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Introduction

Koranyi-Wolf established a method of realizing a hermitian sym-
metric space M, of noncompact type, equivariantly imbedded in its com-
pact dual M*, as a Siegel domain, by means of a so-called Cayley trans-
form. The goal of this paper is to develop an analogy of the Koranyi-
Wolf theory for a certain class of complex affine symmetric spaces, called
simple irreducible pseudo-hermitian symmetric spaces of Ke-type (For the
definition, see 2.3. Also see 5.2). It is proved that such a space arises as
an open orbit in M* under the identity component of the holomorphic
automorphism group of M, (Proposition 3.7). For our purpose, we intro-
duce the notion of a Siegel domain over a nondegenerate cone (§1), which
is a generalization of a Siegel domain over a positive definite (=self-dual)
cone. Contrary to the hermitian symmetric case, not the whole part of a
simple irreducible pseudo-hermitian (non-hermitian) symmetric space of
Ke-type but an open dense subset of it is realized as an affine homogeneous
Siegel domain over a nondegenerate cone (Theorem 5.3). This realiza-
tion might serve the study of the boundary of such a symmetric space
imbedded in M*.

In §1, the closure structure of a Siegel domain over a nondegenerate
cone is given ((Theorem 1.1). In §2, a signature of roots (Oshima-
Sekiguchi [18] of a semisimple Lie algebra g is described in terms of a
gradation of g. Given a real simple Lie algebra g of hermitian type, we
construct in § 3 all simply connected irreducible pseudo-hermitian symmet-
ric spaces of K.-type associated with g (Theorem 3.6). In §4, we give
the graded Lie algebraic approach to the Koranyi-Wolf theory. Let

2
g:k_z_‘.zgk be a simple graded Lie algebra of hermitian type corresponding

to a Siegel domain (The case g-1=g¢=(0) may occur). We then obtain
the orbit decomposition of g-. under the adjoint action of the group gener-
ated by the Lie algebra go (Theorem 4.9). In §5, we give a list of simple
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irreducible pseudo-hermitian symmetric spaces of Ke-type and the corre-
sponding Siegel domains over nondegenerate cones.

NOTATION. g€ denotes the complexification of a Lie algebra (or a
real vector space) a. ¢,(X) denotes the centralizer of an element X (Eg)
in a Lie algebra g.

§1. Siegel domains over nondegenerate cones

We shall begin with a brief review for the previous work [9], [10].
Let % be a compact simple Jordan algebra of degree 7, and let Up.q
(p, ¢=0, p+q<7) be the set of elements €A with sgn(a)=(p, ¢). Then
we have the decomposition

1.0 A= 1I U
b+a<sr

which we shall call the Sylvester decomposition of A. Let us choose a sys-
r
tem of primitive orthogonal idempotents {ei, -, e/} such that Z}lei:e,

where ¢ is the unit element of A. Let
p q
(1.2> Op'q:iglei—,jglep+j, p: q20) p+q£7;

here we are adopting the convention that the first or the second term of
the right hand side of (1.2) is zero, provided that p=0 or ¢=0, respec-
tively. Let Str° % denote the identity component of the structure group Str
A of A. Then it is known that (1.1) is the Str’ ¥-orbit decomposition of
A : more precisely we have

(1 . 3) Q[p,q = (Stro 9/0 Op,q.

A, . is a cone in the sense that it is invariant under multiplication by posi-
tive real numbers R*, and it is open if and only if p+¢=7. Also we have
Npo=—Nop. We say that Ur_rx (0<E<7) is a nondegenerate (homogene-
ous) come. Note that the positive definite cone V :=%,, is an irreducible
homogeneous self-dual open convex cone.

Let W be a complex vector space and F be a V-hermitian form on
W. Let UA¢ be the complexification of A. We consider the smooth map @
of ASX W to A defined by

(1.4) &z, uw)=Im z—F(u, u),

where the imaginary part of zE¥¢ is taken with respect to A. As is eas-
ily proved, ® is a surjective submersion. Let
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(15) Dp,q:®_1<9’[9y4>> p: qZO, p+q£r’

It follows easily that each D, is connected. We say that the domain
Dr_xx(0<E<7) in the complex vector space A X W is a Siegel domain
(of the second kind) over the nondegenerate cone Ur—rx. Note that Dy is

a usual Siegel domain over the selfdual cone V. Sometimes we will write
Dy_pr, F) for Dr_pp, that is,

(1.6) Dypn, F)={(z, 0)EAXW : Im 2— F(u, u) ENr—r,x}.

In the case where W =(0), the above domain is reduced to the tube
domain

(17) D@[r—k,k)‘—‘{zE%IC : Im zE?Ir-k,k},

which is called the Siegel domain of the first kind over the nondegenerate
cone Nr_rr. From (1.1) we have the decomposition

1.8 uxw= 1O D,..

p+g<r

Let Aff(Dro) and GL(Dro) be the affine and linear automorphism groups
of the Siegel domain Dr,, respectively. G. and H denote the identity
components of Aff(Dro) and GL(Drp), respectively. There exists a natu-
ral Lie homomorphism p of GL(D;,) into the automorphism group G(V)
of the cone V ([5)]).

THEOREM 1.1. (1) The closure Dp.q of Ds,q is given by
1.9 D_p,q: I Dp,,q..
pi<p

q1<q

(2)  Suppose that p is surjective of H onto the identity component G°(V)
of GCV). Then each Dp,q is a Ga-ovbit, and (1.8) is the Ga-orbit decom-
position of X W ; in particular, Dr—rx is an affine homogeneous domain.

PROOF. (1) We have ([9], [10]) that the closure Upq of Ypq is
given by Up.¢=IIp1<p.a1<a¥p1,a. Therefore the right hand side of (1.9) is
rewritten as

H ®_1<%[P1,ql>:®_l< H %Pl,m):q)_l(g[t’ﬂ)
p1<p p1<p
q1<9q qQ1<q

Choose a point (2, u)E® ' (Ap,¢). Then
(1.10)  Im 20— F Cuto, 110) ENp.q.
Let D.,(CD,.,) be the domain in U¢X{w} defined by
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(1.1)  Duo={(z, u) EA X {mo} : Im zEF (o, tto) +Np.q).

Then, from (1.10) it follows that the point (z, ) lies in the closure of
Dy, in U¢X{uo}, which implies that (2, u)E Dp,q. The converse inclusion
C in (1.9) is obvious. Since G°(V)=Str®¥% ([19]), the assertion (2) is
an immediate consequence of Lemma 2. 4 [6]. g.e. d.

COROLLARY 1.2. The boundary 9D,y of the Siegel domain Do can
be expressed as a stratified set

(1.12)  8Dro=Dr-10l Dr-2,01 "+ 1l D1,01l Do.

Furthermore, suppose that p(H)=G°(V). Then each stratum Do in
(1.12) s a Gq-orbit.

REMARK 1.3. The unique closed subset Ik, in the expression (1.12)
is the Silov boundary of the Siegel domain D; .

§ 2. e-modifications of Cartan involutions

2.1. For a graded Lie algebra (or shortly GLA), we will use terminol-
ogies in [8]. Let

2.D g=k=ZU1_ygk

be a semisimple GLA of the v-th kind over R, and let Z&g, be its charac-
teristic element. Choose a grade-reversing Cartan involution = of g and
let g=f+p be the corresponding Cartan decomposition, where z|;=1 and
zl,=—1. Then Z lies in p. Let a be a maximal abelian subspace of p
containing Z, and let A be the root system of g with respect to a. We
identify A with a subset of a with respect to the inner product (,) in-
duced by the Killing form of g. Put

(2.2) Av={yEA: (y, 2)=F}, k| <.
Then we have (8]
2.3) go=cla)+ 2 ¢,

YEAo

8= 21 ¢/, k=+0,
YEAR
where c(a) is the centralizer of a in g and g’ is the root space for the root
YyEA.
Now let
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(24> Qev — 2 42k, 8od — 2 02k+1.
12R|<V

12B+1|<Vv

Then we have a Z.-GLA
(25) Q:Qev+god,

which is called the Z,-reduction of the GLA (2.1). The involutive
automorphism & of g defined by ¢|,.,=1 and &l,..=—1 is called the charac-
teristic involution for the Z,-GLA (2.5).

LEMMA 2.1. & is a grade-presevving for the gradation (2.1) and is
given by

(2.6) e =Adexp #iZ.

PROOF. Since Z&g, we have ¢(Z)=Z, which implies that e is
grade-preserving. An easy computation shows that

. X, Xec(a),
2.7 (Adexp miZ)X = { DY Xey
Hence (2.6) is immediate from (2.3) and (2.4). q. e. d.

REMARK 2.2. If we put
(2.8) (=™ yEA,

then € is seen to be a signature of roots. It turns out [18], that every
signature of roots of a simple Lie algebra g can be written as (2.8) for a
certain gradation of g.

For the semisimple GLA (2.1), the grade-reversing Cartan involution
7 commutes with e. We say that the grade-reversing involution 7. :=e&7 is

the e-modification of 7. 7. is an e-involution in the sense of Oshima-
Sekiguchi [18].

LEMMA 2.3.  The e-modification v is uniquely determined by the gra-
dation (2.1), up to conjugacy wunder the inmer automorphism of an ele-
ment of exp go.

PROOF. Let 7’ be another grade-reversing Cartan involution for the
gradation (2.1), and let z:=e&7’. By there exists an element XoEgo
such that

(Adexp Xo)7'(Adexp — Xo) =1
We also have &(Adexp Xo)e '=Adexp e(Xo)=Adexp Xo. Therefore
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(Adexp Xo) 7:(Adexp — Xo) = 7-. q.e.d.

2.2. Let g be a real simple Lie algebra and = be a Cartan involution of
g. Let

2.9 g=f+p

be the Cartan decomposition by 7, where z[t-=1 and z|,=—1. Let a be a
maximal abelian subspace of p, and A be the root system of g with respect
to a. Choose a fundamental system II={y\, *:*, y-} for A and let {Z,, -,
Z:} be the basis of a dual to II with respect to the inner product (,) on a
induced by the Killing form of g. For later considerations one can assume
that A is of type BC, or C,. The following proposition follows from [8].

PROPOSITION 2.4. Suppose that A (or ID is of type BC, or C..
Then there exists a bijection between the set II and the set of isomorphism
classes of gradations of the v-th kind of g, v=1 or 2. The gradation of g
corresponding to a root y.€MN(1<k<7) is the one with Z. as its charac-
teristic element, in which case the Cartan involution 7 is grade-reversing.

The situation being as above, let e (1<k<7) be the characteristic
involution of the Z:-reduction of the gradation of g corresponding to y.E
II. The e.-modification of the Cartan involution 7 is denoted by 7.

Let II be of type C.. We then choose a basis {x, -**, -} in a such that

(2.10)0 A={xutx) A<i<j<r), +2x A<i<r)),
vi—=xi— %41 A<i<r—1), yr=2x-

If I is of type BC:, then we choose a basis {x, **, x-} in a such that

2.1 A={tutx) A<i<j<p), tx, +2x (A<i<p)},
vi=xi—x41 A<i<r—1), yr=x-

LEMMA 2.5. If Il is of type C,, then

(2.12) = ) (a+- +xk> 1<k<r-—1,

(&&
2

Z=78.9)

) <x1+ +Xr>
where 8=2x is the dominant voot in A. If Il is of type BC,, then

(2.13) Z-= + 42, 1<k<r,

4
08, ) X

wheve 9=2x 1s the dominant root in A.
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PROOF. Let y:=2(y:;, v 'y:, 1<i<7, and let {1, "', @-} be the

basis of a dual to the basis {1, -*-, y-}. Then an easy computation shows
that
2.149)  Ze=2Cyx, y») ' ws, 1<k<7.

Suppose that II is of type Cr. Then we have 2(yx, y2) = (yr, yr) =(3, §),
1<k<r—1. Hence, by (2.14) we have that Z.=4(8, §) 'aws, 1<k<r—1
and Z=2(8, 9) 'w, It is known (Bourbaki [4]) that wi=x++x,
1<k<7. So we get (2.12). Suppose next that II is of type BCr. Then
we have 2(yx, y2) =4(yr, yr)=(8, ), 1<k<r—1. Hence it follows from
(2.14) that Z.=4(9, &) len, 1<k<r—1 and Z,=8(8, 9 'w,. Also it is
known [4] that ws=x+-+x, 1<k<7r—1 and w-=1/2)++x).
Therefore we obtain (2.13). g.e.d.

LEMMA 2.6. Let K be the maximal compact subgroup of the adjoint
group G=Ad g generated by the subalgebra t. Suppose that 11 is of type C.
Then there exists an element a in the normalizer Nx(a) of a in K such
that

(2.15) (Ada)'ex(Ada) =&r-s (A<k<r—1);
furthermove we have
2.16) Adao'(Ada) =1 A<k<r—1).

PROOF. Let W (A) be the Weyl group for the root system A. Con-
sider the element w& W (A) defined by

217 wx) =2%r+1-; A<i<»).

From (2.12) we get w(Zw)+Z,-»=2Z, for 1 < k < r—1. Hence, from
(2.8) it follows that for yEA

(2.18)  ex(w(y))=é&r—r(y), 1<k<r-—1.

Choose an element a=Nx(a) such that (Ad @)l.=w. Let X&g”. Then,
in view of (2.18), (2.6)—(2.8), we have

e((Ad) XD =&x(w(y))Ad X =é&r»(y)(Ada) X
=(Ad @) (Er-r(P)X)=(Ad @) er-(X).

Let X €c(a). Then e (X)=er-x(X)=X. Therefore (2.15) follows.
Since 7 commutes with Ad ¢ (a€K), (2.16) follows from (2.15). q.e.d.

2.3. Here we give some definitions which are needed for later considera-
tions. Let G be a Lie group and L be a closed subgroup of G. Suppose
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that the coset space G/L is a (affine) symmetric (coset) space. G/L is
called simple irreducible if G is real simple and if the linear isotropy repre-
sentation of L is irreducible. G/L is called pseudo-hermitian symmetric if
it is given a G-invariant almost complex structure / and a G-invariant
pseudo-hermitian metric g (with respect to /). As is the case for a her-
mitian symmetric coset space, the almost complex structure J is automati-
cally integrable and the metric g is automatically pseudo-kshler (cf. [17].

Let us assume further that G is simple. Let # be the involutive
automorphism of G associated with L. The Lie algebra involution in-
duced by 6 is denoted again by 6. Let g=Lie G and [=Lie L. We have
then the symmetric triple (g, [, ). The simple symmetric space G/L is
said to be of K.-type, if 6 is an e-involution of g. Now we go back to the
situation in 2.2. Let ), (1<k<7) be the subalgebra consisting of z.-fixed
elements in g. For the sake of convenience, we define » to be 7. 7.’s
(0<k<r7r) are e-involutions of g. Hence a symmetric coset space as-
sociated with the simple symmetric triple (g, b, 72), 0< k<7, is of
Ke-type.

§ 3. Construction of pseudo-hermitian symmetric spaces

3.1. Let g be a real simple Lie algebra of hermitian type and = be a
Cartan involution of g. Let g=f+p be the Cartan decomposition by 7 as
in (2.9). The complexification of g, £, p are denoted by g, £¢, p°, respec-
tively. We extend 7 to the conjugation of g€ with respect to the compact
real form g,=f+ip. Since g is of hermitian type, » has an ad f-invariant
complex structure. Let p* be the :i-eigenspaces of p° under that complex
structure. If we put §:1:=p* and §o:=f£€ then one can write g as a
GLA :

(3.D g¢=g-1+30+0:.

Choose a Cartan subalgebra Y of g contained in £. Let 2 be the root sys-
tem of g€ with respect to the Cartan subalgebra H¢ (=the complexification
of ). We identify 3 with a subset of the real part b of H¢ with respect
to the inner product (,) on 7% induced by the Killing form of g¢. Let
EvEg0 be the characteristic element of the GLA (3.1), and let S.={a<3:
(a, Fo)=Fk}, k=0, £1. Then one has the decomposition :

(3.2) S=3,UZUZ,.

One can choose a linear order in 3 with respect to which the set *3 of
positive roots in 3 satisfies ([8])
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(3.3 31CYECE U,

For a root €3 we choose a root vector E, in such a way that
(3.4)  tE.=—E., [Ee, E-o]=a,

where a=2(a, @) 'a. For a root «a€*S, we put

(3.5 Xe=Es+E_,, Yo=—i(Ea—E_0).

b is spanned by those X, and Y. satisfying a<3:. Let I'={g, -, 8-} C3
be a maximal system of strongly orthogonal roots such that

(3.6) 0=p> > >B,
(ﬁj? IBJ) = (0) 0)) ]_S_]ST,

where €3 is the dominant root. Consider the subsets of T":
B. 7 Tw={p,, L), 15k<y, To= 0.

Let G¢:=Ad ¢ be the adjoint group generated by the Lie algebra g€, and
put

4

(3.8 c,gjzexpliiij, Ch=Ca1""* Can, 1<k<r
=1, c=cr

Let g:(k)=C(Ad c¢®g:;, A=0, =1. Then we have the gradation of ¢¢:

B.9x =81 +3(k) +8:(R), 0<k<r,

whose characteristic element is

(3.10)x Ex=(Ad D E, 0<k<r

Consider the Z,-reduction of the gradation (3.9).:

(3.1Dx  g°=bhetTis, 0<k<r7,

where §.=go(k) and M,=8-1(k)+8:(k). Then, by Lemma 2.1, the char-
acteristic involution . of the Z»-GLA (3.11), is given by

(3.12)x  m=Adexp niEx,
where 7.=1 on b and 7.=—1 on ..

LEMMA 3.1. Let 0<k<yr. Then the element iE.=g" lies in g. In

particular, the comjugation o of g€ with respect to g is a grade-veversing
involution of the GLA (3.9)x.
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PROOF. It is known by Koranyi-Wolf that Fo can be written as

(3.13) EB=Ei+5 3,

where EJEih is orthogonal to the subspace é‘,lR,éj with respect to ().
We have ([13])
(314> Ad Cpy - XﬁJHXBj) YvﬁJH—ﬁvj’ Iéj'__) YBJ-

k

Therefore we have Ek:E)_ZI [YI,-, which implies that E.<:¢Y). Therefore
J:

oE.=—E., or equivalently, ¢ is grade-reversing. qg.e.d.

LEMMA 3.2. (i) If we put H.=b.Ng and my=m.Ng, then g can
be written as a Z.-GLA

(3.15)r g=bhr+tm,, 0<k<y,

which is a real form of the Z»-GLA (3.11)x (i) o in (3.12)x is an
inner chavacteristic involution of g satisfying nele,=1 and nel=—1. (ii)
tEx lies in Yr, and Yu coincides with the centralizer c(GEx) of iEx in g.

PROOF. It follows from (3.12), and that o commutes
with 7.. Let X&g. One can write X =X+ Xz, where X,€b, and X,Em,.
Then b, and i, are stable under 6. Therefore cX =X implies that ¢X,=
X: (i=1,2), from which (3.15), follows. Note that b, and m. are real
forms of bx and s, respectively. By [Cemma 3.1, 7 is an inner involu-
tion of g. Since E, is the characteristic element of the GLA (3.9)4, b is
the centralizer of iE,. in g¢. Also we have seen E.E:h, and hence iE,EHs.
(iii) is a direct consequence of this fact. q.e.d.

3.2. Let Hh™Ch be the real span of 8, -+, i8,, and let H* be the orth-
ogonal complement of §~ in § with respect to the Killing form of g. One
has H=b"+H~. Let w be the orthogonal projection of 7f onto 75~ with
respect to (,). Then it is well-known (Moore [15] that

wCD={(B:+£)/2: 1<i<j<r},

(3.16) {w(+20>_<0>:{(ﬁi—ﬁj)/2 D 1<i<j<r},

or
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(3.17) P ﬁz/z 1<:<» )
| (+2)_(O>:{<ﬁz‘—ﬂj)/2: 1£z'<jgr}
N 0 Bi/2: 1<i<y )
where "2o=*3MN3,. Let a denote the real span of Yz, -, Ys in p. Then

a is a maximal abelian subspace of p, and a:=H*+a is a Cartan subalge-

bra of g. Let A be the root system of g with respect to the Cartan subal-
gebra a® (=the complexification of a). A is identified with a subset of
the real part /h"+a of a¢ with respect to the Killing form of g. Let & be
the orthogonal projection of 5" +a onto a, and let A=&(A)—(0). Then
A is the root system of g with respect to a, which was chosen in § 2. As is
well-known, if we put

(318) Xj:%‘(ﬁ, 0) Y,e,, ISjST,

then A is given by (2.10) or (2.11). Therefore, if we define y, -, y» as
in (2.10) or (2.11), then I:={y, -, y-} is a fundamental system for A
which is of type C; or BC,. In both cases, the dominant root & in A is
given by 2x, (cf. Lemma 2.5). Using (3.6) and (3.14), we have
(Ad ¢)(#)=49. Hence we can rewrite (3.18) as

(3.19) sz%w, Vs, 1<j<r.

Asin 2.2, {4, -+, Z;} will denote the basis of a dual to II.

LEMMA 3.3. If Il is of type BC,, then we have ci=exp niZy, 1<k<
v. If I is of type C;, them we have ci=exp niZp, 1<k<r—1, and ci=
exp 2niZ;.

PROOF. Let
(1 0 __(O 1) _(O O)
(3.20) h—(o _1>, «=\o o) “=\{ o)
Then an easy computation shows that the equality
32D (expZi-(es+e))*=exp nih

is valid in SL(2, C). By using this, we have

(3.22)  ch=exp nif; 1<j<r.



224 S. Kaneyuki

Hence it follows from (3.14) and (3.19) that
k 4
(3.23)  ci=ccic'=c(exp ni glﬁj)c'l
k v &
=exp ! gl (Ad ¢)B;=exp =i Z‘.l Ys,

4 kR
R

The lemma now follows from and (3.23). g.e.d.

LEMMA 3.4.  Suppose that 1 is of type BCr or Cr. Let en (1<k<y)
be the characteristic involution for the gradation of g with Z. as its charac-
teristic element. If 1<k<r—1, then the characteristic involution m. of the
Z:-GLA (3.15)x coincides with the ex-modification 7« of the Cartan involu-
tion v in 3.1. nr coincides with =, or =, according as 11 is of type BC, or
Cr, respectively.

=exp 7w

PROOF. We extend ¢ and 7 to the involutive automorphisms of G,
denoted again by o and . Then we have

(3.24) T(C,a,)z()p,, O'(Cﬂ):(:;}, 1<;<r.

Noting that the conjugations ¢ and = of g¢ commute with each other, we
see easily that

(3.25) or=1710=m=Adexp niFs.

Therefore the equality r=Adexp #iEs is valid on g. By (3.25) and (3.24)
we have

(3.26) (Adexp — #iEy) (Ad ¢%) (Adexp #iEy) = (7o) (Ad ¢2) (zo) ™
=Ad(ze(ch))=Ad ¢’

Consequently, from (3.12),, (3.10), and it follows that on g

(3.27)  me=Adexp miE.=Adexp #i ((Ad ¢%) Ey)
=Ad(ci(exp niFy) cx®) = (Ad ¢%) (Adexp #niEo) (Ad ¢%)!
= (Ad c%) (Adexp #iEp) =(Ad ch)r.

By [Lemma 3.3 and (2.6), the last expression is equal to
(Adexp 27iZ;) r=e%r=17, provided that II is of type Cr and k=7. Other-
wise, by Lemma 3.3, it is equal to ex7= 1. q.e.d.

3.3. In 3.2, we constructed simple symmetric triples (g, Y&, 7), 0<Ek<7.
Note that (g, o, 70) =(g, € 7). Let G:=Adg be the adjoint group generat-
ed by g. Let H, (0<k<7) be the centralizer of iE. (€bH.) in G. Lie H,=
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b. holds. Let us consider the coset spaces
(3.28) Mr=G/H,, 0<k<r.

LEMMA 3.5. The subgroup H, (0<k<7y) is connected. The space
My=G/H, (O<Ek<7r) is a simply connected simple symmetric coset space
of Ke-type.

PROOF. Let G be the universal covering group of G and = be the
covering homomorphism of G onto G. Then one can write M=G/H=
G/z'(H.). Let C (iEx) be the centralizer of iEx in G. It follows easily
that z '(H,)=C ((E.). Let 7. be the involutive automorphism of G
defined by #.(a)=(exp niEx)alexp —niEx), aEG. 7 induces on g the
involution .. We see easily that C (iEx) is contained, as an open sub-
group, in the subgroup G, of 7x-fixed elements in G. G is connected,
by S. Koh [12]. Therefore C(GEx) is connected, and so we have
#(C (iEw)) =H,, which implies that Hi is connected. 7. extends to an
involutive automorphism of G, denoted again by #.. It satisfies n7.= 7.
Thus H. is an open subgroup of the subgroup of 7.-fixed elements in G.
Hence M.=G/H. (=G/C (iEy)) is simply connected simple symmetric
space associated with the symmetric triple (g, bz, 7). On the other hand,
by Lemma 3.4, 7 is an e-involution and hence G/Hx is of Kc-type. q.e.d.

Let us consider the automorphism Adexp——g— —iEy), 0<k<ry, of g,

which leaves m, stable. Consider the linear endomorphism on ms
(3.29) jk:Admkexp%(—iEk), 0<E<r.

We denote by (,) the restriction of the Killing form of g to ms, which is
a nondegenerate inner product on ms. It is easy to see that j. satisfies the
followings :

(3.30) ji=-1,
(3.31)  [jx, Adma] =0, aE H,,
(3.32) X, nY)=(X, Y), X, Yem,.

THEOREM 3.6. Let G be the adjoint group of a real simple Lie alge-
bra g of hermitian type of rveal vank v, and H, (0<k<r) be the central-
izer in G of the element iE,Eg (¢f. (3.10)r). Then the coset space M.=
G/H, (0<k<r) is a simply connected simple irreducible pseudo-hermitian
symmetric space of Ke-type. Conversely every simply commected simple ir-
reducible pseudo-hermitian symmetvic space of Ke-type is obtained in this
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manner. Furthevmore, if the restvicted root system of g is of type Cr, then
we have the isomorvphism M= M,_s (OSks[?q) as pseudo-hermitian sym-

metvic spaces.

PROOF. In order to prove the first assertion, in view of Lemma 3.5,
it remains to show that the symmetric space M. is pseudo-hermitian and
irreducible. By identifying m, with the tangent space to M.=G/H, at the
origin, j. extends to a G-invariant almost complex structure /. on M, (cf.
(3.30), (3.31)). At the same time the inner product (,) extends to a
G-invariant pseudo-hermitian metric on M, (cf. (3.32)). M, is thus
pseudo-hermitian symmetric. Moreover, m, has an invariant complex
structure je, and g is never a complex Lie algebra. Hence, by a result of
Koh (Theorem 7 [12]), M. is irreducible. Considering (2.6)—(2.8) and
comparing our e, ***, & in with the classification of signatures
of roots for simple Lie algebras (Oshima-Sekiguchi [18]), we see that s,
-+, nr exhaust all the e-involutions for g which correspond to pseudo-
hermitian symmetric spaces (cf. Berger [3]). This implies the second
assertion. Next suppose that the restricted root system of g is of type C.
Let K be the analytic subgroup of G generated by f in 3.1. Note that
K=H,. Then, by Lemmas and 3.4, there exists an element ¢ Nx(a)
such that (Ad @) 'n(Ada)=#r—r for 0<k<7r (Note that mp=z=1).
Hence we have (Ad @) 'jx(Ada)=j,-» and (Ad @)9.=bh,_s, and conse-
quently the two pseudo-hermitian symmetric spaces M, and M,-. are
isomorphic. q.e.d.

3.4. Let U. (0<Ek<7) be the normalizer of 3:(£) in G¢. Then we can
write U.=CC (iE.)exp a1(k) (semi-direct), where CC¢({E.) is the central-
izer of iE,€g° in G¢ Uk is connected and Lie U.=a0(k)+8:(k). The
coset space M*=G¢/U, is a compact irreducible hermitian symmetric
space dual to the bounded symmetric domain My=G/H,. G is viewed as
a subgroup of G¢ The following proposition is a version of a result of

Takeuchi [20]

PROPOSITION 3. 7. The pseudo-hermitian symmetrvic space My
(0<k<7) is holomorphically imbedded into M* as the open G-orbit
through the point ckoE M*, where o denotes the orvigin of the coset space
M*.

PROOF. Let us define a smooth map @. of M, to M* by putting
or(gH) =gcko, g€ G. Choose an element a©GN Uy, and write it in the
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form a=bexp X, where b€ C(E:), X<a:1(k). Since any element in G

is left fixed by the involution ¢ of G¢ we have bexp X =¢(b)exp o(X),
or

(3.33) expo(X)=(c(b) 'bexp X.

CC(iEw) is stable under ¢. o is grade-reversing for the gradation (3.9),
(cf. Lemma 3.1). Therefore the left-hand side of (3.33) lies in
exp g-1(k), while the right-hand side lies in U.. Since exp g-1(k) N U=
(1), we get X=0, and so a=bEC ((Ex) NG=H,. Thus we have proved
G N U= H,, which implies that @. is injective. That @. is open is easily
seen. Under the identification of the tangent space To(M*) at o with
g-1(0), the tangent space at ci0 to M* is identified with §_;(#). On the
other hand g-:(k) is the i-eigenspace of the operator j. on the
complexification mf=g-1(k)+g:(k), and hence m, with complex structure
Jr is naturally C-isomorphic to the complex vector space 3-1(k). From
this we can conclude that the differential (@.)x at the origin of M. is
C-linear, which is equivalent to saying that ¢ is holomorphic. q.e.d.

Later on we will identify M, (0<k<r) with its g.-image, and so M,
is viewed as an open submanifold of M*.

§4. The Ad Go-orbit decomposition of g_,

4.1. Let g be a real simple Lie algebra of hermitian type of real rank 7,
and let r be a Cartan involution of g. We shall preserve the situation in
§3. For a subset ®C3, we denote by —® the set of roots —a, where
a<®. First of all we wish to construct the gradation of g¢ whose charac-

teristic element is 4= Zléj For an integer %, let
£

4.1  Si={a€3: (o, Z2)=F}.
By using (3.16) and (3.17) we have

2
(4.2) 2= U Zk,
k=—2

where
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(4.3) io:{afEZOZ w(ﬂ’):O or w(a) :%<ﬁi_ﬁj>, i:/:j},
Si={aE*S: w(a):—%-ﬂi, 1<i<y},

S:={aE€3,: w(af)Z%(ﬁi“‘ﬁj), i<j},

2 =2, k=1, 2.
We denote the root space (Cg®) for a<3 by g Let
4.4 =bh+ Z g

aey

gr= 23 g% k==+1, +2.

aETy

Then we get the gradation of g¢

(4.5) 9¢=8-2+3-1+3o+81+32,

with % as its characteristic element. If the restricted fundamental system
I is of type Cr, then 3,=3_,= @, in other words, §i=3_1= (0).

Next we wish to recombine the gradation so as to get the gradation
(3.1). Define four subsets of 3 by

(4.6) gtlzz—loi—l, _ gzlzzjﬂi—l,
ST=30N3,, 2r=21N2.
Then we have
4.7 ghzifLUil—, 5—1:§f1U§:1.
Also we have
(4.8) 21352U§1—, 2—125—2U§t1, 20:§:1U§40U§4T.
Let 331 be the subspaces of g¢ spanned by the root vectors E. for a €35,
where the index e always takes the values + and —. Then we have from
(4.7) and (4.8)
(4.9 81=4a1 +ar, g-1=68%1+387,
(4.100  g°=@-2+gt)+ @21 +80+30) + Gr +32),
(4.11)  go=g=1+do+ar, §-1=3-2+ §%y, g1=0ar +az, .

Note that gf and g%, are abelian subalgebras, and by the same arguments
as in 4.3 in [7], we see that those four subalgebras have an equal dimen-
sion. (3.13) implies that 2E¢ =2Fy,— %, and hence it follows that the two
decompositions (4.9) are the decompositions into the (=£i7)-eigenspaces
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under the operator ad I, where /=—2{E¢ ; ad [ is equal to €71 on a5..

4.2. For a subalgebra (or a subspace) v of g, we write ‘v for (Ad ¢)v.
Since Ys,€aCp (1<j<7), it follows from (3.14) that % lies in °g. Let
p=C(Ad c)’=Ad ¢>. Then the conjugation of g with respect to the real
form g is given by po (cf. (3.24)). Consequently po(Z)=2% and so po is
grade-preserving for the gradation (4.5). Also from (4.5) we obtain the
following gradation of g with % as its characteristic element :

(4.12)  ‘g=g2tg1t+gotaitas, 6:=8:N9={XEGr: poX =X}, —2<k<2.

Note that if II is of type C,, then g-1=g:=(0). That §, (—2<k<2) is
stable under po implies that gx is a real form of @x.

LEMMA 4.1. ad,., I is a complex structure on ger. In particular g, is
naturally C-linearly isomorphic to §*1.

PROOF. [=-—2iFE¢ lies in g and hence ¢(/)=1. On the other hand
Es€ih* and Adc is equal to the identity on i§*. Therefore we have
po(I)=p(I)=(Ad ¢)*(—2iE¢)=—2iE{=1, which implies that I lies in .
Since I commutes with Z, it follows that I lies in go and that ad I leaves
each subspace g. stable. The complexification g& is equal to 31 =§H+§z,
on which (ad /)*=—1 holds. This shows that (ad I)’=—1 on ga1. q.e.d.

LEMMA 4.2.  The conjugation o is grade-reversing for the gradation
(4.5). Moreover & interchanges 351 with §i°, where —e denotes — or +
according as e = + or —, respectively.

PROOF. The fact Z4<iH~ implies that ¢(Z%)=—2%. Hence the first
assertion follows. We have thus at least ¢(3:)C§.. Let X<3%:.. Then
(I, c(XD]=[cD), 6(X)]=0lI, X]1=0(eiX)=—eiX, which shows that
o(X)€Eazi. q. e. d.

Let 7 be the Cartan involution of g given in 3.1. Recall that we have
extended 7 to the conjugation of g¢ with respect to the compact real form
gu=f+ip. Since 7 commutes with Ad ¢ (cf. (3.24)), ‘g admits the Cartan
decomposition by 7 :

(4.13)  “g=°E+°p.

The fact that 74=—2% (cf. (3.4)) implies that = is also grade-reversing
for the gradation (4.12). Therefore we have the Cartan decomposition of
Qo by T.
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(4.149)  go=fo+ o,
where fo=g0N €t and po=g0N °p.
4.3. We consider the two graded subalgebras of g¢:

(4.15)  “gev=g-2+a0+a2,
9’ =g-2+a0+ gz,

where go=[g-2, a2]. Let n be the ideal of g0 formed by elements X &g, such
that (ad X )g-.=0.

LEMMA 4.3. (Tanaka [22]. o is simple and
(4.16) “gev—g ®n (dirvect sum).

Therefore one has
4.17)  go=go®n (dirvect sum).

The Cartan involution 7 of °g leaves g" stable, and its restriction to g is
again a (grade-reversing) Cartan involution of g’. Let ¥=Ng" and %=
‘M go, which are maximal compact subalgebras of g and go respectively.

Set YOIZ‘,1 Ys,. The following lemma is essentially due to Koranyi-Wolf
[13]. But we give another proof in our context.

LEMMA 4.4. The element 1Y, is a central element of €, and ¥ is the
centralizer o (iYo) of Yo in g. In particular the simple GLA g is of

hermitian type.

PROOF. By (3.14) we have (Ad ¢)Z4=Y,. Since i4&h) C¥t, (Y, lies
in ‘6. The inclusion FE.s,€3+2 implies YoEd-2+3,, and hence iYo,&g'°.
Thus :YoEg “N€=F. Recall that £¢ is the centralizer c,c(E). We have

(Ad ) Ey=(Ad c)(EJJr%Z)) :E3+%(Ad c)Z>=E3+% Ys, which implies

that (Ad ¢)t¢=c,c(E 5’+~%— Yo). Hence t =g N =cyc(E 3+—%— Yo).
By virtue of the equality 2E¢§ =2F,— %4, it follows that
(4.18) [E%, “aen]=0.

Therefore £¢=c,c(iYs) and consequently £'=c,(iYp). g.e. d.

By Lemma 4.3, we see that n is the centralizer of ¢" in “ges. On the
other hand, ¢/E§ lies in ¢,(4) =g0. Hence, from (4.18) we have
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(4.19) iEfen.
LEMMA 4.5. The Cartan involution t |, of °g is given by Adexp(xi

(E§ +% Yo)). The Cartan involution t|y of o is given by Adexp”TZ Yo.

PROOF. By (3.24) and (3.25) it follows that
7]e;=(Ad ¢) (7] (Ad ¢)'=(Ad ¢) (Adexp #iEy) (Ad ¢)7!
=Adexp =7 ((Ad ¢) (EJ—F%Z))) =Adexp m'(EBr-i-% Yo).

The second assertion follows from this and (4. 18). q.e.d.

LEMMA 4.6. 1) &=%t®n (direct sum). 2) The Cartan decomposi-
tion of a0 by 7 is given by

(4.20)  go="to+o.

PROOF. By the definition, Y; lies in ¢’. Hence, by (4.16) we have
(4.2 [Yo, n]=0.
Let XEn. Then, by Lemma 4.5,

X =X +ri(Et, X]+%[Yo, XD+

By (4.18) we have [E{, X]€[E¢, n]=(0). Hence, from (4.21) it follows
that 7 is the identity on n. This implies that nC¥. (4.20) is an immedi-
ate consequence of the first assertion. q.e.d.

LEMMA 4.7. 1Y~ is a maximal abelian subspace of “p contained in po.

PROOF. The subspace a spanned by Y3, -:-, Y5, is a maximal abelian
subspace of p. Since ¢~ is spanned by ,6V'1, e ,ér, it i1s maximal abelian in

°v by virtue of (3.14). By (3.5) we have E—p,:%<Xp,—Z‘ Y:,). Since Xp,
and Y, lie in p, O‘CE_BJ)Z%(XM-FZ.YB;) holds. Using (3.14), we get

po (E_g,) Z%(Xﬂj—iYﬁ,)=E—af, which implies that E -5,€. In view of

(4.3) and (4.4), we get E_5,&Eg-.. Consequently Es,Eg; and hence
B8z, g2]N0="po by Lemma 4. 6. q.e. d.

Let us now consider the g_s-valued trilinear map B: on g-2 given by
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4.22) B.(X Y Z)zé[[fy, X1, 7], X Y. Z€go.

(g-2, B:) is a Jordan triple system (in short, JTS), since ¢’ is a GLA of
the first kind.

LEMMA 4.8. The JTS (g-2, B:) is compact and simple.

PROOF. ¢ is a simple GLA and the Cartan involution = of g is
grade-reversing. Consequently (g-», B;) is simple (cf. pp. 98-99 in [8]),
and hence (g-», B:) satisfies the condition (A) ([1]). To the JTS (g-s,
B:) there corresponds a GLA L(B;) of the first kind, called the Koecher-
Kantor algebra for (g—; B:) ([19],[8]D. It follows from that there
exists a grade-preserving isomorphism ¢ of ¢" onto L(B;) satisfying

(4.23)  @r=180,

where 7z, is the grade-reversing canonical involution of L(B;) ([8]). By
(4.23), 75 is a Cartan involution of L(B;). Therefore, by Proposition 2. 4
[1], the JTS (a-s B:) is nondegenerate and so it is compact by Theorem

3.3 [1] g.e.d.

Let Go and Go be the analytic subgroups of the adjoint group Ad g
generated by go and go, respectively. By the definition of n, we have
Ad,.Gx=Ad,.Go. Let us put

b q
(4 . 24) Op,q— ng E—BJ - kgl E—ﬂpwzy

where p, ¢q=0, p+qg<r. Here we are adopting the same convention as
for (1.2). Let Vj,q denote the (Ad,.Go)-orbit in g-, through the point 0p,q,
that is,

(425> Vp,q:(Adg—zGlOOPyQ; p’ qZO) p+qé7’

2
THEOREM 4.9. Let ngkz‘_,_zgk be the GLA given in (4.12), which is

simple of hermitian type of veal vank v. Then the Ad, ,Go-orbit decomposi-
tion of g-2 is given by

(4.26) g-=2= II Vpa

b+g<r

,
PROOF. Set E= Z}IE_,g,Eg_z, and define a multiplication O on g-2 by

putting
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(4.27) XoY=B.(X,E Y), X, YeEgo.

Then a theorem of Meyberg (cf. Koecher [11]) shows that the multiplica-
tion O defines on g, the structure of a Jordan algebra®. That Jordan
algebra is denoted by (g-2, 0). The property [zE, E]=—2% implies that
E is the unit element of (35, 0). On the other hand, looking into the
classification of compact simple JTS’s (Loos [14]; also see for the
classical case), and picking up the ones whose Koecher-Kantor algebras
are simple of hermitian type, we can see that each JTS (g_2, B:) comes
from the Jordan algebra (g-», 0), that is,

(4.28) B(X Y, Z)=(XoY)oZ+Xo(YoZ)-Yo(XuZ2)

holds. From (4.28) and it follows that (g_, 0) is compact
simple. Noting that ¢’ is isomorphic to L(B;) and using in
[1], we can conclude that po consists of the operators of all left multiplica-
tions of elements in the Jordan algebra (g-,, 0). If we denote by 7; (1<
Jj<r) the operator of left multiplication by the element E_;,Eg_;, then we
see from (4.27), (4.22) and (3.4) that 7,=—4,/2 holds under the

identification of go with ad, .go. This implies that T;, ---, 7> span the maxi-

mal abelian subspace i)~ of po (cf. Lemma 4.7). The relation Tj:—,éf/ 2
(1 <j<7) implies that {E_s,-,E_s} is a system of orthogonal
idempotents. Suppose that E_z, can be written as the sum E’+E” of two
orthogonal idempotents £’ and E”. Then, by considering the Peirce de-
composition of g-» by the idempotent E_,,, one can conclude that {E’, E”,
E_g,, -+, E_s,} forms a system of orthogonal idempotents. By a property
of the Peirce decomposition (), E E" E g4, -, E_s are strictly com-
mutative, which implies that the operators of the left multiplications by
those elements span an (»+1)-dimensional abelian subspace of p,. This
is a contradiction. {E_g, -, E_s,} is thus a system of primitive orth-
ogonal idempotents. By a property of a Koecher-Kantor algebra, Ad,-.Go=
Ad, .G coincides with the identity component of the structure group of the
Jordan algebra (g-;, 0). Thus we are finally in a position to apply the
Sylvester’s law of inertia ([9], [10]; see also (1,1) and (1.3)) to the Jor-
dan algebra (g-2, O) to obtain the decomposition (4.25). q.e. d.

¥ This Jordan algebra structure was originally introduced by Koranyi-Wolf by a
different manner.
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§5. Cayley images and Siegel domains over nondegenerate cones

5.1. Let g be a real simple Lie algebra of hermitian type of real rank 7,
7 a Cartan involution of g and g=f+p be the Cartan decomposition by =
as in (2.9). We retain all the conventions in the previous sections. Let
us consider the map F: g-1Xg_-1—3-2=g-»+7g-, defined by

5.1) F(X, Y)z%{[[l, X], Y]+i[X Y1, X YeEg.

ad,, [ is the complex structure on g-; with respect to which the correspon-
dence X H%(X —i[I, X]) gives a C-linear isomorphism of g_; onto §*;

(cf. Lemma 4.1). If we identify g-1 with g1 as complex vector spaces,
then, by using the fact that §*; is abelian, it turns out that

G.2) F(Z U>:7’[Z, ocU], Z USgh.

This expression is essentially the same as Koranyi-Wolf’s [13], and hence
F is a V;o-hermitian form (cf. §1). Note that V., is an irreducible self-

dual cone. Consider the Siegel domain in g-: over the nondegenerate cone
Vr—k,k (].Skg 7’) .

5.3)  DWVresw, F)={(Z UDEF-2+§1=31: Im Z—F (U, U)E Vy-n4},

where the imaginary part of Z is taken with respect to the real form g_..
Sometimes we call D(V;_x F) simply a Siegel domain. If the restricted
root system A(§3) of g is of type C;, then §*:=(0) holds and hence the
Siegel domain D(V;_s F) reduces to the tube domain D(V,_..) over
the nondegenerate cone Vi_.. Let & be the well-known holomorphic
(open dense) imbedding of §- into the compact dual M*=G¢/U, (cf.
3.4) of My (cf. (3.28)), defined by &(X)=exp X-0, XE3-1, where o is
the origin of M*. It is known that the Cayley image c¢(Mp) is
contained in &£(g-1) and that

5.0 & cM)=D(Vyrp, F).
We wish to know what the set & '(c(M,)), k=1, is.

LEMMA 5.1. &7 '(cck0)=—10s,r-1, 0<k<7, where oxr—r is the one
given in (4.24).

PROOF. Let % and e: be the same as in (3.20). Then we have in
SL(2, C)



Pseudo-hermitian symmetric spaces and Siegel domains over nondegenerate cones 235

(exp-’fl—i (er+e))=exp(— ie—)<—1{)ﬁ —(3/7) exp(—ie).

Therefore we get

(5.5) c3,=exp(—iE_s,) kpexp(—iEs,) ;

also we know

(5.6) cs,=exp(iE_s,) ks,exp(iEs,) .

Here k%, and ks, are elements of the complex analytic subgroup of G¢
generated by £;. We have that CCiZjlf[1 c'°,},j:1::I+1 cs, for 1<k<7 and cci=c

for k=0. Consequently from (5.5) and (5.6) it follows that

k r
GB.7D cci=exp i<_§'1E‘ﬁf+ D3 E_p,> mod Uh.

J=k+1

The lemma is a direct consequence from (5. 7). q.e.d.

Let G. be the identity component of the affine automorphism group of
the Siegel domain D (Vro, F). According to Tanaka [21], Lie G. coin-
cides with the graded subalgebra g.:=g-2+g-1+go, and go is the Lie alge-
bra of the linear automorphism group of D (V;,, F).

LEMMA 5.2. Let Dpoq=®'(Vyp,q), where ®: g-1—g-2 is the same as
in (1.4). Then we have the Gg-orbit decomposition of g-1:
(5.8) g—l: H Dp,q ;

b+g<r

each Dp.q 1s the Ge-ovbit through the point 10p,q.

PROOF. As was shown in § 1, the Sylvester decomposition (4.26) of
g_2 yields the decomposition (5.8). From what is montioned just before
the lemma, the group (o is the identity component of GL(Dro). The
homomorphism p in § 1 coincides now with the adjoint representation Ad,.,
of Go. The image Ad,.G is identical with the identity component of the
structure group of the Jordan algebra (g—z;, 0) (cf. the proof of
4.9) ; the latter coincides with the identity component of the automor-
phism group of the cone V;o ([19]). By Theorems and [. 1 we have
that each subset DpCg-1 is a Gg-orbit. D q contains the set {(ZX,0) €
G281 : XE Vp,q}, which implies that i0p,¢ € Dp,q. g.e.d.

We finally have
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THEOREM 5.3. Let G be a veal simple Lie group of hermitian type
of real vank v. Let My=G/H, (0<k<7) be a (simply connected) simple
irreducible pseudo-hermitian symmetric space of Ke-type constructed in §3
and realized as an open subset of M*, the compact dual of the hermitian
symmetric space M, (cf. Proposition 3.7). Then the intersection of the
Cayley image c¢(My) with &G-1) is holomorphically equivalent to the affine
homogeneous Siegel domain D(Vy_px, F) in 3-1, where Vi_pr iS the non-
degenerate cone given in (4.25) and F is the Vro-hermitian form given in
(5.2). More precisely we have

(5.9 EN cMNE@-D)=D(Vreps, F), 0<k<r

If the restricted root system of gq=Lie G is of type C,, then the Siegel
domain D (Vy_wn, F) is veduced to the tube domain D(Vi_px).

PROOF. We may assume that G is centerless. Set ‘G=c¢Gc™'(CGY).
Note that Lie °‘G=°%. We claim first that

(5.10) C(Mk)ZCG(g(Z'Or—k,ﬁ), 0<k<r
In fact, noting that Vg,p=—V3,¢ (cf. § 1), we have from that

c (M) =c(Gc0) =°Gecio=°G(&(— ior,r-2))
=°G(Go&(—108,r-2)) =°G(& (I (— (Ad..Go) Ok, r-1))
=°G(& (= Viar-1)))=°G(&GVr_pn))
:cG"(&-(iOr—k,k)).

There exists a bijective correspondence between the set of Ad,.,Go-orbits in
a2 and the set of Gs-orbits in §-1 (cf. [6]). That bijection is obtained by
assigning the Gg-orbit G:(iop,q) to each orbit Vpe=(Ad,.Go)0s,e. Note
that Ga(i0r—2..) =D (Vy_pn, F) (cf. Theorem 1.1). [Theorem 4.9 now

shows that the number of Ge-orbits in g-: is equal to —%—(H—D(H-Z).

This number is also equal to the number of °G-orbits in M* (cf. Takeuchi
[20]. Furthermore every © G-orbit has a nonempty intersection with
£(g-1) (Nakajima [16]). Also any connected component of the intersec-
tion of a °G-orbit with &(g-1) is the &-image of a Ge-orbit in §-,, and vice
versa ([6]. Therefore the intersection of each °G-orbit with &(3-1) must
be connected. Hence it follows from (5.10) that

c(M)N £<§—1> :cG(f(iOr—k,k>) N f(@—l) = 5(Ga(50r—k,k>>
=&D (Vropw F)),

proving (5.9). The second assertion follows from the fact that g-1=(0)
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for the case of type C-. g.e.d.
The Siegel domain D(Vy_xx F) is called the Siegel domain corre-
sponding to M,.

5.2. Let H(r, F) denote the vector space of all hermitian matrices of
degree » with entries in the division algebra F=R, C, H (=the quater-
nion algebra) or O (=the octanion algebra). Let

Hr wx(F)={X€H(r, F): sgn(X)=(r—Fk, B},

r=1, F=R, C, H,
Hy 2 (0)={XEH@, 0): sgn(X)=B—k, b},
Coo(m)={Cn, =+, x)ER": x}>x5+--+x2 0>0}, n=3,
Coilm)={Cu, -, ) ER": xi<x5+--+x%}, n=3,
G 2(m)={Cua, -, ) ER": xi>x5+--+x2 u<0}, n>3.

These are nondegenerate homogeneous cones. Let M, (F) denote the
space of all pX g matrices with entries in F, and J denote the r-tuple
. ) 1
direct sum of the matrix (_01 0).
We give here a list of the simple irreducible pseudo-hermitian symmet-
ric spaces M. of K.-type and the corresponding Siegel domains D. over
nondegenerate cones. The explicit determination of M:s is done by in-

specting the tables in [3], [18].

Type Lrpe O<E<r<p)
M,=UC(r, p)/U(r—k )X UCk p—Fk),
D.— {D(Hr—k,k(0>> for »=p,
T DHohx (), F) for »<p,

where F(U, U)z—;—U‘U, UEM,,.(C).

Type Hanze (0<E< [%] =7)

M.=SO0*Q2n)/U(n—2k, 2k),
D= {D(Hr—k,k(H>) for # even,
" D(H;_»x(H), F) for » odd,

where F(U. U)=%(U*U+ JOUY), USMra(C).
Type Il (0<Ek<7)

Mv=5Sp(r, R)/U(r—k, k),
D.=D (Hr—k,k(R>)
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Type IVaser (=0,1,2)

{ Mo=M,=S0(n+2,2)/SO(n+2)xSO(2),

DozDz:D<C2,o<n+2>).

{ Mi=S0°(n+2,2)/S0°(n, 2) XxSO(2),
D\=D(Ci,(n+2)).

Type Vi (£=0,1,2)

] MOZEG(—14)/SO<10> T,

D0:D<C2,0<8>, F)

) M= Es<—14)/SO* (10> T,

D1:D<C1,1(8>, F).

) M= Es(—14)/500<2, 8) T,

Dz:D<Co,2(8>, F),

where the (;,0(8)-hermitian form F: C®X C®*—C® is the one
given by Tsuji [23].

Type VI, (£=0,1,2,3)

{ o= Ms= E725/ E6T,

Do:D:;:D(f{a,o(O)),

{ M=M= E7-25)/ Es-10 T,
D1:DZZD(I{2,1(0))-

The coset space representations of the exceptional spaces M, are only
infinitesimal expressions (not global forms). 7 denotes the one-
dimensional torus.
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