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A generalization of monodiffric
Volterra integral equations
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1. Introduction

Various different types of discrete Volterra integral equations have been
discussed by Deeter [2], Duffin and Duris [3], Fenyes and Kosik [4], and
Tu [6, 7] . In [4], Fenyes and Kosik have solved discrete Volterra equa-
tions of the type

nf_{n}+ \sum_{k=0}^{n}f_{h}g_{n-k}=h_{n}

by the method of operational calculus. By using the convolution product for
discrete function theory, Duffin and Duris [3] discussed a solution of the
discrete Volterra type

u(z)=f(z)+ \lambda\int_{0}^{Z}k(z-t) : u(t)dt , where \lambda is a constant. (1. 1)

On the other hand, Deeter [2] gave a different approach to the equation
(1. 1) by using some further results of operational calculus. Our aim in this
paper is to define the convolution product of p-monodiffric functions and to
prove some properties of p-monodiffric functions. We then find the general
solutions of the generalized monodiffric Volterra type integral equations
(1. 1). When p=1 , our results reduce to the classical results of p-mon0-
diffric functions which have been developed by Berzsenyi [1] and Tu [6].

2. Definitions and Notations

Most of the definitions and notations given here are taken from reference
[7]. Let C be the complex plane,
D=\{z\in C|z=x+iy\} where x, y\in\{pj|j=0,1,2, \cdots 0<p\leqq 1\}

and f : Darrow C.
DEFINITION 1. The p monodiffric residue of f at z is the value

M_{p}f(z)=(i-1)f(z)+f(z+ip)-if(z+p) . (2. 1)
DEFINITION 2. The function f is said to be p monodiffric at z if M_{p}f(z)=0 .
The function f is said to be p monodiffric in D if it is p monodiffric at any
point in D (denoted by f\in M_{p}(D) ).

DEFINITION 3. The p monodiffric derivative f’ of f is defined by
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f’(z)= \frac{1}{2p} [(i-1)f(z)+f(z+p) -if^{(z+ip)]} . (2. 2)

We also use the symbols \frac{df}{dz} or D_{z}f to represent f’ It is easy to see that

f’(z) can be formulated in the following forms:

f’(z)= \frac{f(z+p)-f(z)}{p} or f’(z)= \frac{1}{ip}[f(z+ip)-f(z)] , (2. 3)

if f\in M_{p}(D) at z .
DEFINITION 4. The line integral of f from z to z+hp is defined by

\int_{Z}^{Z+hp}f(t)dt=hpf(z) if h=1 or i

=- \int_{Z+hp}^{Z}f(t)dt if h=-1 or - i. (2. 4)

More generally, if \Omega=\{a=z_{0}, z_{1}, z_{n}=b\} is a discrete curve in D ,

then the line integral of f from a to b along \Omega is defined by

\int_{\Omega}f( t)dt=\int_{a}^{b}f( t)dt=\sum_{k=1}^{n} \int_{z_{h-1}}^{z_{h}}f ( that (2. 5)

For the properties of the line integral, the reader may refer to reference [7].

3. The Convolution Product

In order to involve two monodiffric functions, Berzsenyi [1] defined the
“double dot” convolution line integral and *-convolution product. We now
extend them to p-monodiffric functions.
DEFINITION 5. The convolution line integral of f and g from z to z+hp is
defined by

\int_{Z}^{Z+hp}f(t) : g(t)dt=f(z+hp)[g(z+hp)-g(z)] if h=1 or i

=- \int_{Z+hp}^{Z}f(t) : g(t) dt if h=-1 or - i. (3. 1)

More generally, the convolution line integral of f and g from a to b along
\Omega is defined by

\int_{\Omega}f(t) : g(t) dt=\int_{a}^{b}f(t) : g(t) dt=\sum_{k=1}^{n} \int_{Z_{h-1}}^{Z_{h}}f(t) : g(t) dt (3. 2)

It is also easy to show that the convolution line integral of f and g is
independent of path in D for every a, b\in D. We begin with the following
lemma.
LEMMA 1. Let B_{p}f(z)=(i-1)f(z)+f(z-ip)-if (z -p) . Then the con-
volution line integral along the discrete closed curve C(z)=<z , z+p, z+
p+ip, z+ip, z> is given by
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\int_{C(Z)}f(t) : g(t)dt=[g(z+p)-g(z)]B_{p}f(z+p+ip)

+[f(z+p+ip)-f(z+ip)]M_{t}g(z) .
PROOF. It follows directly from the definition 5.
In [5], the function f is said to be p-comonodiffric at z if B_{p}f(z)=0 .

THEOREM 3. 1. Suppose that f is p-comonodiffric and g is p-monodiffric in D.

Let a, b\in D, then the integral \int_{a}^{b}f(t):g(t)dt is independent of the discrete
curve in D connecting a to b.

PROOF: Apply Lemma 1.
For the properties of the convolution line integral we have

THEOREM 3. 2.

(1) \int_{c}(f+g)(t) : h(t)dt= \int_{c}f(t) : h(t)dt+ \int_{c}g(t) : h(t)dt

(2) \int_{c}f(t) : (g+h)(t)dt= \int_{c}f(t) : g(t)dt+ \int_{c}f(t) : h(t)dt

(3) \int_{c}kf(t) : g(t)dt=k \int_{c}f(t) : g(t)dt= \int_{c}f(t) : kg(t)dt

where f, g , h\in M_{p}(D) and k is a constant.
Now, we define a convolution product as follows:

DEFINITION 6. The * product of p-monodiffric function is defined by

(f*g)(z)= \int_{0}^{Z}f(z-t) : g(t)dt. (3. 3)

Throughout this section, we shall confine ourselves to the function f : Z^{+}\cross

Z^{+}arrow C where Z^{+}\cross Z^{+}=\{(m, n)|m, n=0,1, \cdots\} . By making obvious
modification, the results of this paper may be extended to the larger domain
D .

Similar to the results in [1] we have the following properties for
the * product of p-monodiffric functions.
THEOREM 3. 3. Let f, g, h\in M_{p}(Z^{+}\cross Z^{+}) and suppose k is a constant. Then

(a) f*g\in M_{p}(Z^{+}\cross Z^{+})

(b) (f+g)*h=(f*h)+(g*h)
(c) f*(g+h)=(f*g)+(f*h)
(d) (kf)*g=k(f*g)=f*(kg) .
PROOF. Since M_{p}(f*g)(z)=(i-1)(f*g)(z)+(f*g)(z+ip)-i(f*g)(z+p)

= \int_{0}^{Z}M_{p}f(z-t) : g(t)dt+f(0)M\theta(z)=0 .

Thus (a) is proved.
The proofs of (b), (c) and (d) are easy.
For the commutativity and associativity of the convolution products we

have
THEOROM 3. 4. Let f, g\in M_{p}(Z^{+}\cross Z^{+}) and suppose that f(O)=g(0)=0 .
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Then f*g=g*f.
PROOF. According to the Definition 2, it is sufficient to prove that (f*g)

(z)=(g*f)(z) for every z along the positive x-axis. Along the positive
x-axis, let C(z)=<0 , p , 2p , \cdots kp>be the path of integration where k is
a positive integer and 0<p\leqq 1 . Then

(g*f)(kp)= \sum_{j=1}^{k}\int_{(j-1)p}^{jp}g(kp-t) : f(t) dt=\sum_{j=i}^{k}g(kp-jp) [f (jp)-f (jp-p) ]

(f*g)(kp)= \sum_{j=1}^{k}f(kp-jp)[g(jp)-g(jp-p)]

Thus, (g*f)(kp)-f(kp)g(0)=Cf*g)(kp)-f(0)g(kp) .
Since f(O)=g(0)=0 , this concludes the proof.
THEOREM 3. 5. Suppose f, g and h\in M_{p}(Z^{+}\cross Z^{+}) and g(0)=0
or (f*h)(z)=0, then (f*g)*h=f*(g*h) .

PROOF. Let C(z)=<0 , p, 2p, \cdots , jp> be the path of integration, where
j is a positive integer and 0<p\leqq 1 .

[(f*g)*h](jp)= \int_{0}^{jp}(f*g) (jp-t) : h(t)dt

= \sum_{k=1}^{j}(f*g) (jp-kp) [ _{h(kp)-h(kp-p)]}

= \sum_{k=1}^{j-1}(f*g) (jp-kp) [ _{h(kp)-h(kp-p)]} .

Since (f*g) (jp-kp) = \sum_{m=1}^{j-k}f (jp-kp-mp) [g(mp)-g(mp-p)] ,

take k+m=n+1 , then we have

[\sigma*g)*h] (jp)= \sum_{k=1}^{j-1}\sum_{n=k}^{j-1}f(jp-np-p)[g(np-kp+p)-g(np-kp)]

[h(kp)-h(kp-p)] .
On the other hand, we find that

[f*(g*h)] (jp)= \sum_{k=1}^{j}f(jp-kp)\sum_{m=1}^{k-1}[g(kp-mp)-g(kp-mp-p)]

[h(mp)-h(mp-p)]+g(0) \sum_{k=1}^{j}f(jp-kp) [h(kp)-h(kp-p)]

= \sum_{k=1}^{j-1}\sum_{n=k}^{j-1}f(jp-np-p)[g(np-kp+p)-g(np-kp)]

[h(kp)-h(kp-p)]+g(0)\sigma*h) (jp).

Therefore, it yields
[(f*g)*h](z)=[f*(g*h)](z)-g(0)(f*h)(z) .

4. Generalized Monodiffric Volterra Integral Equations

In this section we shall extend an earlier result [6] about the general
solutions to the monodiffric Volterra integral equations

u(z)=f(z)+ \lambda\int_{0}^{Z}k(z-t)\wedge\cdot u(t)dt . (4. 1)
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If f(z) and K(z) are p monodiffric in Z^{+}\cross Z^{+} the integral equation (4. 1)

is called a generalized monodiffric Volterra integral equation.
LEMMA 2. Let f(z) and K(z) be p monodiffric in Z^{+}\cross Z^{+} . Suppose there

exist a solution u(z) such that u(z)=f(z)+ \lambda\int_{0}^{Z}K(z-t):u(t)dt and 1-

\lambda K(0)\neq 0 , then u(z) is p monodiffric in Z^{+}\cross Z^{+} .
PROOF. Since M_{p}u(z)=(i-1)u(z)+u(z+ip)-iu(z+p)

=M_{p}f(z)+ \lambda[\int_{0}^{Z}M_{p}K(z-l) : u(t) dt+\int_{Z}^{Z+ip}K(z+ip-t) : u(t)dt

-i \int_{Z}^{Z+p}K(z+p-t) : u(t)dt]

=\lambda K(0) [ u(z+ip)-u(z)-iu(z+p)+iu(z)]=\lambda K(0)M_{p}u(z)

we have M_{p}u(z)[1-\lambda K(0)]=0 .
Thus, the Lemma is proved.
THEOREM 4. 1. Let f(z) and K(z) be p monodiffric in Z^{+}\cross Z^{+} If 1-\lambda K

(0)\neq 0 then there exists a unique p monodiffric function u(z) in Z^{+}\cross Z^{+}such

that
u(z)=f(z)+ \lambda\int_{0}^{Z}K(z-t) : u(t)dt with u(0)=f(0) . (4. 2)

Moreover, the solution of (4. 2) can be calculated by the following stepping
formula:

u(z+hp)=u(z)+ \frac{1}{1-\lambda K(0)}[f(z+hp)-f(z)

+ \lambda hp\int_{0}^{Z}K’(z-t) : u(t)dt] (4. 3)

for h=1 or i.
PROOF. Since u(z+hp)-u(z)
=f(z+hp)-f(z)+ \lambda\int_{0}^{Z}hpK’(z-t) : u(t)dt+\lambda K(0) [ u(z+hp)-u(z)] ,

we obtain (4. 3).

Now, it remains to prove that the values which we get from (4. 3) satisfy
the equation (4. 2). It suffices to show that (4. 2) has a solution for the
points on the positive x-axis. From (4. 3) we get

u(p)= \frac{1}{1-\lambda K(0)}[f(p)-\lambda K(0)f(0)] .

On the other hand, u(p) can be obtained from (4. 2). In fact
u(p)=f(p)+ \lambda\int_{0}^{p}K(p-t) : u(t)dt

=f(p)+\lambda K(0)u(p)-\lambda K(0)u(0)

u(p)= \frac{1}{1-\lambda K(0)}[f(p)-\lambda K(0)f(0)] .

Therefore, (4. 2) has a solution for z=p. By induction, we suppose that
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(4. 2) has a solution for z=(m-1)p , i . e. ,

u[(m-1)p]=f[(m-1)p]+ \lambda\int_{0}^{(m-1)p}K[(m-1)p-t] : u(t) dt

=f[(m-1)p]+\lambda\{K(0)u[(m-1)p]+pK’(0)u[(m-2)p]+\cdots

+pK’[(m-3)p]u(p)-K[(m-2)p]u(0)\} .
Since 1-\lambda K(0)\neq 0 , we get

u[(m-1)p]= \frac{1}{1-\lambda K(0)}\{f[(m-1)p]

+ \lambda p\{\sum_{j=0}^{m-3}K’(jp)u[(m-j-2)p]\}-\lambda pK[(m-2)p]u(0)\} . (4. 4)

We claim that (4. 2) has a solution for z=mp

u(mp)=f(mp)+ \lambda\int_{0}^{mp}K(mp-t) : u(t) dt
i . e. ,

u(mp)= \frac{1}{1-\lambda K(0)}\{f(mp)+\lambda p\sum_{j=0}^{m-2}K’(jp)u[(m-j-1)p]

-\lambda pK[(m-1)p]u(0)\} . (4. 5)
From the stepping formula, we have

u(mp)=u[(m-1)p]+ \frac{1}{1-\lambda K(0)}\{f(mp)-f[(m-1)p]

+ \lambda p\int_{0}^{(m-1)p}K’[(m-1)p-t] : u(t)dt\}

=u[(m-1)p]+ \frac{1}{1-\lambda K(0)}\{f(mp)-f[(m-1)p]

- \lambda p\sum_{j=0}^{m-3}K’(jp)u[(m-j-2)p]+\lambda pK[(m-2)p]u(0)

+ \lambda p\sum_{j=0}^{m-2}K’(jp)u[(m-j-1)p]-\lambda pK[(m-1)p]u(0)\} .

(4. 6)
Substituting (4. 4) into (4. 6), we obtain (4.5). Thus we proved that

(4. 2) has a solution for the points on the positive x-axis. Due to the
Definition 2, a function u(z)\in M_{p}(Z^{+}\cross Z^{+}) is uniquely determined by its
values on the positive x-axis. Therefore the theorem is proved.
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