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\S 1. Introduction

In this paper a smooth (C^{\infty}) singular foliation \mathscr{H} of codimension q on
a smooth manifold N of dimension n means an equivalence class of an
open covering \{ V_{s}\}_{s\in I} of N and a family of smooth maps \phi_{S} : V_{s}arrow R^{q} and
C^{\infty}-diffeomorphisms h_{st}(x) for s , t\in I and each x\in V_{s}\cap V_{t} satisfying
cocycle conditions (c. f. [9]) . Recall the singularities A_{k} , D_{k} , and E_{k} of
smooth functions in [4] and denote one of them by X_{k} for simplicity. It is
known that there exist the submanifolds \Sigma X_{k} in J^{\infty}(N, R^{q}) such that a
smooth map germ \phi:(N, x)arrow(R^{q}, y) is C^{\infty} equivalent to a C^{\infty} stable
unfolding of a smooth function germ with singularity of type X_{k} at the
corresponding point if and only if the infinite jet map j\phi:Narrow J^{\infty}(N, R^{q})

is transverse to \Sigma X_{k} and j\phi(x)\in\Sigma X_{k} . \Sigma A_{k} is the well known Boardman
manifold \Sigma^{n-q+1,1,\cdots.1,0} in [5] and see the difinition of \Sigma D_{k} and \Sigma E_{k} in [3].
So we say in this paper that a point x of N is a singular point of type X_{k}

of \mathscr{H} if x\in V_{S} for some s\in I and j\phi_{S}(x) belongs to \Sigma X_{k} in J^{\infty}(V_{s}, R^{q}) .
The purpose of this paper is to reduce an existence problem of a

smooth singular foliation having a class of given singularities of type A_{k} ,
D_{k} and E_{k} to a homotopy-theoretic one. The result will be stated in a
formulation motivated by [7] and [11].

Let P be another smooth manifold of dimension p with smooth (non-
singular foliation \mathscr{F} of codimension q represented by a covering \{ U_{i}\}_{i\in J}

of P and a family of smooth maps \psi_{i} : U_{i}arrow R^{q} . We define the sub-
manifold \Sigma X_{k}(\mathscr{F}) in J^{\infty}(N, P) as follows. Let j(\phi_{i}) : J^{\infty}(N, Ui)arrow J^{\infty}(N ,
R^{q}) be the induced submersion of \phi_{i} mapping a jet z=jf(x) onto j(\phi_{i}\circ f)

(x) and j(u_{i}):J^{\infty}(N, U_{i})-arrow J^{\infty}(N, P) be the induced jet map of the inclu-
sion u_{i} of U_{i} into P. Then we set \Sigma X_{k}(\mathscr{F}) is the union of all sub-
manifold j(u_{i})(j(\phi_{i})^{-1}(\Sigma X_{k})) for all i\in J . It does not depend on the
choice of \{ U_{i}, \psi_{i}\} . Let \Omega(\mathscr{F}) be any open subbundle of J^{\infty}(N, P) consist-
ing of a number of (possibly infinite) submanifolds \Sigma X_{k}(\mathscr{F}) and of all
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jets transverse to \mathscr{F} Note that the adjacency relations of singularities
A_{k} , D_{k} and E_{k} in [4] show when \Omega(\mathscr{F}) is open. Let \pi_{N} and \pi_{P} be the
canonical projection of J^{\infty}(N, P) onto N and P respectively. We call a
homotopy s_{t} of sections of the fibre bundle \Omega(\mathscr{F}) over N an \Omega-homotopy
and so So is \Omega-homotopic to s_{1} . When \pi_{p}\circ s is a proper map, we say that s
is \pi_{p^{-}}proper

THEOREM 1. 1. Let n\geqq q\geqq 2 and consider the open set \Omega(\mathscr{F}) contain
ing \Sigma^{n-q+1,0}(\mathscr{F}) at least. Let a continuous (resp. \pi_{p^{-}}proper) section s of
\Omega(\mathscr{F}) over N have a smooth map g defined on a neighbourhood of a
given closed subset K in N where jg=s such that jg is transverse to every
submanifold \Sigma X_{k}(\mathscr{F}) in \Omega(\mathscr{F}) Then there exists a smooth map f : Narrow P

such that jf(N)\subset\Omega\acute{(}\mathscr{F}) , jf is \Omega- homotopic to s relative to a neighbour-
hood of K and that f is a (resp. fine) C^{0} approximation of \pi_{P}\circ s .

For the above singular foliation \mathscr{H} on N consider the space \bigcup_{s}(V_{s}\cross

R^{q})/\sim obtained by patching V_{s}\cross R^{q} and V_{t}\cross R^{q} for every pair (5, l)
under the equivalence relation (x, y)\sim(x, h_{st}(x)y) for x\in V_{s}\cap V_{t} and y
\in Domain(h_{st}) and a smooth map S\mathscr{H} of N into this space mapping x of
Vs into (x, \phi_{s}(x)) . Let E be a sufficiently small neighbourhood of the
image of s_{\mathscr{H}} and J^{c}_{\mathscr{H}} be a smooth foliation on E difined by the projections
V_{s}\cross R^{q} onto R^{q} . Then we can consider \Omega(\mathscr{F}_{\mathscr{H}}) in J^{\infty}(N, E) . As an
application of Theorem 1. 1 we have the following corollary motivated by
[11, Theorem 1. 1].

COROLLARY 1. 2. Let n\geqq q\geqq 2 and \Omega(\mathscr{F}_{\mathscr{H}}) contain \Sigma^{n-q+1,0}(\mathscr{F}_{\mathscr{H}}) at
least. If js_{\mathscr{H}} : Narrow J^{\infty}(N, E) is homotopic to a section \Omega(\mathscr{F}_{\mathscr{H}}) over N, then
there exists a smooth singular foliation of codimension q concordant to \mathscr{H}

which has only singularities of type X_{k} such that \Sigma X_{k}(\mathscr{F}_{\mathscr{H}})\subset\Omega(\mathscr{F}_{\mathscr{H}}) .
The special case of Corollary 1. 2 where \Omega(\mathscr{F}_{\mathscr{H}}) consists of only

\Sigma^{n-q+1,0}(\mathscr{F}_{\mathscr{H}}^{c}) and all jets transverse to \mathscr{F}_{\mathscr{H}} is essentially [10, Theorem 1, 4.
1] (see also [6]). The version of a trivial foliation of Theorem 1. 1 is [1
and 3, Theorem 0. 1] except for the approximation property.

In order to eliminate the singularities of the highest order of \mathscr{H} on N
induced from J^{} by deforming f, it is sufficient by Theorem 1. 1 that its
primary obstruction of jf vanishes. For example if f is an immersion,
dim P=n+1 and if \mathscr{F} is of codimension n, then we can obtain the precise
formula of the primary obstruction for \Sigma A_{n}(\mathscr{F}) written by Stiefel-Whit-
ney classes (c. f. [1, (1.2)]) . This is also the Thom polynomial of
\Sigma A_{n}(\mathscr{F})(c. f. [8]) .
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\S 2. Maps with singularities A_{k} , D_{k} and E_{k}

In this section \mathscr{F} is a trivial foliation on P, that is, every leaf consists
of a single point (co\dim \mathscr{F}= dim P) and \Omega means \Omega(\mathscr{P}^{-}) . To prove this
reduced case of Theorem 1. 1 we shall recall the following result which is
a special case of [3, Theorem 0. 1].

THEOREM 2. 1. Let \mathscr{F} be trivial and P=R^{p}(n\geqq p\geqq 2) . Let a contin-
uous section s of \Omega over N have a smooth map g defined on a neighbour-
hood of a given closed subset K in N where jg=s such that jg is tran-
severse to every \Sigma X_{k} in \Omega . Then there exists a smooth map f:Narrow R^{p}

such that jf(N)\subset\Omega and that jf is \Omega-homotopic to s relative to a neigh-
bourhood of K.

Let d be a metric on P and \epsilon(x) be any positive continuous function
on N (resp. a positive constant when s is not \pi_{P^{-}}proper). Let \overline{s}=\pi_{P}\circ s .
To induce Theorem 1. 1 from Theorem 2. 1 we need two locally finite cov-
erings \{ U_{V}\}_{V\in f} and \{ U_{V}’\}_{V\in f} of P defined as follows. Let P^{j}(j=1,2,\cdots) be
compact submanifolds of dimension p such that P^{1}\subset P^{2}\subset\cdots\subset P^{j}\subset\cdots\subset P

and P= \bigcup_{j=1}^{\infty}P^{j} . Let \epsilon_{j}=\min\{\epsilon(x)/2|x\in(\overline{s})^{-1}(P^{j})\} . Then we can trian-
gulate P^{j}\backslash Int(P^{j-1}) so that the diameter of every simplex is less than \epsilon_{j}

and that the triangulation of \partial P^{j} . say K coming from P^{j+1}\backslash Int(P^{j}) is a
subdivision of that of \partial P^{j} coming from P^{j}\backslash Int(P^{j-1}) . For every P^{-}sim-

plex \sigma of P^{j} having a face \sigma’ in \partial P^{j} subdivided in K, we subdivide \sigma by
joining every vertex of \sigma outside of \overline{\sigma’} and \sigma’ . This procedure induces a
new triangulation of P^{j} compatible with K and does not change the tri-
angulation of \partial P^{j-1}- Furthermore the diameter of every simplex of P^{j} is
less than \epsilon_{j} . For any vertex v of this triangulation of P we consider the
open star neighbourhood v*Lk(v) that is, the union of all segments (1-
t)v+ty for y\in Lk(v) and 0\leqq t<1 . Then we set

U_{v}= { (1-t) v+ty|0\leqq t<2/3 and y\in Lk(v) }
U_{v}’= { (1-t) v+ty|0\leqq t<3/4 and y\in Lk(v) }.

It follows that the diameter of U_{v}’ is less than \inf\{\epsilon(x)|x\in(\overline{s})^{-1}( U_{v}’)\} .
For any y\in P we define c(y) as the number of v’s such that y\in U_{v}

and P_{j}=\{y|c(y)\geqq j\} . P_{j} is clearly an open set with P=P_{1}\supset P_{2}\supset\cdots\supset P_{j}\supset

\ldots . The procedure of proof of Theorem 1. 1 for a trivial foliation \mathscr{F} is
the downward induction arguments on j starting from constructing a
required smooth map defined near ( \overline{s})^{-1}(\overline{P}_{p+1}) and extending it to one on
(\overline{s})^{-1}(\overline{P}_{p}) by Theorem 2. 1. For this we shall prove the following.

PROPOSITION 2. 2. Let s be a section given in Theorem 1. 1 under
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the additional assumption that \mathscr{F} is trivial. For any compact subset C of
N and its neighbourhood U(C) there exists an \Omega- homotopy h_{j,t}(j\geqq 1) of s
relative to a neighbourhood of K such that

(i) h_{j,O}=s, h_{j,t}|N\backslash U(C)=s|N\backslash U(C) ,
(ii) there is a smooth map f_{j} defined on a neighbourhood ((\overline{s})^{-1}(\overline{P_{j}})\cap C)

\cup K where j\varphi_{j}) =h_{j,1}

(iii) If \overline{s}(x)\in U_{v_{1}}\cap\cdots\cap U_{v_{i}} with i\leqq j, then \pi_{P}\circ h_{j,t}(x)\in U_{v_{1}}’\cap\cdots\cap U_{v_{i}}’ for
any i and t.

PROOF. The proof is the downward induction on j . The assertion is
clearly true for j>p+1 by setting h_{j,t}(x)=s(x) , when P_{j} is empty. So
we shall induce the assertion of the proposition for j from that for j+1 .

Take a neighbourhood U’ of C in U(C) with compact clos\dot{u}re\overline{U’}

We decompose P_{j}\backslash \overline{P_{j+1}} into the connected components, say \{ W_{a}\} . Then
we can choose finite W_{1},\cdots , W_{w} satisfying

(\overline{s})^{-1}(P_{j}\backslash \overline{P_{j+1}})\cap\overline{U’}=(\overline{s})^{-1}( W_{1}\cup\cdots\cup W_{w})\cap\overline{U’}

This follows from the fact that the number of v’s with ( \overline{s})^{-1} ( U_{v})\cap\overline{U’}\neq\phi

is finite. For \{ W_{u}\}(1\leqq u\leqq w) we shall prove the assertion that there
exists an \Omega-homotopy k_{u,t} : Narrow\Omega relative to a neighbourhood of (N\backslash

U(C))\cup K for 0\leqq u\leqq w such that

(0) k_{0,t}=h_{j+1,t} ,
(1) k_{u,0}=s ,
(2) there exists a smooth map f_{j,u} defined on a neighbourhood of

((\overline{s})^{-1}(\overline{W_{1}}\cup\cdots\cup\overline{W_{u}}\cup\overline{P_{j+1}})\cap C)\cup K ,
(3) If \overline{s}(x)\in U_{v_{1}}\cap\cdots\cap U_{v_{i}} with i\leqq j , then \pi_{P}\circ k_{u,t}(x)\in U_{v_{1}}’\cap\cdots\cap U_{v_{i}}’

for any t .

By the induction assumption for j+1 and (0), it is clear that (1), (2) and
(3) holds by f_{j,0}=f_{j+1} for u=0. Assume that the assertion above for u-1
is true. Then b\underline{y(2)}\underline{we}can take a small neghbourhood T of
((\overline{s})^{-1}(\overline{W}_{1}\cup\cdots\cup W_{u-1}\cup P_{j+1}))\cap C\cup K such that f_{j,u-1} is defined on a
neighbourhood \overline{T} By definition of W_{u} there exist vertex a_{1},\cdots,a_{j} such
that W_{u}\subset U_{a_{l}}\cap\cdots\cap U_{a_{J}} . Then we have ( \overline{s})^{-1}(\overline{W_{u}})\cap C\subset(\overline{s})^{-1} ( U_{a_{1}}’\cap\cdots

\cap U_{a_{j}}’)\underline{\cap}U’ Here we take three neighbourhoods Y_{1}\supset Y_{2}\supset Y_{3} of
(\overline{s})^{-1}( W_{u})\cap C such that

(a) Y_{1}\subset(\overline{s})^{-1}(U_{a_{1}}’\cap\cdots\cap U_{a_{J}}’)\cap U’-

(b) \underline{for}\underline{an}yvert\underline{ex}v distinct from a_{1},\cdots,a_{j} , \overline{Y_{1}}\cap U_{v}\subset T .
(c) -Y_{1}, Y_{2} , and \underline{Y_{3}} are submanifolds with boundaries and
(d) Y_{2}\subset Y_{1} and Y_{3}\subset Y_{2} .
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Now we can apply Theorem 2. 1 to a section k_{u-1,1}|Y_{2} : Y_{2}arrow\Omega|Y_{2} and a
smooth map f_{j,u-1} restricted on a neighbourhood of \overline{T}\cap Y_{2} into U_{a_{1}}’\cap\cdots\cap

U_{a_{j}}’ . Then we obtain an \Omega-homotopy k_{t}’ : Y_{2}arrow\Omega|Y_{2} relative to \overline{T}\cap Y_{2}

satisfying
(i) k_{0}’=k_{u-1,1}|Y_{2} ,
(ii) there exists a smooth map g defined on Y_{2} such that jg=k_{1}’ .

This yields an \Omega-homotopy k_{t} : Y_{1}arrow\Omega|Y_{1} relative to \overline{T}\cap Y_{1} such that
\pi_{P}\circ k_{t} ( Y_{1})\subset U_{a_{1}}’\cap\cdots\cap U_{a_{j}}’ and that k_{t}|\overline{Y}_{3}=k_{t}’|\overline{Y}_{3} , k_{t}| ( Y_{1}\backslash Y2) =k_{u-1,1}|(Y_{1}\backslash

Y_{2}) and k_{0}|Y_{1}=k_{u-1,1}|Y_{1} by the homotopy extension property. Lastly we
define k_{u,t}(x) as follows.

k_{u,t}(x)= k_{u-1,2t}(x) (xSY_{1},0\leqq t\leqq 1/2)

k_{u-1,1}(x) (x\infty Y_{1}, t>1/2)

k_{u-1,2t}(x) (x\in Y_{1},0\leqq t\leqq 1/2)

k_{2t-1}(x) (x\in Y_{1}, t>1/2)

By difinition (1) is clear for k_{u,t} . We set f_{j,\mathcal{U}} by

f_{j,y}(x)=\{ f_{j,u-1}(x)g(x) (x\in Y_{2})(x\S Y_{2})

.

By the construction of k_{t}’ , we have g|(Y_{2}\backslash \overline{Y_{3}})=f_{j,u-1}|(Y_{2}\backslash \overline{Y_{3}}) . Hence f_{j,y}

is well defined and satisfies (2). If x\S Y_{1} , then k_{u,t}(x) satisfies (3) since
k_{u-1,t}(x) does. If x\in Y_{1} and x\in Y_{1}\cap U_{v} for some v distinct from a_{1},\cdots , a_{j} ,
then x\in T where k_{t}(x) is fixed. Therefore k_{u,t}(x) satisfies (3) again.
Otherwise \pi_{P}\circ k_{u,t}(x)\in U_{a_{1}}’\cap\cdots\cap U_{a_{j}}’ shows (3) since x\S U_{v} for any v

distinct from a_{1},\cdots,a_{j} .
\underline{Now} we finish th\underline{e}proof by setting h_{j,t}=k_{w,t} . Since ( \overline{s})^{-1}(\overline{P_{j+1}}\cup\overline{W_{1}}\cup

\ldots\cup W_{w})\cap C=(\overline{s})^{-1}(P_{j})\cap C , the properties (i), (ii) and (iii) of the prop-
osition holds for h_{j,t} and f_{j}=f_{j,w} . Q. E. D.

REMARK 2. 3. It follows from Proposition 2, 2 for j=1 that f is
defined on a neighbourhood of C\cup K and that \pi_{P}\circ h_{1,t} is \epsilon(x)-approxima-
tion of s

\S 3. Proof of Theorem 1. 1

First we shall prove the following preliminary version of Theorem 1.
1.

THEOREM 3. 1. Let s be a section given in Theorem 1. 1 under the
same assumption and \epsilon(x) , any positive function on N. For any compact
subset C of N and its neighbourhood U(C) there exists an \Omega- homotopy h_{t}

relative to a neighbourhood of (N\backslash U(C))\cup K such that
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(i) h_{0}=s,

(ii) there exists a smooth map f defined on a neighbourhood of C\cup K

where jf=h_{1} ,
(iii) d(\pi_{P}\circ h_{t}(x),\overline{s}(x))<\epsilon(x) for any x\in N.

PROOF. We take two special countable coordinates of J^{} \{ U_{j},\phi_{j}’\cross

\phi_{j}’\} and \{ U_{j}’,\phi_{j}\cross\phi_{j}’\}(j=1,2,\cdots) such that \overline{U_{j}}\subset U_{j}’ , \overline{U_{j}’} is compact and
that \phi_{j}\cross\phi_{j}’|U_{j} is a restriction of the diffeomorphism \phi_{j}\cross\phi_{j}’|U_{j}’arrow R^{q}\cross

R^{p-q} for ever j . For every \phi_{j}\cross\phi_{j} we can take suitable metrices d_{j} on R^{q}

and d_{j}’ on R^{p-q} coming from the product structure of U_{j}’ such that
d(x, y)\leqq d_{j}(\phi_{j}(x),\phi_{j}(y))+d_{j}’(\phi_{j}’(x),\phi_{j}’(y))

for any x,\underline{y\in}U_{j}’ . We define a series of compact subsets N_{i} of N by N_{i}=

( \overline{s})^{-1}(\bigcup_{j=1}^{j}U_{j})(N_{0}=\phi) . Then for a sufficiently large number i_{0} we have
N_{i_{0}}\supset C . We define positive number \epsilon^{r} by

\epsilon’=\min\{distance(\overline{U_{j}}, P\backslash U_{j}’)|1\leqq j\leqq i_{0}\}

For j\geqq 0 we can construct a series of continuous sections s_{j}:Narrow\Omega(\mathscr{F}_{-})

and \Omega-homotopies h_{j-1,t} of s_{j-1} up to s_{j} relative to a neighbourhood of
(N_{j-1}\cap C)\cup(N\backslash U(C))\cup K such that there exist smooth maps f_{j} defined
on a neighbourhood of (N_{j}\cap C)\cap K where jf_{j}=s_{j} and that for any t

(*)d( \pi_{P}\circ s_{j-1}(x), \pi_{P}\circ h_{j-1,t}(x))<\min(\epsilon’. \epsilon’(x))/i_{0} .

In fact, for j=0 the assertion is trivial by setting h_{-1,t}=s_{0} . Assume the
assertion for j-1 . Let L_{j} denote ( \overline{s})^{-1} ( U_{j}’) . In order to construct h_{j-1,t}

we take a neighbourhood O of ( \overline{s})^{-1}(\overline{U_{j}})\cap C in L_{j} with \overline{O}\subset L_{j} . By ap-
plying Proposition 2. 2 and Remark 2. 3 to the section (j\phi_{j}\circ s_{j-1})|L_{j} , the
compact set ( \overline{s})^{-1}(\overline{U_{j}})\cap C , its open neighbourhood 0, a smooth map f_{j-1}

restricted to a neighbourhood of ((N_{j-1}\cap C)\cup K)\cap L_{j} and \min(\epsilon’. \epsilon(x))/i_{0}

it follows that there exists an \Omega-homotopy of (j\phi_{j}\circ s_{j-1})|L_{j}

k_{j-1,t} : L_{j}-\Omega|L_{j}\subset J^{\infty}(L_{j}, R^{q})

relative to (L_{j}\backslash 0)\cup((N_{j-1}\cap C)\cup K)\cap L_{j} such that there exists a smooth
map f_{j}’ defined on a neighbourhood of ((N_{j}\cap C)\cup K)\cap L_{j} into R^{q} where
jf_{j}’=k_{j-1,1} and that

d_{j}( \pi_{R^{q}}\circ j\phi_{j}\circ s_{j-1}(x), \pi_{R^{q}}\circ k_{j-1,t}(x))<\min(\epsilon’, \epsilon(x)/2i_{0} .

We can construct a homotopy k_{t}(x) of continuous sections of J^{\infty}(L_{j}, R^{p-q})

over L_{j} relative to (L_{j}\backslash O)\cup(N_{j-1}\cap C)\cup K)\cap L_{j} such that
(a) k_{0}(x)=j\phi_{j}’\circ s_{j-1}(x)
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(b) there is a smooth map f_{j}’(x) defined near ((N_{j}\cap C)\cup K)\cap L_{j}

into R^{p-q} where jf^{rr}=k_{1} and
(c) d_{j}’(k_{0}(x), k_{t}(x))< \min(\epsilon’, \epsilon(x))/2i_{0}

since its fibre is an Eucledian space (or by the similar arguments as Prop-
osition 2. 2).

We lift k_{j-1,t} to a section \overline{k}_{j-1,t} of \Omega(\mathscr{F})|L_{j} as
\overline{k}_{j-1,t}(x)=(j\phi_{j}\cross\phi_{j}’))^{-1}(k_{j-1,t}(x), k_{t}(x)) .

Since \overline{k}_{j-1,t} and Sj-l coincide on L_{j}\backslash O , we can define h_{j-1,t} and f_{j} by

h_{j-1,t}(x)=\{ s_{\frac{j}{k}}-1(x)j-1,t(x) ’, x\in L_{j}xSL_{j}

,

f_{j}(x)=\{ f_{j-1}(x)(f’ j(x), f’j(x))
near ((N_{j-1}\cap C)\cup K)\cap(N\backslash O)

near ((N_{j}\cap C)\cup K)\cap L_{j} .

Then it follows from d\leqq d_{j}+d_{j}’- that the required inequality ( *) holds.
We note that if \overline{s}(x)\in U_{j} , then \pi_{P}\circ h_{j-1,t}(x)\in U_{j}’ for any j by ( * ) .

Thus we obtain an \Omega-homotopy h_{t} patching h_{j,t} from j=0 to i_{0}-1 and a
smooth map f as f_{io} as required. Q. E. D.

Proof OF THEOREM 1. 1. The case where N is compact in Theorem
1. 1 is a direct consequence of Theorem 3. 1. Therefore we let N be non-
compactand s . \pi_{p^{-}}proper. Then we have a series of compact sub-
manifolds N_{1} \subset N_{2}\subset\cdots\subset N_{j}\subset\cdots withN=\bigcup_{j=1}^{\infty}N_{j} . It follows from Theorem
3. 1 that we can construct a series of sections s_{j} : Narrow\Omega(J^{}) and \Omega

-homotopies h_{j,t} of s_{j} up to s_{j+1} relative to a neighbourhood of N_{j}\cup K

(N_{0}=\phi and s_{0}=s) such that there exist smooth maps f_{j} defined on a neigh-
bourhood of N_{j}\cup K where jf_{j}=s_{j} and that

d(\pi_{P}\circ s_{j}(x), \pi_{P}\circ h_{j,t}(x))<\epsilon(x)/2^{j+1} .

Now we difine an \Omega-homotopy h_{t} of s and a smooth map of Theorem 1.1
by patching h_{j,t} and f_{j}(j=0,1, 2,\cdots) . That is, for t with 1-(1/2^{j})\leqq t\leqq

1-(1/2^{j+1}) , set
h_{t}(x)=h_{j,2^{j+1}}t+2-2^{f+1}(x) (j=0,1, 2,\cdots)

and for t=1 and x\in N_{j} , set h_{1}=s_{j}(x) . So f is defined to coincide with f_{j}

on a neighbourhood of N_{j}\cup K . By definition it is easy to see
d(\overline{s}(x), \pi_{P}\circ h_{t}(x))<\epsilon(x) .

This completes the proof. Q. E. D.

Acknowledgement. The author would like to thank Professor Y.
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Eliashberg who kindly answered to the author’s question concerning TheO-
rem 2. 1. He informed that by two theorems of Eliashberg [6] and
Gromov [7] we can prove the similar assertion of Theorem 2.1 for more
general open sets f) such as the open sets consisting of all nonsingular jets
and C^{\infty} stable and simple singularities invariant by local diffeomorphisms.
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