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By Zenjiro KUuRAMOCHI
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In the present paper we shall study Martin or N-Martin’s"? boundary
points of domains in the z-plane of some typical types.

§1. Domain Q. Let Q be the domain such that
Q={|z|<1}—F

where F is a closed set in {|z| <1, |arg zlz—;—}and F ={z=0;. Let G(z,

p) 1 pEQ be a Green function. Put K (z, p) :_GG(—(;O’_%)—: pn:{z:%}. Let

{pi} be a divergent sequence in { such that K (z, ;) converges uniformly to
an HP (a positive harmonic function) U(z). Put U(z)=K(z, p) and we
say {p:; determines a boundary point p. Denote by A the set of boundary
poists and put Q=Q+A. Let p, and .. Then the Martin’s distance between
P and p, is given as

K (z p) K (z, p)

M
dist(#r, p.) =sup| 1+ Kz py) 1+K(z p) |’

EUTPRD SRS
where I'={|z 2]—32,.

The Martin’s topology is introduced by this metric on Q. We shall prove

THEOREM 1. Let Q be the domain. Let {p:} be a sequence in {|arg z|
/4

<73

0 with pi—z=0. Then K(z, p;) tends to a uniquely determined

minimal function K (z, q) for any {0<é‘<%}, i e.

M
sup(dist(z, g)on {|z| é%,[arg z| <%—6}—>0 as n—co.

We use often solutions of Dirichlet problems and H. M. (harmonic
measure) of A. We denote by H & the solution of the Dirichlet problem in
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G with boundary value U on 8G+A. If U=1 on A and=0 elsewhere, we
call H¢§ the H. M. of A denoted by W (A4, z, G).

Lemma 1.1). Let S;={Re z=0,|Im z|<a} and let F be a continuum
tending to z=co in the z-plane such that F N So=0. Let Nt be the module of
the complementary set G of F+S,. Then there exists an increasing function
VN of M such that

dist(F, So) Za¥ (M),

where M= and V (z) is an HB (a positive bounded harmonic

1
D(V(2))
function) in G such that V(z2)=0 on Sa,=1 on F and has an M. D. I.
(manimal Dirichlet integral).

2). Let T be an arc on |z| =1 containing z=—1, symmetric relative to
Imz=0and T has length 2m, where m<m, <zm. Let F be a continuum in
|z| £1 containing z=1. If there exists an HB in {|z|<1;—F such that
Vz)=0

on T,=1 on F and D(V (2))< M <co, then theve exist functions 6(m)
and L(M, m,) such that

1
. 20(m)‘1f(m)
dist(F. T)= LM )
sin m . .
where B(m):m, LM, m)) s a function of M and m, and <co

for my <z and 0< M <oo.
Proor of 1). We denote the module of the complementary set of F +

S, by M(F, S.). By g:z._z,

Se—S=(|Re &|£1, Im=0) in the &-plane.
Map the complementary set of S onto {|w|>1} by

w=g )=+ /FT: g=—(w+).

Then M (F, Sp) =M(F;, S)=M(F,, C), where F,= g (F;), F; is the image
of F and C={|w|<1}. Then by Grotsch’s theorem there exists an
increasing function ® (M) of M such that

Foc{lw|=21+®M) |
and dist (Fy, C)=®M) is attained if and only if F, is a ray:
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Fo={1+ (M < |w| <co, arg w=const.}.

Put R=1+®(@) and let € (R) be the image in the &-plane of {|w|=R!:
Then F; is outside of 2(R), i.e.

dist(Fy, S) =dist(Q(R), S).

Hence it is sufficient to investigate the behaviour of 2(R). Now 2(R) is
given as

Lpsl 2 R—Lysin g _ Pe
2(R+R)cos 6+ 5 (R R)sm 6:0=60=<2n, w=Re®.

Put §(R, )= g'(w): w=Re” and g(#)=dist(&(R, §), S).
Then, Case 1. |Re(&(R,6))|<1. In this case

B(O)=1(R—3)|sin 4].
Case 2. |Re(&(R,8))|>1. Then
ﬁ((?):[(%(f?—-]%)sin 0)2+{%(R+%)cos 6—1)°]2

Put a=4(0), i.e. aZ%(R +%>—1. We have only to study for 0<0=-2-
Case 1. Let 6, be the 8 such that Re(&(R, 6,))=1.

2_
Then cos ﬁo:%— and sin 00222—4_1. Now
R—-1)?
ﬁ((90>—a’:<1_+_—13220

Since B(6) is increasing for 00_$_6_<__%, B(0)=a for %é&é%.

Case 2. In this case

82(0) —at=(1—cos e>{%+1€—z>+<1—cos 6)) 0.

Hence dist(8(R). S)):a:%(R +%>—1. Let ¥ =a. Then since R=
1+dEN),

o (M)?

YO =5 e@mny




116 Z. Kuramochi

Consider F in the z-plane. Then ¥ (M) is the required function and we have
Lemma 1. 1)
z

Proor of 2). Map {|z| <1} by !;':g(z):%—z onto |arg £| <2
Then
T—S,= {Re&=0,|Im &|=aj.

sin m sin m
14+cos m ~14cos m,

By brief computation we have a= =N (m,)<oco by

_ sin m
m <z Put 0<m>———1+cos _— Then 8(m)» as m, . Now O(m)=
N (m,)<oo. Let F; be the symmetric image of g(F) = F; relative to |arg §|
-—-%. Let V*(z) be an HB in {|z|<1}—F such that V(z)=V*(z) on

F+T and has M.D.L Then -2-V*(2)=0 on {|z|=1)~T—F and
D(V*@)EM. Put V*(&)=V*@'(&)). We extend V*(&) into |arg &|
2% so that V*(é): V*(&), where Z is the symmetric point of & relative to

|arg &| :%. Then the module of {|&] <oo} —Fg—F‘g—SH where F‘,;

> L
—2M’
is the symmetric image of F,. Hence by 1)

sin m
14cos m

dist(Sy, Fet £y) = ( W (gr)=A(m, M.

Let J={&: dist(S,, £)<A(m, M)}. Then JN (F,+F,)=0.
Let J, be the image of J and let d =dist(7, 9/.).

Then there exists a straight A of length d connecting a point z,&7T and a
point g€9/,. Assume AZ J;+3J.. Then there exists at least one inner
point ¢'(#¢q) of A such that ¢'€9/,. This meansdist(7, 9/,)<d. Thisisa

contradiction. Hence ACJ,+39/.. Let A, be the image of A by & :}—i—z.
Then A,C Jand A, connects a point & &S, and a point ¢; on 3/. By z -—-Zg—;—%

A:CJ implies £]<8(m)¥ (yr)+6(m) in ] and
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11+ &2 {1+ 0 (m) A+¥( M>>f S{1+0<ml><1+~1f<2M>>‘2
Let L(m,, M) = 1+9(m1)(1+\1’( )) . Then

1
ZG(M)\I’(W)
L(m,, M)

d

1\

We see at once L(m,, M) <o for m<z and 0< M <co. Hence
dist(7T, F)=dist(T, a/.) =d.
Thus 6(m) and L(m,, M) are the functions required and we have 2).

LEMMA 2. Let D, be a domain such that
D,.={1<|z|<r|arg z|<6}: r=4, 0<n. Let U(z) be an HP in
D, such that U(2)=0 on |z|=7r. Then there exists a const. l, depending on 8
and & but wnot v such that

U(z)
< <1,
Uz) "
where 2< |z1| =| 2| <7, |arg z;|and |arg z|<0—0: 0<5<4.
o
1 WU@])
] < <lL: |zi|=vr |arg z|, |arg z|=6—4J.
' 2 UG
on 2
Proor. Let z, and z be points such that |z | =|z/|,|arg 21|, |arg z| <
§—o. We can suppose without loss of generality

arg z,=¢ = $,=arg z, and qSo:qS]_Zhﬁng.

Let D'={1<|z|<7 ¢ —o<arg z<¢,+d). Then D'CD. Let

F:{g’{glzlgr, $.=arg z< ;.

By the mapping § :—'—;—, D,—D; and D—-D’;. Now

aD,‘;:: %+Ll+cl+-L2)

where
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1
C;:{ [&1=—, ¢—d=arg £+ 7]

%§!£|<1 arg §=¢,—
C={|&|=1, ¢p—d=arg E< ¢+ 7]
L=(15(¢|51, arg §=ot o]
Put &,:%e""s“ and T5:L1+Cé+Ll. We map

D’;—onto{|n| <1} by n=g(&),

so that &—#=0, {arg &=¢,/—{Im 7 =0;. Then g(%) and g(%) are

symmetric relative to {Im »=0;. Let T=g¢g(7,). We shall estimate the
length of 7. Then the length of 7T =22W (T;, &, D,). Clearly
W (T;, &, D’;)|as»tand|as D’ 1. Hence

length of T 22xW (T, D)=2m, @

where T.={0=|&| =1, arg §=0}+{0=[&| =1, arg §=—0} and DF={0<
|&] <1, |arg &| <6}. Evidently m, depends on # but not on » and §. Also

length of T<27zW(Ti D" =2m,, 2

b 2 s

where T1=(<|&| <1, arg §=—0)+(|§| =, |arg §|S6)+(F5|¢| <

%I

1, arg £=46} and D”:{T< |&] <1, |arg &| <d}, and m, depends on only 4.

Let Gd—{ 5 <|&|<1, 0<arg £<¢8}. Then there exists an HB, A(&) in G,

such that A(&)=1on {arg £€=0}, A(&)=0on {arg £=4¢} and
D(A(&))=M,<co.

Let A(&)=A(&), where E’ is the symmetric point of & relative to {Im &=0;.

1,
Let B(&)=log —2— |<‘5| /log in {——<|£|< i b, =01in {|&]| <+ 5 b, =1in {|&]
2
;%} Then D(B(&))=M,<oo. We shall construct a Dirichlet function

V(&) in D', as follows: V'(&)=01in {—717< [ &] <%}», V(&) =min(B (&),
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Alge®)in (£<|§| <L, ppSarg £Sat0), V(E)=1in (5|8 S1,4,5
arg E<¢,}=F,(F; is the image of F), V'(&)=min(B(&), A(&e ™) in

1 , |
Lsigis1, ¢-osarg 656, V@ =B® in (5=[51=T, p=args
<¢,). Then V'(&)=0o0n T;,=1on F,, continuous Dirichlet function and
D(V'(&))= @M+ M,)=M<o not depending on 7.

Hence there exists an HB, V(&) in D’;— F; such that V(&)=0o0n T;,=1 on
F, and

D(V(&))<M<co not depending on 7. 3

Hence by (1), (2), (3) and Lemma 1, 2,), there exists a const, &, depending
only on @ and ¢ such that

dist(T, g(Fy)) > eo.
Map D’ by 5=f(z) onto {|7|<1} so that {arg z=¢,j—{Im =0} and
f(%e"“’“)zo. Let F:{z’[{élzlén ¢ =arg z<¢,;. Then

dist(f (T), f(F))>e&>0,
where T={|z|=1, ¢—0=Larg z<¢,+5|+{1=[z|<7, arg z=¢,— |+
(1< |z| <7, arg z=¢,+46}. Suppose |21|:|22|_23—Z, arg z,=¢,, arg 2= ¢,

Then z, 2zCF and evidently 7 =f(z) and 7.=f(z,) are symmetric
relative to {Im =0j.

_ 1 ié 1-p*
U=z [ U —gpessta —wr 77

ni=pe¥, i=1,2.
Since 1—2cos(¢p —¥,) +p?=(dist(e?, n,))*=e? for e cg(T), nic€g(F),

1—p?
( 4

)U(O)éU(rmé(l:gpz)U(O); i=12.

<U(Z]>£<2

€02 2
G =gy=%

Consider for 2< | z;| _S_%r . Let
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D=t 121 < |21 <|zlg, di—6<arg z<dtd).
Then D"C D and U (z) isan HP in D”. Map D" by  =log T,%Z_| Then D”
—{|Re 7| <log —g—, ¢ —0<Im < ¢,+}. Put p=min(d, log %) and F=

{Re =0, $<Im n<¢,} and C, pi)={|n—p: <%}. Then we can
find at most %, number of circles C (4, p:) such that p,€F, 2C L. p)OF.

We see at once the number #, attains its maximum in case {| Re #| <log %,

|Im | <60} and F={Re #=0,|Im 5 |<6—6}. Then after Harnak’s
principle

U<21) Zns
__U< 2>S3 21, ZZEF.

Put /, =max(3*™, (ei)z). Then we have

0

Lo,
o2

<U<z‘><l,, for z,=pe®, z,=pe® : 2<p<r.
U (2)

Now z, and z, are arbitraly points in {2<|z| <7, |arg z|<6—¢). Hence
1 _Ulz)
L <TGy <!

for 2<|z,|=|z|<7and |arg z;|<£0—9d. By U(z)=0o0n|z|=7 wehave at

once

1

l< U(Z])/ U(Zg)<l}. |Z\‘:|Zz|:7’,larg Zil_g_a—(y.

Thus we have the Lemma.

Let L—\i<lz|<oo arg z=if}, 728, 0<H< T, i=0, =1, =2, +3

+4. Let A, be a simple compact analytic curve in {1<|z|<oo}, 0<
arg z=#) connecting two points p,=1+6,, p=1+d)e?: &, 6 =0 such
that A, has no common points with L,+ L, except p, and p, and dist(z=0,
A))=1. Then there exists a point p}EA, such that

pI=¢%, 06*<6.
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Let T;(:=0, +1, +2, +3,) be a symmetric transformation with respect to L,.
Let Avii=T:(A): 13, AL,=Ty(A), Ay =T-;(A;), —1=Zi=-3. Let
D,: r =8 be a simply connected domain such that

aD,={|z| =2, |arg 2|40)+ 3 A+( 25|zl S1+a, arg 2=40)

—127<Iz| <146y, arg z=—46.
Let ze{0<arg z<6/ND,. Wecall z+ T.(2)+ T, T (2)+ LT, T, (2)+ To(2)
+ T, T,(2)+ T, T Ty(2)+ TsT,T ,T,(z) the equivalent class of z. If

z; and z, are contained in the same class, we denote by z, = z,.

LEmmA 3. Let D, be the domain mentioned above. Let U (z) be an HP
in D, vanishing on 2IN,. Then there exists a const. [, not depending on r
and the shape of A, such that

1 U(z)
LUt "
where z,=T;(z,) in v{%§|21|<00, J—Dé=sarg z=<G+D6,ND,:j=0, +1,
o
and 11 <M <hbonA,,+A :j=—1on A +A : j=0 and on A+
2 U<22>

A =1 respectwely.

Proor. At first we consider only D;={|arg z|<360}ND,. Let t,=

%él | <146, argz:30}+{|z|=—727, |argz|§30}+'{%§lz|§1+d‘1, arg
z=—36} and F—\%éizlél, larg z| <£26). Map D; by &=g(z) onto|&|

<1 so that {arg z=0;—{Im &=0], {zz—%—}—»{‘E:O}. We estimate the

length of g(¢,). W <(t,, 2, D;) | as 1 and| D,? for r=const. Hence
W(tr, Z) D‘:‘) g W<t’ Z: Df);

where t={0=|z| <1, arg z=360)+{0<|z| <1, arg z=—30} and Di={0<
|z| <1,]arg z| <36}. Hence there exists a const. s, not depending on » and
the shape of A, such that

length of g(¢,) = my. 4
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b7
(1+61)6N

1+ 3

'

Fig.1

Now W (t,, z, Dp=1—W( Z A;,z, Dy). Instead to estimate W (¢,, z, D)

i=-—3

from the above, we estimate W ( i A;, z, D;) from the below. A, separa-
i=-—3

tes |z| :::— from z=c0 in A;={(i—1)8<arg z<i6,N D;. We denote by G;

the component of A; containing z=co divided by A, in A,. Then G; must
contam a curve y; startmg from b} (p*~ p ) and tending to z=oo0. Then

W(ZgA,,z D >>W< 2 i % D1— 2 y,)>W(71,z D1i—vy), where
D%:{%§|z|<00, larg 2| <36). Map D1 by #=£(2) onto {|7|<1} so

thatz:—%——m:0 and {Imz=0/—-{Imy=0]. Let /i={|z]| =1, 0sarg z<46}.
Then there exists a const p,<1 such that

JUDCTHUnl=po.

Then y,=f(y,) contains a curve y’, connecting p,¢® and {|7|=1}. Let ¥

be the symmetric image of y’, relative to arg #=¢ and let S={p,=|7|= <
1, arg y=¢. Then W(y",,0,C,—v,)=W(¥,,0,C,—7,), where C,=
{In| <1}. Since y’,+7¥, encloses S,
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W7, 0,C—7)+W(',,0,C,—y,) 2W(S0,C,—S.

Hence W (7,,0,C, =) 2 W (y',, 0, C,—v',) 25 W (S,0,C,— ).
Evidently W (S, 0, C,—S) does not depend on 7 and the shape of A,. Hence

there exists a const. &« such that W (¢, 2z, D) <a<1 at z= 1

5 and there
exists a const. m,; not depending on » and A, such that
length of g(t,) <2m, <2x. (5

Since F is compact and since dist(F, 8D_i)>0, there exists a Dirichlet
function V’(z) in D%—F such that V’(z)=0 on aD_i_,zl on F and

D(V’(z2))<M <. Hence there exists an HB V(z) in D,—F such that
V(z)=0on t,=1on F and has M.D.1, i.e.

D(V(z))£M for any =8 and A,. (6)

We shall study the behaviour of £=g(z). We attend to the point p* on
{|z] =1}: pr=¢€7".

Put p5=T(1), p%=T.(p*), ps=T,(p%). Then following 3 cases
occur.

Case 1. 0<6*<4. Inthis case pX+p%, i+j i j==+1, +2.
Case 2. 6*=0, in this case pt=p*,, pr€L,, p*.cL.,.
Case 3. 6#*=4, in this case ptEL,, p*\&L_,, p* =p*,.

Put F,=g(F) andletI"; be the part of 3F;, between g(p}) and g(p*,) sepa-
rating {§=1} from g(#) and letI"’; be the arc on {|&|=1! between
g(p3) and g(p*,) and containing {&=1}. Then I";+I"’; encloses a simply
connected domain E; : 9F,2{&=—1} such that

E,DFy=g(F)

Since I, separates {&=1} from ¢(¢,), by (6) there exists an HB V(&) in
{161 <1} —E; such that V'(&)=0 on g(¢,),=1 on E, and

D(V'(E)N=M <o, (D

Since E.S{&=1}, by 4), 5), 7) and by Lemma 1. 2) there exists a const. &,
not depending on » and the shape of A, such that

dist(g(t,), Es) > eo>0.
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Let],———{%éZél, arg z=60*} and ,=T.(J1), J.=T,(l). Let J:=/N
{lzlz—%}. Then J;+ T,(J;)C F. Hence similarly as Lemma 2

U(z")
U(29=< ) (a)

for z”and z” such that|z’| =|z"]. z’+ z'e] 3+ To(/;) i.e. 2’=To(2"). For

iélz’l |z”|<—3— Consider D"={— |z|<|z|< Izllarg z| <360}. Then
v 4

&=

D"c D,. Hence also as [Lemma 2 there exists a const. [; such that

Uz)

T

<3, )

|larg z’| <and |arg z”|<26. Also there exists a

4 o 7 3
where7<|zl—|z |_4,

const. /5 for z” and z” on C’z—{!zl—z larg z| <26} such that

1 _UG&E) _,,
—17<m7,5<12 (C)

Let A, be the part of A, between (1+6,)¢ and p%3. Let G be the domain
such that 9G=C"2+ (L+A+A)+ Th(,+A,+A3). Then by (a), (b), (c)

U)<LU(T:(2)) on 9G : h=max((—-*, I3, I9).
0
Hence by the maximum principle

U)ZLU(Ty(z)) in D;N{— <[z|<oo larg z| £6).

Next for 7;:j7=+1, consider {%élzlgoo, (G=3)6=<argz=(J+3)6;ND,.

Then similarly as before
U@<bUT(2)) in (<2, G-Df<arg z<G+D6}ND

Hence we have Lemma 3.

On Green functions. I. Let Q be the domain in [Theorem 1. Then Q

ﬁ{lzl>r}:0,:r<l

16 consists of components. There exists a component
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Q, containing z:%. We can consider the Green function of Q, the Green
function G,(z, p) of Q, simply, where G,(z, p) =0 in the other component.
Denote by Z the symmetric point of z with respect to Re z=0. Then

Lemma 4. 1). G, —%—) < G,(z, —;—) Hlarg z| §%.

2). Let0< é‘<—Z— and 7<1—%. Then there exist const.s l; and s 5 depending

only & but on v such that

2 r<z,%>gzgicr<|zr,%>, 2] =
2 Grie 2z — 2612l ) Izl =nlarg 2| <5~
on" "3/ = Ly om > 2 :

ProoF.  Put V(2)=Gi(z,5)—G(2 5):larg 2/ =% Then V(2) is an
SPH. (a positive superharmonic function) in {|arg z| <—7[—} N{Q—F; and

V(iz)=0on {|z|=1}+{|z|=ri+{|arg z|= >0 on F, where F'is the

2z
symmetric image of F. By the minimum principle

G2, 3= Gile, )t arg 2| <2 ®
2 T ., 2 K
Let D—{—§<|z|<1, —T—ﬁ<arg z<0}DD —{§<|z| <1, —4—<argz
<_ﬁ} Map D by &= (-—e3z Then D— D, = {1<|£|<§é, 2?:[< argé <
2?:[‘:)D’ ={1< | &| <?é, T <Larg £<%}. Hence by Lemma 2, there exists

a const.m,; such that for any HP U (z) vanishing on |z| =1,

U@ <mUE):2<|§| =8|, arg §=—7, arg §'==

Hence
1 , 1 2 L /1 , /4
Gr<2,7>§mlGr<2,’§‘> 1>z =12 |>?' 27, arg Z'—_—————4 ,arg z :_ﬁ'
5
. . k3 \
Apply this method twice to { 3 <arg 2<Z 5 and { 12<arg z<12

. 5 /4
Then since 197 >T’
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Gr(z, %) _S_ m?GT(Z/) %))

1>|z|=|2| >—§—-2%, argz= —%, arg z’:%. €¢)

G,(z,%) is an HP in {1—16<|zl <1,|arg z|<—72r—}—{z:%}. There exists a
const.m, by Harnack’s principle such that

1 , 1 1 Y/ § ,i_
Gr(z,—é—)<szr(z,7):§<Iz|:|z|§—§-24, arg z———-, arg z’'=

Since G,(z, %):O on |z| =7 (putting 02%, ) %), by there

exists a const. m, such that

Gz D smGa, Srr<izl=| 2| 4, arg s=— % arg 2= %
(1D
Hence by 9), 10), 11)
G, (z, %)é miG, (2, %) r<l]z| =12 <],
arg z= —%, arg z’:-z:— and m, =max(m3, m,, ms). (12)

Let Z be the symmetric point of z :|arg z| é% relative to arg z :%. Then
by (8) and (12)
z 1 4 1 1 . ’ =
G- (z 7)§Gr<2 , —2—)§7}’Z4Gr(2, 7) ’él :|Z I = fz|, arg Z:if:’

S

Hence by the minimum principle

G,(Z, %) < m,G,(z, %) :larg z| é—Z— (13)
Similarly
~ 1 1 /1
Gz 5)=mGr(z, )t larg 2l = (14
where Zis the symmetric point of z relative to arg z= —Z  On the other

4
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hand, by [Lemma 2, we can prove similarly as (12), there exists a const. ;s
such that

Gz, S mGi| 2], ) :larg 2| =%
Put l; =m,+m;. Then we have by (7), (13), (14)
Gz, 5 S b6 2], 5. as)

Also by [Lemma 2, we see by the methods as before, there exists a const.
s such that

1 1 1 1 /4
> Y- il T _
Gr(z, 2)_ i G,(|z], 2).r<|z|<8,|arg zlé2 . (16)

Since G,(z, %):0 on |z|=7 we have 2) by and (16) and we have
Lemma 4.

Green functions, II. Let é :z_;; (n is a positive integer). Let L,={0<
|z| <oo, arg z=10:i=0, +1, +2,..., +4n}.

A;={0<]z| <1, (t—1b=arg z<16}.

T; is a symmetric transformation with respect to L,. Let z€A,, z.,=
T:(z):1=5:i22n—1, z.,=Tv(z)), z2;.1=T;(z;): —4n+1=:<—1. We call
Zi‘.z,- an equivalent class of z, €A, and denote by {z}. If two points z, and

z, are in the same {z}, we denote by zx~z. We remark for z&lL,+L,,
there exist only 2# equivalent points. Let A, be a simple compact analytic

curve in A, separating z=0 from |z|=1inA,, AN (L,+L)=p+p and
max |z |=7. Let A,,=T.(A):1=i<4dn—1. A, =Ty(A), Aii=T;(A))

zZEA,

:—4n+1=<:<—1. Then
i=4n

Ar:' 2 A;

i=—4dn

is a closed Jordan curve. Let D, be a doubly connected domain bounded by
A~+{|z|=1}. Put

Q*=QND..

Let G(z, %)be a Green function of Q*. Then
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o 1. /1
LEMMmAa 5. 1) G( Z, 2)_ 3 G(z, 7) larg z| éT, ZEA,.
2) There exists a const. [, not depending v and the shape of A, such that
2 e, bz 26 A T=7.
an » 2 =0 5 > 2 . ’ 1.

3) There exists a const. [; such that

o 1 1 o 1 /1
- ’ _ <_ - = . z 4 4 S_—
anG(z, 2)2“ anG(z, 2) 2=z, ZzEN, |arg 2’| < 5 26.
Proor. Since D, is symmetric with respect to |arg z | :%, we have as
Lemma 4, 1)
G5 )Gz ) |arg 2| =& (@)
* 27T * 27 =2
re —7 (6
Let D;=D.N{|z| < , G—do<arg z<(+4)6}. Consider &=
z

Then D;—onto a domain {2» <&<1,|arg &| <46}. Hence by there
exists a const.m, depending only n (or g—z =d¢) but on » and the shape of A,
such that

1 < G<z, %—> <
—< T <m,: an
"™G(Ty(2), <)

ZEQAﬂ{lz|_4, (G—Dé<arg z<(G+1D8b},|7| =2n—3.

Hence
1
G(Z,’ _>
12,,§ 2 <mi" :|z'| =|z"| gi arg z’:—”—, arg "= -z (b)
ml ” 1 4 4 4
1 ’ ’” ’ /4 ” —7T .
For @glz |=12"| <1, argz = arg 2'=—p there exists a const.m,

similarly as (10) and (11) such that

1
2

S_——l—émfz. (©)
2
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Hence by (b), (¢)

’” 4 7[ ”
l,

my=max(mi", m,) :|2'| =]z
By (a), (d)

G(z %)é%G(z —) :|larg z| gT

where Z is the symmetric point of z relative to arg z= +Z

4
Hence by (a)

G(z7, %)é%(}(z', %), 2"~z" and |arg z’| g%.
By [17)
’ 1 n 1 ’ ’ ’ T
G(2,7)§m1G(z, 7), 2’x=z" z€A,,|arg z Iéf.

Hence

G(z, %)_146(2 ) :2'xz,z€A,, [=mzem?.

By (17)
, 1
G(Z,?)é 14 (}2) ZA ml,

z~z|z]_4,|argz|<(2n 2)68, z€A,.

Since G(z, %):0 on A,, we have by (18) and (19) the Lemma 5.

For the following we modify as

129

(d)

(e)

(18

19

LEmMA 2. Let D={0<|z|<1,|arg z| <8} and let U(z) be an HP in
D such that U(z)=0o0n |z|=1. Then theve exists a const. l, depending on

6 and & such that

<U(23

<[ =|z"|,larg 2’| and |arg z"| <6 —9.
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In fact, let D,={r<|z|<1},|arg z|<6f}. Consider U(z) in D,, using &=
-Zr—, we have by there exists a const./; not depending on 7 such that

1 U(‘Z,) . o ” ’ 77 _
T<m<l,.|z|—|zf>27,|argz|andlargz|<6’ 0. Let » | 0.

Then we have Lemma 2.
Class . Let Q be the domain. We denote by 9 the class of functions
M
{K(z p)}: pEA such that p—p, p—>{z=0} and p;E{|arg z| s5-—6]. Put

H=U P’

>0

Lemma 6. 1). Let Uz)€eH. Then UE=U(z) and there exist
consts. A, and A,s such that

U)=aU(z|),

U(z)= 111 U(|lz]):|arg zlé%—é‘, O<é‘<—72[—,
1,6

where 2 is the symmetrvic point of z relative to {arg z:%}.
2) LetUR)EDH. Then U(z)=00n F+{|z|=1} except at most a set
of capacity zero, i.e. U(z) is singular and imU (z)<oo: &EEF, &+0.

z2—&
) Let Q,=QN{|z|>7): r<-% be the domain inLemmad Let v be

16
an arc on {|z|=v |arg zl<—§——é‘}. Let U(y,z2,Q)=H§ :¢=U onvy

and =0 elsewhere. Then therve exists a const. & not depending on v such that
U (y, % Q) = e (angular mes of y).

2

4) Q* be the domain in Lemma 5: 8:8—n. Let A;: |i1]£2n—2 and

U, 2,0"N=H$: ¢=U on A;, =0 elsewhere, then there exists a const.&,
depending on 6 but not on v and the shape A, such that

UCA,, —%- QM >e,.

Proor of 1) and 2). We can suppose p;<{|z] <3—12, 0=arg z<%—é‘}

:0< % Let Z be the symmetric point of z relative to |arg z| :%. Then
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as [Lemma 4

KG pD=K(z p;): |arg z| <=. (20)

L\:|.:1

Hence

Kz, p) =K (z, p0) 1 (2| =2z, 22€EL,, 22E€L;, L,={arg z=
3n

w
—7}, L;={arg z=——F

4’

K(z, p) is an HP in {——;—<argz<0}, —0on |z]=1. ByLemmaZ2, there

exists a const. /; such that

K<23, PJ = 11K<Zs , pi>,

|zs| = |25 |, 28 ELs, 2sELs={arg Z:_—Z—+§}' Now L, is symmetric to Ls
relative to L,={arg z= _%'f‘—g—}. By the maximum principle
= Jd
K p)=bK (s p): —o+y<arg 2<—, @D
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where Z is the symmetric point of z relative to L,. Let Ly={arg z= ——Z—
—¢}. Then similarly as before, there exists a const. /, such that

KG, pD<LK(z p): |z|=12'|, 2’€L,, z2&Ls.

Ls is symmetric to L, relative to L, ={arg z:%——g—}. K(z p)—LK (2, po)

is an SPH in { —%—d‘< arg z<%—%}-. Hence by the maximum prin-
ciple
K, p)=LK (2 pi): —%—6<arg z<%—%, (22)

where z’ is symmetric to z relative to L,.
Put L,=max(/,, ). Then by (20), (21),

Kz p)=1 m?x(K(C, p)) for (E=|z], |arg &| é%—é‘) for any z.
Suppose p;€{|z|<e} and consider K(z, p;) in |arg z| <-7—2z—. Then by

Lemma 2, there exists a const. /; depending on —-, ¢ such that

27
K21, pISK( pISLK(2], s 26 <|2] <1, |arg 2| <5~
Put A,=4/; and 1, ,=1/;. Then
Kz po=sMK (2], pi)
and
T 0
K(z, P;): K(Iz[ p): |arg Z|§'"Q__"2_' (23)
Let p;/>z=0 and e—0. Then
K(Z,p)<lK(lZ| P,
0

K (z, 1?)—/1 JK(IZI ,p): |arg ,z|<__7

For case p;{arg z=0}, we used only angular domains whose boundary does
not touch p;. For p;&{arg z2<0}, we have the same result. Hence we have

D.
Let p,&{|z|<e} and r>2e. Since K(%, p) =1, there exists a const.
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C (») depending only on r such that K (#, p;)<C(»). Hence by (23)
K p)SCHMLWT,, 2, Q) v<|z|<],
where I",={|z|=7r}. Hence by letting p,—z=0 and £—0
K pDsAaChHWUTy, 2,0, |2l 2
Hence K (z, p) is singular and K (z, p) <co for |z|>0. Thus we have 2).
Proof of 3) and 4). Let G,(z, —%—) be a Green function Q,. Then since
U(z)ed is singular,

11 3 1
1=U) =g [ U266 s

lz|=7r
By Lemma @ and 6)
266 D=2 GulEl, 1) and UOSU@SALUED,
whence

1k [U©2 66 DdosTELUED G, 3

and
o 1 1

On the other hand y isin {|z| =7, |arg z|<7—é‘} and

2 66 PGl ), U© 2 UUED.

Hence

1 angemes y
Uty 00=5 [ U® 266 sz ol —

Put &, = 1/27:13/1 [3 sA1s. Then we have 3).
Let G(z, 7) be Green function of Q*. Then similarly as 3), by Lemma 5)

and 6), 1), by putting 62{%’
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1_1 2 1., _dndl, 9 . 1

250, J, L, U mCC ey JLu@g66 s
! S L L g

Ut .09 =5 [ US5,6(8 pdsz—pmpm—: li|s2n-2,

Put e,=1/4nlA,li1,s. Then we have 4).

On fine neighbourhoods of p € A, and canonical representations of
SPH, where A, is the set of minimal boundary points.

Let G be an open set in Q. If K(z, p)—K,.(z, p)>0, we call G a fine

neighbourhood of p and denote by
K
G3p,
where K .(z, p) is the least positive SPH not smaller than K (z, p) on CG.

M
Then Vn(p)gp and V,, (p)gp are well known"?, where V,(p)=/{z:dist(z, p)

<%} and V,,(p)=1{z: K(z p)>M) : M<sup K(z p). Let E be a
V4

closed set in Q. Let U(z) be an SPH. Then
M
Ugna(®) =lm Upyy () 1 Ay={z : dist(z, A) <},

Then if Ug,,(2)>0, then U.,,(2) is represented by a canonical mass” on

E" NAY: EM is the closure of £ with respect to Martin’s topology(in the
following we denote it by E simply). Hence if Urna(2)>0, ENA, £0.

Let E={z: |arg z| g%}, Then yn=FEN{|z| =7, has ang. mes:%.
Let U(z)€9. Then U(z)€9? for a positive number 8. Hence by Lemma
6.3)

1 o
T> 0,

1 . 1 .
UEﬂA (—2_)2117511 UEﬂDm ("2_>gh_m U('ym, ?’ Qr,,)g

where D,={z: lzl_<__;1¢-}. Hence ENA,;+0 and there exist at least a
M
sequence {p;} such that p,{|arg z| é%} and p—qEA,.

LEmMA 7. Let pEA, and K (z, p) be singular. Then sup K(z, p) =0
and then,
D Kevyipynalz p)=0: M <oo.

K
2) G2pif and only if \(K..(z, p>>:0:A14i§c}oV”("><KCG<Z’ »).
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K
Also G3p implies Kona(z, p)=0.

3) Let Q be the domain. Let qENA, corvesponding to an HP in, i. e.
Kz, €9, qe,, qlieson z=0and K, q)=<K (2, q). Lety beaclosed
set consisting analytic curves clustering nowhere in QN {|arg z| é%} such

K
that Cy (complementary set of y) Dq. Let 7 be the symmetric image of y

relative to {|arg z[:%}. Then

K
2(Ky15(z, 0)=0, i.e. Cly+7)>q.

Proor of 1). Since K (z, p) is singular, we see at once sup K (z,

p)=co. Assume oy, ,naK (2 p)>0. Theny, s K (2 p) is an HP. By
the minimality of K (2, 9), cv, pnaK @ p)=aK (z, p): a>0. Evidently
cvupnaK (2, p)=M. This is a contradiction. Hence we have 1).

2) Let GBp. Assume o(Kao(z, £))>0 (or Kogpalz p)>0). Then this is

an HP and by the minimality, (K (z, p))=aK (2, p)(or Ke;na(2 p)=a'K
(z, p)): a, a>0. Hence

Koz, p)=BK(, p)+V(z): B=aor a,

where V(z) is an SPH=0 and V(z)=1—-8)K(z, p) on 9G. By the
definition of K..(z, p), V(2)=2A—-B) K (2 P).

KC(;(Z) p) gﬁK(z’ p>+ (1_ﬁ>KCG<Z’ p>'
K
Hence for 0<8<1, we have K..(z, p)=K (2, p). This contradicts G p.

Hence Gg p implies
A (Koo (z P)=K,noc(z p)=0.
G%p implies K..(z, p)=K (z, p), whence (K ;(z, p))=K (2, p)>0.
We show ,(K:(z, p))=0 if and only if Agig}ow, ooy (Kee (2, p))=0.

AﬁVM<P><KCG<Z’ ) =a(Kee(z p))=an CVM(P)<KCG<Z’ )+
an VM(IJ)<KCG<Z’ p)).
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But ¢y (Koo (2, p))=0 by 1). We have
vy K2 D)) Zany, i (Ko (2, P))=a(Kc (2, p)).
Let M ~oo. Then l%&n Vyu(P)CA by the maximum principle. Hence

A}ii’o vu iy (Koo (2, P))=a(K(z, p)). Hence

Agig)lova) (Kc(;(Z, ) :A(KCG(Zy p)).

3 Let U(2)=HY777:¢=K(z q) ony,=0elsewhere, U,(z)=H% 777:
¥v=K (2, q) on 9,=0 elsewhere.

Then K, ;(z, =U(2)+U,(2) (23)
and
U)K, (z q). 24

Let G(z, z): z,&{|arg z| é%} be Green function of Q—y—#%. Then as

Lemma 5 G(Z, 2)<G(z, z,) and —a%G(é, z@é%G(z, 2), 2Ey, where £ is
the symmetric point of z. Put V (z2) =K,.;(z2,q9). Then since K(z, ¢)E9,
KEp=V©O=sVE=K(& q: tey, tey. (25)

1 A9 2 1 ) 3
Uan=q. [ VO5.GE wds=y [ V©2GE 2)ds=Ui(a). Now
2o is an arbitrarly point in {|arg z| é%} and
U,(z)<U,(z): |arg z| é—g—.

Hence
V(2)=U (2)+ U, (2)<2U,(2):| arg z!é—;i. (26)

On the other hand, V(z2)— V(£ =0 on |arg zi=—72[—, =0 on y+F: F is the
symmetric image of F. Hence

V(H< V(z):|arg z| gT”. @7

Hence by 24) and 26)
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V(9= V(@)=2K,( @):larg 2| s

Let D,,:{lzl<%}. Then since K (z, g)<oo for|z|>0 by Lemma 6.2, for

any given D,, there exists an M, such that D,DV,, (¢)={z€Q: K (2, ¢)>
2. Hence

ADlim Dnj)liﬂrln Vu(@). (29)

K
By the assumption C(y)>¢q, 0=1im,(K,(z, @), i.e

L 1 3 . 1
O—II’EnD"(Ky(z, i]))_h% faDm K, (¢, q)gG (¢, 7)0182
z2=___

liml [ K, (& )2 G(&, ) ds (30)

n 2m Jab,n{jarg §1=F)

G"(z, i) is a Green fumction of Q— D,.
Clearly——G"(é —>_—G"(.§ —) ¢€oD,N {|arg z| §7
By

b Kyislg =5 [ V@2 Gre ds
j;D N{larg z| =5 } (C)”G’Ké’ _>d
./;D,.ﬂ{larg z| é%} Ky(é’ q>%Gn(C’ ?> ds.
Hence by

hmD( K, . ;(z, q¢))=0.

At last by (29) and (2) we have

2 (K, +5(z,0))=0.

Thus we have 3).
On the behaviour of Martin’s topology.

K(Z,p1> . K(%pz)
+K(z, p) 1+K(z p,

M
dist(p],pz):supl1 >| r=1{lz
zel
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Let @'=0N1{|z ——;—| >% |, Then K (z, p) are uniformly bounded in{ | z —%|

1
16

=—| for p&Q’. We define a new distance §*(p,, p.) : p;EQ’ as

Slép|K(Z, P —K(z p)].

We denote by M*—the topology induced by this metric._ Then we see at
once M*—top. and Martin’s topology are isomorphic in Q". Let g€A, over
{z=0} corresponding to a function in . PutVi(g)={z:6*(z q) <—71,l—}-
Then { V,(¢)} and { V%(qg)| are equivalent. To study the behaviour of
Va.(q) we investigate V%(q) instead of V,(q).

LemMmA 8. Let qEA, corrvesponding to a junction in 9. Let g(z)

=0*(2,q):z€Q’. Then clearly g(z) is continuous in Q. Let G be a
compact domain in Q. Then

g(2)smax g(z):z2€G
z2€3G

and {z :g(2)=const.; does not contain an open set. Therefore {z:9(z)=6>
i s not compact in Q.

Proor. Put M =max g(z) and M*=max ¢(z). Suppose M*> M.

z2€3G zeG

Put E={z&€G:g(z)=M*}. Thendist (E, 8G)>0. There exists a point z,
€9ENG and 7 such that C(7, 2)CG and 9C (7, 2)N CE +0, where
C(7,20)=1{|z—2|<7|. Then mes aC (7, 20N CE)>0. ¢(z)=M* means
M*:SlelglK(z, 20— Kz @], SLEIIFJIK(z, 2N—K(&, q)]
<M* for z’&E.
Since C (7, 20)>2, and aC (7, z,) is compact,
K (z, 20) = Kcir 2y (2, 20):H\§,"C(" 2 - z2&C (7, 20),

where V=K (z, 20) on 8C (7, z0) and=0 elsewhere. Hence there exists a
positive, continuous unit mass distribution? g (z,) exists on oC (7, z,) such
that

K(z, zo):fac K (2 2)du(2): 2€C(r, 2.

(7, z

There exists a point t, on I' not depending on r such that
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M*=|K (to, 20~ K (to, )1 = [ | Ky, 2)~ K (fo, @) | du (2. (3D)

Now du(z,)>0 and|K (b, z,)— Kby, )| <M*:z&(3C (7, z)N

aC(r, z2)NCE
CE). The term on the right hand of (31)<M*. This is a contradiction.
Hence M*=M. If 0+ E&S G, we have the same contradiction. Hence E =G
or ENG=0. Suppose E=G. Then there exist a point z,&G and C (7, z,)
C G. Then by (31), there exist a point 4, ET not depending on » such that

M=|K (o, )=K U, )| = [

oC (7,

)I K (ty, 2.)— K (b, @ | du(z.).

Hence K (t,, z,) =K (t,, ) +C : C=M or -M for z,& C (7, z) for any r <dist
(z, 9G), whence K (4, z,)=const: z,.€C(7, z,), i.e.

_ G, z,) Gz, b))
_G (i Zr) = G(Zﬂl)—const.

K (zo, 2,)
2’ 2

Whence G(z, t) =const.X G(z, %). This is a contradiction. Hence EN

G=0. i.e. g(z)<max ¢g(z):z€G. The other assertions are contained in
z2€oG

the above discussion.

Proof of Theorem 1. We shall show.

1)  There exists only one minimal function in . We denote such function
U)=K(z, q) :qEA,.

2) Let A°={]arg z| é—’zt——é‘}. Then A°N A, consists of only one point g.

3 Let A6, 6)={6<arg z<¢92}:—12[—<€1<02<%.
A(6,, 6,) does not contain a continuum tending to z=0 for any .

4) For any n and 6 >0 there exists » depending on n and ¢ such that

Hlzl<riNAHC V3.
Thus we have the [Theorem 1.

Proor. Let U(z)&$. Then there exists ¢ >0 such that U(z)€9’.
Then there exist const.s, A,, 1, depending on ¢ by such that

Then CVi(g)N

U)=aU(z|) and U(z);jl—U(lzD |arg z|<%—é‘.

Let A,={|z|=v|arg zlé%}. Put M(r)=max U(z) on 1, and N (»)=
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min U(z) on A, and W(4,, z,Q,) be H. M of A,, where Q,=QN{|z|>7}.
Then by

M(r) . B 1 1 e
N(”éls—)lmla and 1—U(7)2U(A,,—2—,Qr)g 1 > 0.
N () W,z Q)=UQ,, 2, Q=MW A, 2,Q,). (32)
. 1
Putting 2=,
NS — Mrz—— 32)
w(A,, ?,Qr) 4w (A, DE Q)

We can find a sequence { U(y%, z, Q%)} tendingtoan HP V(z) (U &))>
0 by Cemma 6. Let U(z)€®H. Then U(z) =9’ for a number 8. Let A=
A(gl, 02)2{01§arg Zéﬁz} |0,| <%_6 Then UAO{|Z‘§7;<Z>2 U('yr, <, Qr>>

0 by lemma 6 not depending on . Let »—0. Then Uyna(2) >0and Uy,a(2)
is represented by a canonical mass on ANA,. This implies there exists a
sequence {p;} in A such that p,>g&A,NA. Hence $ has at least one
minimal function. We shall show £ has only one minimal function. Let

U;(z) :1=1, 2 be minimal in $°. We can find V,(2) from {U:(y,, z, Q,)} as
r—0. By the minimality of U (2)

Viiz)=a;U:(2) :1=1, 2.
By 32) and 32") we have V,(z) <A Vo(2).
By the minimality of U;(z), U;(z)=a" U,(2) : a">0.

Now U,-(%):L Whence U,(z)=U,(z). Thus § has only one minimal

function.

%<0]<02<%.

Then UAnA(z)glirrol UCyr,2,Q,)>0. ANA,=one point ¢ by 1). Hence

2) Lety,={|z|=7 6,<argz<6,}, A={6<argz<6,) :—

we have 2).

Proor OF 3.  Since {V3(q)! and {V,(¢)} are equivalent, we use

V*(q) instead of V,(¢). Assume CV3%(q) has a continuum in A6, 6,)
connecting a point 2 :|z,| >#% and z=0. Then we can find a continuum y in
it satisfying the condition of Lemma 7). 3) Then YC CV %(¢)C CV,(¢) (m
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depends on #). Hence by Lemma 7. 2)

0=42(K, (2, ))=a(K, 5z, @),
where % is the symmetric image of y. Now y+% dividedes {|z|<%].
Evidently Vi ()5q: M<co and C(r)={z€Q:|z|<niD Vu(@Dq for
large M, because U (z) <oofor|z|>0 by Lemma 6. Hence

(Cy—y—9>a.

K
Hence there exists exactly one component G of the above such that G=q. G

must be contained in A, or A, :

A={|z|<7n, 6,<arg z<m—6,},
A,={|z|<%, —r—6,<arg z<6b,;.

We can suppose without loss of generality GC A,. Then by Lemma 7. 2)
Kance(z, @) =0.
On the other hand by

KAOCG<Z; q) gKA'nA@, q)>0,

by CG:)A’:{—%+6<arg z2<6,) :—%+6‘< 6,. This is a contradiction.

Hence we have 3).
Proor oF 4. Assume 4) is false. Then there exist >0 and a const.
go=¢&0(d) such that there exists a sequence {z;} such that

z,—2z=01in A°={|arg zl<————é‘; 0>0, and 6*(z,, q) > &, >0.

J
12

has a subsequence {z,} of {z,;. For 51mplicity we denote by {z,; also.

Then we can find ¥, such that|W¥,]| <——c§‘ AWy ={|arg z—V,| <=5

We can suppose ¥,=0. Put 0:—2772 . Then we find an integer » such that

d
02? 56+12<é‘ (33)

5 =« /1 5.,6 /1 B
Because ﬁ(7)<n<3(?) and <3—ﬁ>(f>>2’ by O<§<7. Let A;,=
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{i0<arg z<(G+16}:i=0,+1,...,+2n. Then by there exists a
number 7, such that

Case A). A,DAMY,), AANAY)=0:7%+4 and —2n+5<7,<2n—5 or
Case B). Ai+Ai.1+{arg 2=40 DAY, (—2n+4<i,<2n—A4.
AiNAg,=0:j+4 and+4+1.

At present we consider the case A). Let

A'={(+1o<arg z(i,+2)6!,
A ={G,—1Dl<arg z<4,6 .

Put A=A*+A,+A +{arg z=(;,+1)0}+ larg z2=4,0,C{|arg z| <—2”——3e}.

Let E=CV*(@NA:CV*(g)={z:6*(z,q)>e,'. Let {z,) be a
subsequence of {z,; in A;, and let E, be a component of E) containing z,.
Then

Case 1. Any E, does not tend to z=0 by 3).

Case 2. If the number of {E,} is finite, there exists at least a component F,
containing a subsequence {z,. This implies E, tends to z=0. This also
contradicts 3). Hence it is sufficient to consider the case

Case 3. There exist a sequence | E, .

Let an,=sup|z|for z€E,,. Then lim a,=0.

Assume lim an>d>0. Then there exists a sequence { E,,} such that E,, 2z, :

Emﬂ{\z|g%,chi}#:0 and z,—0. Put FzZEm+{|z|>%, zEA).
Then I is a continum in A and tends to z=0. Let &,=min(8*(z, ¢)):z€&

{Izlg%, z€A!. Then & >0. Hence

I'CCV% (q):e,=min(e, &)).

This contradicts also 3). Hencelim a¢,=0. By[Lemma &, E,, is not compact

in A. Hence E, must intersect {arg z=(1+2)8} or {arg z=(;—1)6].
Now z,€A,, E, intersects

1 l{arg z=(;,®1)6} and {arg z=(3,+2)8; or

2) {arg z=i46, and {arg=(5,—1)6 ). It is sufficient to consider the case 1.

In this case by lim «,=0, since E,, is a closed domain we can find a compact

analytic curve A, in E,, separating z=0in A* from|z| =1 and satisfying the
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conditions of and A,—!z=0) as m—co. By [Lemma 6, there

exists a positive const.e, depending only » but A, such that

Ulhy, 208 >e, m=12, ...

where Q* is a domain constructed from A, in the manner of Lemma 6. 4).

Now { V,(q); and | V3(q)| are equivalent. There exist V,(g) such that
K
V(@) Vi(g). Vn(g¢)>q implies

0=Kcv,cona(z @) ZKevigpna(z @). (34)

M
Now lim ¢,=0 means, for any A,={z :dist(z, A) <—}}, there exists m, such

m

that A,CA,: m>m,. Hence
1

KCV’:,((I)HA,(Z’ CD g KA,,,OA,<Z: Q> — KA,,,(Z; (]> = U(Am, _2_, QA> > & fOI‘
=1

Let m—co and then [—oo. Then Kcyiyna(2, ¢)>0. This contradicts (34).
Case B. Put A"={(i+2)8<arg z<(5,+3)8}, A =((r,—1)f<arg z<4,0 !,
A'={wf<arg z<(4,+2)8). Then we have the same contradiction. Thus
we have [Theorem 1l

$2. Domain QF. Let D be a domain ||z|<1,|arg zy<3—2‘1i;. wg%.

Let F be a closed set in {|z]|<1,|arg z| g%} such that Q%:D—F is a

domain. We suppose Martin’s topology introduced on S_T;T. We define the
classes § and 9° as §1. i.e H=K(z p):pEA, p; ﬂp, pi€Ellarg z| <

v ¥

—2——6‘} 0<o0< 5 Then for U)ep U@D=UR) and G(Z, &)=G(z&)

or G*(2, &)< G*(z &), where G(z, &) or G*(z, &) are Green function of
1
Q,={|z|>7r NQ7T or Q" respectively and Z is the symmetric point of z:

|arg z | <% with respect to arg z :—\g— or= ——\—g—. The proofs of
depend on the observation of symmetric image of functions relative to some
rays chosen suitably. The methods can be applied on this domain without

any essential alteration but some trivial modefication. Hence we have



144 Z. Kuvamochi

THEOREM 2.  There exists only one minimal function K (z, q) in 9 and

lim 2,=0 in{|arg 2| <58} 18>0 implies 20 > q.
§3. Let F be a closed set in |z| <1 such that Q={|z| <1} —F is a domain
and 9F>{z=0}. We suppose an N-Martin topology?® is defined over Q+A,
where A is the set of boundary points with respect to the N-Martin topology.
We proved

THEOREM® 3.  If F is irvegular at {z=0}, then ACon 2=0) consists of
only one point which is clearly N-minimal.

Let A be a set of enumerably infinite number of analytic curves A,
clustering nowhere in 0<|z|<1. Put F=X2(A,+ A%, where A) is a
domain bounded by 4, and A% may be empty. We suppose Q={|z|<1}—F
is a domain. Let Q be the same leaf as Q. Identity oF with dF. Then we
have a Riemann surface R called the double of Q. R has a compact bound-
ary '+ on {|z|=1} and has one boundary component p. For a set E in Q
we denote by E the symmetric image with respect to 9F. It is well known
R is an end of a Riemann surface R*EOg.4) Let N(z, p):pEQ be an N
~-Green function.

Then

N(z, p)=G(z, p)+ Gz P,
where G(z, p) is a Green function of R.

Rings and modified rings. Let / be a ring domain in Q with two bound-
ary components y, and v., where vy, separates {z=0} from y, and ¥
separates y, from |z|=1. Usually module M(/) of J is given as

MJ)=DU ) =2zM,

where U(z)=H} : $=0on y, and=M on v, andfy,% Uds=2n.

Let /' be aringin {0<|z| <1} with two boundary components y; and y,
as above. If J=J'—F is a simply connected, we call / a modified ring and
J’ the primitive of J.

o] =(yi+y.—F)+(8FNJ"). Module of J is given as

MJ)=D(V(z))=2zM,
where V(z) is an HB in J such that V(z2)=0 on —F,=M on y,—F,
f F%V( 2)ds=2n and V(z) has M. D.I.(minimal Dirichlet integral). Let J
e
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be a modified ring and /' be its primitive. Suppose WM(J")=2zM". Let U’(z)
be an HB in /" such that U’(z)=0 on 92— F,=M' on y,—F and U’(z) has

M.D.L Then D,(U"=2zM and [ -2 U’ ds=2z. This implies
.

MH=mUJN).

For the convenience, we define the primitive of a ring J in Q by J in itself,
iLe. J=]"

Let /, and /, be rings or modefied ring and let J: be the primitives of J;. If
JiNJ:=0 and J; separates z=0 from J;, we denote /,<J,. Then

THEOREM 4.  Let Q be a domain such that Q=1{|z| <1, —F as before.
If there exists a sequence of rings orv modified vings J,, J», ... such that

S>>k Jo =1z2=0} as n—>0, and 2M(J’,) =co.

Then A,=A=one point, where A and A, are set of boundary points and of
N -minimal poists over {z=0}.

Proor. Case 1. 2M(J"n) =00, where the swmmation is over only
modified vings. Then ,=(y,,—F)+(y,—F) is connected and [J,=

A A~ S 9 -
(Ji=F)+(fi—B) is an ordinaly ring with module 333(2/@ (zném) in R

where y,;(i=1,2,) are boundary of J: ], is the primitive of J,. Denote by
R, the compact part of R divided by (yn—F)Jr()?n—F). Then R, is an
exhaustion of R. Then there exists a number #, such that R,>p. Consider
G(z, p) in BF—R,. Then G(z p) is an HBD. Hence by M. Heins'’s
theorem®

G(z, p) has limit as z—V in R. (35)
Case 2. >M(J,) =00, where the summation is only rings. We can suppose

f} M(J,) =co, where J,is a ring: n=1,2,.... In this case both J, and J, are
1

rings in B. Let R, be the compact part of R divided by Yo+ aCof J 5 and J).
Then R— R, is an end and has a boundary component. Since pEQ, there
exists a number #, such that R,=p and G(z, p) is an HBD in R—R,,
Attend to the closed set F' in |z|<1. If F is irregular, our assertion is
Theorem 3. In the following we suppose F is regular at z=0. Let A be a
curve in Q tending to z=0. Then S(z)=G(z, p)—G(Z p)=0 on OF by 5=
z. S(z)>0as z—{z=0! in A. Hence

max |S(z)|=é,: & |0 as n—oco.
zEANT,
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Let / be one of /, and let U (z) be the HB function definingM (/). Let A,=
(z&] :¢Y=p | and A, be the symmetric image of A, in /. Put A,=A,+4,,

- )
L,,—Lp 5-G(z p)|ds. and

L()H)= min [ Then by Schwarz’s inequality

M)

Isp=<e

]Dj (G(z, ) Z2L)HX M),

(D)xg% (G(&lﬁ)éZEH?QGﬁWQh>

— Rn,

implies there exists a sequence of Apmr) of J,, such that
0s of G(z, p) on A,c.n+0s of G(z, p) on Apm/):c?nf 1 0as n—oo,

where 0s means the oscillation.
Since A and A intersects A,.,, and 4, respectively,

0s of G(z, p) on A, ,r,<en+0,.
Let R—R,, be the part of R— R, divided by Apm which contains p. Since
R is an end of a Riemann surface €0,,

sup G(z, p)— inf G(z, p) <e,+d,.
R—R, R—R,

Let z—p and n—oco. Then
G(z, p) has limit as z—p. (36)

By (35) and (36) G(z, p) has limit as z—p. Since p is arbitrary, G(z, p).
tends uniquely determined function G(z, p) as p—p. 1i.e. p is of harmonic
dimension 1. Evidently N (z, p)=G(z p)+G(z, p)—2G(z,p) as p—z=0
and G(z, ») is N-minimal. Hence A over {z=0;=A, over {z=0, consists
of only one point.

ApPPLICATIONS. Map Q conformally onto a domain in |w| <1 with
radial slits such that z=0—»w=0. Then the mapping function w=f(z)
must be-exp(U (z)+iV (2))e?, where

U= [ Nz pydu(p,

u is a positive unit mass on A, (over z=0) and V is the conjugate of U.
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COROLLARLY.  If there exists a sequence of rings or modified vings in Q
of Theovem 4, the mapping function is uniquely determined except rotations.
As a special case. Q={|z|<1}—=21S,, where Q is a domain and S, is a
civcular slit and S,—>z=0 as n—oo. Then the mapping function Q—a
domain with radial slits is uniquely determined except rotations.
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