Automorphism groups of Σ_{n+1} —invariant trilinear forms

By Yoshimi Egawa and Hiroshi Suzuki (Received June 20, 1984)

1. Introduction

Let Σ_{n+1} be the symmetric group on the set $\{0, 1, \dots, n\}$ of cardinality n+1, $n \ge 2$. Let $V = \langle e_1, \dots, e_n \rangle$ be a natural n-dimensional irreducible Σ_{n+1} -module over the complex number field C. (That is, $\{e_1, \dots, e_n\}$ is a basis of V such that if we let $e_0 = -(e_1 + \dots + e_n)$, then Σ_{n+1} acts on $\{e_0, e_1, \dots, e_n\}$ in the standard way.) We regard Σ_{n+1} as a subgroup of GL(V). We define a Σ_{n+1} -invariant symmetric trilinear form θ_n on V by

 $\begin{array}{lll} \theta_n(e_j, \ e_j, \ e_j) = n(n-1), \ 1 \leq j \leq n; \\ \theta_n(e_j, \ e_j, \ e_k) = -(n-1), \ 1 \leq j, \ k \leq n, \ j \neq k; \\ \theta_n(e_j, \ e_k, \ e_h) = 2, \ 1 \leq j, \ k, \ h \leq n, \ j \neq k \neq h \neq j. \end{array}$

Now we can state our main results.

Theorem 1. Let Σ_{n+1} , V, θ_n be as above. Let θ be an arbitrary nonzero Σ_{n+1} —invariant symmetric trilinear form on V. Then

$$\theta = \alpha \theta_n$$
, $0 \neq \alpha \in \mathbb{C}$

and so $Aut\theta = Aut\theta_n$, where we define the automorphism group of θ to be

$$Aut\theta = \{ \sigma \in GL(V) : \theta(x^{\sigma}, y^{\sigma}, z^{\sigma}) = \theta(x, y, z) \text{ for all } x, y, z \in V \}.$$

Theorem 2. If n=2 or $n \ge 4$,

 $Aut\theta_n = \langle \omega I \rangle \times \Sigma_{n+1}$,

where I is the identity element of GL(V) and $\omega = (-1+\sqrt{3}i)/2$.

Remark. The structure of $Aut\theta_3$ is described in Lemma 2. 3.

If n is odd, our proof of Theorem 2 is essentially an elementary analysis of the action of $Aut\theta_n$ on the set of "singular" elements of V. If n is even, we first prove that there is no singular element, which implies that $Aut\theta_n$ is finite by [6, Theorem B]. We then apply a deep result of H. Bender [3] to complete the proof.

Symmetric bilinear and trilinear mappings

$$V \times V \longrightarrow V$$
, $V \times V \times V \longrightarrow V$,

which are Σ_{n+1} —invariant are studied by K. HARADA [5] and by the second author [7], respectively. Our result here is analogous to that of the bilinear mapping case. This is natural, because

$$V \times V \times V \longrightarrow \mathbf{C}$$

can be viewed as

$$V \times V \longrightarrow V^*$$
.

Symmetric multilinear mappings

$$V \times V \times V \times V \longrightarrow V$$

of degree 4, which are invariant under the standard actions of the Mathieu groups M_{11} and M_{23} with dim V=10 and 22 respectively will be studied in a subsequent paper as an application of Theorem 2. Moreover Σ_{n+1} —invariant multilinear mappings of degree 4 will also be studied in it.

For other examples of interesting trilinear forms, the reader is referred to A. Adier [1, 2], D. Frohardt [4], etc.

We conclude this section with the proof of Theorem 1.

Proof of Theorem 1. Let

$$\beta = \theta(e_i, e_i, e_i),$$

$$\gamma = \theta(e_j, e_j, e_k), j \neq k,$$

$$\delta = \theta(e_j, e_k, e_h), j \neq k \neq h \neq j.$$

Since θ is Σ_{n+1} —invariant, those numbers do not depend on the choice of j, k and h. Since

$$\gamma = \theta(e_0, e_1, e_1) = \theta(-\sum_{j=1}^n e_j, e_1, e_1) = -\beta - (n-1)\gamma,$$

we have $\beta = -n\gamma$. Similarly, we get $(n-1)\delta = -2\gamma$ by calculating $\theta(e_0, e_1, e_2)$.

2. Proof of Theorem 2; n=odd.

Let Σ_{n+1} , V, θ_n be as in Section 1. Furthermore we use the following notation throughout the rest of this paper.

Notation 2. 1. For $X \subseteq \{0, 1, \dots, n\}$, we let

$$\Sigma_X = \{ \tau \in \Sigma_{n+1} : j^{\tau} = j \text{ for all } j \in \{0, 1, \dots, n\} - X \}.$$

Thus $\sum_{X} \simeq \sum_{|X|}$.

We call a nonzero element x of V singular if $\theta_n(x, x, v) = 0$ for all $v \in V$. Now we prove a lemma which partly explains why we distinguish two cases: the cases n is odd and n is even.

LEMMA 2. 2.

- (i) If n is even, there is no singular element.
- (ii) If n is odd, the set of singular elements of V is given by

$$\{\alpha \sum_{i \in X} e_i : X \subseteq \{1, \dots, n\}, |X| = \frac{n+1}{2}, 0 \neq \alpha \in \mathbb{C}\}.$$

PROOF. An element of the form described in (ii) is clearly singular. Conversely, let

$$x = \xi_1 e_1 + \cdots + \xi_n e_n$$

be a singular element. Since e_0 is not singular, x cannot be of the form ξe_0 .

Therefore the ζ_j are not all equal. We may assume $\zeta_1 \neq \zeta_2$. From $\theta_n(x, x, e_j) = 0$, we get

 $(n+1)^2 \xi_j^2 - 2(n+1)\beta \xi_j - (n+1)\gamma + 2\beta^2 = 0$, $1 \le j \le n$, where $\beta = \xi_1 + \dots + \xi_n$ and $\gamma = \xi_1^2 + \dots + \xi_n^2$. Thus each ξ_j may be regarded as a solution to the quadratic equation (1). Since $\xi_1 \ne \xi_2$, each ξ_j is equal to ξ_1 or ξ_2 . For each k=1, 2, let a_k be the number of the indices j for which $\xi_j = \xi_k$. Then subtracting (1) for j=2 from (1) for j=1. we get

$$(n+1)(\zeta_1+\zeta_2)=2(a_1\zeta_1^2+a_2\zeta_2).$$

Substituting this in (1) yields

$$(n+1)(\xi_1^2+\xi_2^2)=2(a_1\xi_1^2+a_2\xi_2^2).$$

Now a straightforward calculation shows that either

$$\xi_1 = 0$$
 and $a_2 = (n+1)/2$ or $\xi_2 = 0$ and $a_1 = (n+1)/2$.

We first settle the case n=3.

Lemma 2. 3. Aut θ_3 is given by the semidirect product of

$$E = \langle \tau \in GL(V) : f_j^{\tau} = \alpha_j f_j, j = 1, 2, 3; \alpha_1 \alpha_2 \alpha_3 = 1 \rangle$$
 by $\sum_{\{1,2,3\}}$ where $f_1 = e_2 + e_3, f_2 = e_1 + e_3, f_3 = e_1 + e_2$.

PROOF. Since $\theta_3(f_1, f_2, f_3) \neq 0$, this follows immediately from Lemma 2. 2. (ii).

Remark. If we define a subgroup F of the above E by $\Sigma_{\{1,2,3\}}$.

$$F = \langle \tau \in E : f_j^{\tau} = \pm f_j, j = 1, 2, 3 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$$

then our original Σ_4 can be described as the semidirect product of F by $\sum_{\{1,2,3\}}$.

In the remainder of this section, we assume n=2m-1 is odd, $m \ge 3$, and use the following notation.

NOTATION 2. 4.

- (i) Let \mathscr{F} denote the set of subsets of $\{1, \dots, n\}$ of cardinality m.
- (ii) If $(\Sigma_{i \in X} e_i)^{\tau} = \alpha(\Sigma_{i \in Y} e_i)$ for X

and $\tau \in Aut\theta_n$, we write

$$Y = X^{(\tau)}$$
 and $\alpha = \lambda(X, \tau)$.

Note that if $\tau \in \Sigma_{n+1} - \Sigma_{\{1,\dots,n\}}$, then $X^{(\tau)}$ is not the same as the usual $X^{\tau} = \{j^{\tau} : j \in X\}$.

(iii) For \mathscr{H} and $\tau \in Aut\theta_n$, let

$$\mathcal{H}^{(\tau)} = \{X^{(\tau)} : X \in \mathcal{H}\}.$$

- (iv) Let $M = \{1, \dots, m\}$, $N = \{m, m+1, \dots, n\}$.
- (v) Let $\mathcal{Q} = \{X \in \mathcal{P}: |X \cap M| = m-1.\}$
- (vi) For each $1 \le j \le m$, let

$$\mathcal{Q}^{j} = \{ X \in \mathcal{Q} : \{j\} = M - X \}.$$

For each $m+1 \le j \le n$, let

$$\mathcal{Q}_{j} = \{ X \in \mathcal{Q} : \{j\} = X - M \}.$$

We begin with the following lemma.

LEMMA 2. 5. Let X, $Y \in \mathscr{S}$ with $X \neq Y$ and $\alpha \neq 0$.

(i) If $|X \cap Y| \neq 1$, then there exists a singular element x such that $x \notin \langle \sum_{j \in X} e_j, \sum_{j \in Y} e_j \rangle$

and such that

$$(\alpha \sum_{j \in X} e_j) - (\alpha \sum_{j \in Y} e_j) + x$$

is also singular.

(ii) If $|X \cap Y| = 1$, there is no such x.

PROOF. If $|X \cap Y| \neq 1$, we can choose $A \in \mathscr{F}$ so that $|A \cap Y| = m-1$, $A \not\subseteq X \cup Y$ and $A \not\supseteq X \cap Y$. Thus if we let $x = \alpha \Sigma_{j \in A} e_j$, this x has the required properties. Now assume $|X \cap Y| = 1$, and let $x = \beta \Sigma_{j \in B} e_j$ be a singular element for which

$$(\alpha \sum_{j \in X} e_j) - (\alpha \sum_{j \in Y} e_j) + x$$

is also of the form $\gamma \Sigma_{j \in \mathcal{C}} e_j$, $C \in \mathscr{F}$, $\gamma \neq 0$. Since $B \not\supseteq X \cup Y$, γ must be equal to α or $-\alpha$. Hence x is forced to be equal to $\alpha \Sigma_{j \in X} e_j$ or $-\alpha \Sigma_{j \in X} e_j$. Thus (ii) is proved.

A similar argument yields the following two lemmas.

LEMMA 2. 6. Let X, $Y \in \mathscr{F}$ with $X \neq Y$ and $\alpha \neq 0$.

(i) If $|X \cap Y| \neq m-1$, then there exists a singular element x such that

$$x \in \langle \sum_{i \in X} e_i, \sum_{j \in Y} e_j \rangle$$

and such that

$$(\alpha \sum_{j \in X} e_j) - (\alpha \sum_{j \in Y} e_j) + x$$

is also singular.

(ii) If $|X \cap Y| = m-1$, there is no such x.

LEMMA 2. 7. Let X, $Y \in \mathscr{F}$ with $X \neq Y$ and $0 \neq \alpha \neq \pm \beta \neq 0$. Then there is no singular element x such that

$$x \in \langle \sum_{j \in X} e_j, \sum_{j \in Y} e_j \rangle$$

and such that

$$(\alpha \sum_{j \in X} e_j) - (\alpha \sum_{j \in Y} e_j) + x$$

is also singular.

Combining Lemmas 2. 5, 2. 6 and 2. 7, we get:

LEMMA 2. 8. Let X, $Y \in \mathscr{F}$ with $|X \cap Y| = m-1$ and let $\tau \in Aut\theta_n$. Then one of the following holds:

- (i) $|X^{(\tau)} \cap Y^{(\tau)}| = m = 1$ and $\lambda(X, \tau) = \lambda(Y, \tau)$; or
- (ii) $|X^{(\tau)} \cap Y^{(\tau)}| = 1$ and $\lambda(X, \tau) = -\lambda(Y, \tau)$.

COROLLARY 2. 9. Let X, Y. $Z \in \mathscr{F}$ with $|X \cap Y| = |X \cap Z| = |Y \cap Z| = m-1$ and let $\tau \in Aut\theta_n$. If $|X^{(\tau)} \cap Y^{(\tau)}| = 1$, then either $|X^{(\tau)} \cap Z^{(\tau)}| = m-1$ and $|Y^{(\tau)} \cap Z^{(\tau)}| = 1$ or $|X^{(\tau)} \cap Z^{(\tau)}| = 1$ and $|X^{(\tau)} \cap Z^{(\tau)}| = m-1$.

PROOF. The condition $|X^{(\tau)} \cap Y^{(\tau)}| = 1$ implies $\lambda(X, \tau) = -\lambda(Y, \tau)$, and so $\lambda(Z, \tau)$ is equal to one of $\lambda(X, \tau)$ or $\lambda(Y, \tau)$.

Now let τ be an arbitrary element of $Aut\theta_n$. We want to show $\tau \in H = \langle \omega I \rangle \times \Sigma_{n+1}$. For this purpose, it suffices to show $H\tau H \cap H \neq \phi$.

Lemma 2. 10. There exist σ , $\sigma' \in \Sigma_{n+1}$ such that $M^{(\sigma \tau \sigma')} = M$ and $\mathcal{Q}^{(\sigma \tau \sigma')} = \mathcal{Q}$

PROOF. If $|A^{(\tau)} \cap B^{(\tau)}| = m-1$ for all A, $B \in \mathscr{F}$ with $|A \cap B| = m-1$, we simply let $\sigma = \sigma' = I$. Thus assume there exist A, $B \in \mathscr{F}$ such that $|A \cap B| = m-1$ and $|A^{(\tau)} \cap B^{(\tau)}| = 1$. Choose $C \in \mathscr{F}$ so that $A \cap C = B \cap C = A \cap B$. By Corollary 2. 9, $|A^{(\tau)} \cap C^{(\tau)}| = 1$ or $|B^{(\tau)} \cap C^{(\tau)}| = 1$. We may assume $|A^{(\tau)} \cap C^{(\tau)}| = 1$. Now let X be an arbitrary element of \mathscr{F} such that $A \cap X = A \cap B$. We want to show $|A^{(\tau)} \cap X^{(\tau)}| = 1$. Suppose $|A^{(\tau)} \cap X^{(\tau)}| = m-1$. Then $|B^{(\tau)} \cap X^{(\tau)}| = |C^{(\tau)} \cap X^{(\tau)}| = 1$ by Corollary 2. 9. But the element of $X^{(\tau)} - A^{(\tau)}$ is contained in both $B^{(\tau)}$ and $C^{(\tau)}$, and $A^{(\tau)} \cap X^{(\tau)} = 1$ contains at least one of $A^{(\tau)} \cap B^{(\tau)}$ or $A^{(\tau)} \cap C^{(\tau)}$. This is absurd. Thus $|A^{(\tau)} \cap X^{(\tau)}| = 1$. Now let K be the unique element of $K^{(\tau)} \cap K^{(\tau)} = 1$. Now let $K \cap K^{(\tau)} \cap K^{(\tau)} \cap K^{(\tau)} = 1$. Now let $K \cap K^{(\tau)} \cap K^{(\tau)} \cap K^{(\tau)} \cap K^{(\tau)} = 1$. Now let $K \cap K^{(\tau)} \cap K^{(\tau)} \cap K^{(\tau)} \cap K^{(\tau)} = 1$. Then $K^{(\tau)} \cap K^{(\tau)} \cap K^{(\tau$

We separate the next point of the proof as a sublemma.

Sublemma 2. 11. If $D \in \mathcal{Q} - \mathcal{Q}^m$ and $|N \cap D^{(\tau)}| = m-1$, then $m \in D^{(\tau)}$

PROOF. Suppose $m \notin D^{(\tau)}$. Then $N \cap D^{(\tau)} = \{m+1, m+2, \cdots, n\}$. Choose $X \in \mathcal{Q}^m$ so that $|X \cap D| = m-1$. By Corollary 3. 9, $|X^{(\tau)} \cap D^{(\tau)}| = 1$. But the element of $D^{(\tau)} - N$ is contained in $X^{(\tau)}$, and the element of $X^{(\tau)} \cap N$ is contained in $D^{(\tau)}$. This is a contradiction.

We now return to the proof of the lemma. We want to show that $|N\cap Y^{(\tau')}|=m-1$ for all $Y\in \mathscr{Q}-\mathscr{Q}^m$. By way of contradiction, suppose there exists $Y\in \mathscr{Q}-\mathscr{Q}^m$ such that $|N\cap Y^{(\tau')}|=1$. Choose $D\in \mathscr{Q}-\mathscr{Q}^m$ so that $M\cap Y=M\cap D=Y\cap D$. Since $\{Z\in \mathscr{F}:|N\cap Z|=1\}=\{X^{(\tau')}:X\in \mathscr{Q}^m\}\cup \{M\},Y^{(\tau')} \text{ is forced to coincide with }M\text{ and }|N\cap D^{(\tau')}|\text{ cannot be equal to }1.$

Therefore $|N\cap D^{(\tau')}|=m-1$, and so $m\in D^{(\tau')}$ by the above sublemma. Also $|Y^{(\tau')}\cap D^{(\tau')}|=1$ by Corollary 2. 9. But both m and the element of $D^{(\tau')}-N$ is contained in $Y^{(\tau')}\cap D^{(\tau')}$, which is absurd. Thus it is shown that $|Y^{(\tau')}\cap N|=m-1$ and $m\in Y^{(\tau')}$ for all $Y\in \mathscr{Q}-\mathscr{Q}^m$ and that $|X^{(\tau')}\cap N|=1$ and $m\notin X^{(\tau')}$ for all $X\in \mathscr{Q}^m$. Hence if we let $\sigma'=\sigma''(0m)$, where (0m) denotes the transposition of Σ_{n+1} that permutes 0 and m, then the conditions of the lemma are satisfied.

Now let $\tau' = \sigma \tau \sigma'$ with σ and σ' as in the lemma. Let Π be the set of those subsets of $\mathscr Q$ the intersection of any two distinct elements of which has cardinality m-1, and Π^* be the set of maximal elements of Π under inclusion. Then

$$\Pi^* = \{ \mathscr{Q}^i : 1 \leq j \leq m \} \cup \{ \mathscr{Q}_j : m+1 \leq j \leq n \}.$$

On the other hand, $\lambda(X, \tau) = \lambda(M, \tau)$ for all X by Lemma 2. 8, whence $|X^{(\tau)} \cap Y^{(\tau)}| = m-1$ for all X, $Y \in \mathcal{Q}$ with $|X \cap Y| = m-1$. Therefore $\mathscr{H}^{(\tau)} \in \Pi^*$ for all $\mathscr{H} \in \Pi^*$. Hence there exist

$$\pi \in \Sigma_M$$
 and $\rho \in \Sigma_{\{m+1,m+2\cdots,n\}}$

such that

$$(\mathcal{Q}^k)^{\tau'} = \mathcal{Q}^{k^{\pi}}$$
 for all $1 \leq k \leq m$

and

$$(\mathcal{Q}_k)^{\tau'} = \mathcal{Q}_{k^p}$$
 for all $m+1 \leq k \leq n$.

Thus if we let $\tau'' = \tau'(\pi \rho)^{-1}$, then

$$\left(\sum_{j\in X}e_{j}\right)^{\tau''}=\lambda\left(M,\ \tau'\right)\sum_{j\in Y}e_{X}$$

for all $X \in \mathcal{Q}$ and for X = M. Since

$$V = \langle \sum_{j \in X} e_j : X \in \{M\} \cup \mathcal{Q} \rangle$$
,

$$\tau'' = \lambda(M, \tau')I$$
. This also implies $\lambda(M, \tau')^3 = 1$, whence $\tau'' = \sigma \tau \sigma'(\pi \rho)^{-1} \in H$.

As is remarked immediately before Lemma 2. 10, this completes the proof of Theorem 2 for odd n.

2. Proof of Theorem 2; n=even.

Throughout this section, we assume n is even.

As is proved in Lemma 2. 2.(i), there is no singular element. Therefore $Aut\theta_n$ is finite by [6, Theorem B]. We prove Theorem 2 by induction on n. We first settle the case n=2.

LEMMA 3. 1. $Ant\theta_2 = \langle \omega I \rangle \times \Sigma_3$.

Proof. Since

$$\{x \in V : \langle v : \theta_2(x, v, v) = 0 \rangle \neq V\}$$

=
$$\{\alpha((1\pm\sqrt{3}i)e_1+2e_2): \alpha\neq 0\}$$
,

 $Aut\theta_2$ is isomorphic to a semiderect product of $\mathbb{Z}_3 \times \mathbb{Z}_3$ by \mathbb{Z}_2 . This proves the lemma.

We now state for completeness a theorem due to H. Bender [3], which is essential to our proof.

THEOREM. Let H be a subgroup of even order of a finite group G, and let S be a Sylow 2-subgroup of H. Let O(G) denote the maximal normal odd order subgroup of G. Assume that $N_G(S) \leq H$, and $C_G(\tau) \leq H$ for all elements τ of S of order S. Then one of the following holds:

- (i) G=H;
- (ii) S is isomorphic to a cyclic group or a generalized quaternion group, and so S possesses a unique element of order 2; or
- (iii) There exists a normal subgroup L of G containing O(G) such that |G/L| is odd, and L/O(G) is isomorphic to one of $PSL(2, 2^m)$, $Sz(2^{2m-1})$ or $PSU(3, 2^{2m}/2^m)$, $m \ge 2$. Furthermore $H = O(G)N_G(S)$, and so, in particular, O(G)S is normal in H.

Now let $G = Aut\theta_n$ and $H = \langle \omega I \rangle \times \Sigma_{n+1}$ with $n \ge 4$. Assuming that Theorem 2 is proved for n-2, we shall show that G and H satisfy the assumptions of the above theorem.

LEMMA 3. 2. The subgroup

$$C_G(e_0) = \{ \boldsymbol{\sigma} \in G : e_0{}^{\boldsymbol{\sigma}} = e_0 \}$$

is contained in H.

Proof. Let

 $W=\langle x:\theta_n(e_0,\ e_0,\ x)=0\rangle=\langle e_j-e_k:1\leq j,\ k\leq n\rangle$. Since $C_G(e_0)$ stabilizes W, the restriction of θ to W is $C_G(e_0)$ -invariant, and so, in particular, is "isomorphic" to θ_{n-1} by Theorem 1, for $C_G(e_0)\geq\sum_{\{1,\dots,n\}}$ and the action of $\sum_{\{1,\dots,n\}}$ on W is natural. Since $C_{C_G(e_0)}(W)=C_G(V)=\langle I\rangle$, this means that $C_G(e_0)$ is isomorphic to a subgroup of $Aut\theta_{n-1}$. Also note that an element $\sigma\in G$ such that $x^\sigma=\omega x$ for all $x\in W$ cannot belong to $C_G(e_0)$. Hence if $n\geq 6$, we conclude from the result of Section 2 that $C_G(e_0)$ is isomorphic to a subgroup of Σ_n . If n=4, let $f_1,\ f_2,\ f_3$ be elements of W which correspond to the f_j in Lemma 2. 2. Since $\theta_4(f_j,\ f_j,\ e_0)\neq 0$, each of the α_j in the description of E in Lemma 2. 2 must be equal to 1 or -1. Hence by the remark following Lemma 2. 2, $C_G(e_0)$ is isomorphic to a subgroup of Σ_4 in this case as well. Thus $C_G(e_0)=C_H(e_0)\leq H$ as desired.

Lemma 3. 3. $C_G((12)) \leq H$, where (12) denotes the transposition which permutes 1 and 2.

Proof. Let

$$U = \langle x \in V : x^{(12)} = x \rangle = \langle e_1 + e_2, e_0 - e_j : j \ge 3 \rangle.$$

Let

$$W = \langle x \in U : \theta_n(e_1 - e_2, e_1 - e_2, x) = 0 \rangle$$

= $\langle e_0 - e_j : j \geq 3 \rangle$.

Since $\langle e_1 - e_2 \rangle = \langle x \in V : x^{(12)} = -x \rangle$, $C_G((12))$ stabilizes W. Hence an argument similar to the one used in Lemma 3. 2 with the induction hypothesis in place of the result of Section 2 shows that $C_G((12))/C_{C_G((12))}(W)$ is isomorphic to a subgroup of $\mathbb{Z}_3 \times \Sigma_{n+1}$. Thus it suffices to prove $C_{C_G((12))}(W) = \langle (12) \rangle$.

Let σ be an arbitrary element of $C_{C_G((12))}(W)$. Since σ stabilizes U, we can write

$$(e_1+e_2)^{\sigma}-(e_1+e_2)=\alpha(e_1+e_2)+\sum_{j\geq 3}\beta_j(e_0-e_j).$$

From

$$\theta((e_1+e_2)^{\sigma}-(e_1+e_2), e_0-e_k, e_0-e_k)=0,$$

we get

$$\sum_{\substack{j\geq 3\\j\neq k}} \beta_j = \frac{4\alpha}{n+1}, \ k \geq 3. \ \cdots (2)$$

If we regard (2) as a simultaneous equation in β_j , the determinant of the coefficients is $(n-3)(-1)^{n-3} \neq 0$. Thus $\beta_3 = \beta_4 = \cdots = \beta_n$. Since

$$\Sigma_{j\geq 3}(e_0-e_j)=(n-1)e_0+(e_1+e_2),$$

we have

$$(e_1+e_2)^{\sigma}-(e_1+e_2)=\delta\gamma(e_1+e_2)+\gamma e_0,$$

where

$$\gamma = (n-1)\beta_n$$
, $\delta = (1 + ((n+1)(n-3)/4)))/n-1$.

Calculating in a similar manner with the roles of e_0 and e_3 exchanged, we get $(e_1 + e_2)^{\sigma} - (e_1 + e_2) = \delta \gamma (e_1 + e_2) + \gamma e_3$.

Therefore $\gamma = 0$, whence $(e_1 + e_2)^{\sigma} = e_1 + e_2$. Since σ stabilizes $\langle e_1 - e_2 \rangle$, we also get $(e_1 - e_2)^{\sigma} = \pm (e_1 - e_2)$ by calculating

$$\theta_n((e_1+e_2)^{\sigma}, (e_1-e_2)^{\sigma}, (e_1-e_2)^{\sigma}).$$

Hence $\sigma \in \langle (12) \rangle$, proving the lemma.

Lemma 3. 4. If τ is an element of order 2 of H, $C_G(\tau) \leq H$.

PROOF. By taking a suitable conjugate in H, we may assume $\tau = (12)(34)\cdots(2k-1,\ 2k), k \le n/2$.

Since $C_G(\tau)$ stabilizes

$$W = \langle x \in V : x^{\tau} = x \rangle$$
,

 $C_G(\tau)$ normalizes $P = C_{C_G(\tau)}(W)$. Since $e_0 \in W$, $P \le H$ by Lemma 3. 2, and so

$$P = \langle (2j-1, 2j) : 1 \leq j \leq k \rangle.$$

We observe that each of the elements of P conjugate to (12) in GL(V) is of

the form (2j-1, 2j), and hence is conjugate to (12) in $N_H(P)$. Consequently

$$|N_G(P):C_{N_G(P)}((12))|=|N_H(P):C_{N_H(P)}((12))|.$$

Since $C_{N_G(P)}$ ((12)) $\leq H$ by Lemma 3. 3, this means $N_G(P) \leq H$. Thus $C_G(\tau) \leq N_G(P) \leq H$ as desired.

Now let S be a Sylow 2-subgroup of H. Let k be the greatest integer satisfying $2^k \le n$. A routine calculation shows that $D_{k-1}(S)$, the k-th term of the derived series of S, is a cyclic subgroup of order 2 generated by an element σ conjugate to

$$(12)(34)\cdots(2^{k}-1, 2^{k}).$$

Hence $N_G(S) \leq C_G(\sigma) \leq H$. This together with Lemma 3. 4 shows that G and H satisfy the assumptions of Bender's theorem. The cases (ii) and (iii) of Bender's theorem are ruled out because of the structure of H. Hence G = H. This completes the proof of Theorem 2.

References

- [1] A. ADLER, On the automorphism group of a certain cubic threefold, Amer. J. Math. 100 (1978), 1275-1280.
- [2] A. ADLER, On the automorphism groups of certain hypersurfaces, J. Algebra 72 (1981), 146–165.
- [3] H. BENDER, Transitive Gruppen gerader Ordnung, in denen jede Involutionen genau einen Punkt festlasst, J. Algebra 17 (1971), 527-554.
- [4] D. FROHART, A trilinear form for the third Janko group, J. Algebra 83 (1983), 349 -379.
- [5] K. HARADA, On a commutative nonassociative algebra associated with a multiply transitive group, J. Fac. Sci. Univ. Tokyo, Sec 1A, 28–3 (1982), 843–849.
- [6] H. SUZUKI, Automorphism groups of multilinear maps, Osaka J. Math. 20 (1983), 659-673.
- [7] H. SUZUKI, Automorphism groups of Σ_{n+1} —invariant trilinear mappings, to appear.

Yoshimi EGAWA
Department of Applied Math.
Faculty of Science
Science University of Tokyo
Hiroshi SUZUKI
Department of Math.
Osaka Kyoiku University