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Convexity in Musielak-Orlicz spaces

By H. HUDZIK
(Received March 21, 1984)

Summary. Some criterion for uniform convexity of a modular I of
Musielak-Orlicz type is given. Moreover, some lower estimates are given
for the moduli of convexity in uniformly convex Orlicz spaces.

0. Introduction. In paper [4] a criterion is given for uniform
convexity under Luxemburg norm of Musielak-Orlicz spaces of vector-
valued functions in the case of an atomless measure. In this paper a
criterion is given for uniform convexity of a modular I of Musielak-Orlicz
type also in the case of an atomless measure. Moreover, in section 2, some
lower estimate are given for the moduli of convexity in uniformly convex
Orlicz spaces in the case of an atomless as well as a purely atomic measure.

It is well known (see [8] and [13]) that if an Orlicz function satisfies
suitable condition \Delta_{2} , then there exist functions \delta and \eta mapping the
interval (0, 1) into itself such that the inequalities I (x)\leq 1-\epsilon and I (x)\leq\eta(\epsilon)

imply ||x||_{\Phi}\leq 1-\delta(\epsilon) and ||x||_{\Phi}\leq\epsilon , respectively (for definitions of
functionals I and || ||_{\Phi} see below).

However, for a lower estimate of the modulus of convexity of the
Luxemburg norm in Orlicz spaces we need to known some lower estimates
of the functions \delta and \eta and of the modulus of convexity \delta_{I} . A lower
estimate of the modulus \delta_{I} follows from results of A. Kaminska [8]. Some
estimates of the functions \delta and \eta , which yield an estimate of the modulus of
convexity of the norm || ||_{\Phi} , are main purpose of section 2 of this paper.

R. P. Maleev and S. L. Troyanski [11] gave a best in some sense
estimate of the modulus of convexity of the norm || ||_{\Psi} , where \Psi is an Orlicz
function equivalent to \Phi (two equivalent Orlicz functions \Phi and \Psi yield the
same Orlicz space with equivalent norms |||| \Phi and |||| \Psi , see [12]). This
problem was continuated by T. Figiel [2] (see e. g. Propositions 19, 21 and
Lemma 20). However, for a pair of equivalent Orlicz functions \Phi and \Psi an
estimate of the modulus of convexity for the norm || ||_{\Psi} need not yield of an
estimate of the modulus of convexity for the norm |||| \Phi . So, the problem
investigated in section 2 of this paper is sensible.

Now, we shall introduce some denotations and definitions. Let R be the
set of real numbers and N the set of natural numbers. Let (X, || ||) be a
real Banach space. By ( T,\Sigma, \mu) we denote a space of a non-negative,
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atomless, complete and \sigma-finite measure. By \Sigma_{0} we denote the class of null
sets in \Sigma with respect to measure \mu . For every set A\in\Sigma , \chi_{A} denotes the
characteristic function of A , and A\cong B denotes for A , B\in\Sigma that \mu(A\div

B)=0, where A\div B=(A\backslash B)\cup(B\backslash A) . Let R_{+}=[0, +\infty) and let F=F(\mu ,

T, X) denote the space of equivalence classes of strongly \Sigma -measurable
functions x:Tarrow X .

By a Musielak-Orlicz function we mean a map \Phi : T\cross X- [0, +\infty]

which is convex, even, vanishing and continuous at zero, not identicaly zero
for \mu- a . e . t\in T and \Sigma\cross \mathscr{B}-measurable, where \mathscr{B} denotes the class of Borel
subsets of X

We define for any Musielak-Orlicz function \Phi the Musielak-Orlicz space
L^{\Phi}(\mu) as the set of all x\in F such that I(\lambda x)<+\infty for some \lambda>0 depending
on x , where

I(x)=I_{\Phi}(x)= \int_{T}\Phi(t,x(t))d\mu ,

and its subspace
E^{\Phi}(\mu)= { x\in F : I(\lambda x)<+\infty for any \lambda>0 }.

The functional I is a convex modular on F (see [12] and [14]). The
Luxemburg norm ||||_{\Phi} is defined on L^{\Phi}(\mu) by

||x||_{\Phi}= \inf\{u>0:I(x/u)\leq 1\} .
A modular I is called uniformly convex if its modulus of convexity \overline{\delta}_{I}(\epsilon)

defined by
\overline{\delta}_{I}(\epsilon)=\inf\{1-I(\frac{x+y}{2}) : I(x)=I(y)=1, I(\frac{x-y}{2})\geq\epsilon\}

is positive for any \epsilon>0 (compare with definitions in [13] and [14]).
We define also an another modulus of convexity of a modular I by

\delta_{I}(\epsilon)=\inf\{1-I(\frac{x+y}{2}) : I(x)=I(y)=1, I(x-y)\geq\epsilon\} .

In the case when I is a norm, we write \delta_{X} instead of \delta||||_{X} .
Let G(\epsilon, \Phi) denote for every \epsilon>0 and arbitrary Musielak-Orlicz

function \Phi the-set af all strongly \Sigma -measurable functions f : Tarrow X\backslash \{0\} such

that \int_{T}\Phi(t,f( t))d\mu=\epsilon .

A Musielak-Orlicz function \Phi is called uniformly convex if: \forall\epsilon\in(0,1)

\exists f\in G(\epsilon, \Phi) \exists T_{0}\in\Sigma_{0}\exists p(\epsilon)\in(0,1)\forall x , y\in X :

\Phi(t, f(t))\leq\max(\Phi(t, x), \Phi(t, y))\leq\epsilon^{-1}\Phi(t , \frac{x-y}{2})\Rightarrow

\Phi (t , \frac{x+y}{2})\leq\frac{1-p}{2}\{\Phi(t, x)+\Phi(t, y)\}

(compare with definition in [4] and [13]).
We say that a Musielak-Orlicz function \Phi satisfies the condition \Delta_{2} if
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there exist a set T_{1}\in\Sigma_{0} , a constant K>0 and a non-negative and
\Sigma -measurable function h with \int_{T}h(t)d\mu<+\infty such that

\Phi(t, 2x)\leq K\Phi(t, x)+h(t)

for every t\in T\backslash T_{1} and x\in X (for definition and consequences see e.g . [7]
and [12] ) .

A Musielak-Orlicz function \Phi such that \Phi(t_{1^{ }},\cdot)=\Phi(t_{2}, \cdot) for each t_{1} , t_{2}\in

T is called an Orlicz function.
We say an Orlicz function \Phi satisfies the condition \Delta_{2} for all x (at zero)

[at infinity] if there exist constants K , a>0 such that the inequality \Phi(2x)\leq

K\Phi(x) holds for all x (for x satisfying \Phi(x)\leq a) [for x satisfying \Phi(x)\geq a ]

1. Results.

LEMMA 1. 1. If I is a convex modular in a linear space X satisfying the
following condition

(\Lambda_{2}) \forall\epsilon>0\exists K(\epsilon)\geq 2\forall x\in X : I(2x)\leq K(\epsilon)I(x)+\epsilon ,

then there exists a function p : (0, 2)arrow(0,2^{-1}) such that
(1. 1) \overline{\delta}_{I}(p(\epsilon))\leq\delta_{I}(\epsilon)\leq\overline{\delta}_{I}(\epsilon) .

PROOF. The right-side inequality of (1. 1) is obvious. For the proof of
the left-side inequality of (1. 1) observe that I(x-y)\geq\epsilon implies

\epsilon\leq I(2\frac{x-y}{2})\leq K(\frac{\epsilon}{2})I(\frac{x-y}{2})+\frac{\epsilon}{2} , i . e . I( \frac{x-y}{2})\geq\epsilon/2K(\frac{\epsilon}{2}) .

Thus, the condition (1. 1) holds with p( \epsilon)=\epsilon/2K(\frac{\epsilon}{2}) .

REMARK. If \Phi is a Musielak-Orlicz function satisfying condition \Delta_{2} ,

then the modular I=I_{\Phi} satisfies condition (\Lambda_{2}) (see [5]).
LEMMA 1. 2. Let X be a separable Banach space. Then every

Musiclak-Orlicz function \Phi satisfying the condition
(*) \forall r>0.\tilde{\Phi}(t,r)=sup\{\Phi(t, x) ||x||\leq r\}<+\infty for\mu-a.e.t\in T

satisfies the following condition (see [9]).
(B) there exist an ascending sequence \{ T_{n}\} of subsets of T\cap\Sigma of fifinite

measure such that \bigcup_{n}T_{n}\cong T and a sequence \{f_{k}\} of \Sigma -mcasurable and

non-negative functions such that \tilde{\Phi}(t, k)\leq f_{k}(t) for \mu- a . e . t\in T and

\int_{\tau_{n}}f_{k}(t)d\mu<+\infty for any k, n\in N .
PROOF. The proof of this lemma was shown to me by W. Kurc.

Define the sets
A_{n}= \bigcup_{\iota\leqq n}\{t\in T ^{\tilde{\Phi}(t,l})\leq n\} , n=1,2 , \cdots .
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It is obvious that \{ A_{n}\} is an ascending sequence of \Sigma -measurable subsets of
T such that \bigcup_{n}A_{n}\underline{\simeq}T Let \{ ^{B_{n}}\} be an ascending sequence of \Sigma -measurable
subsets of T of finite measure satisfying \bigcup_{n}B_{n}\cong T Putting T_{n}=A_{n}\cap B_{n} for
any n\in N , we obtain an ascending sequence of sets of finite measure such
that \bigcup_{n}T_{n}\cong T Denoting f_{k}(t)=\tilde{\Phi}(t, k) , we get

\int_{\tau_{n}}f_{k}(t)d\mu=\int_{\tau_{n}}\tilde{\Phi}(t,k)d\mu\leq\int_{T\max kn}\tilde{\Phi}(t,\max(k,n))d\mu\leq\max(k,n)\mu(T_{\max(k,n)})

<+\infty .
The functions f_{k}(t) are \Sigma -measurable by separability of X and by continuity
of \Phi , which follows from the condition (*) . Thus, the proof is finished.

THEOREM 1. 3. If \Phi is a uniformly convex Musielak-Orlicz function,
then the modular I=I_{\Phi} is uniformly convex on L^{\Phi}(\mu) . Conversely, if X is
separable and \Phi satisfifies the condition (*) , then uniform convexity of I on the
subspace E^{\Phi}(\mu) implies uniform convexity of \Phi .

PROOF. \Rightarrow Let\epsilon\in(0,1) , \alpha=\epsilon/4 , f\in G(\alpha, \Phi) , I(x)=I(y)=1 and
I( \frac{x-y}{2})\geq\epsilon . We may assume without loss of generality that the null sets in

the definition of \Phi being uniformly convex and satisfying the condition (*)
are empty. Define

(1. 2) B= \int_{(}t\in T : \Phi(t, f(t))\leq\max\{\Phi(t, x(t)), \Phi(t, y(t))\}\leq

\epsilon^{-1}\Phi ( t, \frac{x(t)-y(l)}{2} ) \}

We have for t\in B

\Phi(t, 2^{-1}(x(t)+y(t)))\leq 2^{-1}(1-p(\alpha))\{\Phi(t, x(t))+\Phi(t, y(t))\} .
Integrating both-side this inequality over B , we get

I(2^{-1}(x+y)\chi_{B})\leq 2^{-1}(1-p(\alpha)) \{ I(x\chi_{B})+I(y\chi_{B})\} .
Hence, we obtain

(1. 3) 1-I( \frac{x+y}{2})=I(x)+I(y)-I(\frac{x+y}{2})\geq I(x\chi_{B})+I(y\chi_{B})

-I( \frac{x+y}{2}\chi_{B})\geq 2^{-1}p(\alpha)\{I(x\chi_{B})+I(y\chi_{B})\} .

Denote
C= { t\in T\backslash B : max ( \Phi ( t, x(t) ), \Phi(t, y(t)))<\Phi(t, f(t)) },

D= { t\in T\backslash B : \Phi ( t, \frac{x(t)-y(t)}{2})<\alpha max (\Phi ( t, x(t) ), \Phi(t, y(t))) }.

We have T\backslash B =C\cup D and

I( \frac{x-y}{2}\chi_{C}\leq 2^{-1}\{I(x\chi_{C})+I(y\chi_{C})\}\leq\alpha,

I( \frac{x-y}{2}\chi_{D})\leq\alpha\{I(x\chi_{D})+I(y\chi_{D})\}\leq 2\alpha .
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Hence we get I( \frac{x-y}{2}\chi_{T\backslash B})\leq 3\alpha and thus

(1. 4) I( \frac{x-y}{2}\chi_{B})\geq\epsilon/4 .

So, we have
\frac{\epsilon}{4}\leq I(\frac{x-y}{2}\chi_{B})\leq\frac{1}{2}\{ I(x\chi_{B})+I(y\chi_{B})\} , i . e . I(x \chi_{B})+I(y\chi_{B})\geq\frac{\epsilon}{2} .

Hence and by (1. 3), we obtain

1-I ( \frac{x+y}{2})\geq\epsilon p(\alpha)/4 , i . e.\overline{\delta}_{I}(\epsilon)\geq\epsilon p(\alpha)/4 ,

and the proof of sufficiency is finished.
\Leftarrow . Assume that X is separable, \Phi satisfies the condition (*) and \Phi

is not uniformly convex. Let Z–\{Z_{1}, Z_{2}^{ },\cdots\} be a countably and dense subset
of X. Note that we may restrict ourselves in definition of \Phi being uniformly
convex to elements x, y\in Z and to rational numbers p(\epsilon)\in(0,1) (by
continuity of \Phi(t, \cdot) for \mu- a . e . t\in T , which follows from the condition (*)) .
Let \{\delta_{k}\} denote the sequence of all rational numbers from the interval
(0, 1) . Let \epsilon>0,f\in G(\epsilon, \Phi) be arbitrary and let us consider the set

A(\epsilon, f)=\{t\in T : \forall k\in N\exists m, n \in N:\Phi(t, f(t))\leq\max(\Phi(t, x(t)) ,

\Phi(t, y(t)))\leq\epsilon^{-1}\Phi(t, \frac{z_{m}-z_{n}}{2}) and \Phi(t, \frac{z_{m}-z_{n}}{2})\geq\frac{1-\delta_{k}}{2}\{\Phi(t, z_{m})+\Phi(t, z_{n})\}\} .

It is obvious that A(\epsilon, f)\in\Sigma . Since \Phi is not uniformly convex by
assumtion, so

\exists\epsilon>0\forall f\in G(\epsilon, \Phi) : \mu(A(\epsilon, f))>0 .

Denote A=A(\epsilon, f) , \epsilon_{1}=\int_{A}\Phi(t, f(t))d\mu , \mathscr{H}=X\cross X, and define for arbitrary

fixed k\in N a multifunction \overline{G}:Aarrow 2^{\mathscr{H}} by
\overline{G}(t)=\{(x, y)\in \mathscr{H}:\Phi(t, f(t))\leq\max(\Phi(t, x), \Phi(t, y))\leq\epsilon^{-1}\Phi(t, \frac{x-y}{2})

and \Phi ( t, \frac{x+y}{2})\geq\frac{1-\delta_{k}}{2}\{\Phi(t, x)+\Phi(t, y)\}\} .

Obviously, \overline{G}(t)\neq 0 for every t\in A and the graph of \overline{G}, i . e . the set \{(t, z)

\in T\cross \mathscr{H}:z\in\overline{G}(t)\} is \Sigma\cross(\mathscr{B}\cross \mathscr{B}) -measurable. Hence (see [3]) there
exists a \Sigma -measurable function (selector) g:Aarrow \mathscr{H} such that g(t)\in\overline{G}(t)

for any t\in A . This means that there exist two \Sigma-measurable functions
g_{1} , g_{2} : Aarrow X such that

(1. 5) \Phi(t, f(t))\leq\max(\Phi(t, g_{1}(t)), \Phi(t, g_{2}(t)))\leq\epsilon^{-1}\Phi(t,\frac{g_{1}(t)-g_{2}(t)}{2})

and \Phi(t, 2^{-1}(g_{1}(t)+g_{2}(t)))\geq 2^{-1}(1-\delta_{k})\{\Phi(t, g_{1}(t)+\Phi(t, g_{2}(t))\} .
Define the sets

A_{1}=\{t\in A:\Phi(t, g_{1}(t))\geq\Phi(t, g_{2}(t))\} , A_{2}=A\backslash A_{1} .
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We have \int_{A_{1}}\Phi(t, g_{1}(t))d\mu\geq\epsilon_{1}/2 or \int_{A_{2}}\Phi(t, g_{2}(t))d\mu\geq\epsilon_{1}/2 . We may assume

without loss of generality that\int_{A_{1}}\Phi(t, g_{1}(t))d\mu\geq\epsilon_{1}/2 . Let us define the sets
A^{(n)}= \{l\in A_{1}\wedge\max(||g_{1}(t)||, ||g_{2}(t)||)\leq n\} , B_{n}=A^{(\Pi)}\cap T_{n} ,

where \{ T_{n}\} is the sequence of set from the condition (B) (see Lemma 1. 2).
We have B_{n}\subset B_{n+1} for any n\in N and \bigcup_{n}B_{n}\cong T. Thus, there exists n\in N such
that \int_{B_{n}}\Phi(t, g_{1}(t))d\mu\geq\epsilon_{1}/3 . Next, there exists a set C\subset B_{n} , C\in\Sigma , such that

\int_{c}\Phi(t, g_{1}(t))d\mu=\epsilon_{1}/4 . Denote
\lambda(t)=\Phi(t, g_{1}(t))-\Phi(t, g_{2}(t)) .

We have for all t\in C : 0\leq\Phi(t, g_{1}(t))-\Phi(t, g_{2}(t))<+\infty and \int_{c}\mathcal{A}(t)d\mu\leq

\int_{c}\Phi(t, g_{1}(t))d\mu=\epsilon_{1}/4 . Next, there exists a set D\subset C, D\in\Sigma , such that
\int_{D}\mathcal{A}(t)d\mu=\int_{c\backslash D}\lambda(t)d\mu .

This is equivalent to the following equality

(1. 6) \int_{D}\Phi(t,g_{1}(t))d\mu+\int_{C1D}\Phi(t,g_{2}(t))d\mu=\int_{C^{1}D}\Phi(t,g_{1}(t))d\mu

+ \int_{D}\Phi(t,g_{2}(t))d\mu=b ,

where b is a positive number \leq\epsilon_{1}/4 . Define a multifunction H:B\backslash Carrow 2^{X}

by
H(t)=\{x\in X : \Phi(t, x)>0\} .

We have H(t)\neq\emptyset for t\in B\backslash C and the graph of H is \Sigma\cross’measurable
Thus, there exists a measurable function h:B\backslash C-arrow X such that h(t)\in H(t)

for any t\in B\backslash C (see [3]). Let us define
D_{n}=\{t\in B\backslash C ||h(t)||\leq n) , n\in N .

The sequence \{ ^{D_{n}}\} is ascending and \bigcup_{n}D_{n}=B\backslash C. Thus, there exists n_{0}\in N

such that 1_{Dn_{0}}^{\Phi(l}, h(t))d\mu>0 . Since D_{n_{0}}\subset B\backslash C and B is contained in some
set T_{n} from the condition (B) (see Lemma 1. 2), so

\forall \mathcal{A}>1-- 0<\int_{D_{n_{0}}}\Phi ( t,\mathcal{A} h(t))d\mu<+\infty .

So, there exists a set E\subset D_{n_{0}} E\in\Sigma , and a number \lambda>1 such that
\int_{E}\Phi(t, \lambda h(t))d\mu=1-b . Let us define

x=g_{1}\chi_{D}+g_{2}\chi_{C1D}+\lambda h\chi_{E-}-y=g_{2}\chi_{D}+g_{1}\chi_{C|D}+Ah\chi_{E} .
Since functions x and y are bounded and vanishing outside some set T_{n} from
the condition (B), so both belong to E^{\Phi}(\mu)’. Moreover, we have by (1. 6):

I(x)=I(y)–1 , and by (1. 5) : I(2^{-1}(x+y))\geq 1-\delta_{k} and I(2^{-1}(x-y))\geq\epsilon .
So, by arbitrarity of k, this means that the modular I is not uniformly
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convex, i . e.\overline{\delta}_{I}(\epsilon)=0 for some \epsilon>0 , and the proof is completed.
EXAMPLE 1. 4. If \Phi_{1} , \Phi_{2} are two Musielak-Orlicz functions on T\cross R,

then the function \Phi=\Phi_{1}\cdot\Phi_{2} is a uniformly convex Musielak-Orlicz function.
PROOF. We shall prove only uniform convexity of \Phi . Without loss of

generality we may assume that \Phi_{1} and \Phi_{2} not depends on a parameter t, i . e .
that \Phi_{1} and \Phi_{2} are Orlicz functions. Denote by \varphi , \varphi_{1} and \varphi_{2} the right-hand
derivative of \Phi , \Phi_{1} and \Phi_{2} , respectively. We have for any \epsilon , u>0 :

\varphi((1+\epsilon)u)=\varphi_{1}((1+\epsilon)u)\Phi_{2}((1+\epsilon)u)+\Phi_{1}((1+\epsilon)u)\varphi_{2}((1+\epsilon)u)\geq

(1+\epsilon)\{\varphi_{1}(u)\Phi_{2}(u)+\Phi_{1}(u)\varphi_{2}(u)\}=(1+\epsilon)\varphi(u) .
Hence it follows that the function \Phi satisfies the condition

(1. 7) \forall a\in(0,1)\exists p(a)\in(0,1)\forall u\geq 0:\Phi(\frac{u+au}{2})\leq 2^{-1}(1-p(a))\{\Phi(u)+

\Phi(au)\} , (see [1]), i . e . the function \Phi is uniformly convex on the interval
[0, +\infty) , because the condition (1. 7) implies that (see [5])

\forall a\in(0,1)\exists p(a)\in(0,1)\forall x, y\in R:|x-y|\geq a max (|x|_{r}|y|)

\Rightarrow\Phi(\frac{x+y}{2})\leq\frac{1-p(a)}{2}\{\Phi(x)+\Phi(y)\} .

COROLLARY 1. 5. For every Musielak-Orlicz functions \Phi_{1} and \Phi_{2} defifined
on T\cross R and for every non-negative measure \mu the modular I_{\Phi_{1}\cdot\Phi_{2}} is
uniformly convex on the space L^{\Phi_{1}\cdot\Phi_{2}}(\mu) .

REMARK 1. 6. Let X be arbitrary Banach space and let \Phi_{1} , \Phi_{2} be two
Musielak-Orlicz functions on T\cross X. Then the function \Psi complementary to
\Phi=\Phi_{1}\cdot\Phi_{2} satisfies the condition \Delta_{2} with h\equiv 0 .

PROOF. We have for t\in T, x\in X:\Phi ( t, \frac{x}{2})\leq\frac{1}{4}\Phi(t, x) and hence we

have for t\in T, x^{*}\in X^{*}:

\Psi(t, 2x^{*})=\sup\{2x^{*}(x)-\Phi(t, x) : x\in X\}=4 sup \{ x^{*}(\frac{x}{2})-\frac{1}{4}\Phi(t, x)\}\leq

4 sup \{x^{*}(\frac{x}{2})-\Phi(t, \frac{x}{2})\}=4\Psi(t, x^{*}) .

COROLLARY 1. 7. Assume that \Phi_{1} , \Phi_{2} are Orlicz functions on a Banach
space X. Then the space L^{\Phi_{1}\cdot\Phi_{2}}(\mu) is reflexive iff X is reflexive and \Phi_{1} , \Phi_{2}

satisfy condition \Delta_{2} for all x (at infinity} [at zero] in the case of \mu being
atomless and infifinite (atomless and finite) [purely atomic with measure of
atoms b_{n} satisfying 0<_{n} \inf b_{n} ].

PROOF. This follows by applying the theorem on representation of linear
continuous functionals over an Orlicz space (see [9] and [15]), by the fact
that every reflexive Banach space X has the Radon-Nikodym property, and
by the property that an Orlicz function \Phi_{1}\cdot\Phi_{2} satisfies suitable condition \Delta_{2}
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iff both functions \Phi_{1} and \Phi_{2} satisfy suitable condition \Delta_{2} .

2. Estimates of the moduli of convexity in Orlicz spaces.

In this section X=R and the uniform convexity of Orlicz function \Phi is
defined in an another manner.

An Orlicz function \Phi is called uniformly convex on the interval
D\subset R_{+} if for every a\in(0,1) there exists p(a, D)\in(0,1) such that for any
u\in D

\Phi(\frac{u+au}{2})\leq\frac{1-p(a,D)}{2}\{\Phi(u)+\Phi(au)\}

(see [1] and [13]). If \Phi is an Orlicz function satisfying condition \Delta_{2} for
all u (at infinity), then uniform convexity of \Phi in the sense of definition in
section 1 coincides with uniform convexity in the last sense on the interval
[0, +\infty) (on every interval [ u, +\infty), u>0) in the case of an atomless
infinite (an atomless finite) measure \mu , respectively.

A normed space (X, ||||) is said to be uniformly convex if \delta_{X}(\epsilon)>0

for every \epsilon>0 (see [10]).
Now, we shall give some auxiliary results.

THEOREM 2. 1. (see [8]). Let \Phi be an Orlicz function. The Orlicz space
L^{\Phi}(\mu) is uniformly convex iff \Phi satisfifies condition \Delta_{2} for all u and is
uniformly convex on the interval [0, +\infty) (\Phi is fifinite, vanishes only at zero,
satisfies the condition \Delta_{2} at infifinity and is uniformly convex on evcry interval
[u, +\infty) , u>0)[\Phi satisfies the condition \Delta_{2} at zero, there exists a number
u>0 such that \Phi(u)=b^{-1} and \Phi is uniformly convex on the interval [0, \Phi^{-1}

( \frac{1}{2b})] in the case of an atomless infinite measure \mu (an atomless fifinite
measure \mu ) [ a purely atomic measure \mu= \{ ^{b_{k}}\} such that 0<b= \inf_{k}b_{k}=\lim_{k}

inf b_{k} , where b_{k} denotes the measure of kth atom], respectively.

LEMMA 2. 2. (see [6]). Let \Phi be an Orlicz function satisfying condition
\Delta_{2} for all u (at infifinity) [ at zcro]. Then \Phi satisfifies the condition

\lim_{karrow\infty}\{\Phi((1+\frac{1}{k})u)=\Phi(u)

uniformly with respect to all u>0 (uniformly on every interval [ c, d] , where
\sup [ u>0: \Phi(u)=0]\leq c<d<\sup [ u>0:\Phi(u)<+\infty]) [ uniformly on every
interval [0, u_{0}] , where u_{0}< \sup [ u>0:\Phi(u)<+\infty]] .

In the following, for arbitrary fixed Orlicz function \Phi and for any \sigma\in

(0, 1) , we denote by f_{\sigma} the function from R\backslash \{0\} into R_{+} defined by
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f_{\sigma}(u)=\Phi(u/(1-\sigma))/\Phi(u) .
LEMMA 2. 3. Let \mu be an atomless and infifinite measure and let \Phi be an

Orlicz function satisfying condition \Delta_{2} for all u. Defifine the function \delta:(0, 1)

arrow(0,1) by

\delta(\epsilon)=\sup\{\sigma\in(0,1) : \sup_{u>0}f_{\sigma}(u)\leq\frac{1}{1-\epsilon}\}

Then for every x\in L^{\Phi}(\mu) and \epsilon\in(0,1) we have ||x||_{\Phi}\leq 1-\delta(\epsilon) , whenever
I(x)\leq 1-\epsilon .

PROOF. It follows from Lemma 0.2 that \delta(\epsilon)\in(0,1) for any \epsilon\in(0,1) .
Moreover, by continuity of \Phi , which follows from the condition \Delta_{2} for all u,

we have f_{\delta(\epsilon)}(u)\leq 1/(1-\epsilon) for any u>0 . Hence it follows immediately that
the condition I(x)\leq 1-\epsilon implies I(x/(1-\delta(\epsilon)))\leq 1 , i . e . ||x||_{\Phi}\leq 1-\delta(\epsilon) .

LEMMA 2. 4. Let \mu be an atomless and fifinite measure and let \Phi be a fifinite
Orlicz function satisfying condition \Delta_{2} at infifinity and vanishing only at zero.

Define the function \delta:(0,1)arrow(0, \frac{1}{2}] by

\delta(\epsilon)=sup\{\sigma\in(0, \frac{1}{2}] : \sup_{u\geq a}f_{\sigma}(u)\leq 1/(1-\epsilon/2)\} ,

where a= \frac{1}{2}\Phi^{-1} (\epsilon/(2-\epsilon)\mu ( T)) and \Phi^{-1} denotes the generalized inverse

function of \Phi . (see [13]) Then for every x\in L^{\Phi}(\mu) and \epsilon\in(0,1) the condition
I(x)\leq 1-\epsilon implies ||x||\Phi\leq 1-\delta(\epsilon) .

PROOF. It follows from Lemma 0.1 that \delta(\epsilon)\in(0, \frac{1}{2}] for any \epsilon>0 .
Suppose that I(x)\leq 1-\epsilon and define the set A=\{t\in T:|x(t)|\leq a\} . We
have f_{8(\epsilon)}(u)\leq 1/(1-\epsilon/2) for all u\geq a and hence

I(x/(1-\delta(\epsilon)))=I(xX_{A}/(1-\delta(\epsilon)))+I(x\chi_{T\backslash A}/(1-\delta(\epsilon)))\leq I(2x\mathcal{X}_{A})

+(1/(1-\epsilon/2))I(x\chi_{T\backslash A})\leq\Phi(2a)\mu(T)+(1-\epsilon)/(1-\epsilon/2)=1 , i . e . ||x||_{\Phi}\leq 1-

\delta(\epsilon) .
LEMMA 2. 5. Let \mu be a purely atomic measure as in Theorem 0.2 and let

\Phi be an Orlicz function satisfying condition \Delta_{2} at zero and such that there
exists a number u_{0}>0 such that \Phi(u_{0})=\frac{1}{b} . Let us defifine the function
\delta : (0, 1)arrow(0,1) by
\delta(\epsilon)=sup\{\sigma\in(0,1) : sup[f_{\sigma}( \mathcal{U}) : ^{u}\in(0, (1-\sigma)\Phi^{-1}(\frac{1}{b})]\cap[0, \Phi^{-1}(\frac{1-\epsilon}{b})]\leq

\frac{1}{1-\epsilon}\} .

Then for every x\in L^{\Phi}(\mu) and \epsilon>0 the condition I(x)\leq 1-\epsilon implies ||x||_{\Phi}\leq

1-\delta(\epsilon) .
PROOF. It follows from Lemma 0.1 that \delta(\epsilon)\in(0,1) for every \epsilon\in(0,1) .
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Now, assume that \epsilon\in(0,1) and I(x)\leq 1-\epsilon , i . e . \Sigma_{k=1}^{\infty}\Phi(x_{k})b_{k}\leq 1-\epsilon . Hence

it follows that \Phi(x_{k})\leq(1-\epsilon)/b for k=1,2 , \cdots i . e . |x_{k}| \in[0, \Phi^{-1}(\frac{1-\epsilon}{b})] .

We have by continuity of \Phi on the interval [0, \Phi^{-1}(\frac{1}{b})] that f_{\delta(\epsilon)}(u) \leq\frac{1}{1-\epsilon}

for every u \in(0, \Phi^{-1}(\frac{1-\epsilon}{b})] . Hence it follows that \Phi(x_{k}/(1-\delta(\epsilon)))\leq\Phi(x_{k})/

(1-\epsilon) for k=1,2 , \cdots Thus, we get
I(x/1-\delta(\epsilon)))=\Sigma_{k=1}^{\infty}\Phi(x_{k}/(1-\delta(\epsilon)))b_{k}\leq(\Sigma_{k=1}^{\infty}\Phi(x_{k})b_{k})/(1-\epsilon)\leq 1 , i . e .

||x||_{\Phi}\leq 1-\delta(\epsilon) .
In the following \lambda(u) is defined as \log_{2}u^{-1} if \log_{2}u^{-1} is a positive integer

and as E(\log_{2}u^{-1})+1 in an opposite case, where E(u) denotes the integer
part of u.

LEMMA 2. 6. Let \Phi be an Orlicz function satisfying condition \Delta_{2} for
all u. Let K=sup[\Phi(2u)/\Phi(u) : u>0] and \eta(\epsilon)=K^{-\lambda(\epsilon)} . Then for
every x\in L^{\Phi}(\mu) and \epsilon\in(0,1) the condition I(x)\leq\eta(\epsilon) implies ||x||_{\Phi}\leq\epsilon .

PROOF. Let \epsilon\in(0,1) and I(x)\leq\eta(\epsilon) . We have
I(x/\epsilon)\leq I(2^{\lambda(\epsilon)}x)\leq K^{\lambda(\epsilon)}I(x)\leq 1 , i.e.||x||_{\Phi}\leq\epsilon .

LEMMA 2. 7. Let \mu be an atomless and finite measure and let \Phi be a fifinite
Orlicz function satisfying condition \Delta_{2} at infifinity and vanishing only at
zero. Let a=\epsilon\Phi^{-1}(1/2\mu ( T)) , K=sup[\Phi(2u)/\Phi(u) : u\geq a] , and \eta(\epsilon)=

K^{-\lambda(\epsilon)}/2 . Then for every x\in L^{\Phi}(\mu) and \epsilon\in(0,1) the condition I(x)\leq\eta(\epsilon)

implies ||x||_{\Phi}\leq\epsilon .
PROOF. Take arbitrary \epsilon\in(0,1) and x\in L^{\Phi}(\mu) satisfying I(x)\leq\eta(\epsilon)

and define the set A=\{t\in T:|x(t)|\leq a\} . We have
I(x)/\epsilon)=I(x\chi_{A}/\epsilon)+I(x\chi_{T\backslash A}/\epsilon)\leq 2^{-1}+I(2^{\lambda(\epsilon)}x\chi_{T\backslash A})\leq

\leq 2^{-1}+K^{\lambda(\epsilon)}I(x)\leq 1 , i. e . ||x||_{\Phi}\leq\epsilon .
LEMMA 2. 8. Let \mu be a purely atomic measure as in Theorem 0.2 and let

\Phi be an Orlicz function satisfying condition \Delta_{2} at zero, i. e . K=sup[\Phi(2u)

/\Phi(u):0<u\leq a]<+\infty for some a>0 such that \Phi(a)>0 . Defifine the function
\eta : (0, 1)arrow(0, +\infty) by

\eta(\epsilon)=\min(\eta_{1}(\epsilon), \eta_{2}(\epsilon)) ,

where \eta_{1}(\epsilon)=b\Phi(a/2^{\lambda(\epsilon)}) and \eta_{2}(\epsilon)=K^{-\lambda(\epsilon)} . Then for every x\in L^{\Phi}(\mu)

and \epsilon\in(0,1) , we have ||x||_{\Phi}\leq\epsilon whenever I(x)\leq\eta(\epsilon) .

PROOF. Take arbitrary \epsilon\in(0,1) and x\in L^{\Phi}(\mu) satisfying I(x)\leq\eta(\epsilon) .
Then I(x)\leq\eta_{1}(\epsilon) and hence 2^{\lambda(\epsilon)}|x_{k}|\leq a for any k\in N. Hence it follows by
the condition \Delta_{2} for the interval [0, a] that
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I(x/\epsilon)\leq I(2^{\lambda(\epsilon)}x)\leq K^{\lambda(\epsilon)}I(x)\leq K^{\lambda(\epsilon)}\eta_{2}(\epsilon)\leq 1 , i.e . ||x||_{\Phi}\leq\epsilon .
THEOREM 2. 9. If L^{\Phi}(\mu) is a uniformly convex Orlicz space, then its

modulus of convexity \delta_{L}^{\Phi} satisfifies for every \epsilon\in(0,1) the following inequality
\delta_{L}^{\Phi}(\epsilon)\leq\delta(\delta_{I}(\eta(\epsilon))) ,

where \delta is the function from Lemmas 2.3, 2.4 and 2.5 (respectively}, \delta_{I} is the
modulus of convexity of the modular I, and \eta(\epsilon) is the function from
Lemmas 2.6, 2.7 and 2.8 (respectively).

PROOF. Let \epsilon\in(0,1) , ||x||\Phi=||y||\Phi=1 , ||x-y||\Phi\geq\epsilon . Then, by the
respective condition \Delta_{2} (see Theorem 2.1) we have I(x)=I(y)=1 .
Moreover, by Lemmas 2.6, 2.7 and 2.8 (respectively), we have I(x-y)\geq\eta(\epsilon) .
So, by uniform convexity of the modular I (see [8]), we have I((x+y)/2)
\leq 1-\delta_{I}(\eta(\epsilon)) . Applying Lemmas 1.3, 1.4 and 1.5 in suitable cases, we
obtain ||(x+y)/2||_{\Phi}\leq 1-\delta(\delta_{I}(\eta(\epsilon))) , and the proof is finished.

REMARK 2. 10. Since the functions \delta_{I} (see [8]) and \delta , \eta are estimated
from below, so the function \delta_{I}\Phi is estimated from below also.

REMARK 2. 11. In the case of an atomless and infinite measure \mu , and
\log_{2}\epsilon^{-1} being integer, our estimate for the function \eta is a best estimate. For
the same measure \mu and for any \epsilon\in(0,1) our estimate for the function \delta is
a best estimate.
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