conclude that V,C V. Therefore
V is the strong uniformity by definition.

Let N be a mapping from R to a space K with a uniformity W. If
both M and N are uniformly continuous, then the composed mapping MN
also is uniformly continuous by Theorem 14.3 in [3]. If M is uniformly
open and MN is uniformly continuous, then N is uniformly continuous by
Theorem 14.4 in [3]. Thus, if M is uniformly continuous and uniformly
open, then N is uniformly continuous if and only if MN is uniformly con-
tinuous. Therefore we have

(5.2) If a full mapping M from S to R is uniformly continuous and
uniformly open, then for a mapping N from R to a space K,
the strong uniformity on K by N is the strong uniformity on
K by the composed mapping MN.

Since M is a full mapping from S to R, for any connector U on .S we
can define a connector UM* on R by

(5.3) uUM*= U 2UM  for uER,
M=y

and UM~ on R by

(5. 4) uUM~-= N 2UM  for ueR.

For any connector V on R we obviously have

(5.5) MVM-M* = MVMM-=V.
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We also have
(5.6) cM(UM™)Cz2UMC xM(UM?) for z&S.
We can easily prove
(5.7) V< U implies VM* <UM* and VM- =UM-;
As an immediate consequence of (5.7), we have
(5. 8) UNV)Mt=UMrNVM* and (UNV)M-=UM NVM".
We will prove
(5.9) Ut M =(UM*)™.

Proor For u, vER we have ucv (U M*) if and only if we can find
z,ysS such that tM=u, yM=v, and z=yU™' because v(U*M*)=
U yU*M by definition. Likewise, we have veu(UM?) if and only if we

yM=v
can find x,yES such that ztM=u, yM=v, and y=zU. Since we have

zeyU 1 if and only if y=zU by definition, we have ucv(U*M?*) if and
only veu(UM?), and we obtain (5.9) by definition.

(5. 10) (UM (VM) S(UV) M.

Proor We suppose that ucv(UM™)(VM~). By definition we can
find wev(UM"™) such that ucw(VM™), and we have weyUM and uczVM
for any 9, 2€S with yM=v and zM=w. We can find 2&.S such that
eM=w and 2eyU, and for such 2 we have gVcyUV. Thus ucyUVM
for any y<.S with yM=v, and we have ucv((UV) M) by definition.

For uniformities U and V on S and R respectively, M is uniformly
continuous by definition if and only if for any V&=V we can find U U such
that tUMC MYV for every x&.S. On the other hand, we have xtUMC
MV for every z&.S if and only if «(UM")CuV for every u=R by de-
finition. Therefore we can state

(5.11) M is uniformly continuous if and only if for any VeV we can

find U€U such that UM*<V.

M is uniformly open by definition if and only if for any U= U we can
find VeV such that tUMDxMV for every x&S. On the other hand,
we have tUM>DxMV for every z&.S if and only if «(UM™)DuV for every
#u<ER by definition. Therefore we have

(5.12) M is uniformly open if and only if for any UeU we can find
VeV such that UM—=V.

It is clear by definition that



Double integral theorem of Haar measures 193

(6.13) ° UM*<VM if and only if tM=yM implies zUMcCyVM.

STRONG UNIiForRMITY THEOREM 5.14. For the strong uniformity V on
R by a full mapping M from S with a uniformity U to R, M is uniformly
open if and only if for any UcU we can find VEU such that VM* UM,
and then UM (UeU) form a basis of V.

Proor If M is uniformly open for V on R, then UM~V for every
UeU by (5.12). Since M is uniformly continuous by definition, for any
UeU we can find VeU by (5.11) such that VM*<UM-.

Conversely, we suppose that for any U U there is VU such that
VM*<UM-. For any UcU we.can find VeU by definition such that
VV<=U. Referring to (5.7), for such V we can find a symmetric WeU
by assumption such that WM*<VM-. Then, by (5.9), (5.10), (5.7), and
(5.6) we have

(WM (WMY)=(WM*) (WM*) < (VM) (VM)
<(VV) M- < UM < UM*.

Thus, by (5.8) we conclude that there exists a unique uniformity V, on R
such that UM (U€U) form a basis of V,. For this uniformity ¥V, M is
uniformly continuous by (5.11) and uniformly open by (5.12). Therefore
V, is the strong uniformity on R by M by (5.1).

We say that a uniformity U on a space S is unimorphic to a uniformity
V on a space R if there is a transformation P from § to R such that both
P and the inverse P! are uniformly continuous, and then P is called a
unimorphism, as defined in [3]. It is clear by definition that the inverse
P! is uniformly continuous if and only if P is uniformly open. Thus a
unimorphism P is a transformation that is uniformly continuous and uniformly
open simultaneously.

For a transformation P from S to R we have UPt=UP~ for any
connector U on S by definitions (5. 3) and (5.4). Thus by Strong Uniformity
Theorem 5.14 we have

UnimorPHISM THEOREM b5.15. A transformation P from a space S
with a uniformity U to a space R is a unimorphism for the strong wuni-
Jormity on R by P for U.

A transformation group G on a space .S with a uniformity U is said
to be equivalent to a transformation group H on a space R with a uniformity
V if G is congruent to H by some unimorphism from .5 to R, as defined

in [3].

A transformation group G on § with a uniformity U is said to be
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equi-continuous if for any U€U there is V€U such that V=TUT™ for
every TEG. With this definition, we can easily prove

EQuivALENCE THEOREM b5.16. When a transformation group G is
equivalent to a transformation group H, G is equi-continuous if and only
if H is equi-continuous.
6. Coset Uniformities Let G be a group. For esnC(G we define a
connector U(n) on G by

(6.1) zUn)=nzx  for zeG.

As proved in [3], we have
(6. 2) AU =nA  for #+ ACG,
(6. 3) IDA U(n,) = U(QAnR) )
(6. 4) U(n) < U(m) if and only if nCm,
(6. 5) U(m) Un) = U(nm), and

(6. 6) Unt=U(n™.

A set class N of G is called a neighborhood on G if esn for every
neN; NSnCm implies NOm; NSn, m implies NonN\m; and for any
neN there is m&N such that m'mcn. For any neighborhood N on G,
(6. 3)-(6. 6) shows that there exists a unique uniformity on G such that U(n)
(neN) form a basis. This uniformity on G is called the induced uniformity
on G by N and is denoted by U(N).

For the induced uniformity U(N) the right transformation group Rg
is equi-continuous because zR,U(n)=nzy= zU(n) R, for any x,y=G and
neN. Conversely, if for a uniformity U on G the right transformation
group Rg is equi-continuous, then there exists a unique neighborhood N
such that U=U(N), as proved in [3]. On a group G we consider only those
uniformities for which the right transformation group Ry is equi-continuous.

For a subgroup SCG we defined the coset space S;. For a set §+#A
cG we make use of the notation S,={Sx: x& A} as a set of Sy in dis-
tinction from S, that is a set of G. However we will use both .S, and
Sx as a coset.

We can easily prove

(6. 7) SSA:SA for ﬂ:/ﬁACG,
(6. 8) S,cSp if and only if ACSB,
(6.9) S,CSp implies S,xCSpx, and
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(6. 10) USAA = SUAA .

€4 €4

We will prove

(6.11) For 9§+ ACG, setting S, U=S,, for x=G, we obtain a connector
U on S if and only if ASCSA and ANS+#0.

Proor For any 2 ANS we have 2 A and 27!, and hence e=
21z SA. Conversely, if eSA, then we can find x€A and z&.S such
that e=ux, and x=u"'S. Therefore we have ANS#P if and only if
ecSA.

If U is a connector on S; then S,&84,=S4 for every ucS. Thus
ecSA and SAD Au for every u=.S by (6.8). Then SADAS and AN S+0.
Conversely, if SADAS and ANS+#0, then SADAu and SAuD A for uc.sS,
and S;=.S4, for every u&.S by (6.8). Since e=SA, we have S, &S4:=Suxs
for ueS§ and &G by (6.9). Therefore U is a connector on .Sg.

For 0+ ACG we have ASS=ASCSAS. Thus, by (6.11) we have

(6.12) For eencG, setting S, U, =S,s, for £&G, we obtain a connector
Un on S(;.

Such a connector U, is called a proper connector on Sg. A uniformity
U on S; is said to be proper if U has a basis that consists of proper con-
nectors.

For a transformation group G on a space .S, a connector U on .S is said
to be invariant by G if XUX'=U for every X&G, i.e., zXU=a2UX for
all xS and XeG. A transformation group G on a space S with a uni-
formity U is equi-continuous if and only if U has a basis that consists of
invariant connectors. This is Theorem 32.5 in [3].

ProPER CONNECTOR THEOREM 6. 13. A connector U on Sg is invariant
by the coset transformation group Cgq if and only if U is a proper connector.

Proor For any proper connector U, on Sz we have

Sx Cy Un = SnSxy — SnSx Cy = Sa: Un Cy

for every x, y=G. Therefore U, is invariant by Cg.
Conversely, if a connector U on Sy is invariant by Cg, then setting
n={zx: S,&S,U}, we have e€nCG, and for any &G we have

S:U=S8.C,U=8.UC,=S5.C,.

Since S,=.S, for every u<.S, we have S,=S5,U=3S,C,=S,. for every u&sS,
and S,=S,s by (6.10). Therefore, we have

S:U = Snse =S:Un for every z=G,
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i.e, U is a proper connector.

ProPER UNIFORMITY THEOREM 6.14. The coset transformation group
Ce is equi-continuous on Sg for a uniformity U on Sg if and only if U
is proper.

Proor If U is proper, then for any U U there is a proper connector
U,€ U by definition such that U,<U. Then by Proper Connector Theorem
6.13 we have

U,=CU,C;1<C,UC;t for every ze&G.

Therefore Cy is equi-continuous for U.
Conversely, if Cg is equi-continuous for U, then for any U& U there is
VeU such that VC,UC;! for every x=G. Setting

U= nC,UC:!

XEGQ

we obtain a connector €U, and C,U¢C;'=UF for every x=G. Thus
U¢ is a proper connector by Proper Connector Theorem 6.13. Since U‘SU
by definition, U° (U U) form a basis of U. Therefore U is proper by
definition.

Setting xMs=S, for x=G, we obtain a full mapping My from G to
the coset space Sg. This mapping My is called the coset mapping for a
subgroup SCG.

For eencCG the connector U(n) defined by (6.1) is invariant by the
right transformation group R; because

zR,U(n) R;' = nxyy ' = nx = zU(n)

for every x,y=G. For U(n) and the coset mapping My for a subgroup
SC G we have

S(Ulm) Mg)= U nyMs= U nu xMs = (Unu) xMs

yMg=S8y ues ues

=nS aMg= S, = S: U,
for every x&(G. So we have
(6. 15) Un) M{ =U, for eencG.
For the coset mapping My we also have
(6. 16) U(n) My <U(m) M~ if and only if n.SCSm.

Proor For any x&G, by definition (5.4) we have

S(Ulm) Ms) = 0 _yU(m) Ms= N muxMs= 1 Suus

yMg=8y u€es
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If Un) Mf<U(m) Mg, then by (6.15) we have
Sps =S, Up C S for every ucS.

Referring to (6. 8), we obtain nSC.Smu, and nS=nSu"*CSm.

Conversely, if nSc.Sm, then nSx=nSuxCSmux for u€S and z=G.
Thus we have S,5,CSpus for «=S and &G by (6.8), and for any zeG
we have

So(Uln) M*) = Suso € (1S = S (Ulm) M)

Let N be a neighborhood on a group G. For a subgroup SCG, the
strong uniformity Ug on the coset space S¢ by the coset mapping Mj for
the induced uniformity U(N) is called the coset uniformity on Sg for N.

Referring to Strong Uniformity Theorem 5.4, by (6.16) we have

Coser UNIFORMITY THEOREM 6.17. For the coset uniformity Ug on
Sg¢ for a neighborhood N on G, the coset mapping Ms is uniformly open
if and only if for any meEN there is nEN such that nSCSm, and then
Us is proper.

If left transformations L, (#E.S) are equi-continuous on G for U(N),
then for any m&N there is n€N such that Un)<L,U(m) L;' for every
ueS. Thus we have |

n=eUn)CeL, U(m) L;*=mulL,~ =u"*mu for uels,

and nu'Cu*mcCSm for every ucS. Therefore nSCSm, and by Coset
Uniformity [Theorem 6.17 we have

CoseT UNIFORMITY THEOREM 6.18. If left transformations L, (uES)
are equi-continuous on G for N, then the coset uniformity Us on Sg is
uniformly open and proper.

7. Skew-Coset Uniformities For a subgroup S of a group G we defined
the skew-coset space @S. For §#ACG we make use of the notation

S ={xS: z€ A4}

as a set of &S, However, we will use both .S and xS as a skew-coset.
We can easily prove

(7.1) 495 = 45,

(7. 2) SC3pS if and only if ACBS,
(7.3) 4S5C S implies x4SCxaS,

(7. 4) U4 S= lEJAA}S,

€4 i



198 H. Nakano

(7.5) For 0+ ACG, setting ,SU=,4S for £=G, we obtain a connector
U on S if and only if SAC AS and ANS+#0, and

(7.6) For eenCG, setting zSU, =S for &G, we obtain a connector
Un on GS-

Such a connector U, is called a skew-proper connector on ¢S. A uni-
formity U on ¢S is said to be skew-proper if U has a basis that consists

of skew-proper connectors.
We defined a transformation Pg from Sg to &S by S Py=,-.S for =G
in Congruence Theorem 4.4. For this transformation Pg we have

(7.7) P,U,Ps't=U,~ and P5'U,Ps=U,-:.
Proor For any x&G we have
SxPs Un P.S_'l = x“‘SﬁnPEI = x“SnSPEI - Sn_‘Sz — Sm Un_‘

by (6.12) and (7. 6).

By Congruence Theorem 4.4 we also have
(7. 8) P,C,P;s1=C,~ and P;'C,Ps=C,:.

It is clear by definition that a connector U on S; is invariant by C,
if and only if Pg!UPy is invariant by P5'C,P;. Therefore, referring to Proper
Connector Theorem 6.13, by (7.7) and (7.8) we have

SKEW-PROPER CONNECTOR THEOREM 7.9. A connector U on &S is
invariant by the skew-coset transformation group Cg if and only if U is

a skew-proper connector.
For a uniformity ¥ on S we have a uniformity

PSﬁP;vl:{PSUPEl: UEU}

on Sg and it is clear by definition that Py is a unimorphism from .Sz to
oS for those uniformities. Referring to (7.7), we can easily prove

(7. 10) A uniformity ¥ on S is skew-proper if and only if PsOP5s! is
proper on ,Sg.

Referring to proper Uniformity Theorem 6.14, by (7.10) we obtain

SkEw-PROPER UNIFORMITY THEOREM 7.11. The skew-coset trans-
Formation group Cq is equi-continuous for a uniformity U on ¢S if and
only if U is skew-proper.

A full mapping My from G to &S defined by xMs=,~S for z€G is
called the skew-coset mapping for a subgroup SCG. With this definition,
we obviously have
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(7 11) MS = M3PS and MS — MsPEl .
We will prove that
(7.12) Ps(U(n) M§) Ps'=Uln) M§ ~ for eencG.

Proor If yMs=,-:.S, then yMy=yMsPs'=,-1SP5'=S, by (7.11); and
if yMg=.S,, then yMy=yMsPs=S,Ps=,-S. Thus, we have yMy=,-.S if
and only if yMs=S,.

For any x&G, by definition (5.4) we have

S.Ps(U(n) M) Pt = ,+S(U(n) Mg) Ps'= U yU(n) MsP5*
= U yUln) Ms=S,(U(n) M) .

yMg:x—lS
yMg=8,

Furthermore, we have
SePs(U(n) M) Ps' = ,-S(U(n) M) Ps'= N yU(n) MsPs!
yYMg=,—18
= N YU Ms=S.(U(n) M)

yMg =S8y
for every x&G. Therefore we also have

(7.13) Py(U(n) M5) Pi*=U(m) Ms ~ for eencG.

Let N be a neighborhood on a group G. For a subgroup SCG the
strong uniformity Uy on the skew-coset space ¢S by the skew-coset mapping
Mg for the induced uniformity U(N) is called the skew-coset uniformity on
S for N.

&

For the coset uniformity Ug on S; we have
(7. 14) PsUsPst = Us.

Proor For Ug on S; and Pg!UgPg on &S, since Pg is uniformly con-
tinuous and Mg=MsPs by (7. 11), My is uniformly continuous, and we have
P51UsPsc Ug because Uy is the strong uniformity on S by M. Thus we
have UscPsUsPs'. For Ug on 4S and Ps'UgPs on Ss since Ps!is uni-
formly continuous and My=MsP;s' by (7.11), My is uniformly continuous,
and we have PsUgPs'C Uy because Uy is the strong uniformity on Sy for
Mjs. Therefore we obtain (7. 14).

Referring to Strong Uniformity [Theorem 5.14, by (7.12) and (7.13)

we obtain

(7.15) The skew-coset Mapping My is uniformly open for the skew-
coset uniformity Us if and only if the coset mapping My is uni-
formly open for the coset uniformity Us.
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Referring to Coset Uniformity [Theorem 6.17, by (7.10) and (7. 14) we
have

(7.16) If the skew-coset mapping My is uniformly open for the skew-
coset uniformity ¥, then Uy is skew-proper.

Now we suppose that .S is an invariant subgroup of G. Since xS=Sx
for every x&G by definition, the coset space S; forms the quotient group
G/S, and the coset mapping My is a homomorphism from G to G/S whose
kernel is .S. Since for #J#nCG we have Sn=nS, by Coset Uniformity
Theorem 6.17 we conclude that for any neighborhood N on G the homo-
morphism M is uniformly open for the coset uniformity Us.

For §#ncCG we make use of the notation n/S=S,=nMs and
N/S=NMj for a set class N of G. Then we have

(7.17) U.=U(n/S) for eencG.

because S, U,=S,s:=(n/S) S:=S,U(n/S) for every x=G. Furthermore, we
can easily prove that N/S forms a neighborhood on G/S for any neigh-
borhood N on G. Therefore, by (7. 17) we conclude that the coset uniformity
Us is the induced uniformity by N/S, and we can state

INvArRIANT SUuBGROUP THEOREM 7.18. If S is an invariant subgroup
of a group G, then the coset mapping Mg is a homomorphism from G to
the quotient group G|S; for any neighborhood N on G, N/S forms a neigh-
borhood on G/S; the coset uniformity Uy is the induced uniformity U(N/S);
and My is uniformly open for Us.

If S is an invariant subgroup of G, then ¢S=S; and Ps is a trans-
formation on G/S. Furthermore, Pg is the inversion on G/S because

SyPs=27t85=8z1=§;"! for every zxzeG.
Thus we have Pgl=P;.

For the skew-coset uniformity Uy we have

(7.19) Pg is uniformly continuous as a transformation on G/S for Ug if
and only if Us="Us.

Proor If Uy=U, then PsUgP3'=Uy by (7.14), and Py is uniformly
continuous as a transformation on G/S by definition. Conversely, if Pg is
uniformly continuous as a transformation on G/S for Us, then PyUgPgicC Uy
by definition that implies UsC Pg'UgPs. Since Pg'=Pg; we obtain Ug=
PyUsP5'=Uyg by (7. 14).

(7. 20) Pg is uniformly continuous as a transformation on G/S for Ug
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if and only if the left transformation group L/ is equi-continuous

fOl' Us.

Generally we will prove

INvERsION THEOREM 7. 21. The inversion Iv on a group G is uniformly
continuous for an induced uniformity U(N) if and only if the left trans-
Jformation group Lg is equi-continuous for U(N).

Proor The inversion Iv is uniformly continuous for U(N) by definition
if and only if for any m&N there is nEN such that (nx) [vCm(xlv) for
zeG; 1e., xln'Cmax! for x=G. The left transformation group Lg is
equi-continuous for U(N) by definition if and only if for any m&N there
is n€N such that (nx) L,Cm(xL,) for z, y€G; i. e, ynCmy for y=GC.
Since n& N implies n !N, we obtain Inversion Theorem 17. 20.

As an immediate consequence of Invariant Subgroup Theorem 7.17,
we have

HoMmoMorPHISM THEOREM 7.22. Let M be a homomorphism from
a group G to another group H. For a neighblrhood N on G, NM forms
a neighborhood on H, and the induced uniformity UNM) on H is the
strong uniformity on H by M for the induced uniformity U(N) on G,
and M is uniformly open.

8. Relative Uniformities on Adjoints Let H be an adjoint of a subgroup

S in a group G; i.e, SN H={¢} and G=SH. Since for u, v&S and z,

ye H we have ux=vy if and only if u=v and x=y, setting (ux) My=x

for &S and x= H, we obtain a full mapping My from G to H. This

mapping My is called the adjoint mapping for an adjoint H of S.
Concerning the adjoint mapping My, we can easily prove

(8.1) (AB) My = BMy for 0£AcCS and 0+#BCG,
(8.2) (AX) Mp=X for §+ACS and 0+XCH,
(8.3) (AX)Mp=AMzX for 0+ACG and 0P+XCH,
(8. 4) XMzt =8X for 0+XCH, and

(8. 5) AMyMzt=SA for 0+ACG.

Let N be a neighborhood on a group G. Setting
NZ = {n®. neNj} where nf=nNH for nEN,

we obtain a neighborhood N¥ on H, and we can easily prove that the
induced uniformity U(N¥) on H is the relative uniformity of the induced
uniformity U(N) on G. The neighborhood N¥ on H is called the relative
neighborhood of N on H.
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ApjoiNT MAPPING THEOREM 8.6. The adjoint mapping My is uni-
formly continuous for the relative neighborhood N¥ if and only if for any
meEN there is n=N such that nSCSm¥, and then My is uniformly open.

PrROOF My is uniformly continuous if and only if for any m&N there
is ne N by definition such that (nux) MyC m#((ux) My) for ucS and xEH
i.e., (nu) MyCm for every uES because (nux) Mu=(nu) Mgx by (8. 3).

If (nu) MyCm® for every u<S, then nuC Sm# for every u<S by (8. 4),
and we obtain n.SC . SmZ. Conversely, if nSC.Sm¥, then nuC.Sm¥ for every
uesS, and (nu) MyC(Sm#) My=m" by (8.2). Therefore, My is uniformly
continuous if and only if for any m &N there is nEN such that nSCSm¥”

Furthermore, since n#Cn and mZcCm, nSCSm# implies n#SC.S,, and
n2c Smu for every u<S. Thus, referring to definition (5. 4), by (8.2) and
(8.3) we have

nflxC Q§mux) My= x(U(m) M_,})
for every x=H. Therefore My is uniformly open by (5.12).

We defined a transformation Py from H to Sg by zPz=.S, for x& H
in Representation Theorem 3.1. For the coset mapping My from G to Sg,
by definition we have

Since m#Cm, we have that nSCSm? implies nSCSm. Thus, by Ad-
joint Mapping Theorem 8. 6 and Coset Uniformity (Theorem 6. 17 we conclude
that if My is uniformly continuous for NZ, then the coset mapping Mg is
uniformly open for the coset uniformity Us on Sg, and Py is a unimorphism
by (5.2) and Unimorphism Theorem 5.15. Therefore we have

ADJoINT MAPPING THEOREM 8.8. If the adjoint mapping Mg is uni-
formly continuous for the relative neighborhood N¥, then the coset mapping
Mg is uniformly open for the coset uniformity Us on Sg for which Py is
a unimorphism from H to Sg.

According to Representation Theorem 3.1, the representation T of
a group G on its subgroup H is congruent to the coset transformation group
C, on S; Referring to Equivalence Theorem 5.16, Coset Uniformity
Theorem 6.17, and Proper Uniformity Theorem 6.14, we obtain

REPRESENTATION THEOREM 8.9. If the adjoint mapping My is uni-
formly continuous for the relative neighborhood N¥, then the representation
Te of a group G on its subgroup H is equi-continuous for N¥.

Since G=SH and SN H={e}, we can consider G the product space
of S and H, and then My is the projection of G on H. Thus, if U=
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USx U for the relative uniformities of U on .S and H respectively, then
M} is uniformly continuous by Theorem 24.2 in [3]. Therefore, Represen-
tation Theorem 8.9 is a generalization of the Deviation in [6].

9. Double Integral Theorem Let N be a neighborhood on a group G.
If N is regular, i.e., each left transformation L, (x&G) is uniformly con-
tinuous for the induced uniformity U(N), then the inversion Iv is continuous
by Theorem 41.11 in [3]. If N is complete in addition, i.e., the induced
uniformity U(N) is complete, then for any totally bounded set ACG for
U(N), the closure A~ is compact, and A~Iv also is compact because Iv is
continuous. Since AlvC A~Iv, Alv is totally bounded and A'=Alv by
definition. Therefore we have

9.1) If N is regular and complete, then for any totally bounded set
ACG for U(N), A1 also is totally bounded for U(N).

A set ACG is said to be right totally bounded for N if for any neN
we can find a finite system x,&€G (v=1,2,---,n) such that AC Lanx,.

v=1

It is clear by definition that a set ACG is right totally bounded if and
only if A is totally bounded for the induced uniformity U(N).

A neighborhood N is said to be right totally bounded if there is a set
neN that is right totally bounded for N. According to Theorem 40.3 in
[3], N is right totally bounded if and only if the induced uniformity U(N)
is locally totally bounded; i.e., there is Uy U(N) such that zU, is totally
bounded for U(N) for every x=G.

If N is locally uniformly regular, i.e., N is regular and there is nEN
such that the left transformations L, (x&n) are equi-continuous for U(N),
then by Theorem 4.11 in [3], Iv is locally uniformly continuous for U(N);
i. e., there is n& N such that Iv is uniformly continuous on xU (n) for every
xz&G. Thus, for any totally bounded set ACG for U(N), Iv is uniformly
continuous on A, and A™! also is totally bounded for U(N). Therefore
we have

(9. 2) If N is locally uniformly regular, then for any totally bounded
set ACG for U(N), A™! also is totally bounded for U(N).

Now we suppose that for any right totally bounded set ACG, A1
also is right totally bounded for N, and N is regular and right totally
bounded. Let .S be a subgroup of G such that left transformations L,
(ueS) are equi-continuous for the induced uniformity U(N); i.e., for any
meN there is nEN such that nucCum for every u&S. Since nuCum
for every u&S implies nSC.Sm, the coset mapping Mg is uniformly open
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for the coset uniformity Ug on Sz by Coset Uniformity [Theorem 6.17,
and the coset transformation group Cg is equi-continuous on Sg for Ug by
Proper Uniformity Theorem 6.14. Since N is right totally bounded by
assumption, there is my& N by definition such that m, is right totally bounded
for N. Since My is uniformly open, there is U, Uy such that aMs;U,C
2U(my) Mg for every x€G. Since zxU(my)=m,s by definition and myx is
totally bounded for U(N), zU(m,) My is totally bounded for Ugs because
Mg is uniformly continuous. Therefore xMsU, is totally bounded for Us
for every &G, and hence Uy is locally totally bounded by definition.

According to the of Existence in [3], there exists a measure
o on Sg that is invariant by Cg; i.e., for the trunk @, of Us we have

[ors.c mias) = o) m@s)  for peo, and veG.

The relative neighborhood N¥® also is right totally bounded by definition,
and the induced uniformity U(N®) on .S is regular and locally totally bounded.
Thus, there exists a Haar measure yg of .S; i.e., for the trunk @y of U(NS)
we have

[ote pstda) = (ot pstdz)  for 905 and yes.

Let @ be the trunk of U(N). We can consider @ C @y by definition.
For any ¢=® we have

sso(u‘vx) ps(du) = Sgo(ux) ps(du) for veS and z=G.
Thus, setting
5(S,) = S(p(ux) usldu)  for zeG,

we obtain a function ¢ on S;. We will prove ¢ €0,

The set Ap={x: ¢(x)#0} is right totally bounded for N by definition,
and ¢(x)=0 for every x&A, Since my&N is right totally bounded by
assumption, setting A=myA, and B=SNAA™', we obtain right totally
bounded sets A and B by Theorem 40.6 in [3], and BS«<.S implies
uANA=@ because for any xr€uANA where ucS we have ulzxcA,
xe A, and

u=zxulx)leSNAA'=8B.

Therefore ¢(ux)=0 for BSu&S and €A because AD A,.
According to Theorem 19.1 in [3], there is a uniformly continuous
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function ¢, on G for U(N) such that ¢y(u)=1 for u€B, 1=¢,=0, and
¢o(2)=0 for xEmyB=BU(my). Since m,B is right totally bounded for N
by Theorem 40.6 in [3], we have ¢,=0.

Since ¢ is uniformly continuous on G for U(N), for any >0 there
is me&N such that mmCm, and

|§0(x)—9’(’!/)l<e for zemy.

For such m&N there is n&N such that unCmu for every u&.S because
L, (ueS) are equi-continuous for U(N) by assumption. Then, x&ny implies
uxcuny Cmuy for every u<.S, and we have

|90(ux)—go(uy)|<e for ueS and zeny.
Since ¢(ux)=¢(uy)=0 for BSuc.S and x,y= A, we have
|lowx)—p(uwp)|<ep(@)  for uesS, zeny, and zyeA,
and we obtain
|4(S2) — p(Sy)

Since My is uniformly open, there is a symmetric U= Uy such that
xMsUC nxMjy for every x&G, and we have S,UC.S,, for every x=G. If
SES,U and S,ES5,4, then we can find &G such that §,=S, and
YoEnA, and 290G such that S,=.S; and xy=ny, Since nnCmy, we have
YoEmyAy=A and xEnnA,CmyA,=A. Thus we have

|¢(Sx)—¢(Sy)|§eSgoo(u) psldu)  for S,€8,U and S,E S, .

§sSgoo(u) s(du) for zeny and x,ycsA.

If SyESna, they yESnA, by (6.8), and wy=SnA,DA, for every ucsS.
Therefore ¢(uy)=0 for every u&S, and ¢(S,)=0. If S,ES,4, and S,=.S,U,
then, since Sy, NS4, U, we have S, NS, U'=0. Since U is symmetric by
assumption, we obtain S,ES4, and uxE A, for every u=S. Thus we have
¢(S)=0 for S,&S5,U and S,ES,4,. Therefore ¢ is uniformly continucus.
Since Mg is uniformly continuous and nA, is totally bounded for U(N),
Sna, 1s totally bounded for Us. Therefore ¢ =@, by definition.

Setting {o(x) p(dx)={¢(S:) p1o(dSs) for ¢ =@ we obtain a measure ¢ on
@, and for any z=G we have

018 = | pluze) ps(du), $(8:) = 9(S.C), and

Jo5.C s = [ 9(8) mtass).
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Thus we have {¢(z2) =(p(x) p(dx) for €@ ;i.e., pis a Haar measure
of G for U(N).

Now we can state

DouBLE INTEGRAL THEOREM 9.3. Let N be a neighborhood on a group
G such that for the induced uniformity U(N) every left transformation
L, (x€G) is uniformly continuous, A~ is totally bounded for any totally
bounded set ACG, and U(N) is locally totally bounded. Let S be a sub-
group of G such that left transformations L, (x€S) are equi-continuous
for U(N). Then, for the coset uniformity Us on the coset space Sg the
coset mapping My is uniformly open and the coset transformation group
Cy is equi-continuous. Let @ be the trunk of U(N) on G and @, the trunk
of Us on Sg. For a Haar measure ps of S for the relative neighborhood
N3 and an invariant measure ty by Cgz on Sg, setting

gb(Sx):Sgo(ux)ps(du) for x€G and €@,

we have ¢=@,, and setting
[o@) naz) = [ 98 mias,

we obtain a Haar measure p of G for U(N).

10. Skew-Double Integral Theorem If the coset mapping My is uniformly
open for the coset uniformity Us on Ss then the skew-coset mapping
My is uniformly open for the skew-coset uniformity Us on &S by (7.15),
Py is a unimorphism from Sg to &S by (7.14), and Cy is equi-continuous
by Skew-Proper Uniformity Theorem 7.11 and (7. 16).

Let @, be the trunk of Us on &S. For functions ¢ and ¢ on Sg and
oS respectively, if 3(,S)=¢(S,-) for every &G, then we have o, if
and only if ¢&®, because Py is a unimorphism. If Uy is locally totally
bounded, then so is U, and for any invariant measure fi, by C, on @,
setting

o0 piasy = [ 85) )

for @(»S)=¢(S,~) for =G, we obtain an invarinat measure g by Cg on
@, because

o(S;—Cy) = @(Se1y) = ¢(y“xs> = ¢(wSCy“‘)

for every xeG and

050 s = (.50, (o) = [ #0u8) )= [ 0152 ol
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Furthermore, for any o=@, setting

3:8) = [plua o) and 9(5) = [ plu) 1)
for =G, we have ¢(,S)=¢(S;-:) for every xEG, and

[665) 2u(deis) = [ 9152 ol

Therefore by Double Integral Theorem 9.3 we have

SKEw-DoOUBLE INTEGRAL THEOREM 10.1. Under the same assumption
as Double Integral Theorem 9.3, for the skew-coset uniformity Us on aS,
the skew-coset mapping My is uniformly open and the skew-coset transfor-
mation group Cq is equi-continuous. Let @ be the trunk of U(N) on G
and @, the trunk of Us on ¢S. For a Haar measure ps of S for the relative
neighborhood N® and an invariant measure fiy by Cq on &S, setting

3.5 = [puay pstet) ~ for 2€G and pco,
we have =@, and setting

ot ntaa) = (409 ades),

we obtain a Haar measure p of G for U(N).

If Sis an invariant subgroup of G, then .Sg is the quotient group G/S
and the coset transformation group Cg is the right transformation group
Rgs by Quotient Group Theorem 4.5. Furthermore, the coset uniformity
Us is the induced uniformity U(N/S) by the neighborhood N/S on G/S.
Therefore, every invariant measure g, by C; on G/S for Uy is a Haar
measure of G/S for U(N/S). Consequently, we can state

INvARIANT SuBGROUP THEOREM 10.2. In Double Integral Theorem
9.3, if S is an invariant subgroup of G, then p, is a Haar measure of the
quotient group G/S for the induced uniformity U(N/S).

Now we suppose that .S has an adjoint H in G and the adjoint mapping
Mj; is uniformly continuous for the relative neighborhood N#¥ on H. Ac-
cording to Adjoint Mapping Theorem 8.8, Py is a unimorphism from H
to Sg and the representation 7y of G on H is congruent to C; by Py
by Representation Theorem 3.1. For any function ¢ on H, setting ¢(xPg)
=¢(x) for x& H, we can consider ¢ a function on S; Since Py is a uni-
morphism, the trunk @5 of U(N#) coincides with @, and we have

O(S:C,) = ¢(aT, Py) = ¢(xT)) for xeH and z2EG.
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Since @y=®@, any measure on @y is a measure on @, If a measure py
on @y is invariant by Tg, then py is invariant by Cq. On the other hand,
if py is invariant by Tg, then py is a Haar measure of H for the induced
uniformity U(N¥) because T,=R, for x& H by definition. Since every left
transformation L, (2€G) is uniformly continuous by assumption, we can
easily prove that every L, (x& H) is uniformly continuous for U(N¥). Thus,
we can apply the Theorem of Uniqueness in [3], and we conclude that the
Haar measures of H for U(N¥) are uniquely determined except for constant
multiplication. Therefore, any Haar measure gz of H for U(N¥) is invariant
by T%.

Now we have another

Probpuct MEeASURE THEOREM 10.3. Under the same assumption as
Double Integral Theorem 9.3, if S has an adjoint H in G such that the
adjoint mapping My is uniformly continuous for the relative neighborhood
NH on H, then for the trunk ®y of U(N®) and a Haar measure py of H
for U(N#), setting

d(z) = Sgp(ux) ts(du) for o€,

we have ¢=Ppn, and setting

[t atan) = [ () pataa),
we obtain a Haar measure p of G for U(N).
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