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1. Introduction

Let \Sigma_{n+1} be the symmetric group on the set \{0, 1, \cdots-n\} of cardinality
n+1 , n\geqq 2 . Let V=\langle e_{1}, \cdots e_{n}\rangle be a natural n-dimensional irreducible
\Sigma_{n+1}- module over the complex number field C. (That is, \{ e_{1,-}\ldots e_{n}\} is a
basis of V such that if we let e_{0}=-(e_{1}+\cdots+e_{n}) , then \Sigma_{n+1} acts on { e_{0} , e_{1} , \cdots

e_{n}\} in the standard way.) We regard \Sigma_{n+1} as a subgroup of GL(V) . We
define a \Sigma_{n+1}- invariant symmetric trilinear form \theta_{n} on V by

\theta_{n}(e_{j}, e_{j}, e_{j})=n(n-1) , 1\leqq j\leqq n ;
\theta_{n}(e_{j}, e_{j}, e_{k})=-(n-1) , 1\leqq j, k\leqq n, j\neq k ;
\theta_{n}(e_{j}, e_{k}, e_{h})=2,1\leqq j, k, h\leqq n, j\neq k\neq h\neq j.
Now we can state our main results.
THEOREM 1. Let \Sigma_{n+1} , V, \theta_{n} be as above. Let \theta be an arbitrary nonzero

\Sigma_{n+1}- invariant symmetric trilinear form on V. Then
\theta=\alpha\theta_{n\prime}0\neq\alpha\in C

and so Aut\theta=Aut\theta_{n} , where we define the automorphism group of \theta to be
Autd { \sigma\in GL(V):\theta(x^{\sigma}, y^{\sigma}, z^{\sigma})=\theta(x, y, z) for all x, y, z\in V }.
THEOREM 2. If n=2 or n\geqq 4 ,
Aut\theta_{n}=\langle\omega I\rangle\cross\Sigma_{n+1} ,

where I is the identity element of GL(V) and \omega=(-1+\sqrt{3}i)/2 .
REMARK. The structure of Aut\theta_{3} is described in LEMMA 2. 3.
If n is odd, our proof of THEOREM 2 is essentially an elementary analysis

of the action of Aut\theta_{n} on the set of “ singular ” elements of V. If n is even,
we first prove that there is no singular element, which implies that Aut\theta_{n} is
finite by [6, THEOREM B]. We then apply a deep result of H. Bender [3] to
complete the proof.

Symmetric bilinear and trilinear mappings
V\cross Varrow V, V\cross V\cross V-arrow V,

which are \Sigma_{n+1}- invariant are studied by K. HARADA [5] and by the second
author [7], respectively. Our result here is analogous to that of the bilinear
mapping case. This is natural, because

V\cross V\cross Varrow C
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can be viewed as
V\cross Varrow V^{*} .
Symmetric multilinear mappings
V\cross V\cross V\cross Varrow V

of degree 4, which are invariant under the standard actions of the Mathieu
groups M_{11} and M_{23} with dim V=10 and 22 respectively will be studied in a
subsequent paper as an application of Theorem 2. Moreover \Sigma_{n+1}-

invariant multilinear mappings of degree 4 will also be studied in it.
For other examples of interesting trilinear forms, the reader is referred

to A. ADIER [1, 2] , D. FROHARDT [4], etc.
We conclude this seotion with the proof of Theorem 1.
PROOF of THEOREM 1. Let
\beta=\theta(e_{j}, e_{j}, e_{j}) ,
\gamma=\theta(e_{j}, e_{j}, e_{k}) , j\neq k,
\delta=\theta(e_{j}, e_{k}, e_{h}) , j\neq k\neq h\neq j.

Since \theta is \Sigma_{n+1}- invariant, those numbers do not depend on the choice of j, k
and h. Since

\gamma=\theta(e_{0}, e_{1}, e_{1})=\theta(-\sum_{j=1}^{n}e_{j}, e_{1}, e_{1})=-\beta-(n-1)\gamma ,

we have \beta=-n\gamma. Similarly, we get (n-1)\delta=-2\gamma by calculating \theta(e_{0} ,
e_{1} , e_{2}) .

2. Proof of Theorem 2; n=odd.

Let \Sigma_{n+1} , V, \theta_{n} be as in Section 1. Furthermore we use the following
notation throughout the rest of this paper.

NOTATION 2. 1. For X\subseteq\{0,1, \cdots n\} , we let
\Sigma_{X}= { \tau\in\Sigma_{n+1} : j^{\tau}=j for all j\in\{0,1 , \cdots n\}-X }.

Thus \Sigma_{X}\simeq\Sigma_{1\eta} .
We call a nonzero element x of V singular if \theta_{n}(x, x, v)=0 for all v\in

V. Now we prove a lemma which partly explains why we distinguish two
cases: the cases n is odd and n is even.

lemma 2. 2.
(i) If n is even, there is no singular element.
(ii) If n is odd, the set of singular elements of V is given by

\{\alpha\sum_{j\in X}e_{j} : X\subseteq\{1, \cdots n\}, |X|=\frac{n+1}{2}, 0\neq\alpha\in C\} .

PROOF. An element of the form described in ( ii) is clearly singular.
Conversely, let

x=\zeta_{1}e_{1}+\cdots\cdots+\zeta_{n}e_{n}

be a singular element. Since e_{0} is not singular, x cannot be of the form \zeta e_{0} .
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Therefore the \zeta_{j} are not all equal. We may assume \zeta_{1}\neq\zeta_{2} . From \theta_{n}(x, x,

e_{j})=0 , we get
(n+1)^{2}\zeta_{j}^{2}-2(n+1)\beta\zeta_{j}-(n+1)\gamma+2\beta^{2}=0,1\leqq j\leqq n, where \beta=\zeta_{1}+\cdots+

\zeta_{n} and \gamma=\zeta_{1}^{2}+\cdots+\zeta_{n}^{2} . Thus each \zeta_{j} may be regarded as a solution to the
quadratic equation (1). Since \zeta_{1}\neq\zeta_{2} , each \zeta_{j} is equal to \zeta_{1} or \zeta_{2} . For each
k=1,2 , let a_{k} be the number of the indices j for which \zeta_{j}=\zeta_{k} . Then
subtracting (1) for j=2 from (1) for j=1 . we get

(n+1)(\zeta_{1}+\zeta_{2})=2(a_{1}\zeta_{1}^{2}+a_{2}\zeta_{2}) .
Substituting this in (1) yields

(n+1)(\zeta_{1}^{2}+\zeta_{2}^{2})=2(a_{1}\zeta_{1}^{2}+a_{2}\zeta_{2}^{2}) .
Now a straightforward calculation shows that either

\zeta_{1}=0 and a_{2}=(n+1)/2 or \zeta_{2}=0 and a_{1}=(n+1)/2 .
We first settle the case n=3.
LEMMA 2. 3. Aut\theta_{3} is given by the semidirect product of
E=\langle\tau\in GL(V) : f_{j}^{\tau}=\alpha J_{j}, j=1,2, 3,\cdot \alpha_{1}\alpha_{2}\alpha_{3}=1\rangle by \Sigma_{\{1,2,3\}} where
f_{1}=e_{2}+e_{3} , f_{2}=e_{1}+e_{3} , f_{3}=e_{1}+e_{2} .
PROOF. Since \theta_{3}\zeta f_{1} , f_{2} , f_{3} ) \neq 0 , this follows immediately from

LEMMA 2. 2. ( ii) .
REMARK. If we define a subgroup F of the above E by \Sigma_{\{1,2,3\}} .
F=\langle\tau\in E:f_{j}^{\tau}=\pm f_{j}, j=1,2,3\rangle\cong Z_{2}\cross Z_{2} .

then our original \Sigma_{4} can be described as the semidirect product of F by
\Sigma_{\{1,2,3\}} .
In the remainder of this section, we assume n=2m-1 is odd, m\geqq 3 , and

use the following notation.
N_{oTATION}2.4 .
(i) Let \mathscr{P} denote the set of subsets of \{1, \cdots. n\} of cardinality m.
(ii) If (\Sigma_{j\in \mathscr{S}_{j}})^{\tau}=\alpha(\Sigma_{j\in}\mu_{j}) for X

and \tau\in Aut\theta_{n}, we write
Y=X^{(\tau)} and \alpha=\lambda(X, \tau) .

Note that if \tau\in\Sigma_{n+1}-\Sigma_{\{1,\ldots,n\}} , then X^{(\tau)} is not the same as the usual
X^{\tau}=\{j^{\tau} : j\in X\} .
(iii) For \mathscr{H} and \tau\in Aut\theta_{n}, let

\mathscr{H}^{(\tau)}=\{X^{(\tau)} : X\in \mathscr{H}\} .
(iv) Let M=\{1, \cdots m\} , N=\{m, m+1, \cdots n\} .
(v) Let \mathscr{O}=\{X\in \mathscr{P}:|X\cap M|=m-1.\}

(vi) For each 1\leqq j\leqq m, let
\mathscr{O}^{j}=\{X\in \mathscr{O}:\{j\}=M-X\} .

For each m+1\leqq j\leqq n, let
\mathscr{O}_{j}=\{X\in \mathscr{O} : \{j\}=X-M\} .
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We begin with the following lemma.
LEMMA 2. 5. Let X, Y\in \mathscr{P} with X\neq Y and \alpha\neq 0 .
(i) If |X\cap Y|\neq 1 , then there exists a singular element x such that
x \not\in<\sum_{j\in X}e_{j},\sum_{j\in Y}e_{j}>

and such that
( \alpha\sum_{j\in X}e_{j})-(\alpha\sum_{j\in Y}e_{j})+x

is also singular.
(ii) If |X\cap Y|=1 , there is no such x.
PROOF. If |X\cap Y|\neq 1 , we can choose A\in \mathscr{P} so that |A\cap Y|=m-1 ,

A\not\subset X\cup Y and A\not\geqq X\cap Y. Thus if we let x=\alpha\Sigma_{j\in A}e_{j}, this x has the
required properties. Now assume |X\cap Y|=1 , and let x=\beta\Sigma_{j\in}\mathscr{S}_{j} be a
singular element for which

( \alpha\sum_{j\in X}e_{j})-(\alpha\sum_{j\in Y}e_{j})+x

is also of the form \gamma\Sigma_{j\in C}e_{j}, C\in \mathscr{P} , \gamma\neq 0 . Since B\not\geqq X\cup Y, \gamma must be equal
to \alpha or -\alpha . Hence x is forced to be equal to \alpha\Sigma_{j\in \mathscr{S}_{j}} or -\alpha\Sigma_{j\in \mathscr{S}_{j}}. Thus
(ii) is proved.

A similar argument yields the following two lemmas.
Lemma 2. 6. Let X, Y\in \mathscr{P} with X\neq Y and \alpha\neq 0 .
(i) If |X\cap Y|\neq m-1 , then there exists a singular element x such

that
x \not\in<\sum_{j\in X}e_{j},\sum_{j\in Y}e_{j}>

and such that

( \alpha\sum_{j\in X}e_{j})-(\alpha\sum_{j\in Y}e_{j})+x

is also singular.
(ii) If |X\cap Y|=m-1 , there is no such x.
LEMMA 2. 7. Let X, Y\in \mathscr{P} with X\neq Y and 0\neq\alpha\neq\pm\beta\neq 0 . Then there

is no singular element x such that
x \not\in<\sum_{j\in X}e_{j},\sum_{j\in Y}e_{j}>

and such that
( \alpha\sum_{j\in X}e_{j})-(\alpha\sum_{j\in Y}e_{j})+x

is also singular.
Combining LEMMAS 2. 5, 2. 6 and 2. 7, we get:
LEMMA 2. 8. Let X, Y\in \mathscr{P} with |X\cap Y|=m-1 and let \tau\in Aut\theta_{n} .

Then one of the following holds:
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(i) |X^{(\tau)}\cap Y^{(\tau)}|=m=1 and \lambda(X, \tau)=\lambda ( Y, \tau) ; or
(ii) |X^{(\tau)}\cap Y^{(\tau)}|=1 and \lambda(X, \tau)=-\lambda ( Y, \tau) .
COROLLARY 2. 9. Let X, Y. Z\in \mathscr{P} with |X\cap Y|=|X\cap Z|=|Y\cap Z|=

m-1 and let \tau\in Aut\theta_{n} . If |X^{(\tau)}\cap Y^{(\tau)}|=1 , then either |X^{t\tau)}\cap Z^{t\tau)}|=m-1

and |Y^{\tau)}\cap Z^{(\tau)}|=1 or |X^{(\tau)}\cap Z^{(\tau)}|=1 and |X^{(\tau)}\cap Z^{(\tau)}|=m-1 .
PROOF. The condition |X^{(\tau)}\cap Y^{(\tau)}|=1 implies \lambda(X, \tau)=-\lambda ( Y. \tau),

and so \lambda(Z, \tau) is equal to one of \lambda(X, \tau) or \lambda ( Y, \tau) .
Now let \tau be an arbitrary element of Autdn. We want to show \tau\in

H=\langle\omega I ) \cross\Sigma_{n+1} . For this purpose, it suffices to show H\tau H\cap H\neq\phi .
Lemma 2. 10. There exist \sigma, \sigma’\in\Sigma_{n+1} such that M^{(\sigma\tau\sigma 9}=M and \mathscr{O}^{(\sigma\tau\sigma 0}=

\mathscr{O}

PROOF. If |A^{(\tau)}\cap B^{(\tau)}|=m-1 for all A, B\in \mathscr{P} with |A\cap B|=m-1 ,

we simply let \sigma=\sigma’=I. Thus assume there exist A, B\in \mathscr{P} such that |A\cap

B|=m-1 and |A^{(\tau)}\cap B^{(\tau)}|=1 . Choose C\in \mathscr{P} so that A\cap C=B\cap C=A\cap

B. By COROLLARY 2. 9, |A^{(\tau)}\cap C^{(\tau)}|=1 or |B^{(\tau)}\cap C^{(\tau)}|=1 . We may

assume |A^{(\tau)}\cap C^{(\tau)}|=1 . Now let X be an arbitrary element of \mathscr{P} such that
A\cap X=A\cap B. We want to show |A^{(\tau)}\cap X^{(\tau)}|=1 . Suppose |A^{(\tau)}\cap X^{(\tau)}|

=m-1 . Then |B^{(\tau)}\cap X^{(\tau)}|=|C^{(\tau)}\cap X^{(\tau)}|=1 by COROLLARY 2. 9. But
the element of X^{(\tau)}-A^{(\tau)} is contained in both B^{(\tau)} and C^{(\tau)} , and A^{(\tau)}\cap X^{(\tau)}

contains at least one of A^{(\tau)}\cap B^{(\tau)} or A^{(\tau)}\cap C^{(\tau)} . This is absurd. Thus
|A^{(\tau)}\cap X^{(\tau)}|=1 . Now let k be the unique element of A^{(\tau)} that is not
contained in any of X^{(\tau)} with A\cap X=A\cap B. Choose \sigma\in\Sigma_{\{1} . n } so that
M^{\sigma}=A and \{1, \cdots m-1\}^{\sigma}=A\cap B. Choose \sigma’\in\Sigma_{\{1}

, \cdot . . n } so that (A^{(\tau)})^{\sigma’}

=N and k^{\sigma’}=m . Let \tau’=\sigma\tau\sigma^{rr} Then M^{(\tau 9}=N, and N- \bigcup_{x\in\nearrow m}X^{(\tau 0}=

\{m\} .
We separate the next point of the proof as a sublemma.

SUBLEMMA 2. 11. If D\in \mathscr{O}-\mathscr{O}m and |N\cap D^{(\tau 9}|=m-1 , then m\in D^{(\tau 9}

PROOF. Suppose m\not\in D^{(\tau 9} . Then N\cap D^{(\tau}\gamma=\{m+1, m+2, \cdots. n\} .
Choose X\in \mathscr{O}^{m} so that |X\cap D|=m-1 . By Corollary 3. 9, |X^{(\tau’)}\cap D^{(\tau 0}|=

1 . But the element of D^{(\tau 0}-N is contained in X^{(\tau 0} , and the element of
X^{(\tau 0}\cap N is contained in D^{(\tau 0} . This is a contradiction.

We now return to the proof of the lemma. We want to show that |N\cap

Y^{(\tau 0}|=m-1 for all Y\in \mathscr{O}-\mathscr{O}m. By way of contradiction, suppose there
exists Y\in \mathscr{O}-\mathscr{O}^{m} such that |N\cap Y^{(\tau 9}|=1 . Choose D\in \mathscr{O}-\mathscr{O}^{m} so that M
\cap Y=M\cap D=Y\cap D. Since \{ Z\in \mathscr{P}:|N\cap Z|=1\}=\{X^{(\tau 9} : X\in \mathscr{O}^{m}\}\cup\{M\},

Y^{(\tau\gamma} is forced to coincide with M and |N\cap D^{(\tau 9}| cannot be equal to 1.
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Therefore |N\cap D^{(\tau 9}|=m-1 , and so m\in D^{(\tau\gamma} by the above sublemma.
Also |Y^{(\tau\gamma}\cap D^{(\tau 9}|=1 by COROLLARY 2. 9. But both m and the element of
D^{(\tau}\gamma-N is contained in Y^{(\tau 9}\cap D^{(\tau 9} , which is absurd. Thus it is shown that
|Y^{(\tau 0}\cap N|=m-1 and m\in Y^{(\tau\gamma} for all Y\in \mathscr{O}-\mathscr{O}^{m} and that |X^{(\tau 9}\cap N|=1

and m\not\in X^{(\tau}\gamma for all X\in \mathscr{O}^{m}. Hence if we let \sigma’=\sigma^{rr}(0m) , where (Ow)
denotes the transposition of \Sigma_{n+1} that permutes 0 and m, then the conditions
of the lemma are satisfied.

Now let \tau’=\sigma\tau\sigma’ with \sigma and \sigma’ as in the lemma. Let II be the set of those
subsets of \iota \mathscr{O} the intersection of any two distinct elements of which has
cardinality m-1 , and \Pi^{*} be the set of maximal elements of II under
inclusion. Then

\Pi^{*}=\{\mathscr{O}^{i} : 1\leqq j\leqq m\}\cup\{\mathscr{O}_{j}:m+1\leqq j\leqq n\} .
On the other hand, \lambda(X, \tau’)=\lambda(M, \tau’) for all X by Lemma 2. 8, whence
|X^{(\tau}\gamma\cap Y^{(\tau’)}|=m-1 for all X, Y\in \mathscr{O} with |X\cap Y|=m-1 . Therefore
\mathscr{H}^{(\tau}\gamma\in\Pi^{*} for all \mathscr{H}\in\Pi^{*} . Hence there exist

\pi\in\Sigma_{M} and \rho\in\Sigma_{\{m+1,m+2\cdots,n\}}

such that
(\mathscr{O}^{k})^{\tau’}=\mathscr{O}^{k^{\pi}} for all 1\leqq k\leqq m

and
(\mathscr{O}_{k})^{\tau’}=\mathscr{O}_{k^{p}} for all m+1\leqq k\leqq n .

Thus if we let \tau’=\tau’(\pi\rho)^{-1} , then

( \sum_{j\in X}e_{j})^{\tau’}=\lambda(M, \tau’)\sum_{j\in Y}ex

for all X\in \mathscr{O} and for X=M. Since
V= \langle\sum_{j\in X}C_{j } ,

\tau’=\lambda(M, \tau’)I. This also implies \lambda(M, \tau’)^{3}=1 , whence
\tau’=\sigma\tau\sigma’(\pi\rho)^{-1}\in H.

As is remarked immediately before Lemma 2. 10, this completes the proof of
THEOREM 2 for odd n.

2. Proof of Theorem 2; n=even.
Throughout this section, we assume n is even.
As is proved in LEMMA 2. 2. (i ) , there is no singular element.

Therefore Aut\theta_{n} is finite by [6, THEOREM B]. We prove THEOREM 2 by
induction on n. We first settle the case n=2.

LEMMA 3. 1. Ant\theta_{2}=\langle\omega I\rangle\cross\Sigma_{3} .
PROOF. Since
\{x\in V : \langle v:\theta_{2}(x, v, v)=0\rangle\neq V\}

=\{\alpha((1\pm\sqrt{3}i)e_{1}+2e_{2}) : \alpha\neq 0\} ,
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Aut\theta_{2} is isomorphic to a semiderect product of Z_{3}\cross Z_{3} by Z_{2} . This proves the
lemma.

We now state for completeness a theorem due to H. BENDER [3], which
is essential to our proof.

THEOREM. Let H be a subgroup of even order of a finite group G, and
let S be a Sylow 2-subgroup of H. Let O(G) denote the maximal normal odd
order subgroup of G. Assume that N_{G}(S)\leqq H, and C_{G}(\tau)\leqq H for all
elements \tau of S of order 2. Then one of the following holds:

(i) G=H ;
(ii) S is isomorphic to a cyclic group or a generalized quaternion group,

and so S possesses a unique element of order 2,\cdot or
(iii) There exists a normal subgroup L of G containing O(G) such that

|G/L| is odd, and L/O(G) is isomorphic to one of PSL(2,2^{m}) , Sz(2^{2m-1})

or PSU(3,2^{2m}/2^{m}) , m\geqq 2 . Furthermore H=O(G)N_{G}(S) , and so, in
particular, O(G)S is normal in H.

Now let G=Aut\theta_{n} and H=\langle\omega I\rangle\cross\Sigma_{n+1} with n\geqq 4 . Assuming that
Theorem 2 is proved for n-2, we shall show that G and H satisfy the
assumptions of the above theorem.

Lemma 3. 2. The subgroup
C_{G}(e_{0})=\{\sigma\in G:e_{0}^{\sigma}=e_{0}\}

is contained in H.
PROOF. Let
W=\langle x:\theta_{n}(e_{0}, e_{0}, x)=0\rangle=\langle e_{j}-e_{k} : 1\leqq j, k\leqq n\rangle . Since C_{G}(e_{0}) stabi-

lizes W, the restriction of \theta to W is C_{G}(e_{0})-invariant, and so, in
particular, is “ isomorphic ” to \theta_{n-1} by Theorem 1, for C_{G}(e_{0})\geqq\Sigma_{\{1,\ldots\ldots n\}} and
the action of \Sigma_{\{1,\ldots..,n\}} on W is natural. Since Cc_{G}(e_{0})(W)=C_{G}(V)=\langle I\rangle ,

this means that C_{G}(e_{0}) is isomorphic to a subgroup of Aut\theta_{n-1} . Also note
that an element \sigma\in G such that x^{\sigma}=\omega x for all x\in W cannot belong to C_{G}(e_{0})

Hence if n\geqq 6 , we conclude from the result of Section 2 that C_{G}(e_{0}) is
isomorphic to a subgroup of \Sigma_{n} . If n=4, let f_{1} , f_{2} , f_{3} be elements of W
which correspond to th\^e f_{j} in LEMMA 2. 2. Since \theta_{4}(f_{j}, f_{j}, e_{0})\neq 0 , each of the
\alpha_{j} in the description of E in Lemma 2. 2 must be equal to 1 or -1. Hence by
the remark following LEMMA 2. 2, C_{G}(e_{0}) is isomorphic to a subgroup of \Sigma_{4}

in this case as well. Thus C_{G}(e_{0})=C_{H}(e_{0})\leqq H as desired.
LEMMA 3. 3. C_{G}((12))\leqq H, where (12) denotes the transposition which

permutes 1 and 2.
PROOF. Let
U=\langle x\in V : x^{(12)}=x\rangle=\langle e_{1}+e_{2}, e_{0}-e_{j} : j\geqq 3\rangle .
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Let
W=\langle x\in U : \theta_{n}(e_{1}-e_{2}, e_{1}-e_{2}, x)=0\rangle

=\langle e_{0}-e_{j} : j\geqq 3\rangle .
Since \langle e_{1}-e_{2}\rangle=\langle x\in V:x^{(12)}=-x\rangle , C_{G}((12)) stabilizes W. Hence an
argument similar to the one used in LEMMA 3. 2 with the induction hypothesis
in place of the result of Section 2 shows that C_{G}((12))/C_{C_{G}((12))}(W) is
isomorphic to a subgroup of Z_{3}\cross\Sigma_{n+1} . Thus it suffices to prove C_{C_{G}((12))}(W)

=\langle(12)\rangle .
Let \sigma be an arbitrary element of C_{c_{G^{((12))}}}(W) . Since \sigma stabilizes U,

we can write

(e_{1}+e_{2})^{\sigma}-(e_{1}+e_{2})= \alpha(e_{1}+e_{2})+\sum_{j\geqq 3}\beta_{j}(e_{0}-e_{j}) .

From
\theta((e_{1}+e_{2})^{\sigma}-(e_{1}+e_{2}), e_{0}-e_{k}, e_{0}-e_{k})=0 ,

we get

j \neq k\sum_{j\geqq 3}\beta_{j}=\frac{4\alpha}{n+1} , k\geqq 3 . \cdot ..... (2)

If we regard (2) as a simultaneous equation in \beta_{j} , the determinant of the
coefficients is (n-3)(-1)^{n-3}\neq 0 . Thus \beta_{3}=\beta_{4}=\cdots=\beta_{n} . Since

\Sigma_{j\geqq 3}(e_{0}-e_{j})=(n-1)e_{0}+(e_{1}+e_{2}) ,

we have
(e_{1}+e_{2})^{\sigma}-(e_{1}+e_{2})=\delta\gamma(e_{1}+e_{2})+\gamma e_{0} ,

where
\gamma=(n-1)\beta_{n} , \delta=(1+((n+1)(n-3)/4)))/n-1 .

Calculating in a similar manner with the roles of e_{0} and e_{3} exchanged, we get
(e_{1}+e_{2})^{\sigma}-(e_{1}+e_{2})=\delta\gamma(e_{1}+e_{2})+\gamma e_{3} .

Therefore \gamma=0 , whence (e_{1}+e_{2})^{\sigma}=e_{1}+e_{2} . Since \sigma stabilizes \langle e_{1}-e_{2}\rangle , we
also get (e_{1}-e_{2})^{\sigma}=\pm(e_{1}-e_{2}) by calculating

\theta_{n}((e_{1}+e_{2})^{\sigma}. (e_{1}-e_{2})^{\sigma}, (e_{1}-e_{2})^{\sigma}) .
Hence \sigma\in\langle(12)\rangle , proving the lemma.

Lemma 3. 4. If \tau is an element of order 2 of H, C_{G}(\tau)\leqq H.
PROOF. By taking a suitable conjugate in H, we may assume
\tau=(12)(34)\cdots(2k-1,2k) , k\leqq n/2 .

Since C_{G}(\tau) stabilizes
W=\langle x\in V : x^{\tau}=x\rangle ,

C_{G}(\tau) normalizes P=C_{C_{G}(\tau)}(W) . Since e_{0}\in W, P\leqq H by Lemma 3. 2,

and so
P=\langle(2j-1,2j) : 1\leqq j\leqq k\rangle .

We observe that each of the elements of P conjugate to (12) in GL( V) is of
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the form (2j-1,2j) , and hence is conjugate to (12) in N_{H}(P) . Conse-
quently

|N_{G}(P):C_{N_{G}(P)}((12))|=|N_{H}(P):C_{N_{H}(P)}((12))| .
Since C_{N_{G}(P)}((12))\leqq H by Lemma 3. 3, this means N_{G}(P)\leqq H. Thus
C_{G}(\tau)\leqq N_{G}(P)\leqq H as desired.

Now let S be a Sylow 2-subgroup of H. Let k be the greatest integer
satisfying 2^{k}\leqq n . A routine calculation shows that D_{k-1}(S) , the k-th term of
the derived series of S, is a cyclic subgroup of order 2 generated by an
element \sigma conjugate to

(12) (34) \cdots(2^{k}-1,2^{k}) .
Hence N_{G}(S)\leqq C_{G}(\sigma)\leqq H. This together with Lemma 3. 4 shows that G

and H satisfy the assumptions of Bender’s theorem. The cases ( ii) and
(iii) of Bender’s theorem are ruled out because of the structure of H. Hence
G=H. This completes the proof of THEOREM 2.
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