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Introduction

Kor\’anyi-Wolf [13] established a method of realizing a hermitian sym-
metric space M_{0} of noncompact type, equivariantly imbedded in its com-
part dual M^{*} , as a Siegel domain, by means of a s0-called Cayley trans-
form. The goal of this paper is to develop an analogy of the Kor\’anyi-
Wolf theory for a certain class of complex affine symmetric spaces, called
simple irreducible pseudO-hermitian symmetric spaces of K_{\epsilon} -type (For the
definition, see 2. 3. Also see 5. 2). It is proved that such a space arises as
an open orbit in M^{*} under the identity component of the holomorphic
automorphism group of M_{0} (Proposition 3. 7). For our purpose, we intr0-
duce the notion of a Siegel domain over a nondegenerate cone (\S 1), which
is a generalization of a Siegel domain over a positive definite ( = self dual
cone. Contrary to the hermitian symmetric case, not the whole part of a
simple irreducible pseud0-hermitian (non-hermitian) symmetric space of
K_{\epsilon}-type but an open dense subset of it is realized as an affine homogeneous
Siegel domain over a nondegenerate cone (Theorem 5. 3). This realiza-
tion might serve the study of the boundary of such a symmetric space
imbedded in M_{P}^{*}

In \S 1, the closure structure of a Siegel domain over a nondegenerate
cone is given (Theorem 1. 1). In \S 2, a signature of roots (Oshima-
Sekiguchi [18] ) of a semisimple Lie algebra \mathfrak{g} is described in terms of a
gradation of \mathfrak{g} . Given a real simple Lie algebra \mathfrak{g} of hermitian type, we
construct in \S 3 all simply connected irreducible pseud0-hermitian symmet-
ric spaces of K_{\epsilon}-type associated with \mathfrak{g} (Theorem 3. 6). In \S 4, we give
the graded Lie algebraic approach to the Kor\’anyi-Wolf theory. Let
\mathfrak{g}=\sum_{k=-2}^{2}\mathfrak{g}_{k} be a simple graded Lie algebra of hermitian type corresponding

to a Siegel domain (The case \mathfrak{g}_{-1}=\mathfrak{g}_{1}=(0) may occur). We then obtain
the orbit decomposition of \mathfrak{g}_{-2} under the adjoint action of the group gener-
ated by the Lie algebra \mathfrak{g}_{0} (Theorem 4. 9). In \S 5, we give a list of simple
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irreducible pseud0-hermitian symmetric spaces of K_{\epsilon} -type and the corre-
sponding Siegel domains over nondegenerate cones.

NOTATION. \mathfrak{g}^{C} denotes the complexification of a Lie algebra (or a
real vector space) \mathfrak{g} . c_{\mathfrak{g}}(X) denotes the centralizer of an element X(\in \mathfrak{g})

in a Lie algebra \mathfrak{g} .

\S 1. Siegel domains over nondegenerate cones

We shall begin with a brief review for the previous work [9], [10].

Let \mathfrak{A} be a compact simple Jordan algebra of degree r , and let \mathfrak{A}_{p,q}

(p_{ q},\geq 0, p+q\leq r) be the set of elements a\in \mathfrak{A} with sgn(a)=(p, q) . Then
we have the decomposition

(1. 1) \mathfrak{A}=\coprod_{p+q\leq r}\mathfrak{A}_{p,q} ,

which we shall call the Sylvester decomposition of \mathfrak{A} . Let us choose a sys-

tem of primitive orthogonal idempotents \{e_{1,\backslash }\ldots e_{r}\} such that \sum_{i=1}^{r}e_{i}=e ,

where e is the unit element of \mathfrak{A} . Let

(1.2) 0_{p,q}=\sum_{i=1}^{p}e_{i}-\sum_{j=1}^{q}e_{p+j}, p, q\geq 0 , p+q\leq r :

here we are adopting the convention that the first or the second term of
the right hand side of (1. 2) is zero, provided that p=0 or q=0, respec-
tively. Let Str\mathfrak{A} denote the identity component of the structure group Str
\mathfrak{A} of \mathfrak{A} . Then it is known that (1. 1) is the Str\mathfrak{A}-0rbit decomposition of
\mathfrak{A} : more precisely we have

(1. 3) \mathfrak{A}_{p,q}=(Str^{0}\mathfrak{A})_{0p,q} .

\mathfrak{A}_{p,q} is a cone in the sense that it is invariant under multiplication by posi-
tive real numbers R^{+} . and it is open if and only if p+q=r. Also we have
\mathfrak{A}_{p,q}=-\mathfrak{A}_{q,p} . We say that \mathfrak{A}_{r-k,k}(0\leq k\leq r) is a nondegenerate (homogene-

ous) cone. Note that the positive definite cone V :=\mathfrak{A}_{r,0} is an irreducible
homogeneous self-dual open convex cone.

Let W be a complex vector space and F be a V-hermitian form on
W. Let \mathfrak{A}^{c} be the complexification of \mathfrak{A} . We consider the smooth map \Phi

of \mathfrak{A}^{C}\cross W to \mathfrak{A} defined by

(1.4) \Phi(z, u)={\rm Im} z-F(u, u) ,

where the imaginary part of z\in \mathfrak{A}^{c} is taken with respect to \mathfrak{A} . As is eas-
ily proved, \Phi is a surjective submersion. Let
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(1.5) D_{p,q}=\Phi^{-1}(\mathfrak{A}p,q) , p, q\geq 0 , p+q\leq r.

It follows easily that each D_{p,q} is connected. We say that the domain
D_{r-k,k}(0\leq k\leq r) in the complex vector space \mathfrak{A}^{c}\cross W is a Siegel domain
(of the second kind) over the nondegenerate cone \mathfrak{A}_{r-k,k} . Note that D_{r,0} is
a usual Siegel domain over the selfdual cone V. Sometimes we will write
D(\mathfrak{A}_{r-k,k}, F) for D_{r-k,k} , that is,

(1.6) D(\mathfrak{A}_{r-k,k}, F)= { (z, u)\in \mathfrak{A}^{C}\cross W : Im z-F(w, u)\in \mathfrak{A}_{r-k,k} }.

In the case where W=(0) , the above domain is reduced to the tube
domain

(1.7) D(\mathfrak{A}_{r-k,k})= { z\in \mathfrak{A}^{C} : Im z\in \mathfrak{A}_{r-k,k} },

which is called the Siegel domain of the fifirst kind over the nondegenerate
cone \mathfrak{A}_{r-k,k} . From (1. 1) we have the decomposition

(1.8) \mathfrak{A}^{C}\cross W=\coprod_{p+q\leq r}D_{p,q} .

Let AfTCDr,0) and GL(D_{r,0}) be the affine and linear automorphism groups
of the Siegel domain D_{r,0} , respectively. G_{a} and H denote the identity
components of Aff(D_{r,0}) and GL(D_{r,0}) , respectively. There exists a natu-
ral Lie homomorphism \rho of GL(D_{r,0}) into the automorphism group G(V)
of the cone V([5]) .

THEOREM 1. 1. (1) The closure \overline{D}_{p,q} of D_{p,q} is given by

(1.9)
\overline{D}_{p,q}=_{p,q_{1}^{1}}\coprod_{\leq p} _{\leq q},D_{p_{1},q1}

.

(2) Suppose that \rho is surjective of H onto the identity component G^{0}(V)

of G(V) . Then each D_{p,q} is a G_{a} -Orbit, and (1. 8) is the G_{a} -Orbit decom-
position of \mathfrak{A}^{c}\cross W : in particular, D_{r-k,k} is an affine homogeneous domain.

Proof. (1) We have ([9], [10]) that the closure \overline{\mathfrak{A}}_{p,q} of \mathfrak{A}_{p,q} is
given by \overline{\mathfrak{A}}_{p,q\coprod p_{1}\leq p,q_{1}\leq q}=\mathfrak{A}_{p_{1},q1} . Therefore the right hand side of (1. 9) is
rewritten as

p_{1}\leq p\coprod_{q_{1}\leq q}\Phi^{-1}(\mathfrak{A}_{p_{1},q1})=\Phi^{-1}(\coprod_{q_{1}\leq q}\mathfrak{A}_{p_{1},q1})=\Phi^{-1}(\overline{\mathfrak{A}}_{p,q})p_{1}\leq p
.

Choose a point (z_{0}, u_{0})\in\Phi^{-1}(\overline{\mathfrak{A}}_{p,q}) . Then

(1. 10) Im z_{0}-F(m, m_{)})\in\overline{\mathfrak{A}}_{p,q} .

Let D_{uo}(\subset D_{p,q}) be the domain in \mathfrak{A}^{c}\cross\{u_{1}\} defined by
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(1. 11) D_{uo}= { (z, u_{0})\in \mathfrak{A}^{C}\cross\{m\} : Im z\in F(m, u_{0})+\mathfrak{A}_{p,q} }.

Then, from (1.10) it follows that the point (z_{0}, m) lies in the closure of
D_{uo} in \mathfrak{A}^{c}\cross\{m\} , which implies that (z_{0}, m)\in\overline{D}_{p,q} . The converse inclusion
\subset in (1. 9) is obvious. Since G^{0}(V)=Str^{0}\mathfrak{A}([19]) , the assertion (2) is
an immediate consequence of Lemma 2. 4 [6]. q . e . d .

COROLLARY 1. 2. The boundary \partial D_{r,0} of the Siegel domain D_{r,0} can
be expressed as a stratifified set

(1. 12) \partial D_{r,0}=D_{r-1,0}\perp D_{r-2,0}\perp\cdots\perp D_{1,0}\perp Do,0 .

Furthermore, suppose that \rho(H)=G0( V) . Then each stratum D_{k,0} in
(1. 12) is a G_{a} -Orbit.

REMARK 1. 3. The unique closed subset fl_{0}, in the expression (1. 12)

is the Silov boundary of the Siegel domain D_{r,0} .

\S 2. \epsilon -modifications of Cartan involutions

2. 1. For a graded Lie algebra (or shortly GLA), we will use terminol-
ogies in [8]. Let

(2. 1) \mathfrak{g}=\sum_{k=-\mu}^{\nu}\mathfrak{g}_{k}

be a semisimple GLA of the \nu -th kind over R, and let Z\in \mathfrak{g}_{0} be its charac-
teristic element. Choose a grade-reversing Cartan involution \tau of \mathfrak{g} and
let \mathfrak{g}=f+\mathfrak{p} be the corresponding Cartan decomposition, where \tau|_{f}=1 and
\tau|_{\mathfrak{p}}=-1 . Then Z lies in \mathfrak{p} . Let Q be a maximal abelian subspace of \mathfrak{p}

containing Z, and let \Delta be the root system of \mathfrak{g} with respect to Q. We
identify \Delta with a subset of () with respect to the inner product (, ) in-
duced by the Killing form of \mathfrak{g} . Put
(2.2) \Delta_{k}=\{\gamma\in\Delta:(\gamma, Z)=k\} , |k|\leq\nu.

Then we have ([8])

(2.3)
\mathfrak{g}_{0}=c(\mathfrak{a})+\sum_{\gamma\in\Delta 0}\mathfrak{g}\gamma ,

\mathfrak{g}_{k}=\sum_{\gamma\in\Delta_{k}}\mathfrak{g}\gamma , k\neq 0 ,

where c((l) is the centralizer of Q in \mathfrak{g} and \mathfrak{g}^{\gamma} is the root space for the root
\gamma\in\Delta .

Now let
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(2.4)
\mathfrak{g}_{ev}=\sum_{|2k|\leq\nu}\mathfrak{g}_{2k} , \mathfrak{g}_{od}=\sum_{|2k+1|\leq\nu}\mathfrak{g}_{2k+1} .

Then we have a Z_{2} GLA

(2.5) \mathfrak{g}=\mathfrak{g}_{ev}\dagger \mathfrak{g}_{od} ,

which is called the Z_{2}-reduction of the GLA (2. 1). The involutive
automorphism \epsilon of \mathfrak{g} defined by \epsilon|_{\mathfrak{g}ev}=1 and \epsilon|_{\mathfrak{g}od}=-1 is called the charac-
teristic involution for the Z_{2}-GLA (2. 5).

LEMMA 2. 1. \epsilon is a grade-preserving for the gradation (2. 1) and is
given by

(2.6) \epsilon=Ad\exp\pi iZ.

PROOF. Since Z\in \mathfrak{g}_{0} , we have \epsilon(Z)=Z , which implies that \epsilon is
grade-preserving. An easy computation shows that

(2.7) (Adexp \pi iZ) X=\{
X, X\in c(\mathfrak{a}) ,
e^{i\pi(\gamma,Z)}X, X\in \mathfrak{g}^{\gamma} .

Hence (2. 6) is immediate from (2. 3) and (2. 4). q . e . d .

REMARK 2. 2. If we put

(2.8) \tilde{\epsilon}(\gamma)=e^{i\pi(\gamma,Z)} , \gamma\in\Delta ,

then \tilde{\epsilon} is seen to be a signature of roots. It turns out [18], [8] that every
signature of roots of a simple Lie algebra \mathfrak{g} can be written as (2. 8) for a
certain gradation of \mathfrak{g} .

For the semisimple GLA (2. 1), the grade-reversing Cartan involution
\tau commutes with \epsilon . We say that the grade-reversing involution \tau_{\epsilon} :=\epsilon\tau is
the \epsilon- modifification of \tau . \tau_{\epsilon} is an \epsilon -involution in the sense of Oshima-
Sekiguchi [18].

LEMMA 2. 3. The \epsilon- modifification \tau_{\epsilon} is uniquely determined by the gra-
dation (2. 1), up to conjugacy under the inner automorphism of an ele-
ment of exp \mathfrak{g}_{0} .

PROOF. Let \tau’ be another grade-reversing Cartan involution for the
gradation (2. 1), and let \tau_{\acute{\epsilon}}=\epsilon\tau’ . By [8] there exists an element X_{0}\in \mathfrak{g}_{0}

such that

(Adexp X_{0}) \tau’(Ad\exp-X_{0})=\tau.

We also have \epsilon (Adexp X_{0}) \epsilon-1=Ad\exp\epsilon(X_{0})=Ad\exp X_{0} . Therefore
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(Adexp X_{0}) \tau_{\acute{\epsilon}}(Ad\exp-X_{0})=\tau_{\epsilon} . q . e . d .

2. 2. Let \mathfrak{g} be a real simple Lie algebra and \tau be a Cartan involution of
\mathfrak{g} . Let

(2.9) \mathfrak{g}=f+\mathfrak{p}

be the Cartan decomposition by \tau , where \tau|_{f}=1 and \tau|_{\mathfrak{p}}=-1 . Let Q be a
maximal abelian subspace of \mathfrak{p} , and \Delta be the root system of \mathfrak{g} with respect
to Q. Choose a fundamental system \Pi=\{\gamma_{1^{ }},\cdots. \gamma_{r}\} for \Delta and let { Z_{1} , \cdots

Z_{r}\} be the basis of Q dual to II with respect to the inner product (, ) on (l

induced by the Killing form of \mathfrak{g} . For later considerations one can assume
that \Delta is of type BC_{r} or C_{r} . The following proposition follows from [8].

PROPOSITION 2. 4. Suppose that \Delta (or \Pi) is of type BC_{r} or C_{r} .
Then there exists a bijection between the set II and the set of isomorphism
classes of gradations of the \nu -th kind of \mathfrak{g} , \nu=1 or 2. The gradation of \mathfrak{g}

corresponding to a root \gamma_{k}\in\Pi(1\leq k\leq r) is the one with Z_{k} as its charac-
teristic element, in which case the Cartan involution \tau is grade-reversing.

The situation being as above, let \epsilon_{k}(1\leq k\leq r) be the characteristic
involution of the Z_{2}-reduction of the gradation of \mathfrak{g} corresponding to \gamma_{k}\in

\Pi . The \epsilon k -modification of the Cartan involution \tau is denoted by \tau_{k} .
Let \Pi be of type C_{r} . We then choose a basis \{x_{1}, \cdots, x_{r}\} in (l such that

(2. 10) \Delta=\{\pm(x_{i}\pm x_{j})(1\leq i<j\leq r), \pm 2x_{i}(1\leq i\leq r)\} ,
\gamma_{i}=x_{i}-x_{i+1}(1\leq i\leq r-1) , \gamma_{r}=2x_{r} .

If II is of type BC_{r} , then we choose a basis \{x_{1^{ }},\cdots, x_{r}\} in Q such that

(2. 11) \Delta=\{\pm(x_{i}\pm x_{j})(1\leq i<j\leq r), \pm x_{i}, \pm 2x_{i}(1\leq i\leq r)\} ,
\gamma_{i}=x_{i}-x_{i+1}(1\leq i\leq r-1) , \gamma_{r}=x_{r} .

LEMMA 2. 5. If II is of type C_{r}, then

(2. 12) Z_{k}= \frac{4}{(\theta,\theta)}(x_{1}+\cdots+x_{k}) , 1\leq k\leq r-1 ,

Z_{r}= \frac{2}{(\theta,\theta)}(x_{1}+\cdots+x_{r}) ,

where \theta=2x_{1} is the dominant root in \Delta . If II is of type BC_{r}, then

(2. 13) Z_{k}= \frac{4}{(\theta,\theta)}(x_{1}+\cdots+x_{k}) , 1\leq k\leq r ,

where \iota 9=2x_{1} is the dominant root in \Delta .
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PROOF. Let \gamma_{i}=2(\vee\gamma_{i}, \gamma_{i})_{\gamma_{i}}^{-1} , 1\leq i\leq r , and let \{\omega_{1^{ }},\cdots. \omega_{r}\} be the
basis of Q dual to the basis \{_{\gamma_{1}}^{\vee}, \cdots\Gamma, \gamma_{r}\}\vee . Then an easy computation shows
that

(2.14) Z_{k}=2(\gamma_{k}, \gamma_{k})^{-1}\omega_{k} , 1\leq k\leq r.

Suppose that II is of type C_{r} . Then we have 2 (\gamma_{k}, \gamma_{k})=(\gamma_{r}, \gamma_{r})=(\theta, \theta) ,
1\leq k\leq r-1 . Hence, by (2. 14) we have that Z_{k}=4(\theta_{ t},9)^{-1}\omega_{k} , 1\leq k\leq r-1

and Z_{r}=2(\theta, \theta)^{-1}\omega_{r} . It is known (Bourbaki [4]) that \omega_{k}=x_{1}+\cdots+x_{k} ,
1\leq k\leq r. So we get (2. 12). Suppose next that II is of type BC_{r} . Then
we have 2 (\gamma_{k}, \gamma_{k})=4(\gamma_{r}, \gamma_{r})=(\theta, \theta) , 1\leq k\leq r-1 . Hence it follows from
(2. 14) that Z_{k}=4(\theta, \theta)^{-1}\omega_{k} , 1\leq k\leq r-1 and Z_{r}=8(\theta, \theta)^{-1}\omega_{r} . Also it is
known [4] that \omega_{k}=x_{1}+\cdots+x_{k} , 1\leq k\leq r-1 and \omega_{r}=(1/2)(x_{1}+\cdots+x_{r}) .
Therefore we obtain (2. 13). q . e . d .

LEMMA 2. 6. Let K be the mmimal compact subgroup of the adjoint
group G=Ad\mathfrak{g} generated by the subalgebra \xi . Suppose that II is of type C_{r} .
Then there exists an element a in the normalizer N_{K}(\mathfrak{a}) of (l in K such
that

(2. 15) (Ad a)^{-1}\epsilon_{k} (Ad a) =\epsilon_{r-k} (1 \leq k\leq r-1) :

furthermore we have

(2. 16) (Ad a)^{-1}\tau_{k} (Ad a) =\tau_{r-k} (1 \leq k\leq r-1)

PROOF. Let W(\Delta) be the Weyl group for the root system \Delta . Con-
sider the element w\in W(\Delta) defined by

(2. 17) w(x_{i})=x_{r+1-i} (1\leq i\leq r) .

From (2. 12) we get w(Z_{k})+Z_{r-k}=2Z_{r} for 1\leq k\leq r-1 . Hence, from
(2. 8) it follows that for \gamma\in\Delta

(2. 18) \tilde{\epsilon}_{k}(w(\gamma))=\tilde{\epsilon}_{r-k}(\gamma) , 1\leq k\leq r-1 .

Choose an element a\in N_{K}(()) such that (Ad a) |_{0}=w . Let X\in \mathfrak{g}^{\gamma} . Then,
in view of (2. 18), (2. 6)-(2.8) , we have

\epsilon_{k} ((Ad a) X) =\tilde{\epsilon}_{k}(w(\gamma)) (Ad a) X=\tilde{\epsilon}_{r-k}(\gamma) (Ad a) X
=(Ada)(\tilde{\epsilon}_{r-k}(\gamma)X)=(Ada)\epsilon_{r-k}(X) .

Let X\in c(_{\{}x) . Then \epsilon_{k}(X)=\epsilon_{r-k}(X)=X. Therefore (2. 15) follows.
Since \tau commutes with Ad a(a\in K) , (2. 16) follows from (2. 15). q . e . d .

2. 3. Here we give some definitions which are needed for later considera-
tions. Let G be a Lie group and L be a closed subgroup of G. Suppose
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that the coset space G/L is a (affine) symmetric (coset) space. G/L is
called simple irreducible if G is real simple and if the linear isotropy repre-
sentation of L is irreducible. G/L is called pseudO-hermitian symmetric if
it is given a G-invariant almost complex structure J and a G-invariant
pseud0-hermitian metric g (with respect to J). As is the case for a her-
mitian symmetric coset space, the almost complex structure J is automati-
cally integrable and the metric g is automatically pseud0-k\"ahler (cf. [17]).

Let us assume further that G is simple. Let \theta be the involutive
automorphism of G associated with L. The Lie algebra involution in-
duced by \theta is denoted again by \theta . Let \mathfrak{g}=LieG and \mathfrak{l}=LieL . We have
then the symmetric triple (\mathfrak{g}, \mathfrak{l}, \theta) . The simple symmetric space G/L is
said to be of K_{\epsilon} type, if \theta is an \epsilon involution of \mathfrak{g} . Now we go back to the
situation in 2. 2. Let \mathfrak{h}_{k}(1\leq k\leq r) be the subalgebra consisting of \tau_{k} zvfixed
elements in \mathfrak{g} . For the sake of convenience, we define \tau_{0} to be \tau . \tau_{k} ’s
(0\leq k\leq r) are \epsilon involution of \mathfrak{g} . Hence a symmetric coset space as-
sociated with the simple symmetric triple (\mathfrak{g}, \mathfrak{h}_{k}, \tau_{k}) , 0\leq k\leq r , is of
K_{\epsilon} -type.

\S 3. Construction of pseudo-hermitian symmetric spaces

3. 1. Let \mathfrak{g} be a real simple Lie algebra of hermitian type and \tau be a
Cartan involution of \mathfrak{g} . Let \mathfrak{g}=f+\mathfrak{p} be the Cartan decomposition by \tau as
in (2. 9). The complexification of \mathfrak{g} , f , \mathfrak{p} are denoted by \mathfrak{g}^{C} . f^{C} . \mathfrak{p}^{C} . respec-
tively. We extend \tau to the conjugation of \mathfrak{g}^{C} with respect to the compact
real form \mathfrak{g}_{u}=f+i\mathfrak{p} . Since \mathfrak{g} is of hermitian type, \mathfrak{p} has an ad E-invariant
complex structure. Let \mathfrak{p}^{\pm} be the \pm i-eigenspaces of \mathfrak{p}^{c} under that complex
structure. If we put \overline{\mathfrak{g}}_{\pm 1} :=\mathfrak{p}^{\pm} and \overline{\mathfrak{g}}_{0} :=f^{c} , then one can write \mathfrak{g}^{C} as a
GLA:

(3. 1) \mathfrak{g}^{C}=\overline{\mathfrak{g}}_{-1}+\overline{\mathfrak{g}}_{0}+\overline{\mathfrak{g}}_{1} .

Choose a Cartan subalgebra \mathfrak{h} of \mathfrak{g} contained in f . Let \Sigma be the root sys-
tem of \mathfrak{g}^{C} with respect to the Cartan subalgebra \mathfrak{h}^{C}(=the complexification
of \mathfrak{h} ). We identify \Sigma with a subset of the real part i\mathfrak{h} of \mathfrak{h}^{C} with respect
to the inner product (, ) on i\mathfrak{h} induced by the Killing form of \mathfrak{g}^{C} . Let
E\in\overline{\mathfrak{g}}_{0} be the characteristic element of the GLA (3. 1), and let \Sigma_{k}=\{\alpha\in\Sigma :
(\alpha, E)=k\} , k=0, \pm 1 . Then one has the decomposition:

(3.2) \Sigma=\Sigma_{-1}\cup\Sigma_{0}\cup\Sigma_{1} .

One can choose a linear order in \Sigma with respect to which the set +\Sigma of
positive roots in \Sigma satisfies ([8])
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(3.3) \Sigma_{1}\subset+\Sigma\subset\Sigma_{0}\cup\Sigma_{1}

For a root \alpha\in\Sigma we choose a root vector E_{a} in such a way that

(3.4) \tau E_{a}=-E_{-a}, [E_{a}, E_{-a}]=\alpha\vee,

where \alpha=2(\vee\alpha, \alpha)^{-1}\alpha . For a root \alpha\in^{+}\Sigma , we put

(3.5) X_{a}=E_{a}+E_{-a}, Y_{a}=-i(E_{a}-E_{-a}) .
\mathfrak{p} is spanned by those X_{a} and Y_{a} satisfying \alpha\in\Sigma_{1} . Let \Gamma=\{\beta_{1}, \cdots, \beta_{r}\}\subset\Sigma_{1}

be a maximal system of strongly orthogonal roots such that

(3.6) \theta=\beta_{1}>\beta_{2}>\cdots>\beta_{r} ,
(\beta_{j}, \beta_{j})=(\theta, \theta) , 1\leq j\leq r ,

where \theta\in\Sigma is the dominant root. Consider the subsets of \Gamma :
(3. 7) \Gamma_{k}=\{\beta_{1}, \cdots, \beta_{k}\} , 1\leq k\leq r , \Gamma_{0}=\emptyset .

Let G^{c}:=Ad\mathfrak{g}^{C} be the adjoint group generated by the Lie algebra \mathfrak{g}^{C} , and
put

(3.8) c_{\beta j}= \exp\frac{\pi i}{4}X_{\beta j} , c_{k}=c_{\beta_{1}}\cdots c_{\beta_{k}} , 1\leq k\leq r ,

c_{0}=1 , c=c_{r}.

Let \overline{\mathfrak{g}}_{\lambda}(k)=(Adc_{k}^{2})\overline{\mathfrak{g}}_{\lambda} , \lambda=0 , \pm 1 . Then we have the gradation of \mathfrak{g}^{C} :
(3.9) k \mathfrak{g}^{C}=\overline{\mathfrak{g}}_{-1}(k)+\overline{\mathfrak{g}}_{0}(k)+\overline{\mathfrak{g}}_{1}(k) , 0\leq k\leq r ,

whose characteristic element is
(3.10)_{k} E_{k}=(Ad c_{k}^{2})E , 0\leq k\leq r.

Consider the Z_{2}-reduction of the gradation (3. 9)_{k} :
(3. 11)_{k} \mathfrak{g}^{C}=\overline{\mathfrak{h}}_{k}+\overline{\mathfrak{m}}_{k} , 0\leq k\leq r ,

where \overline{\mathfrak{h}}_{k}=\overline{\mathfrak{g}}_{0}(k) and \overline{\mathfrak{m}}_{k}=\overline{\mathfrak{g}}_{-1}(k)+\overline{\mathfrak{g}}_{1}(k) . Then, by Lemma 2. 1, the char-
acteristic involution \eta_{k} of the Z_{2} GLA (3. 11)_{k} is given by

(3. 12)_{k} \eta_{k}=Ad\exp\pi iE_{k} ,

where \eta_{k}=1 on \overline{\mathfrak{h}}_{k} and \eta_{k}=-1 on \overline{\mathfrak{m}}_{k} .

LEMMA 3. 1. Let 0\leq k\leq r. Then the element iE_{k}\in \mathfrak{g}^{C} lies in \mathfrak{g} . In
particular, the conjugation \sigma of \mathfrak{g}^{C} with respect to \mathfrak{g} is a grade-reversing
involution of the GLA(3.9)_{k} .
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PROOF. It is known by Kor\’anyi-Wolf [13] that E_{0} can be written as

(3. 13) E=E_{0}^{+}+ \frac{1}{2}\sum_{j=1}^{r}\beta_{j}^{v} ,

where E_{0}^{+}\in i\mathfrak{h} is orthogonal to the subspace \sum_{j=1}^{r}R\beta_{j}^{v} with respect to (, ) .

We have ([13])

(3. 14) Ad c_{\beta_{j}} : X_{\beta j}\mapsto X_{\beta_{j}} , Y_{\beta_{j}}\mapsto-\beta_{j}^{v} , \beta_{j}^{v}\mapsto Y_{\rho_{J}} .

Therefore we have E_{k}=E- \sum_{j=1}^{k}\beta_{j}^{v} , which implies that E_{k}\in i\mathfrak{h} . Therefore
\sigma E_{k}=-E_{k} , or equivalently, \sigma is grade-reversing. q. e . d .

LEMMA 3. 2. ( i) If we put \mathfrak{h}_{k}=\overline{\mathfrak{h}}_{k}\cap \mathfrak{g} and \mathfrak{m}_{k}=\overline{\mathfrak{m}}_{k}\cap \mathfrak{g} , then \mathfrak{g} can
be written as a Z_{2}GLA

(3. 15)_{k} \mathfrak{g}=\mathfrak{h}_{k}+\mathfrak{m}_{k}, 0\leq k\leq r,

which is a real form of the Z_{2^{-}}GLA(3.11)_{k} . ( ii)\eta_{k} in (3. 12)_{k} is an
inner characteristic involution of \mathfrak{g} satisfying \eta_{k}|_{\mathfrak{h}_{k}}=1 and \eta_{k}|_{\mathfrak{m}k}=-1 . (iii)
iE_{k} lies in \mathfrak{h}_{k}, and \mathfrak{h}_{k} coincides with the centralizer c(iE_{k}) of iE_{k} in \mathfrak{g} .

PROOF. It follows from (3. 12)_{k} and Lemma 3. 1 that \sigma commutes
with \eta_{k} . Let X\in \mathfrak{g} . One can write X=X_{1}+X_{2} , where X_{1}\in\overline{\mathfrak{h}}_{k} and X_{2}\in\overline{\mathfrak{m}}_{k} .
Then \overline{\mathfrak{h}}_{k} and \overline{\mathfrak{m}}_{k} are stable under \sigma . Therefore \sigma X=X implies that \sigma X_{i}=

X_{i}(i=1,2) , from which (3. 15)_{k} follows. Note that \mathfrak{h}_{k} and \mathfrak{m}_{k} are real
forms of \overline{\mathfrak{h}}_{k} and \overline{\mathfrak{m}}_{k} , respectively. By Lemma 3. 1, \eta_{k} is an inner involu-
tion of \mathfrak{g} . Since E_{k} is the characteristic element of the GLA (3. 9)_{k},\overline{\mathfrak{h}}_{k} is
the centralizer of iE_{k} in \mathfrak{g}^{C} . Also we have seen E_{k}\in i\mathfrak{h} , and hence iE_{k}\in \mathfrak{h}_{k} .
(iii) is a direct consequence of this fact. q . e . d .

3. 2. Let \mathfrak{h}^{-}\subset \mathfrak{h} be the real span of i\beta_{1} , \cdots i\beta_{r} , and let \mathfrak{h}^{+} be the orth-
ogonal complement of \mathfrak{h}^{-} in \mathfrak{h} with respect to the Killing form of \mathfrak{g} . One
has \mathfrak{h}=\mathfrak{h}^{+}+\mathfrak{h}^{-} Let \omega be the orthogonal projection of i\mathfrak{h} onto i\mathfrak{h}^{-} with
respect to ( . ) . Then it is well-known (Moore [15]) that

(3. 16) \{

\omega(\Sigma_{1})=\{(\beta_{i}+\beta_{j})/2 : 1\leq i\leq j\leq r\} ,
\omega(^{+}\Sigma_{0})-(0)=\{(\beta_{i}-\beta_{j})/2 : 1\leq i<j\leq r\} ,

or
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(3. 17) \{

\omega(\Sigma_{1})=\{_{\beta_{i}/2\cdot 1\leq i\leq r}(\beta_{i}+.\beta_{j})/2.\cdot 1\leq i\leq j\leq r\} ,

\omega(^{+}\Sigma_{0})-(0)=\{_{\beta_{i}/2\cdot 1\leq i\leq r}(\beta_{i}-.\beta_{j})/2.\cdot 1\leq i<j\leq r\} ,

where +\Sigma_{0}=\Sigma+\cap\Sigma_{0} . Let Q denote the real span of Y_{\beta_{1}} , \cdots . Y_{\beta\gamma} in \mathfrak{p} . Then
Q is a maximal abelian subspace of \mathfrak{p} , and \overline{Q} :=\mathfrak{h}^{+}+\mathfrak{a} is a Cartan subalge-
bra of \mathfrak{g} . Let \overline{\Delta} be the root system of \mathfrak{g}^{C} with respect to the Cartan subal-
gebra \overline{Q}^{C} ( =the complexification of \overline{Q}). \overline{\Delta} is identified with a subset of
the real part i\mathfrak{h}^{+}+\mathfrak{a} of \mathfrak{a}-cw\overline{l}th respect to the Killing form of \mathfrak{g} . Let \tilde{\omega} be
the orthogonal projection of i\mathfrak{h}^{+}+\mathfrak{a} onto Q, and let \Delta=\tilde{\omega}(\overline{\Delta})-(0) . Then
\Delta is the root system of \mathfrak{g} with respect to (l , which was chosen in \S 2. As is
well-known, if we put

(3. 18) x_{j}= \frac{1}{4}(\theta, \theta)Y_{\beta_{j}} , 1\leq j\leq r ,

then \Delta is given by (2. 10) or (2. 11). Therefore, if we define \gamma_{1} , \cdots . \gamma_{r} as
in (2. 10) or (2. 11), then \Pi:=\{\gamma_{1}, \cdots-\gamma_{r}\} is a fundamental system for \Delta

which is of type C_{r} or BC_{r}. In both cases, the dominant root \theta in \Delta is
given by 2x_{1} (cf. Lemma 2. 5). Using (3. 6) and (3. 14), we have
(Ad c) (\theta)=\theta . Hence we can rewrite (3. 18) as

(3. 19) x_{j}= \frac{1}{4}(_{t}9, \theta)Y_{\beta_{j}} , 1\leq j\leq r .

As in 2. 2, \{Z_{1^{ }},\cdots _{?} Z_{r}\} will denote the basis of Q dual to \Pi .

LEMMA 3. 3. If II is of type BC_{r}, then we have c_{k}^{4}=\exp\pi iZ_{k}, 1\leq k\leq

r. If II is of type C_{r}, then we have c_{k}^{4}=\exp\pi iZ_{k}, 1\leq k\leq r-1 , and c_{r}^{4}=

exp 2\pi iZ_{r} .

Proof. Let

(3.20) h=(\begin{array}{ll}1 00 -1\end{array}) , e_{+}=(\begin{array}{ll}0 10 0\end{array}) , e_{-}=(\begin{array}{ll}0 01 0\end{array}) .

Then an easy computation shows that the equality

(3. 21) ( \exp\frac{\pi i}{4} (e_{+}+e_{-}))^{4}=\exp\pi ih

is valid in SL(2, C) . By using this, we have

(3.22) c_{\beta_{j}}^{4}=\exp\pi i\check{\beta}_{j} , 1\leq j\leq r.
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Hence it follows from (3. 14) and (3. 19) that

(3.23) c_{k}^{4}=cc_{k}^{4}c^{-1}=c (exp \pi i\sum_{j=1}^{k}\beta_{j}^{v}) c^{-1}

= \exp\pi i\sum_{j=1}^{k} (Ad c) \beta_{j}^{v}=\exp\pi i\sum_{j=1}^{k}Y_{\beta_{j}}

= \exp\pi i\frac{4}{(\theta,\theta)}\sum_{j=1}^{k}x_{j} .

The lemma now follows from Lemma 2. 5 and (3. 23). q. e . d .

LEMMA 3. 4. Suppose that II is of type BC_{r} or C_{r} . Let \epsilon_{k}(1\leq k\leq r)

be the characteristic involution for the gradation of \mathfrak{g} with Z_{k} as its charac-
teristic element. If 1\leq k\leq r-1 , then the characteristic involution \eta_{k} of the
Z_{2}- GLA(3.15)_{k} coincides with the \epsilon_{k}- modifification \tau k of the Cartan \iota^{-}nvolu-

tion \tau in 3. 1. \eta_{r} coincides with \tau_{r} or \tau, according as II is of type BC_{r} or
C_{r}, respectively.

PROOF. We extend \sigma and \tau to the involutive automorphisms of G^{c} ,
denoted again by \sigma and \tau . Then we have
(3.24) \tau(c_{\beta_{f}})=c_{\beta_{j}} , \sigma(c_{\beta_{j}})=c_{\beta_{j}}^{-1} , 1\leq j\leq r.

Noting that the conjugations \sigma and \tau of \mathfrak{g}^{C} commute with each other, we
see easily that

(3.25) \sigma\tau=\tau\sigma=m=Ad\exp\pi iE .

Therefore the equality \tau=Ad\exp\pi iE is valid on \mathfrak{g} . By (3. 25) and (3. 24)
we have

(3.26) (Adexp -\pi iE) (Ad c_{k}^{2}) (Adexp \pi iE) =(\tau\sigma) (Ad c_{k}^{2}) (\tau\sigma)^{-1}

=Ad(\tau\sigma(c_{k}^{2}))=Adc_{k}^{-2} .

Consequently, from (3. 12)_{k} , (3. 10)_{k} and Lemma 3. 3 it follows that on \mathfrak{g}

(3.27) \eta_{k}=Ad\exp\pi iE_{k}=Ad\exp\pi i((Ad c_{k}^{2})E)

=Ad(c_{k}^{2}(\exp\pi iE)c_{k}^{-2})=(Adc_{k}^{2}) (Adexp \pi iE) (Ad c_{k}^{2})^{-1}

=(Adc_{k}^{4}) (Adexp \pi iR) =(Adc_{k}^{4})\tau.

By Lemma 3. 3 and (2. 6), the last expression is equal to
(Adexp 2\pi iZ) \tau=\epsilon_{r}^{2}\tau=\tau , provided that II is of type C_{r} and k=r. Other-
wise, by Lemma 3. 3, it is equal to \epsilon_{k}\tau=\tau_{k} . q . e . d .

3. 3. In 3. 2, we constructed simple symmetric triples (\mathfrak{g}, \mathfrak{h}_{k,\eta_{k}}) , 0\leq k\leq r.
Note that (\mathfrak{g}, \mathfrak{h}_{0,m})=(\mathfrak{g}, f, \tau) . Let G:=Ad\mathfrak{g} be the adjoint group generated
ed by \mathfrak{g} . Let H_{k}(0\leq k\leq r) be the centralizer of iE_{k}(\in \mathfrak{h}_{k}) in G. Lie H_{k}=
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\mathfrak{h}_{k} holds. Let us consider the coset spaces

(3.28) M_{k}=G/Hk 0\leq k\leq r.

Lemma 3. 5. The subgroup H_{k}(0\leq k\leq r) is connected. The space
M_{k}=G/H_{k}(0\leq k\leq r) is a simply connected simple symmetric coset space
of K_{\epsilon}- type .

PROOF. Let \tilde{G} be the universal covering group of G and \pi be the
covering homomorphism of \tilde{G} onto G. Then one can write M=G/H_{k}=
\tilde{G}/\pi^{-1}(H_{k}) . Let \tilde{C}(iE_{k}) be the centralizer of iE_{k} in \tilde{G}. It follows easily
that \pi^{-1}(H_{k})=\tilde{C}(iE_{k}) . Let \tilde{\eta}_{k} be the involutive automorphism of \tilde{G}

defined by \tilde{\eta}_{k}(a)=(\exp\pi iE_{k})a(\exp-\pi iE_{k}) , a\in\tilde{G}. \tilde{\eta}_{k} induces on \mathfrak{g} the
involution \eta_{k} . We see easily that \tilde{C}(iE_{k}) is contained, as an open sub-
group, in the subgroup \tilde{G}_{\eta k} of \tilde{\eta}_{k} -fixed elements in \tilde{G}. \tilde{G}_{\eta k} is connected,
by S. Koh [12]. Therefore \tilde{C}(iE_{k}) is connected, and so we have
\pi(\tilde{C}(iE_{k}))=H_{k} , which implies that H_{k} is connected. \eta_{k} extends to an
involutive automorphism of G, denoted again by \eta_{k} . It satisfies \pi\tilde{\eta}_{k}=\eta_{k}\pi .
Thus H_{k} is an open subgroup of the subgroup of \eta_{k} -fixed elements in G.
Hence M_{k}=G/H_{k}(=\tilde{G}/\tilde{C}(iE_{k})) is simply connected simple symmetric
space associated with the symmetric triple (\mathfrak{g}, \mathfrak{h}_{k}, \eta_{k}) . On the other hand,
by Lemma 3. 4, \eta_{k} is an \epsilon -involution and hence G/H_{k} is of K_{\epsilon}-type. q . e . d .

Let us consider the automorphism Adexp \frac{\pi}{2} (-iE_{k}) , 0\leq k\leq r , of \mathfrak{g} ,

which leaves \mathfrak{m}_{k} stable. Consider the linear endomorphism on \mathfrak{m}_{k}

(3.29) j_{k}= Ad_{\mathfrak{m}k}\exp\frac{\pi}{2} (-iE_{k}) , 0\leq k\leq r.

We denote by ( . ) the restriction of the Killing form of \mathfrak{g} to \mathfrak{m}_{k} , which is
a nondegenerate inner product on \mathfrak{m}_{k} . It is easy to see that j_{k} satisfies the
followings:

(3.30) j_{k}^{2}=-1 ,
(3.31) [j_{k}, Ad_{\mathfrak{m}k}a]=0 , a\in H_{k} ,
(3.32) (j_{k}X, j_{k}Y)=(X, Y) , X_{r}Y\in \mathfrak{m}_{k} .

THEOREM 3. 6. Let G be the adjoint group of a real simple Lie alge-
bra \mathfrak{g} of hermitian type of real rank r, and H_{k}(0\leq k\leq r) be the central-
izer in G of the element iE_{k}\in \mathfrak{g} (cf. (3. 10) ). Then the coset space M_{k}=

G/H_{k}(0\leq k\leq r) is a simply connected simple irreducible pseudO-hermitian
symmelric space of K_{\epsilon} -type. Conversely every simply connected simple ir-
reducible pseudO-hermitian symmetric space of K_{\epsilon} -type is obtained in this
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manner. Furthermore, if the restricted root system of \mathfrak{g} is of type C_{r}, then

we have the isomorphism M_{k} \simeq M_{r-k}(0\leq k\leq[\frac{r}{2}]) as pseudO-hermitian sym-

metric spaces.

PROOF. In order to prove the first assertion, in view of Lemma 3. 5,
it remains to show that the symmetric space M_{k} is pseud0-hermitian and
irreducible. By identifying \mathfrak{m}_{k} with the tangent space to M_{k}=G/H_{k} at the
origin, j_{k} extends to a G invariant almost complex structure J_{k} on M_{k} (cf.
(3. 30), (3. 31) ) . At the same time the inner product (, ) extends to a
G invariant pseud0-hermitian metric on M_{k} (cf. (3. 32)). M_{k} is thus
pseud0-hermitian symmetric. Moreover, \mathfrak{m}_{k} has an invariant complex
structure j_{k} , and \mathfrak{g} is never a complex Lie algebra. Hence, by a result of
Koh (Theorem 7 [12]), M_{k} is irreducible. Considering (2. 6)-(2.8) and
comparing our \epsilon_{1} , \cdots , \epsilon_{r} in Lemma 3. 4 with the classification of signatures
of roots for simple Lie algebras (Oshima-Sekiguchi [18]), we see that \eta 0 ,
\ldots

\eta_{r} exhaust all the \epsilon -involutions for \mathfrak{g} which correspond to pseud0-
hermitian symmetric spaces (cf. Berger [3]). This implies the second
assertion. Next suppose that the restricted root system of \mathfrak{g} is of type C_{r}.
Let K be the lytic subgroup of G generated by f in 3. 1. Note that
K=H_{0} . Then, by Lemmas 2. 6 and 3. 4, there exists an element a\in N_{K}(\mathfrak{a})

such that (Ad a)^{-1}\eta_{k} (Ad a) =\eta_{r-k} for 0\leq k\leq r (Note that \eta_{0}=\eta_{r}=\tau).

Hence we have (Ad a)^{-1}j_{k} (Ad a) =j_{r-k} and (Ad a) \mathfrak{h}_{k}=\mathfrak{h}_{r-k} , and conse-
quently the two pseud0-hermitian symmetric spaces M_{k} and M_{r-k} are
isomorphic. q. e . d .

3. 4. Let U_{k}(0\leq k\leq r) be the normalizer of \overline{\mathfrak{g}}_{1}(k) in G^{c}. Then we can
write U_{k}=C^{C}(iE_{k})\exp\overline{\mathfrak{g}}_{1}(k) (sem\overline{l} -direct), where C^{C}(iE_{k}) is the central-
izer of iE_{k}\in \mathfrak{g}^{C} in G^{c}. U_{k} is connected and Lie U_{k}=\overline{\mathfrak{g}}_{0}(k)+\overline{\mathfrak{g}}_{1}(k) . The
coset space M^{*}=G^{c}/U_{0} is a compact irreducible hermitian symmetric
space dual to the bounded symmetric domain M_{0}=G/H_{0} . G is viewed as
a subgroup of G^{c}. The following proposition is a version of a result of
Takeuchi [20].

PROPOSITION 3. 7. The pseudO-hermitian symmetric space M_{k}

(0\leq k\leq r) is holomo\uparrow phically imbedded into M^{*} as the open G-Orbit
through the point c_{k}^{2}o\in M_{f}^{*} where 0 denotes the origin of the coset space
M^{*}

PROOF. Let us define a smooth map \varphi_{k} of M_{k} to M^{*} by putting
\varphi_{k}(gH_{k})=gc_{k}^{2}o , g\in G. Choose an element a\in G\cap U_{k} , and write it in the
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form a=b exp X, where b\in C^{C}(iE_{k}) , X\in\overline{\mathfrak{g}}_{1}(k) . Since any element in G

is left fixed by the involution \sigma of G^{c} , we have b exp X=\sigma(b)\exp\sigma(X) ,
or
(3.33) exp \sigma(X)=(\sigma(b)^{-1}b)\exp X.
C^{c}(iE_{k}) is stable under \sigma . \sigma is grade-reversing for the gradation (3. 9)_{k}

(cf. Lemma 3. 1). Therefore the left-hand side of (3. 33) lies in
exp \overline{\mathfrak{g}}_{-1}(k) , while the right-hand side lies in U_{k} . Since exp \overline{\mathfrak{g}}_{-1}(k)\cap U_{k}=

(1) , we get X=0, and so a=b\in C^{C}(iE_{k})\cap G=H_{k} . Thus we have proved
G\cap U_{k}=H_{k} , which implies that \varphi_{k} is injective. That \varphi_{k} is open is easily
seen. Under the identification of the tangent space T_{0}(M^{*}) at 0 with
\overline{\mathfrak{g}}_{-1}(0) , the tangent space at c_{k}^{2}o to M^{*} is identified with \overline{\mathfrak{g}}_{-1}(k) . On the
other hand \overline{\mathfrak{g}}_{-1}(k) is the i-eigenspace of the operator j_{k} on the
complexification \mathfrak{m}_{k}^{c}=\overline{\mathfrak{g}}_{-1}(k)+\overline{\mathfrak{g}}_{1}(k) , and hence \mathfrak{m}_{k} with complex structure
j_{k} is naturally C-isomorphic to the complex vector space \overline{\mathfrak{g}}_{-1}(k) . From
this we can conclude that the differential (\varphi_{k})_{*} at the origin of M_{k} is
C-linear, which is equivalent to saying that \varphi_{k} is holomorphic. q . e . d.

Later on we will identify M_{k}(0\leq k\leq r) with its \varphi_{k} -image, and so M_{k}

is viewed as an open submanifold of M^{*} .

\S 4. The Ad G_{0}-orbit decomposition of \mathfrak{g}_{-2}

4. 1. Let \mathfrak{g} be a real simple Lie algebra of hermitian type of real rank r ,
and let \tau be a Cartan involution of \mathfrak{g} . We shall preserve the situation in
\S 3. For a subset \Phi\subset\Sigma , we denote by -\Phi the set of roots -\alpha , where
\alpha\in\Phi . First of all we wish to construct the gradation of \mathfrak{g}^{C} whose charac-

teristic element is Z=\sum_{j=1}^{r}\beta_{j}^{v} . For an integer k , let

(4. 1) \overline{\Sigma}_{k}=\{\alpha\in\Sigma:(\alpha, Z)=k\} .

By using (3. 16) and (3. 17) we have

(4.2) \Sigma=\bigcup_{k=-2}^{2}\Sigma_{k}\sim ,

where



228 S. Kaneyuki

(4.3) \tilde{\Sigma}_{0}= { \alpha\in\Sigma_{0} : \omega(_{\alpha})=0 or \omega(_{\alpha})=\frac{1}{2}(\beta_{i}-\beta_{j}) , i\neq j},

\overline{\Sigma}_{1}=\{_{\alpha}\in+\Sigma:\omega(\alpha)=\frac{1}{2}\beta_{i}, 1\leq i\leq r\} ,

\overline{\Sigma}_{2}=\{_{\alpha}\in\Sigma_{1} _{:} _{\omega(\alpha)=\frac{1}{2}(\beta_{i}+\beta_{j})} ,

\tilde{\Sigma}_{-k}=-\tilde{\Sigma}_{k} , k=1,2 .

We denote the root space (\subset \mathfrak{g}^{C}) for \alpha\in\Sigma by \mathfrak{g}^{a} . Let
(4.4)

\tilde{\mathfrak{g}}_{0}=\mathfrak{h}^{C}+\sum_{a\in\Sigma_{0}}\mathfrak{g}^{a} .

\tilde{\mathfrak{g}}_{k}=\sum_{a\in\Sigma_{k}}\mathfrak{g}^{a}-
k=\pm 1 , \pm 2 .

Then we get the gradation of \mathfrak{g}^{C}

(4.5) \mathfrak{g}^{C}=\tilde{\mathfrak{g}}_{-2}+\tilde{\mathfrak{g}}_{-1}+\tilde{\mathfrak{g}}_{0}+\tilde{\mathfrak{g}}_{1}+\tilde{\mathfrak{g}}_{2} ,

with Z as its characteristic element. If the restricted fundamental system
II is of type C_{r} , then \tilde{\Sigma}_{1}=\overline{\Sigma}_{-1}=\emptyset , in other words, \tilde{\mathfrak{g}}_{1}=\tilde{\mathfrak{g}}_{-1}=(0) .

Next we wish to recombine the gradation so as to get the gradation
(3. 1). Define four subsets of \Sigma by

(4.6) \tilde{\Sigma}_{-1}^{+}=\Sigma_{-1}\cap\tilde{\Sigma}_{-1} , \tilde{\Sigma}_{-1}^{-}=\Sigma_{0}\cap\tilde{\Sigma}_{-1} ,
\overline{\Sigma}_{1}^{+}=\Sigma_{0}\cap\tilde{\Sigma}_{1} , \tilde{\Sigma}_{1}^{-}=\Sigma_{1}\cap\overline{\Sigma}_{1} .

Then we have

(4. 7) \overline{\Sigma}_{1}=\tilde{\Sigma}_{1}^{+}\cup\overline{\Sigma}_{1}^{-} , \tilde{\Sigma}_{-1}=\tilde{\Sigma}_{-1}^{+}\cup\tilde{\Sigma}_{-1}^{-} .

Also we have

(4.8) \Sigma_{1}=\tilde{\Sigma}_{2}\cup\overline{\Sigma}_{1}^{-} . \Sigma_{-1}=\overline{\Sigma}_{-2}\cup\overline{\Sigma}_{-1}^{+} , \Sigma_{0}=\overline{\Sigma}_{-1}^{-}\cup\overline{\Sigma}_{0}\cup\overline{\Sigma}_{1}^{+} .

Let \tilde{\mathfrak{g}}_{\pm 1}^{\epsilon} be the subspaces of \mathfrak{g}^{C} spanned by the root vectors E_{a} for \alpha\in\overline{\Sigma}_{\pm 1}^{\epsilon} ,
where the index \epsilon always takes the values + and -. Then we have from
(4. 7) and (4. 8)

(4.9) \tilde{\mathfrak{g}}_{1}=\tilde{\mathfrak{g}}_{1}^{+}+\tilde{\mathfrak{g}}_{1}^{-} , \tilde{\mathfrak{g}}_{-1}=\tilde{\mathfrak{g}}_{-1}^{+}+\tilde{\mathfrak{g}}_{-1}^{-} ,
(4. 10) \mathfrak{g}^{c_{=(\tilde{\mathfrak{g}}_{-2}+\tilde{\mathfrak{g}}_{-1}^{+})+(\tilde{\mathfrak{g}}_{-1}^{-\dagger\tilde{\mathfrak{g}}_{0}+\tilde{\mathfrak{g}}_{1}^{+})+(\tilde{\mathfrak{g}}_{1}^{-}+\tilde{\mathfrak{g}}_{2})}}} ,
(4. 11) \overline{\mathfrak{g}}_{0}=\tilde{\mathfrak{g}}_{-1}^{-}+\tilde{\mathfrak{g}}_{0}+\tilde{\mathfrak{g}}_{1}^{+} , \overline{\mathfrak{g}}_{-1}=\tilde{\mathfrak{g}}_{-2}+\tilde{\mathfrak{g}}_{-1}^{+} , \overline{\mathfrak{g}}_{1}=\tilde{\mathfrak{g}}_{1}^{-}+\overline{\mathfrak{g}}_{2} ,

Note that \tilde{\mathfrak{g}}_{1}^{\epsilon} and \tilde{\mathfrak{g}}_{-1}^{\epsilon} are abelian subalgebras, and by the same arguments
as in 4. 3 in [7], we see that those four subalgebras have an equal dimen-
sion. (3. 13) implies that 2E_{0}^{+}=2E-Z , and hence it follows that the two
decompositions (4. 9) are the decompositions into the (\pm i) -eigenspaces
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under the operator ad I , where I=-2iE_{0}^{+}: ad I is equal to \epsilon i1 on \tilde{\mathfrak{g}}_{\pm 1}^{\epsilon} .
4. 2. For a subalgebra (or a subspace) \mathfrak{o} of \mathfrak{g} , we write c\mathfrak{h} for (Ad c) \mathfrak{o} .
Since Y_{\beta_{j}}\in Q\subset \mathfrak{p}(1\leq j\leq r) , it follows from (3. 14) that Z lies in c\mathfrak{g} . Let
\rho=(Adc)^{2}=AdC_{-}^{2} Then the conjugation of \mathfrak{g}^{C} with respect to the real
form c\mathfrak{g} is given by \rho\sigma (cf. (3. 24)). Consequently \rho\sigma(Z)=Z and so \rho\sigma is
grade-preserving for the gradation (4. 5). Also from (4. 5) we obtain the
following gradation of c\mathfrak{g} with Z as its characteristic element:
(4. 12) c\mathfrak{g}=\mathfrak{g}_{-2}+\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}+\mathfrak{g}_{2} , \mathfrak{g}_{k}=\tilde{\mathfrak{g}}_{k}\cap^{c}\mathfrak{g}=\{X\in\tilde{\mathfrak{g}}_{k} : _{\beta}\sigma X=X\} , -2\leq k\leq 2 .

Note that if II is of type C_{r} , then \mathfrak{g}_{-1}=\mathfrak{g}_{1}=(0) . That \tilde{\mathfrak{g}}_{k} (-2\leq k\leq 2) is
stable under \rho\sigma implies that \mathfrak{g}_{k} is a real form of \tilde{\mathfrak{g}}_{k} .

LEMMA 4. 1. ad_{\mathfrak{g}_{\epsilon 1}} I is a complex structure on \mathfrak{g}_{\epsilon 1} . In particular \mathfrak{g}_{-1} is
naturally C-linearly isomorphic to \tilde{\mathfrak{g}}_{-1}^{+} .

PROOF. I=-2iE_{0}^{+} lies in \mathfrak{g} and hence \sigma(I)=I . On the other hand
E_{0}^{+}\in i\mathfrak{h}^{+} and Ad c is equal to the identity on i\mathfrak{h}^{+} . Therefore we have
\rho\sigma(I)=\rho(I)=(Adc)^{2}(-2iE_{0}^{+})=-2iE_{0}^{+}=I , which implies that I lies in c\mathfrak{g} .
Since I commutes with Z, it follows that I lies in \mathfrak{g}_{0} and that ad I leaves
each subspace \mathfrak{g}_{k} stable. The complexification \mathfrak{g}_{\epsilon 1}^{C} is equal to \tilde{\mathfrak{g}}_{\epsilon 1}=\tilde{\mathfrak{g}}_{\epsilon 1}^{+}+\tilde{\mathfrak{g}}_{\epsilon 1}^{-} ,
on which (ad I)^{2}=-1 holds. This shows that (ad I)^{2}=-1 on \mathfrak{g}_{\epsilon 1} . q . e . d .

LEMMA 4. 2. The conjugation \sigma is grade-reversing for the gradation
(4. 5). Moreover \sigma interchanges \tilde{\mathfrak{g}}_{-1}^{\epsilon} with \tilde{\mathfrak{g}}_{1}^{-\epsilon_{3}} where -\epsilon denotes – or +
according as \epsilon=+or -, respectively.

PROOF. The fact Z\in i\mathfrak{h}^{-} implies that \sigma(Z)=- Z. Hence the first
assertion follows. We have thus at least \sigma(\tilde{\mathfrak{g}}_{-1}^{\epsilon})\subset\tilde{\mathfrak{g}}_{1} . Let X\in\tilde{\mathfrak{g}}_{1}^{\underline{\epsilon}} . Then
[I, \sigma(X)]=[\sigma(I), \sigma(X)]=\sigma[I. X]=\sigma(\epsilon iX)=-\epsilon iX , which shows that
\sigma(X)\in\tilde{\mathfrak{g}}_{-1}^{-\epsilon} . q . e . d .

Let \tau be the Cartan involution of \mathfrak{g} given in 3. 1. Recall that we have
extended \tau to the conjugation of \mathfrak{g}^{C} with respect to the compact real form
\mathfrak{g}_{u}=f+i\mathfrak{p} . Since \tau commutes with Ad c (cf. (3. 24)), c\mathfrak{g} admits the Cartan
decomposition by \tau :
(4. 13) cc\mathfrak{g}=f+^{C}\mathfrak{p} .

The fact that \tau Z=-Z (cf. (3. 4)) implies that \tau is also grade-reversing
for the gradation (4. 12). Therefore we have the Cartan decomposition of
\mathfrak{g}_{0} by \tau :



230 S. Kaneyuki

(4. 14) \mathfrak{g}_{0}=f_{0}+\mathfrak{p}_{0} ,

where f_{0}=\mathfrak{g}_{0}\cap^{c}f and \mathfrak{p}_{0}=\mathfrak{g}_{0}\cap^{c}\mathfrak{p} .

4. 3. We consider the two graded subalgebras of \mathfrak{g}^{C} :

(4. 15) c\mathfrak{g}_{ev}=\mathfrak{g}_{-2}+\mathfrak{g}_{0}+\mathfrak{g}_{2} ,
\mathfrak{g}’=\mathfrak{g}_{-2}+\mathfrak{g}_{\acute{0}}+\mathfrak{g}_{2} ,

where \mathfrak{g}_{\acute{0}}=[\mathfrak{g}_{-2}, \mathfrak{g}_{2}] . Let \mathfrak{n} be the ideal of \mathfrak{g}_{0} formed by elements X\in \mathfrak{g}_{0} such
that (ad X) \mathfrak{g}_{-2}=0 .

LEMMA 4. 3. (Tanaka [22]). \mathfrak{g}’ is simple and

(4. 16) c\mathfrak{g}_{ev}=\mathfrak{g}’\oplus \mathfrak{n} (direct sum).

Therefore one has

(4. 17) \mathfrak{g}_{0}=\mathfrak{g}_{\acute{0}}\oplus \mathfrak{n} (direct sum).

The Cartan involution \tau of c\mathfrak{g} leaves \mathfrak{g}’ stable, and its restriction to \mathfrak{g}’ is
again a (grade-reversing) Cartan involution of \mathfrak{g}’ Let f’=^{c}f\cap \mathfrak{g}’ and f_{\acute{0}}=

c\xi\cap \mathfrak{g}_{\acute{0}} , which are maximal compact subalgebras of \mathfrak{g}’ and \mathfrak{g}_{\acute{0}} respectively.

Set Y_{0}= \sum_{j=1}^{r}Y_{\beta_{j}} . The following lemma is essentially due to Kor\’anyi-Wolf

[13]. But we give another proof in our context.

LEMMA 4. 4. The element iY_{0} is a central element of f’ . and f’ is the
centralizer c_{\mathfrak{g}’}(iY_{0}) of iY_{0} in \mathfrak{g}’ In particular the simple GLA\mathfrak{g}’ is of
hermitian type.

PROOF. By (3. 14) we have (Ad c) Z=Y_{0} . Since iZ\in \mathfrak{h}^{-}\subset f , iY_{0} lies
in cf. The inclusion E_{\pm\beta j}\in\tilde{\mathfrak{g}}_{\pm 2} implies Y_{0}\in\tilde{\mathfrak{g}}_{-2}+\tilde{\mathfrak{g}}_{2} , and hence iY_{0}\in \mathfrak{g}^{\prime C} .
Thus iY_{0}\in \mathfrak{g}^{\gamma c}\cap^{c}f=f’ . Recall that \xi^{C} is the centralizer c_{\mathfrak{g}^{C}}(E) . We have

(Ad c) E=( Ad c)(E_{0}^{+}+\frac{1}{2}Z)=E_{0}^{+}+\frac{1}{2} (Ad c) Z=E_{0}^{+}+\frac{1}{2}Y_{0} , which implies

that (Ad c ) fc=c_{\mathfrak{g}^{C}}(Eo++\frac{1}{2}Y_{0}) . Hence f^{rC}=\mathfrak{g}^{rC}\cap(^{c}f)c=c_{\mathfrak{g}’}C(Eo++\frac{1}{2}Y_{0}) .

By virtue of the equality 2E_{0}^{+}=2E-Z , it follows that

(4. 18) [E_{0}^{+c},\mathfrak{g}_{ev}]=0 .

Therefore f^{\prime c}=c_{\mathfrak{g}^{\prime C}}(iY_{0}) and consequently f’=c_{\mathfrak{g}’}(iY_{0}) . q . e . d.

By Lemma 4. 3, we see that \mathfrak{n} is the centralizer of \mathfrak{g}’ in c\mathfrak{g}_{ev} . On the
other hand, iE_{0}^{+} lies in cc_{\mathfrak{g}}(Z)=\mathfrak{g}_{0} . Hence, from (4. 18) we have
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(4.19) iE_{0}^{+}\in \mathfrak{n} .

LEMMA 4. 5. The Cartan involution \tau|_{c_{\mathfrak{g}}} of c\mathfrak{g} is given by Adexp (\pi i

(E_{0}^{+}+ \frac{1}{2}Y_{0})) . The Cartan involution \tau|_{\mathfrak{g}’} of \mathfrak{g}’ is given by Adexp \frac{\pi i}{2}Y_{0} .

PROOF. By (3. 24) and (3. 25) it follows that
\tau|_{c_{\mathfrak{g}}}=(Adc)(\tau|_{\mathfrak{g}}) (Ad c)^{-1}=(Adc) Adexp \pi iE) (Ad c)^{-1}

=Ad\exp\pi i ((Ad c) (E_{0}^{+}+ \frac{1}{2}Z) ) = Ad\exp\pi i(E_{0}^{+}+\frac{1}{2}Y_{0}) .

The second assertion follows from this and (4. 18). q . e . d .

LEMMA 4. 6. 1) f_{0}=f_{\acute{0}}\oplus \mathfrak{n} (direct sum). 2) The Cartan decomposi-
tion of \mathfrak{g}_{\acute{0}} by \tau is given by

(4.20) \mathfrak{g}_{\acute{0}}=f_{\acute{0}}+\mathfrak{p}_{0} .

PROOF. By the definition, Y_{0} lies in \mathfrak{g}^{rC} . Hence, by (4. 16) we have

(4.21) [ Y_{0}, \mathfrak{n}]=0 .

Let X\in \mathfrak{n} . Then, by Lemma 4. 5,

\tau X=X+\pi i([E_{0}^{+}, X]+\frac{1}{2}[ Y_{0}, X])+\cdots .

By (4. 18) we have [E_{0}^{+}, X]\in[E_{0}^{+}, \mathfrak{n}]=(0) . Hence, from (4. 25) it follows
that \tau is the identity on \mathfrak{n} . This implies that \mathfrak{n}\subset f_{0} . (4. 20) is an immedi-
ate consequence of the first assertion. q . e . d .

LEMMA 4. 7. i\mathfrak{h}^{-} is a maximal abelian subspace of c\mathfrak{p} contained in \mathfrak{p}_{0} .

PROOF. The subspace Q spanned by Y_{\beta_{1}} , \cdots Y_{\beta r} is a maximal abelian
subspace of \mathfrak{p} . Since i\mathfrak{h}^{-} is spanned by \beta_{1}^{v} , \cdots , \beta_{r}^{v} , it is maximal abelian in
c\mathfrak{p} by virtue of (3. 14). By (3. 5) we have E_{-\beta_{j}}= \frac{1}{2}(X_{\beta_{j}}-iY_{\beta_{f}}) . Since X_{\beta_{j}}

and Y_{\beta j} lie in \mathfrak{p} , \sigma(E_{-\beta j})=\frac{1}{2}(X_{\beta j}+iY_{\beta j}) holds. Using (3. 14), we get

\rho\sigma(E_{-\beta_{j}})=\frac{1}{2}(X_{\beta_{j}}-iY_{\beta_{j}})=E_{-\beta j} , which implies that E_{-\beta_{j}}\in^{c}\mathfrak{g} . In view of
(4. 3) and (4. 4), we get E_{-\beta_{j}}\in \mathfrak{g}_{-2} . Consequently E_{\beta_{j}}\in \mathfrak{g}_{2} and hence

\beta_{j}^{v}\in[\mathfrak{g}_{-2}, \mathfrak{g}_{2}]\cap^{c}\mathfrak{p}=\mathfrak{p}_{0} by Lemma 4. 6. q . e . d .

Let us now consider the \mathfrak{g}_{-2}-valued trilinear map B_{\tau} on \mathfrak{g}_{-2} given by
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(4.22) B_{\tau}(X, Y, Z)= \frac{1}{2}[[\tau Y, X], Z] , X, Y, Z\in \mathfrak{g}_{-2} .

(\mathfrak{g}_{-2}, B_{\tau}) is a Jordan triple system (in short, JTS), since \mathfrak{g}’ is a GLA of
the first kind.

LEMMA 4. 8. The JTS(\mathfrak{g}_{-2}, B_{\tau}) is compact and simple.

PROOF. \mathfrak{g}’ is a simple GLA and the Cartan involution \tau of \mathfrak{g}’ is
grade-reversing. Consequently (\mathfrak{g}_{-2}, B_{\tau}) is simple (cf. pp. 98-99 in [8]),
and hence (\mathfrak{g}_{-2}, B_{\tau}) satisfies the condition (A) ([1]). To the JTS (\mathfrak{g}_{-2} ,
B_{\tau}) there corresponds a GLA L(B_{\tau}) of the first kind, called the Koecher-
Kantor algebra for (\mathfrak{g}_{-2}, B_{\tau})([19], [8]) . It follows from [8] that there
exists a grade-preserving isomorphism \varphi of \mathfrak{g}’ onto L(B_{\tau}) satisfying

(4. 23) \varphi\tau=\tau_{B\tau}\varphi ,

where \tau_{B\tau} is the grade-reversing canonical involution of L(B_{\tau})([8]) . By
(4. 23), \tau_{B\tau} is a Cartan involution of L(B_{\tau}) . Therefore, by Proposition 2. 4
[1], the JTS (\mathfrak{g}_{-2}, B_{\tau}) is nondegenerate and so it is compact by Theorem
3. 3 [1]. q . e . d .

Let G_{0} and G_{\acute{0}} be the analytic subgroups of the adjoint group AdC\mathfrak{g}

generated by \mathfrak{g}_{0} and g_{\acute{0}} , respectively. By the definition of \mathfrak{n} , we have
Ad_{9-2G}=Ad_{\mathfrak{g}-2}G_{\acute{0}} . Let us put

(4.24) 0_{p,q}=\sum_{j=1}^{p}E_{-\beta_{j}}-\sum_{k=1}^{q}E_{-\beta p+k} ,

where p , q\geq 0 , p+q\leq r. Here we are adopting the same convention as
for (1. 2). Let V_{p,q} denote the (Ad_{9-2G}) -0rbit in \mathfrak{g}_{-2} through the point 0_{p,q} ,
that is,

(4.25) V_{p,q}=(Ad_{\mathfrak{g}-2}G)0_{p,q} , p , q\geq 0 , p+q\leq r.

THEOREM 4. 9. Let c \mathfrak{g}=\sum_{k=-2}^{2}\mathfrak{g}_{k} be the GLA given in (4. 12), which is

simple of hermitian type of real rank r. Then the Ad_{\mathfrak{g}- 2}G -Orbit decomposi-
tion of \mathfrak{g}_{-2} is given by

(4.26)
\mathfrak{g}_{-2}=\coprod_{p+q\leq\gamma}V_{p,q} .

PROOF. Set E= \sum_{j=1}^{r}E_{-\beta j}\in \mathfrak{g}_{-2} , and define a multiplication \square on \mathfrak{g}_{-2} by

putting
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(4.27) X\square Y=B_{\tau}(X, E, Y) , X, Y\in \mathfrak{g}_{-2} .
Then a theorem of Meyberg (cf. Koecher [11]) shows that the multiplica-
tion \square defines on \mathfrak{g}_{-2} the structure of a Jordan a1gebra^{*)} . That Jordan
algebra is denoted by (\mathfrak{g}_{-2^{ \square }},) . The property [\tau E, E]=-Z implies that
E is the unit element of (\mathfrak{g}_{-2^{ \square }},) . On the other hand, looking into the
classification of compact simple JTS’s (Loos [14] ,\cdot also see [8] for the
classical case), and picking up the ones whose Koecher-Kantor algebras
are simple of hermitian type, we can see that each JTS (\mathfrak{g}_{-2}, B_{\tau}) comes
from the Jordan algebra (\mathfrak{g}_{-2^{ \Pi}},) , that is,

(4.28) B_{\tau}(X, Y, Z)=(X\square Y)\square Z+X\square ( Y\square Z)-Y\square (X\square Z)

holds. From (4. 28) and Lemma 4. 8 it follows that (\mathfrak{g}_{-2}, \square ) is compact
simple. Noting that \mathfrak{g}’ is isomorphic to L(B_{\tau}) and using Lemma 3. 1 in
[1], we can conclude that \mathfrak{p}_{0} consists of the operators of all left multiplica-
tions of elements in the Jordan algebra (\mathfrak{g}_{-2}, \square ) . If we denote by T_{j}(1\leq

j\leq r) the operator of left multiplication by the element E_{-\beta_{j}}\in \mathfrak{g}_{-2} , then we
see from (4. 27), (4. 22) and (3. 4) that T_{j}=-\check{\beta}_{j}/2 holds under the
identification of \mathfrak{g}_{\acute{0}} with ad_{9-2}\mathfrak{g}_{\acute{0}} . This implies that T_{1} , \cdots . T_{r} span the maxi-
mal abelian subspace i\mathfrak{h}^{-} of \mathfrak{p}_{0} (cf. Lemma 4. 7). The relation T_{j}=-\beta_{j}^{v}/2

(1\leq j\leq r) implies that \{E_{-\beta_{1}}, \cdots. E_{-\beta\gamma}\} is a system of orthogonal
idempotents. Suppose that E_{-\beta_{1}} can be written as the sum E’+E’ of two
orthogonal idempotents E’ and E’ Then, by considering the Peirce de-
composition of \mathfrak{g}_{-2} by the idempotent E_{-\beta_{1}} , one can conclude that \{E’ , E’
E_{-\beta z} , \cdots , E_{-\beta\gamma}} forms a system of orthogonal idempotents. By a property
of the Peirce decomposition ([2]), E’, E^{rr} , E_{-\beta_{2}} , \cdots . E_{-\beta r} are strictly com-
mutative, which implies that the operators of the left multiplications by
those elements span an (r+1) -dimensional abelian subspace of \mathfrak{p}_{0} . This
is a contradiction. \{E_{-\beta_{1}}, \cdots, E_{-\beta\gamma}\} is thus a system of primitive orth-
ogonal idempotents. By a property of a Koecher-Kantor algebra, Ad_{\mathfrak{g}-2}G_{0}=

Ad_{9-2}G_{\acute{0}} coincides with the identity component of the structure group of the
Jordan algebra (\mathfrak{g}_{-2}, \square ) . Thus we are finally in a position to apply the
Sylvester’s law of inertia ([9], [10]: see also (1, 1) and (1. 3)) to the Jor-
dan al\underline{g}ebra(\mathfrak{g}_{-2^{ \Pi}},) to obtain the decomposition (4. 25). q . e . d .

*)This Jordan algebra structure was originally introduced by Kor\^anyi-Wolf [13] by a
different manner.
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\S 5. Cayley images and Siegel domains over nondegenerate cones

5. 1. Let \mathfrak{g} be a real simple Lie algebra of hermitian type of real rank r ,
\tau a Cartan involution of \mathfrak{g} and \mathfrak{g}=f+\mathfrak{p} be the Cartan decomposition by \tau

as in (2. 9). We retain all the conventions in the previous sections. Let
us consider the map F:\mathfrak{g}_{-1}X\mathfrak{g}_{-1}arrow\tilde{\mathfrak{g}}-2=\mathfrak{g}_{-2}+i\mathfrak{g}_{-2} defined by

(5. 1) F(X, Y)= \frac{1}{4}\{[[I, X], Y]+i[X, Y]\} , X, Y\in \mathfrak{g}_{-1} .

ad_{\mathfrak{g}- 1} I is the complex structure on \mathfrak{g}_{-1} with respect to which the correspon-

hence X \mapsto\frac{1}{2}(X-i[I, X]) gives a C-linear isomorphism of \mathfrak{g}_{-1} onto \tilde{\mathfrak{g}}_{-1}^{+}

(cf. Lemma 4. 1). If we identify \mathfrak{g}_{-1} with \tilde{\mathfrak{g}}_{-1}^{+} as complex vector spaces,
then, by using the fact that \tilde{\mathfrak{g}}_{-1}^{+} is abelian, it turns out that

(5.2) F(Z, U)= \frac{i}{2}[Z, \rho\sigma U] , Z, U\in\tilde{\mathfrak{g}}_{-1}^{+} .

This expression is essentially the same as Kor\’anyi-Wolf’s [13], and hence
F is a V_{r,0}-hermitian form (cf. \S 1). Note that V_{r,0} is an irreducible self-
dual cone. Consider the Siegel domain in \overline{\mathfrak{g}}_{-1} over the nondegenerate cone
V_{r-k,k}(1\leq k\leq r) :
(5.3) D ( V_{r-k,k}, F)=F(Z, U)\in\tilde{\mathfrak{g}}_{-2}+\tilde{\mathfrak{g}}_{-1}^{+}=\overline{\mathfrak{g}}-1 : Im Z-F( U, U)\in V_{r-k,k}\} ,

where the imaginary part of Z is taken with respect to the real form \mathfrak{g}_{-2} .
Sometimes we call D ( V_{r-k,k}, F) simply a Siegel domain. If the restricted
root system \Delta(\S 3) of \mathfrak{g} is of type C_{r} , then \tilde{\mathfrak{g}}_{-1}^{+}=(0) holds and hence the
Siegel domain D(V_{r-k,k}, F) reduces to the tube domain D(V_{r-k,k}) over
the nondegenerate cone V_{r-k,k} . Let \xi be the well-known holomorphic
(open dense) imbedding of \overline{\mathfrak{g}}_{-1} into the compact dual M^{*}=G^{C}/U_{0} (cf.
3. 4) of M_{0} (cf. (3. 28)), defined by \xi(X)=\exp X\cdot 0 , X\in\overline{\mathfrak{g}}_{-1} , where 0 is
the origin of M^{*} . It is known [13] that the Cayley image c(M_{0}) is
contained in \xi(\overline{\mathfrak{g}}_{-1}) and that

(5. 4) \xi^{-1}(c(M_{0}))=D(V_{r,0}, F) .

We wish to know what the set \xi^{-1}(c(M_{k})) , k\geq 1 , is.

LEMMA 5. 1. \xi^{-1}(cc_{k}^{2}o)=-io_{k,r-k}, 0\leq k\leq r, where 0_{k,r-k} is the one
given in (4. 24).

PROOF. Let h and e_{\pm} be the same as in (3. 20). Then we have in
SL(2, C)
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( \exp\frac{\pi i}{4} (e_{+}+e_{-}))^{3}=\exp(- ie_{-})(_{0}^{-1/\sqrt{2}} -\sqrt{2}0) exp (-ie_{+}) .

Therefore we get

(5.5) c_{\beta_{j}}^{3}=\exp(-iE_{-\beta_{j}})k_{\beta_{j}}’\exp(-iE_{\beta j}) :

also we know [13]

(5.6) c_{\rho_{J}}=\exp(iE_{-\beta j})k_{\rho_{J}}\exp(iE_{\beta_{j}}) .

Here k_{\beta_{j}}’ and k_{\beta_{J}} are elements of the complex analytic subgroup of G^{c}

generated by \beta_{j}^{v} . We have that cc_{k}^{2}= \prod_{j=1}^{k}c_{\beta_{j}}^{3}\prod_{j=k+1}^{r}c_{\beta_{j}} for 1\leq k\leq r and cc_{k}^{2}=c

for k=0. Consequently from (5. 5) and (5. 6) it follows that

(5.7) cc_{k}^{2} \equiv\exp i(-\sum_{j=1}^{k}E_{-\beta_{f}}+\sum_{j=k+1}^{r}E_{-\beta_{j)}} mod U_{0} .

The lemma is a direct consequence from (5. 7). q . e . d .
Let G_{a} be the identity component of the affine automorphism group of

the Siegel domain D ( V_{r,0}, F) . According to Tanaka [21], Lie G_{a} coin-
cides with the graded subalgebra \mathfrak{g}_{a}:=\mathfrak{g}_{-2}+\mathfrak{g}_{-1}+\mathfrak{g}_{0} , and \mathfrak{g}_{0} is the Lie alge-

bra of the linear automorphism group of D ( V_{r,0}, F) .

LEMMA 5. 2. Let D_{p,q}=\Phi^{-1}( V_{p,q}) , where \Phi:\overline{\mathfrak{g}}_{-1}arrow \mathfrak{g}_{-2} is the same as
in (1. 4). Then we have the G_{a} -Orbit decomposition of \overline{\mathfrak{g}}_{-1} :

(5.8) \overline{\mathfrak{g}}_{-1}=\coprod_{p+q\leq r}D_{p,q} ;

each D_{p,q} is the G_{a} -Orbit through the point io_{p,q} .

PROOF. As was shown in \S 1, the Sylvester decomposition (4. 26) of
\mathfrak{g}_{-2} yields the decomposition (5. 8). From what is montioned just before
the lemma, the group G is the identity component of GL(D_{r,0}) . The
homomorphism \rho in \S 1 coincides now with the adjoint representation Ad_{9- 2}

of G. The image Ad_{9-2G} is identical with the identity component of the
structure group of the Jordan algebra (\mathfrak{g}_{-2}, \square ) (cf. the proof of Theorem
4. 9): the latter coincides with the identity component of the automor-
phism group of the cone V_{r,0}([19]) . By Theorems 4. 9 and 1. 1 we have
that each subset D_{p,q}\subset\overline{\mathfrak{g}}_{-1} is a G_{a} -0rbit. D_{p,q} contains the set \{(iX, 0)\in

\tilde{\mathfrak{g}}_{-2}+\tilde{\mathfrak{g}}_{-1}^{+} : X\in V_{p,q}}, which implies that io_{p,q}\in D_{p,q} . q.e.d.
We finally have
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THEOREM 5. 3. Let G be a real simple Lie group of hermitian type
of real rank r. Let M_{k}=G/H_{k}(0\leq k\leq r) be a (simply connected) simple
irreducible pseudO-hermitian symmetric space of K_{\epsilon} -type constructed in \S 3
and realized as an open subset of M_{J}^{*} the compact dual of the hermitian
symmetric space M_{0} (cf. Proposition 3. 7). Then the intersection of the
Cayley image c(M_{k}) with \xi(\overline{\mathfrak{g}}_{-1}) is holomorphically equivalent to the affine
homogeneous Siegel domain D(V_{r-k,k}, F) in \overline{\mathfrak{g}}_{-1} , where V_{r-k,k} is the non-
degenerate cone given in (4. 25) and F is the V_{r,0} -hermitian form given in
(5. 2). More precisely we have

(5.9) \xi^{-1}(c(M_{k})\cap\xi(\overline{\mathfrak{g}}_{-1}))=D(V_{r-k,k}, F) , 0\leq k\leq r.

If the restricted root system of \mathfrak{g}=LieG is of type C_{r}, then the Siegel
domain D ( V_{r-k,k}, F) is reduced to the tube domain D ( V_{r-k,k}) .

Proof. We may assume that G is centerless. Set CG=cGc^{-1}(\subset G^{c}) .
Note that Lie CG=^{c}\mathfrak{g} . We claim first that

(5. 10) c(M_{k})=^{c}G(\xi(io_{r-k,k})) , 0\leq k\leq r.

In fact, noting that V_{q,p}=-V_{p,q} (cf. \S 1), we have from Lemma 5. 1 that

c(M_{k})=c(Gc_{k}^{2}o)=^{c}Gcc_{k}^{2}o=^{c}G(\xi(-io_{k,r-k}))

=^{c}G(G\xi(-i_{0_{k},r-k}))=^{c}G(\xi(i(-(Ad_{9-2}G)0_{k,r-k}))

=^{c}G(\xi(i(-V_{k,r-k})))=^{c}G(\xi(iV_{r-k,k}))

=^{c}G(\xi(i_{or-k,k})) .

There exists a bijective correspondence between the set of Ad_{9-2G}-0rbits in
\mathfrak{g}_{-2} and the set of G_{a} -0rbits in \overline{\mathfrak{g}}_{-1} (cf. [6]). That bijection is obtained by
assigning the G_{a} -0rbit G_{a}(io_{p,q}) to each orbit V_{p,q}=(Ad_{9-2G})0_{p,q} . Note
that G_{a}(io_{r-k,k})=D ( V_{r-k,k}, F) (cf. Theorem 1. 1). Theorem 4. 9 now

shows that the number of G_{a}-0rbits in \overline{\mathfrak{g}}_{-1} is equal to \frac{1}{2}(r+1)(r+2) .

This number is also equal to the number of cG-0rbits in M^{*} (cf. Takeuchi
[20] ) . Furthermore every cG-0rbit has a nonempty intersection with
\xi(\overline{\mathfrak{g}}_{-1}) (Nakajima [16]). Also any connected component of the intersec-
tion of a cG orbit with \xi(\overline{\mathfrak{g}}_{-1}) is the \xi-image of a G_{a} orbit in \overline{\mathfrak{g}}_{-1} , and vice
versa ([6]). Therefore the intersection of each cG orbit with \xi(\overline{\mathfrak{g}}_{-1}) must
be connected. Hence it follows from (5. 10) that

c(M_{k})\cap\xi(\overline{\mathfrak{g}}_{-1})=^{c}G(\xi(io_{r-k,k}))\cap\xi(\overline{\mathfrak{g}}_{-1})=\xi(G_{a}(io_{r-k,k}))

=\xi(D(V_{r-k,k}, F)) ,

proving (5. 9). The second assertion follows from the fact that \mathfrak{g}_{-1}=(0)
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for the case of type C_{r}. q.e.d.
The Siegel domain D(V_{r-k,k}, F) is called the Siegel domain corre-

sponding to M_{k} .

5. 2. Let H(r, F) denote the vector space of all hermitian matrices of
degree r with entries in the division algebra F=R, C , H(=the quater-
nion algebra) or O ( =the octanion algebra). Let

H_{r-k,k}(F)= \{X\in H(r, F) : sgn(X) =(r-k, k)\} ,
r\geq 1 , F=R, C , H,

H_{3-k,k}(O)= {X\in H(3, O) : sgn(X) =(3-k, k) },
C_{2,0}(n)=\{(x_{1^{ }},\cdots , x_{n})\in R^{n} : x_{1}^{2}>x_{2}^{2}+\cdots+x_{n}^{2}, x_{1}>0\} , n\geq 3 ,
C_{1,1}(n)=\{(x_{1^{ }},\cdots , x_{n})\in R^{n} : x_{1}^{2}<x_{2}^{2}+\cdots+x_{n}^{2}\} , n\geq 3 ,
G_{2},(n)=\{(x_{1^{ }},\cdots, x_{n})\in R^{n} : x_{1}^{2}>x_{2}^{2}+\cdots+x_{n}^{2}, x_{1}<0\} , n\geq 3 .

These are nondegenerate homogeneous cones. Let M_{p.q}(F) denote the
space of all p\cross q matrices with entries in Fr, and J denote the r-tuple

direct sum of the matrix (\begin{array}{ll}0 1-1 0\end{array}) .

We give here a list of the simple irreducible pseud0-hermitian symmet-
ric spaces M_{k} of K_{\epsilon} -type and the corresponding Siegel domains D_{k} over
nondegenerate cones. The explicit determination of M_{k}’ s is done by in-
specting the tables in [3], [18].

Type I_{r,p,k}(0\leq k\leq r\leq p)

M_{k}=U(r, p)/U(r-k, k)\cross U(k, p-k) ,

D_{k}=\{
D(H_{r-k,k}(C)) for r=p,

D (H_{r-k,k}(C), F) for r<p,

where F( U, U)= \frac{1}{2}U^{t}\overline{U}, U\in M_{r,p-r}(C) .

Type II_{2n,2k}(0\leq k\leq[\frac{n}{2}]=r)

M_{k}=SO^{*}(2n)/U(n-2k, 2k) ,

D_{k}=\{
D(H_{r-k,k}(H)) for n even,
D(H_{r-k,k}(H), F) for n odd,

where F( U, U)= \frac{1}{2} ( U^{t}\overline{U}+f\overline{U}^{t}U^{t}f) , U\in M_{2r,1}(C) .

Type III_{r,k}(0\leq k\leq r)

M_{k}=Sp(r, R)/U(r-k, k) ,
D_{k}=D(H_{r-k,k}(R))
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Type IV_{n+2.k}(k=0,1,2)

\{

M_{0}=M_{2}=SO^{0}(n+2,2)/SO(n+2)\cross SO(2) ,
D_{0}=D_{2}=D(C_{2,0}(n+2)) .

\{

M_{1}=SO^{0}(n+2,2)/SO^{0}(n, 2)\cross SO(2) ,
D_{1}=D(C_{1,1}(n+2)) .

Type V_{k}(k=0,1,2)

\{

M_{0}=E_{6(-14)}/SO(10)T,
D_{0}=D(C_{2,0}(8), F) .

\{

M_{1}=E_{6(-14)}/SO^{*}(10)T,
D_{1}=D(C_{1,1}(8), F) .

\{

M_{2}=E_{6(-14)}/SO^{0}(2,8)T,
D_{2}=D(G_{2},(8) , F) ,

where the C_{2,0}(8) -hermitian form F:C^{8}\cross C^{8}arrow C^{8} is the one
given by Tsuji [23].

Type VI_{k}(k=0,1,2,3)

\{

M_{0}=M_{3}=E_{7(-25)}/E_{6}T,
D_{0}=D_{3}=D(H_{3,0}(O)) ,

\{

M_{1}=M_{2}=E_{7(-25)}/E_{6(-14)}T,
D_{1}=D_{2}=D(H_{2,1}(O)) .

The coset space representations of the exceptional spaces M_{k} are only
infinitesimal expressions (not global forms). T denotes the one-
dimensional torus.
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