Remarks on the formula for the curvature

Masatake Kuranishi

To Professor Noboru Tanaka on his sixtieth birthday (Received November 22, 1990)

Let $\omega^1, \dots, \omega^n$ be a base of 1-forms on a manifold M. Then a Riemann metric, say g, on M has an expression

(1)
$$g = g_{jk} \omega^j \omega^k$$
.

Where $g = (g_{jk})$ is a $n \times n$ matrix valued function on M. We denote by $\langle X, Y \rangle_g$ the inner product of tangent vectors X, Y with a common source. We set

(2)
$$\xi = \omega(X), \eta = \omega(Y)$$

where ω denotes the \mathbb{R}^n -valued 1-form $(\omega^1, ..., \omega^n)$. We set $\langle \xi, \eta \rangle_g = g_{jk} \xi^j \eta^k$ so that

(3)
$$\langle X, Y \rangle_g = \langle \xi, \eta \rangle_g$$

Write

(4)
$$d\omega^{j} = \frac{1}{2} \beta^{j}_{kl} \omega^{k} \wedge \omega^{l}, \ \beta^{j}_{kl} + \beta^{j}_{lk} = 0.$$

Define a linear map $\beta: \mathbb{R}^n \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^n)$ by

(5)
$$(\boldsymbol{\beta}(\boldsymbol{\xi})\boldsymbol{\eta})^{j} = \boldsymbol{\beta}_{kl}^{j} \boldsymbol{\xi}^{k} \boldsymbol{\eta}^{l}.$$

Actually β should be regarded as a map of M into $\text{Hom}(\mathbb{R}^n, \text{Hom}(\mathbb{R}^n, \mathbb{R}^n))$. Then the formula (4) can be rewritten as

(6)
$$(d\omega)(X, Y) = \beta(\xi)\eta.$$

We wrote down in [3] the formula for the sectional curvature of g which is expressed by means of g_{jk} and β . In this paper we write down the formula for the curvature tensor. We then write down the O'Neill's formula [4] for the submersion using only g and β .

When we set

(7)
$$R(X, Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]},$$

the curvature tensor is given by

(8)
$$K(X, Y, U, V) = \langle R(X, Y) V, U \rangle_{g}$$

The sectional curvature of the plane generated by X, Y is

(9)
$$(\|X\|_g^2 \|Y\|_g^2 - \langle X, Y \rangle_g^2)^{-1} \langle R(X, Y) Y, X \rangle_g.$$

Now $K(X, Y)_g = \langle R(X, Y) Y, X \rangle_g$ is expressed by g, β as follows:

(10)
$$K(X, Y)_g = K_0(\xi, \eta)_g + K_1(\xi, \eta)_g + K_2(\xi, \eta)_g$$

where

(11)
$$K_{0}(\xi, \eta)_{g} = \frac{1}{4} \|\beta^{*}(\xi)\eta + \beta^{*}(\eta)\xi\|_{g}^{2} - \langle \beta^{*}(\xi)\xi, \beta^{*}(\eta)\eta \rangle_{g} \\ - \frac{3}{4} \|\beta(\xi)\eta\|_{g}^{2} + \frac{1}{2} \langle \beta^{*}(\eta)\xi - \beta^{*}(\xi)\eta, \beta(\xi)\eta \rangle_{g}.$$

Where $\beta^*(\xi)$ denotes the adjoint of $\beta(\xi)$ with respect to the metro g of \mathbb{R}^n .

To write down K_1 we define for each x in M and ξ a linear map $L_g(\xi): \mathbb{R}^n \to \mathbb{R}^n$ by

$$(12) \qquad \langle L_g(\boldsymbol{\xi})\boldsymbol{\eta}, \boldsymbol{\gamma} \rangle_{g(x)} = \boldsymbol{\xi}^j(E_j g_{kl}(x)) \boldsymbol{\eta}^k \boldsymbol{\gamma}^l.$$

Where $E_1, ..., E_n$ denote the base of tangent vectors dual to $\omega^1, ..., \omega^n$. We also set for a linear map $L: \mathbb{R}^n \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^n)$

(13)
$$\widehat{L}(\boldsymbol{\xi})\boldsymbol{\eta} = L(\boldsymbol{\eta})\boldsymbol{\xi},$$

and define

(14)
$$2C(\xi) = L_g(\xi) + \hat{L}_g(\xi) - (\hat{L}_g(\xi))^*.$$

Then

$$K_1(\xi, \eta)_g = K_1^1 + K_1^2 + K_1^3$$

where

$$K_1^1 = \frac{3}{2} \langle L_g(\eta) \xi - L_g(\xi) \eta, \beta(\xi) \eta \rangle_g,$$

(15)
$$K_{1}^{2} = \langle \beta^{*}(\xi) \eta + \beta^{*}(\eta) \xi, C(\xi) \eta \rangle_{g}$$
$$- \langle \beta^{*}(\xi) \xi, C(\eta) \eta \rangle_{g} - \langle \beta^{*}(\eta) \eta, C(\xi) \xi \rangle_{g},$$
$$K_{1}^{3} = \langle [X, \beta](\eta) \xi, \eta \rangle_{g} + \langle [Y, \beta](\xi) \eta, \xi \rangle.$$

To write down K_2 we set

(16)
$$\Delta(\eta, \eta) = \xi^{j} \eta^{k} E_{k} E_{j}.$$

The above is regarded as a second order differential operator. Then

$$K_2(\xi, \eta)_g = K_2^1 + K_2^2,$$

where

(17)
$$K_{2}^{1} = \frac{1}{2} (\langle (\Delta((\xi, \eta)g + \Delta(\eta, \xi)g)\xi, \eta \rangle - \langle (\langle (\Delta(\xi, \xi)g)\eta, \eta \rangle - \langle (\Delta(\eta, \eta)g)\xi, \xi \rangle), K_{2}^{2} = \|C(\xi)\eta\|_{2}^{2} - \langle C(\xi)\xi, C(\eta)\eta \rangle_{g}.$$

It is of some interest to note that the formula has a pattern. Namely, for a pair of bilinear forms $P(\xi, \eta)$, $Q(\xi, \eta)$ valued in a finite dimensional vector space, say E, with a metric g, we set

(18)
$$K(P, Q; \xi, \eta) = \langle P(\xi, \eta), Q(\xi, \eta) \rangle_{g} \\ -\frac{1}{2} \langle P(\xi, \xi), Q(\eta, \eta) \rangle_{g} \\ -\frac{1}{2} \langle P(\eta, \eta), Q(\xi, \xi) \rangle_{g}.$$

Then $K(\xi, \eta)_g$ is a sum of terms of the form $K(P, Q; \xi, \eta)$. To see this let E be \mathbb{R}^n with the metric g and set

(19)
$$P_0(\xi, \eta) = Q_0(\xi, \eta) = \frac{1}{2} (\beta^*(\xi) \eta + \beta^*(\eta) \xi),$$

(20)
$$P_1(\xi, \eta) = -\frac{3}{4}Q_1(\xi, \eta) = \beta(\xi)\eta,$$

(21)
$$P_2(\xi, \eta) = \beta^*(\eta) \xi - \beta^*(\xi) \eta$$
, $Q(\xi, \eta) = \frac{1}{2} \beta(\xi) \eta$,

considered as E valued. Then we see clearly

(22)
$$K_0(\xi, \eta)_g = \sum_{j=0}^2 K(P_j, Q_j; \xi, \eta).$$

Similarly, we consider *E*-valued bilinear forms

(23)
$$P_3(\boldsymbol{\xi}, \boldsymbol{\eta}) = L_g(\boldsymbol{\eta}) \boldsymbol{\xi} - L_g(\boldsymbol{\xi}) \boldsymbol{\eta}, \ Q_3(\boldsymbol{\xi}) \boldsymbol{\eta} = \frac{3}{2} \boldsymbol{\beta}(\boldsymbol{\xi}) \boldsymbol{\eta},$$

(24)
$$P_4(\xi)\eta = \beta^*(\xi)\eta + \beta^*(\eta)\xi, \ Q_4(\xi,\eta) = C(\xi)\eta,$$

(25)
$$P_5(\boldsymbol{\xi}, \boldsymbol{\eta}) = [E_j, \boldsymbol{\beta}](\boldsymbol{\eta})\boldsymbol{\xi}, \ Q_5(\boldsymbol{\xi}, \boldsymbol{\eta}) = \boldsymbol{\xi}^j \boldsymbol{\eta} - \boldsymbol{\eta}^j \boldsymbol{\xi}.$$

Noting that $P_5(\xi, \eta)$ is a skew-symmetric form we find that

(26)
$$K_1(\xi, \eta)_g = \sum_{j=3}^5 K(P_j, Q_j; \xi, \eta).$$

To write down K_2 we consider E-valued forms

(27)
$$P_6(\xi, \eta) = Q_6(\xi, \eta) = C(\xi)\eta.$$

We denote by E_1 the vector space of symmetric $n \times n$ matrixes with the standard metric, and consider E_1 valued form

(28)
$$P_7(\boldsymbol{\xi}, \boldsymbol{\eta}) = \Delta(\boldsymbol{\xi}, \boldsymbol{\eta})g + \Delta(\boldsymbol{\eta}, \boldsymbol{\xi})g, \ Q_7(\boldsymbol{\xi}, \boldsymbol{\eta}) = \frac{1}{4}(\boldsymbol{\xi} \otimes \boldsymbol{\eta} + \boldsymbol{\eta} \otimes \boldsymbol{\xi}).$$

Then

(29)
$$K_2(\xi, \eta)_g = \sum_{j=6}^7 K(P_j, Q_j; \xi, \eta).$$

Therefore we have the formula:

(30)
$$K(\xi, \eta)_g = \sum_{j=0}^{7} K(P_j, Q_j; \xi, \eta).$$

We set for $X_j(j=1, 2, 3, 4)$

(31)
$$K(X_1, X_2, X_3, X_4)_g = K(\xi_1, \xi_2, \xi_3, \xi_4)_g$$
.

Then the muti-linear form $K(\xi_1, \xi_2, \xi_3, \xi_4)_g$ is characterized by the following 4 conditions (cf. Kobayashi-Nomizu [2], p. 198-199)

(32.1)
$$K(X, Y)_g = K(\xi, \eta, \xi, \eta)_g$$

(32.2) skew-symmetric in (θ_1, θ_2) as well as in (θ_3, θ_4) ,

(32.3)
$$K(\theta_1, \theta_2, \theta_3, \theta_4)_g + K(\theta_1, \theta_3, \theta_4, \theta_2)_g + K(\theta_1, \theta_4, \theta_2, \theta_3)_g = 0.$$

It then follows that

(32.4)
$$K(\theta_1, \theta_2, \theta_3, \theta_4)_g = K(\theta_3, \theta_4, \theta_1, \theta_2)_g$$
.

The proof of the uniqueness given in the above book actually tells us how to construct $K(\theta_1, \theta_2, \theta_3, \theta_4)_g$ out of $K(\xi, \eta)_g$, where

(33)
$$K(X, Y)_{g} = K(\xi, \eta)_{g}.$$

In fact, applying the distribution law to $K(\theta_1, \theta_2 + \theta_4, \theta_1, \theta_2 + \theta_4)_g$, we find by (32.4) that

(34)
$$2K(\theta_1, \theta_2, \theta_1, \theta_4)_g = K(\theta_1, \theta_2 + \theta_4)_g - K(\theta_1, \theta_2)_g - K(\theta_1, \theta_4)_g.$$

Using $K(\theta_1 + \theta_3, \theta_2, \theta_1 + \theta_3, \theta_4)$ similarly, we find that

$$(35)^{34} K(\theta_1, \theta_2, \theta_3, \theta_4)_g + K(\theta_1, \theta_4, \theta_3, \theta_2)_g = K(\theta_1 + \theta_3, \theta_2, \theta_1 + \theta_3, \theta_4)_g - K(\theta_1, \theta_2, \theta_1, \theta_4)_g - K(\theta_3, \theta_2, \theta_3, \theta_4)_g.$$

Write down $(35)_{34}$ – $(35)_{43}$. We then find by the Jacobi's identity (32.3) that

$$3K(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4})_{g} = K(\theta_{1} + \theta_{3}, \theta_{2}, \theta_{1} + \theta_{3}, \theta_{4})_{g} - K(\theta_{1}, \theta_{2}, \theta_{1}, \theta_{4})_{g} - K(\theta_{3}, \theta_{2}, \theta_{3}, \theta_{4})_{g} - K(\theta_{1} + \theta_{4}, \theta_{2}, \theta_{1} + \theta_{4}, \theta_{3})_{g} + K(\theta_{1}, \theta_{2}, \theta_{1}, \theta_{3}) + K(\theta_{4}, \theta_{2}, \theta_{4}, \theta_{3})_{g}.$$
(36)

Therefore

(37)
$$K(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}) = \frac{1}{6} (K(\theta_{1} + \theta_{3}, \theta_{2} + \theta_{4}) - K(\theta_{1} + \theta_{4}, \theta_{2} + \theta_{3}) + K(\theta_{1}, \theta_{2} + \theta_{3}) - K(\theta_{1}, \theta_{2} + \theta_{4}) - K(\theta_{2}, \theta_{1} + \theta_{3}) + K(\theta_{2}, \theta_{1} + \theta_{4}) + K(\theta_{3}, \theta_{1} + \theta_{4}) - K(\theta_{3}, \theta_{2} + \theta_{4}) - K(\theta_{4}, \theta_{1} + \theta_{3}) + K(\theta_{4}, \theta_{2} + \theta_{3}) - K(\theta_{1}, \theta_{3}) + K(\theta_{1}, \theta_{4}) + K(\theta_{2}, \theta_{3}) - K(\theta_{2}, \theta_{4})).$$

The referee informed us that the formula (37) is in [1] p. 16.

When $K(X, Y)_g$ is expressed as the sum of $K(P_j, Q_j; \xi, \eta)$ as in (30), $K(\theta_1, \theta_2, \theta_3, \theta_4)_g$ is also expressed as the sum of $K(P, Q; \theta_1, \theta_2, \theta_3, \theta_4)$ defined as in (34), (36) in terms of $K(P, Q; \xi, \eta)$ in stead of $K(\xi, \eta)$. By calculation we find by (34) and (18) that

$$2K(P, Q; \theta_{1}, \theta_{2}, \theta_{1}, \theta_{4}) = \langle P(\theta_{1}, \theta_{2}), Q(\theta_{1}, \theta_{4}) \rangle + \langle P(\theta_{1}, \theta_{4}), Q(\theta_{1}, \theta_{2}) \rangle - \frac{1}{2} \langle P(\theta_{1}, \theta_{1}), Q(\theta_{2}, \theta_{4}) + Q(\theta_{4}, \theta_{2}) \rangle - \frac{1}{2} \langle P(\theta_{2}, \theta_{4}) + P(\theta_{4}, \theta_{2}), Q(\theta_{1}, \theta_{1}) \rangle.$$

We calculate $K(P, Q; \theta_1, \theta_2, \theta_3, \theta_4)$ when P = Q and skew-symmetric in (ξ, η) . By the above we find that

(39)
$$K(P, P; \theta_1, \theta_2, \theta_3, \theta_4) = \langle P(\theta_1, \theta_2), P(\theta_1, \theta_4) \rangle$$

hence

$$\begin{split} &K(P, P \; ; \; \theta_1 + \theta_3, \; \theta_2, \; \theta_1 + \theta_3, \; \theta_4) - K(P, P \; ; \; \theta_1, \; \theta_2, \; \theta_1, \; \theta_4) \\ &- K(P, P \; ; \; \theta_3, \; \theta_2, \; \theta_3, \; \theta_4) \\ &= & < P(\theta_1, \; \theta_2), \; P(\theta_3, \; \theta_4) > - < P(\theta_1, \; \theta_4), \; P(\theta_2, \; \theta_3) >. \end{split}$$

Therefore we find by (36)

(40) PROPOSITION. When $P(\xi, \eta)$ is skew-symmetric in ξ , η ,

$$K(P, P; \theta_1, \theta_2, \theta_3, \theta_4) = \frac{2}{3} \langle P(\theta_1, \theta_2), P(\theta_3, \theta_4) \rangle + \frac{1}{3} \langle P(\theta_1, \theta_3), P(\theta_2, \theta_4) \rangle - \frac{1}{3} \langle P(\theta_1, \theta_4), P(\theta_2, \theta_3) \rangle.$$

Since $K(P, Q: \theta_1, \ldots, \theta_4)$ is symmetric and bi-linear in P, Q, it follows by the above that

(41) PROPOSITION. When $P(\xi, \eta)$ and $Q(\xi, \eta)$ are skew-symmetric in ξ , η ,

$$\begin{split} &K(P,\,Q\,;\,\,\theta_{1},\,\theta_{2},\,\theta_{3},\,\theta_{4})\\ &=\frac{1}{3}(<\!P(\,\theta_{1},\,\theta_{2}),\,\,Q(\,\theta_{3},\,\theta_{4})\!>\!+\!<\!Q(\,\theta_{1},\,\theta_{2}),\,\,P(\,\theta_{3},\,\theta_{4})\!>)\\ &+\frac{1}{6}(<\!P(\,\theta_{1},\,\theta_{3}),\,\,Q(\,\theta_{2},\,\theta_{4})\!>\!+\!<\!Q(\,\theta_{1},\,\theta_{3}),\,\,P(\,\theta_{2},\,\theta_{4})\!>)\\ &-\frac{1}{6}(<\!P(\,\theta_{1},\,\theta_{4}),\,\,Q(\,\theta_{2},\,\theta_{3})\!>\!+\!<\!Q(\,\theta_{1},\,\theta_{4}),\,\,Q(\,\theta_{2},\,\theta_{3})\!>). \end{split}$$

We next work out the case when P and Q are symmetric. We set first

(42)
$$L(P, Q; \theta_{1}, \theta_{2}; \theta_{3}, \theta_{4}) = K(P, Q; \theta_{1} + \theta_{2}, \theta_{3} + \theta_{4}) \\ -K(P, Q; \theta_{1}, \theta_{3} + \theta_{4}) - K(P, Q; \theta_{2}, \theta_{3} + \theta_{4}) - K(P, Q; \theta_{1} + \theta_{2}, \theta_{3}) \\ -K(P, Q; \theta_{1} + \theta_{2}, \theta_{4}) + K(P, Q; \theta_{1}, \theta_{3}) + K(P, Q; \theta_{2}, \theta_{3}) \\ +K(P, Q; \theta_{1}, \theta_{4}) + K(P, Q; \theta_{2}, \theta_{4}).$$

We then find by direct calculation using (18) that, when $P(\xi, \eta)$ and $Q(\xi, \eta)$ are symmetric in ξ , η ,

(43)
$$L(P, Q; \theta_{1}, \theta_{2}; \theta_{3}, \theta_{4}) = \langle P(\theta_{1}, \theta_{3}), Q(\theta_{2}, \theta_{4}) \rangle \\ + \langle P(\theta_{1}, \theta_{4}), Q(\theta_{2}, \theta_{3}) \rangle \\ + \langle P(\theta_{2}, \theta_{3}), Q(\theta_{1}, \theta_{4}) \rangle + \langle P(\theta_{2}, \theta_{4}), Q(\theta_{1}, \theta_{3}) \rangle \\ -2 \langle P(\theta_{1}, \theta_{2}), Q(\theta_{3}, \theta_{4}) \rangle -2 \langle P(\theta_{3}, \theta_{4}), Q(\theta_{1}, \theta_{2}) \rangle.$$

Note by (37) that

(44)
$$6K(P, Q; \theta_1, \theta_2, \theta_3, \theta_4) = L(P, Q; \theta_1, \theta_3; \theta_2, \theta_4) \\ -L(P, Q; \theta_1, \theta_4; \theta_2, \theta_3).$$

It then follows by calculation the following:

(45) PROPOSITION. When $P(\xi, \eta)$ and $Q(\xi, \eta)$ are symmetric in ξ , η ,

$$K(P, Q; \theta_1, \theta_2, \theta_3, \theta_4) = \frac{1}{2} (\langle P(\theta_1, \theta_4), Q(\theta_2, \theta_3) \rangle + \langle P(\theta_2, \theta_3), Q(\theta_1, \theta_4) \rangle - \langle P(\theta_1, \theta_3), Q(\theta_2, \theta_4) \rangle - \langle P(\theta_2, \theta_4), Q(\theta_1, \theta_3) \rangle).$$

Therefore we have

(46) PROPOSITION.

$$K(\theta_1, \theta_2, \theta_3, \theta_4)_g = \sum_{j=0}^{7} K(P_j, Q_j; \theta_1, \theta_2, \theta_3, \theta_4)_g,$$

where, when P_j and Q_j are skew symmetric, $K(P_j, Q_j; \theta_1, \theta_2, \theta_3, \theta_4)_g$ is defined by (41) and, when P_j and Q_j are symmetric, $K(P_j, Q_j; \theta_1, \theta_2, \theta_3, \theta_4)_g$ is defined by (45).

We now consider a submersion of a Riemann manifold M with a metric g to a Riemann manifold N with a metric g_N . Let X', Y' be tangent vectors to N at a point. To calculate $K(X', Y')_{g_N}$, pick horizontal lifts X, Y of X', Y'. Then by the O'Neill's formula $K(X'Y')_{g_N}$ is the sum of $K(X, Y)_g$ and $\frac{3}{4} \|p_v[X, Y]\|_g^2$, where we extend X, Y to vector fields and p_v denotes the projection to the vertical part.

We see easily

(47)
$$[X, Y] = (X\eta^{j} - Y\xi^{j})E_{j} + \xi^{j}\eta^{k}[E_{j}, E_{k}].$$

Note that

(48)
$$\omega(\xi^{j}\eta^{k}[E_{j},E_{k}]) = -\beta(\xi)\eta,$$

because $d\omega(X, Y) = X\omega(Y) - Y\omega(X) - \omega([X, Y])$. Therefore

(49)
$$\omega([X, Y]) = (X\eta - Y\xi) - \beta(\xi)\eta.$$

Let V be a vertical vector field with $\mu = \omega(V)$. Then we see by the above

(50)
$$\langle [X, Y], V \rangle_g = \langle g(X_{\eta} - Y_{\xi}), \mu \rangle - \langle \beta(\xi)_{\eta}, \mu \rangle_g$$

When we set

$$\tilde{\xi} = g\xi$$
,

we find that

$$< g(X\eta - Y\xi), \mu > = < X\tilde{\eta} - Y\tilde{\xi}, \mu > + < (Yg)\xi - (Xg)\eta, \mu > .$$

Since X, Y are horizontal, $\langle \tilde{\eta}, \mu \rangle = \langle \tilde{\xi}, \mu \rangle = 0$. Hence

(51)
$$\langle [X, Y], V \rangle_g = \langle L_g(\eta) \xi - L_g(\xi) \eta - \beta(\xi) \eta, \mu \rangle_g + \langle \tilde{\xi}, Y \mu \rangle - \langle \tilde{\eta}, X \mu \rangle.$$

We then find easily an expression of the O'Neill's formula by the above formula. The term is also of the form $K(P, Q; \xi, \eta)$.

Reference

- [1] J. CHEEGER and D. G. EBIN, Comparison Theorems in Riemannian Geometry, North-Holland, 1975.
- [2] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, vol. 1, Interscience, 1963.
- [3] M. KURANISHI, On some metrics on $S^2 \times S^2$, To be published.
- [4] B. O'Neill, The fundamental equations of a submerson, Mich. Math. J., 13 (1966) 451 -469.

Department of Mathematics Columbia University New York, N. Y. 10027 U. S. A.