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A remark on Xia’s theorem concerning

quasi-invariant measures
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§ 1. - Introduction

Let E and F be Banach spaces, and suppose that F itself is a linear
subspace of E. Also suppose that the inclusion mapping J of F into E is
continuous. Then the author [4, Proposition 3.1] proved the following:

PropositioN 1. 1. The following implication (1)=>(2) holds.

(1) There exists a finite Borel measure on E which is quast-invariant
with .respect to F.

(2) The adjoint mapping J* of E* into F* is absolutely summing.

In [Proposition 1.1}, if E is a Hilbert space and F is a Banach space,
then the converse implication (2)=>(1) also holds (cf. [4, Theorem AJ).
Now we shall consider the following problem.

" ProBLEM. Can we show the equivalence of statements (1) and (2) of
[Proposition 1.1 when E and F belong to some suitable class of Banach
spaces ?

Concerning this, Xia [7, p. 319, Example 5. 3. 1] and the author [4, Pro-
position 4.1, 1] proved the following :

THEOREM 1.1. Let 1=<p<oo, 1=q=2. If we assume that lcir(a,),
then the following statements are equivalent.

(1) There exists a finite Borel measure on [?(a,) which is quasi-
invariant with respect to .

(2) The adjoint mapping J* of (I2(a,))* into (I9* is absolutely summ-
ing, where J denotes the inclusion mapping of I into I*(ay).

(3) 2 an<oo. |

The purpose of this note is to give a generalization of the above theorem
to a function space, which is stated as follows :

Let (2,2, 1) and (2, 2,v) be o-finite measure spaces. For 1=p< oo,
1<g< oo, we denote by L?(x) the Banach space of equivalence classes of
real valued measurable functions on (2, 3, ) whose p’th power is integrable,
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and also denote by L%(y) the Banach space of equivalence classes of real
valued measurable functions on (£, 3,v) whose ¢’th power is integrable.

THEOREM 1.2. Let 1<p<oo, 1=<q=<2. Suppose that two measures
¢ and v are mutually equivalent, and Li(v)C L?(). Then the following
statements are equivalent.

(1) There exists a finite Borel measure on L*(y) which is quasi-
invariant with respect to L(v).

(2) The adjoint mapping J* of (LP(p))* into (L4(v))* is absolutely
summing, where J denotes the inclusion mapping of Li(v) into L*(y).

REMARK 1.1. In the above theorem, if we assume that the measure
¢ is absolutely continuous with respect to the measure v (not necessarily
equivalent), then the similar result can be proved (cf. Theorem 3.1 of Sec-
tion 3). . P : o
Throughout this note, we assume that all linear spaces are with real
coefficients and all measures are nontrivial.

§ 2. Definitions and lemmas

Let E be a linear topological space, and let P be a Borel measure on
E. For an element z in E, let P, denote the Borel measure on E defined by

P.(A)=P(A—x) for any Borel set A of E.

DEFINITION 2.1. An element z of E is called an admissible shift for
the measure P if P, is absolutely continuous with respect to P. The set
of admissible shifts of the measure P will be denoted by Mp.

An element x of E is called a partially admissible shift for the measure
P if P, contains a non-trivial component absolutely continuous with respect
to P. The set of partially adimissible shifts of the measure P will be denoted
by Mo.

It is easily seen that MpC Mp, but in general Mp does not coincide
with Mp. (For details; see [3, Chapter 4, §19], [6].)

Let F be a linear subspace of E. We shall say that the measure P is
quasi-invariant with respect to F if FC Mp.

DEFINITION 2.2. Let 1=p<oo. A continuous linear mapping T of
a Banach space E into a Banach space F is called p-absolutely summing if
it takes each weakly p-summable sequence {z,} of E into an absolutely p-
summable sequence {7'(x,)} of F.

We shall say “absolutely summing” instead of ‘“l-absolutely summing”.

For 1=p=<¢<co, it is well known (cf. [2, Satz 5]) that if T is p-
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absolutely summing, then 7" is g-absolutely summing.
The following result is a generalization of [Proposition 1.1l

LeMMA 2.1. (cf. [6, Theorem 4. 2])

Let T be a continuous linear mapping of a Banach space F into a
Banach space E. Then the following implication (1)=>(2) holds.

(1) There exists a finite Borel measure P on E such that T(F ) Mop.

(2) The adjoint mapping T* of E* into F* is absolutely summing.

Now we introduce a sequence space [P(a,).

Let 1Sp< oo, let {a,} be a sequence of positive numbers, and let /?(ay)
denote the totality of real number sequences £={¢,} which satisfy the condi-
tion

CRNT — (S anleal)p<oo.

I?(a,) forms a Banach space with respect to the coordinatewise linear opera-
tions and the norm (2. 1).

LemMA 2.2. (cf. [4, Proposition 4.1.1])

Let 1<p<co, 1=q=2. Let {a,} and {b.} be two sequences of positive
numbers, respectively. Suppose that 14(b,)Cl?(a,). Then the following two
statements are equivalent.

(1) There exists a finite Borel measure on I?(a,) which is quasi-invari-
ant with respect to U(by).

(2) 3 an/bi< .

§ 3. Main theorem and other results

Let (2,2, 1) and (2, %,v) be o-finite measure spaces. The y-measurable
set A of positive measure is called a p-atom if for any g-measurable subset
B of A, we have either u(B)=0 or u(ANB)=0. Denote by L°(y) the
linear space of equivalence classes of real valued measurable functions on
(@, 2, ¢), and denore by L°(v) the linear space of equivalence classes of real
valued measurable functions on (2, Y,v). Suppose that the measure p is
absolutely continuous with respect to the measure v. Then, for two meas-
urable functions f(w) and g(w) on (2,3), “f(w)=g(w) for v-a.e. ®” implies
that “f(w) = g(w) for p-a.e. @’. Thus the natural mapping J of L°(y) into
L%(y) can be defined.

Let 1<p< oo, 1<g<oo. Since the Banach L%(y) is a linear subspace
of L), J is a linear mapping of L%(y) into L%y). Also since L'(y) is a
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complete linear metric space with respect to the topology of measure con-
vergence, it follows from the closed graph theorem that J is a continuous
linear mapping of L¢(y) into L°(y). Thus, J(L(y)) becomes a Banach space
with respect to the quotient norm. We remark that J(L*(v))N L?(z) also
becomes a Banach space with respect to the following norm ||| ;

(3.1) 1A=+ flle  for any fEJ(L1()N L7 (1)

where [|+]|, and ||+||, denote the norms in Banach spaces L?(g) and J(L(»)),
respectively.

For simplicity, we shall write F instead of J(L¢(y))N L?(¢) in the ensuing
discussions. Denote by T the inclusion mapping of a Banach space F into
a Banach space L7(p).

Then our main theorem is stated as follows :

THEOREM 3.1. Let 1=p<oo, 1<q=2. Then the following five state-
ments are equivalent.

(1) There exists a finite Borel measure on L*(y) which is quasi-
invariant with respect to F.

(2) There exists a finite Borel measure P on L*(y) such that FC Mp.

(3) The adjoint mapping T* of (L*(w)* into F* is absolutely sum-
ming. \

(4) The adjoint mapping T* of (L*(n))* into F* is p-absolutely sum-
ming. .
(5) For any X,CQ which is measurable and mutually disjoint with
0<u(X,) < oo, 0<v(X,)< oo, the following inequality

(3.2) (X p(Xp)i< 00
holds.
To prove this theorem, the following lemma is very useful.

LEmMMA 3.1. Under the hypotheses of Theorem 3.1, the following
implication (1)=>(2) holds.

(1) The adjoint mapping T* of (LP(p))* into F* is p-absolutely sum-
ming.

(2) For any X,CQ which is measurable and mutually disjoint with
0<pu(X,) < oo, 0<u(X,)< o0, the following inequality

3.3 ZpX)/(e(Xs (X)) <oo
holds.

This proof can be done by a quite similar way as in the proof of Pro-
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position 4.2.1 of [4], and so we omit it.
Now we shall prove our main theorem.

Proor of Theorem 3.1.

(1)=(2): This is obvious.

(2)=>(3): This follows from Lemma 2. 1.

(3)=>(4): This follows from Satz 5 of [2].

(49=>(5): Let {X,} be a sequence of mutually disjoint measurable sub-

sets of 2 such that 0<p(X,)<oco, 0<v(X,) <oo. Suppose that the state-
ment (4) holds. Then it follows from Lemma 3.1 that the inequality (3.3)
holds, so that for a given ¢ with 0<e<1, there exists a natural number N
such that

(3. 4) (X /(X +v(Xo)a)’ <er for all nZN.

Hence we have

(3.5  pXp<oov(XJi for all n=N.
Putting 5'::%5 frpm (3.3) !ﬂ‘a}‘nd (3. 5),:.v§7ek"fvhave.‘ -_ 

% X0 [ (o X (X)) < oo

 This shows that the inequality (3.2) certainly holds.

(5)=>(1): Since (2,2,v) is a o-finite measure space, it can be shown
that there exist mutually disjoint measurable subsets X and Y such that
Q=XUY, where neither X nor any of its measurable subsets is an atom,
and Y is a union of an at most countable number of atoms Y, with 0<
v(Yy)<oo (k=1,2, .- ). Let {Y;} be a subsequence of {Y;} such that
/l(YKn)>O (n=1,2, - )-

For simplicity, we shall write Y, instead of Y, . Then it is easy to
show that Y, is a g-atom and p(Y,)<oco. Let f(w) denote the Radon-
Nikodym derivative of ¢ with respect to . Then we have

3.6) #(A):S flo)dv(w) for any A of 3.

A

Now suppose that the statement (5) holds. Then we can show that
©(X)=0. For if u(X)>0, then from (3.6), there exist a positive constant
C and measurable subset Z of X such that v(Z)>0 where Z={weX;
flw)=C}. Since neither Z nor any of its measurable subsets is a v-atom,
there exists a sequence of mutually disjoint measurable subsets Z, of Z such
that
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(3.7) Sv(Z)mi= oo

Also since

plze) =, flo) dbl)zCn(Z),

n

hence it follows from (3.7) that
N Z)(Z)a = C L v(Z) 4 =00 |

However from our assumption (3. 2), this is a contradiction.

Thus we have that £ is a union of an at most countable number of
p-atoms Y,. Let a,=p(Y,), b,=v(Y,). Then we shall show that a Banach
space L?(y) is linearly isometric to a Banach space [?(a,). For if f& L?(y),
then f(w) is constant on Y, for p-a.e. o since Y, is a p-atom. Hence we
may put

Flo)=¢&, for v in Y,.

Putting £=(¢&,), we have that é=/P(a,). Hence we obtain a linear isometry
V of LP(y) onto [?(a,) defined by V(f)=¢.
Then it is easy to show that the image of F by V coincide with #(b,).
Since from our assumption (3. 2), we have

p
2 an/b?z< o,
Hence it follows from Lemma 2.2 that there exists a finite Borel measure
P on [?(a,) which is quasi-invariant with respect to %(b,). Then, V-1P is
a finite Borel measure on L?(y) which is quasi-invariant with respect to F,
where the measure V-'P is defined by

V-1P(A) =P(V<A>) for any Borel set A of L?(y).

Thus the proof is completed.

ReEMARK 3.1. (1) In the above theorem, if 1<g<oco, the implication
(1)=(2)=(3)=(4)=(5) also hold. However, if 2<g< oo, the implication (5)=
(1) does not hold (cf. [4, Proposition 4. 1. 2]).

(2) As was shown in this proof, if one of the five statements of the
above theorem be satisfied, then the inclusion J(L%(y))C L?(x) holds, so that
the Banach space F coincide with J(L?(y)).

CorOLLARY 3.1. Let 1=p<oo, 1=<g<oo. Suppose that two measures
p and v are mutually equivalent, and that the non-atomic part of p has
a positive measure. Then there exists no finite Borel measure on LP(y)
which is quasi-invariant with respect to Li(v) N L*(p).
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ExampLE 3.1. Let 1<p<oo, 1=Zg<oo. Let p be a Lebesgue measure
on a finite dimensional space R”, and let v be a ¢-finite Borel measure on
R* which is equivalent to g Then there exists no finite Borel measure
on L?(p) which is quasi-invariant with, respect to L(y) N L?().

Finally, we shall discuss for an abstract Wiener space (cf. [1]).

Let 1<p<oco. Suppose that two o-finite measures g and v on (2, 3)
are mutually equivalent, and also suppose that L2*(v) is a separable Hilbert
space and L(y)C L?(y). For simplicity, we shall write H instead of L*(v).
Let B denote the closure of H in LP(y), and denote by ¢ the inclusion
mapping of H into B. Then B forms a separable Banach space with respect
to the induced norm by L?(y), and it follows from the closed graph theorem
that the mapping ¢ of H into B is continuous.

Now as a corollary to Theorem 3.1, we have the following :

CorROLLARY 3.2. The following two statements are equivalent.
(1) The triple (i, H, B) is an abstract Wiener space.
(2) The adjoint mapping i* of B* into H* is absolutely summing.

From this, we have the following :

CorROLLARY 3.3. Under the hypotheses of Corollary 3. 2, if we assume
that the non-atomic part of i has a positive measure, then the triple (i, H, B)
is not an abstract Wiener space.
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