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Remarks on the formula for the curvature
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Let @, ...,@" be a base of l-forms on a manifold M. Then a
Riemann metric, say g, on M has an expression

ey g=ginw’ "

Where g=(gs) is a #X#n matrix valued function on M. We denote by
<X, Y>, the inner product of tangent vectors X, Y with a common
source. We set

2 E=w(X), = (Y)

where @ denotes the R"-valued 1-form (w', ..., @"). We set <&, np>,=
gix&’n" so that

(3> <X, Y>g:<£, 77>g.

Write

@  de'=pple o', fltFn=0.

Define a linear map g: R”— Hom(R", R") by

(5) B ) =Bu&n'.
Actually g should be regarded as a map of M into Hom(R", Hom(R",
R™)). Then the formula (4) can be rewritten as

6) (dw) (X, Y)=p(&)n.

We wrote down in the formula for the sectional curvature of g
which is expressed by means of g;» and 8. In this paper we write down
the formula for the curvature tensor. We then write down the O’Neill’s
formula for the submersion using only ¢ and g.

When we set

(7) R(X, Y)zvxvy_VYVX—V[X,Y],

the curvature tensor is given by
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® KX YU V)=<R(X, Y)V,U>,.

The sectional curvature of the plane generated by X, Y is

9 AXEI Y- <X, Y>D'<RX, Y)Y, X >,

Now K(X, Y),=<R(X, Y)Y, X>, is expressed by g, g as follows:
10 KX, Y)o=Ko(& n)ot+Ki(& 1)+ K(& 7)o,

where

R o= |8* 0+l <B*E, B* 0>,
11

— 2Bl 5 <B* D E—B* 7, B 7>,

Where g*(&) denotes the adjoint of #(&) with respect to the metrc g of
R".

To write down K, we define for each x in M and & a linear map
Ly,(&): R™R" by
12) <Ly(&)7n, v> o= & (Eigu(x)) n*y".

Where E,, ..., E, denote the base of tangent vectors dual to @ ..., @"
We also set for a linear map L : R"—~Hom(R", R")

(13) L(&p=L(n)¢,

and define
(14) 2C(&)=Ly(&)+ Ly(&)— (Ly(&))*.
Then

Kl(f,", ﬂ>g:Ki+K%+K?,

where

Ki=3<L,()E-Lo(®n 7>

(15) Ki=<p*(&n+p*(n) & C(&)n>,
—<B¥(&)E Clpn>e—<p*(p)y, C(E)E>,,
1=<[X, Bl & n>+ <Y, Bl(&)n &>.

To write down K., we set

(16) Ay, n) =& n*ELE;.
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The above is regarded as a second order differential operator. Then
Kz(tf, ﬂ)g:K%+K§,
where

Kéz%(<(A(<§, Da+AG, EDE, 7>

—< (KA &Py, n>—<AG, P& E>),
K3=|C(&nli—<C&E& Clpn>o.

It is of some interest to note that the formula has a pattern. Namely,

for a pair of bilinear forms P(&, ), Q@(&, ») valued in a finite dimen-
sional vector space, say E, with a metric g, we set

KPP Q; &n=<P& n), Q& 1>,
(18) ~L<P& ©, @ >,

an

—2<P(nn, Q& &>

Then K (&, n)g is a sum of terms of the form K(P, @; &, ). To see this
let £ be R™ with the metric g and set

19 R D=0 D=3 B+ D8,
@) P& p=—SQ& nD=En,
@) RE D= E—On), Q=78

considered as E valued. Then we see clearly

@ K& me=2KP, Q& .

Similarly, we consider E-valued bilinear forms

@) P D=L(E—L(On Q@ r=2pEn,
Q0 P@n=p*&n+p*E Qg n=C&n,

(25) P& ) =E; Bl & @& n)=8&n—n'¢.
Noting that B (&, ) is a skew-symmetric form we find that
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20 K& ne=2KWP, Q5 & ).

To write down K we consider E-valued forms

Q7 F(& n) =& n)=C(&7.

We denote by Ei the vector space of symmetric #X» matrixes with the
standard metric, and consider E; valued form

@) P& m=AE g +A, O, QG D=7 ERy+7®8).
Then

@ K ne=2K®B, Q; & .

Therefore we have the formula:

30 K& ne=5KPE, Q; &),

We set for X;(G=1,2,3,4)
(31> K<X1, Xz, Xs, X4>g:K(§1, 52, (’;"3, 54)0.

Then the muti-linear form K (&, &, &, &)¢ is characterized by the follow-
ing 4 conditions (cf. Kobayashi-Nomizu [2], p.198-199)

(32.1) KX, Y)o=K(& 7 & n)s,

(32.2) skew-symmmetric in (&, &) as well as in (&, ),
(32.3) K, &, &, 6+ K (6, 65, 64, )+ K (i, b4, 6, 6:)=0.
It then follows that

(32.4) K6, &, 6, 0)g=K(6s, 6, 61, &)o.

The proof of the uniqueness given in the above book actually tells us how
to construct K (6, &, 6, 6., out of K (&, ), where

(33) K()(, Y)s]:K(g, 77)9.

In fact, applying the distribution law to K (4, &+ &, 6, &+ 6., we find
by (32.4) that

(34) ZK(HI, 02, 01, 04)g:K<01, &+ 64)9—K(01, 02)9—K<¢91, 04)9-
Using K(6.+ 6, &, 6.+ 6, 6,) similarly, we find that
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K6, &, 6, 0)g+K (6, 6, 65, &)y
=K (6+ 6, &, 6+ 6, 04>g—K(51, G, 6, 94)9"K(93, b, &, 04)9-

Write down (35)3—(35)s. We then find by the Jacobi’s identity (32.3)
that

(35)%

3K(l91, G2, Gs, 94>g:K<91+ 6, G, 61 6, 94>g“K(l91, 6o, 61, 04)9
(36) —K(&, 6, 6, 00— K(6+6s, &, 6+ 6, &)y
+K (6, 6, 6, )+ K (b, &, 6, 6),.

Therefore

K6, &, 6, 6’4)2%(K(01+03, b+ 60— K (6i+ 6., 6+ )

+K (6, +6)—K (b, 6+6)—K(&, 6+ 6&)
+K (6, 61+ 60+ K (6, 6+ 6,)—K (6, 6+ 6:)
—K (b, 6+ 6)+K (b6, o+ 6)—K (6, 6)
+K (6, 6)+K (&, 6)—K (&, 6)).

The referee informed us that the formula (37) is in p. 16.

When K (X, Y), is expressed as the sum of K(P, Q;; & #») as in
(30D, K (6, &, 6, 6., is also expressed as the sum of K(P, Q; 6, &, &, &)
defined as in (34), in terms of K(P, Q; & ») in stead of K (&, 7).
By calculation we find by (34) and that

2K(P, Q; 6, 6, 6, 6) =< P4, &), Q(6, 6,)>
+<P(b, 60, Q(61, &)>

(38) —%<P<el, 6), Q(6, 60+ Q6 6)>

—%<P(02, 6)+P (6, &), Q(6, 6)>.

37

We calculate K(P, @; 6, &, 6, 65) when P=Q and skew-symmetric in
(&, 7). By the above we find that

(39) K(P, P; 191, 01, 53, (94):<P(01, 62), P(al, 94>>,
hence

KPP P; 6+, 6 6+6 6)—K(P,P; 6, &, 6, 6)
—K(P P; 6, &, 6, 6
=<P(6, &), P(6, 60>—<P(6, ), P(&, 6)>.

Therefore we find by

(40) PROPOSITION.  When P (&, ) is skew-symmetric in &, n,
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KPP P; 6,6, 6, e4>=—§—<1><01, &), P (6, 6>

1

+5<P(8, 6), P8 &)>—%<P<al, 6., P(6, 6)>.

Since K(P, Q: 6, ...,6,) is symmetric and bi-linear in P, @, it follows by
the above that

(41) PROPOSITION. When P(&, ) and Q(&, n) are skew-symmetric in &,
7

K(P Q; 6, 6, 6, 6,)
:%(<P(01, &), Q(6, 8)>+<Q(6, &), P(f, 6)>)

+4(<P6, 6), Q(8, 80> +<Q6, &), P(8, 6)>)
—L(<P(8, 8, Q6 8> +<QH, 6, Q(ts, 6)>).

We next work out the case when P and @ are symmetric. We set first

LPQ; 6,6; 6 60)=KP,Q: 66+, +6)

) —KPQ; 6,6+6)—KP,Q; 6, +60—KP,Q; 6+6, 6
~KPQ; 6+6,0+K(P,Q; 6,6 +K(P,Q; &, )
+KPQ; 6, 0+K(P,.Q; &, 6s).

We then find by direct calculation using that, when P(&, ) and
Q(&, ) are symmetric in &, 7,

LPQ; 6,6; 6 6)=<P(6, &), Q(&, 6)>
43) + <P, 6, Q(&, 6)>
+ <P, &), Q(H, 6)>+<P(6, 6, Q(6, 6)>
—2<P(6, &), Q6 6)>—2<P(6s, 6, Q(6, &)>.

Note by (37) that

) 6K(P.Q: 6,6, 6, 60=LP.Q; 6, 6; &, 6y
—L(P, Q; 6, 6s; 6, 6s).

It then follows by calculation the following :

(45) PROPOSITION. When P(&, ) and Q(&, n) are symmetric in &, 7,

K(P,Q; 6, &, 65, 8= (<P, 60, Q(by, 6>

+ <P(6, &), Q(6, 60)>—<P(h, &), Q(&, 6)>
—<P(b, 6), Q(6, 6)>).
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Therefore we have

(46) PROPOSITION.
7
K(el; 02, 03, 04)9212()'[{(1)"’ QJ; 01) 02; 63) 04)9)

where, when P; and Q; ave skew symmetric, K(P;, Q;; 6, 6, &, 61)g is
defined by (41) and, when P; and Q; ave symmetric, K(P;, Q;; 6, &, &, 61
is defined by (45).

We now consider a submersion of a Riemann manifold M with a
metric ¢ to a Riemann manifold N with a metric gv. Let X’, Y’ be tan-
gent vectors to N at a point. To calculate K (X', Y")g, pick horizontal
lifts X, Y of X’, Y’. Then by the O'Neill’s formula K(X'Y"),, is the

sum of K(X, Y), and %llpv[X, Y]|% where we extend X, Y to vector

fields and p» denotes the projection to the vertical part.
We see easily

UD (X, Y= Xy’ — YE)E+&n*E, Eil.

Note that

(48) w (&n*[E;, ED=—8(&)7,

because dw (X, V) =Xw(Y)— Yo (X)—w (X, Y]). Therefore
(49) w(X, YD=(Xy—Y&)—L&)7.

Let V be a vertical vector field with y=w(V). Then we see by the
above

(50) <[X, Y], V>,=<gXn—Y&, u>—<B&n, u>,
When we set

-~

&=g¢,
we find that

<gXp—Y&), u>=<Xp—YE& u>+<(Y&— (X n, u>.
Since X, Y are horizontal, <#,u>=<&, u>=0. Hence

(5D <[)(, Y], V>g:<Lyg77>f_Lg(‘f)77_ﬁ(§>77,ll>y
+<& Yu>—<gy Xu>.

We then find easily an expression of the O’Neill’s formula by the above
formula. The term is also of the form K(P, Q; & »).
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