
Hokkaido Mathemtical Joumal Vol. 24 (1995) p. 63-103

Radon transform of hyperfunctions
and support theorem

Takashi TAKIGUCHI and Akira KANEKO
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Abstract. We define the Radon transform for a class of hyperfunctions
which are not necessarily with bounded support. We give characterization of
the image space for some basic spaces. Then we give a variant of support
theorem by Helgason-Boman.

In this article we define the Radon transform for a class of hyperfunc-
tions and discuss its properties. Especially, we prove a variant of support
theorem by Helgason-Boman. Although the significance of extending the
Radon transform to hyperfunctions is not so clear from the viewpoint of
applications to industrial tomography, it will be interesting from purely
mathematical viewpoint. Here we only treat the codimension one case i.e.
the case of hyperplane integrals.

We should remark that in the theory of hyperfunctions there already
exists another kind of Radon transformation theory (see e.g. [Kt]). Its
viewpoint lies in the microlocalization of the classical Radon transforma-
tion and is different from ours laying stress on the global behavior of the
transformation.

1. Introduction. Hyperfunctions

In this section we first give a short review on (Fourier) hyperfunc-
tions, and then discuss the possibility of their Radon transform. For fur-
ther details on (Fourier) hyperfunctions see [Kn2] and references therein.

A hyperfunction f(x) on R^{n} is the equivalence class of formal expres-
sions of the form

f(x)= \sum_{j=1}^{N}F_{j}(x+i\Gamma_{j}0) , (1. 1)

where \Gamma_{j} denotes an open convex cone with vertex at the origin and F_{j}(z)

a function holomorphic in a wedge-like domain with asymptotic form
R^{n}+i\Gamma_{j} at the real axis. The equivalence means the natural rewriting
among the defining functions F_{j} , and its precise expression is given by
Martineau’s edge of the wedge theorem which is a concrete expression of
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the zero cohomology class. There is a theory of localization based on the
cohomology theory, and we can legally speak of the local vanishing, local
analyticity, support or singular support of a hyperfunction. Distributions
and ultra-distributions are included in hyperfunctions in the sense that
they are realized as the limit to the real axis of F_{j}(x+iy) as y\in\Gamma_{j} tends
to 0 in respective sense of topology instead of the formal one.

A Fourier hyperfunction f(x) is a similar expression as above, but the
defining functions are defined on a wedge conserving a fixed breadth up to
infinity and there satisfy the infra-exponential growth estimate locally
uniformly in {\rm Im} z : More precisely, for any \Gamma_{j}’\subset\subset\Gamma_{j} there exists c(\Gamma_{j}’)>0

such that F_{j}(z) is holomorphic on (R^{n}+i\Gamma_{j}’)\cap\{|{\rm Im} z|<c(\Gamma_{j}’)\} , and for
any \delta>0 it satisfies the following estimate uniformly on (R^{n}+i\Gamma_{j}’)\cap

\{\delta<|{\rm Im} z|<c(\Gamma_{j}’)\} : For any \epsilon>0 there exists C_{\epsilon}>0 such that
|F_{j}(z)|\leq C_{\epsilon}e^{\epsilon|{\rm Re} z|} . (1. 2)

Here and in the sequel \Gamma’\subset\subset\Gamma means that \overline{\Gamma’}\cap S^{n-1}\subset\Gamma\cap S^{n-1} . We then
call that \Gamma’ is a proper subcone of \Gamma For Fourier hyperfunctions equiva-
lence is understood under this growth condition and domain of definition.
In this sense, the space of Fourier hyperfunctions \mathscr{O}(D^{n})\dot{1}S not a subspace
of the space of hyperfunctions \mathscr{B}(R^{n}) , but is a kind of extension of the
latter to the directional compactification D^{n}=R^{n}uS_{\infty}^{n-1} of R^{n} by adding
the points at infinity: There is a natural restriction mapping defined by
“ forgetting the growth condition”

\mathscr{O}(D^{n})arrow \mathscr{B}(R^{n}) ,

which is surjective but not injective, contrary to the case of distributions
\mathscr{L}’c_{arrow}\mathscr{D}’(R^{n}) . Fourier hyperfunctions are also characterized as the dual
of the space \mathscr{P}_{*}(D^{n}) of exponentially decaying holomorphic functions
defined on a strip-neighborhood of the real axis. In the sequel we shall
simply call them exponentially decaying real analytic functions. \mathscr{P}_{*}(D^{n})

becomes a DFS type space by the natural topology of inductive limit of
Banach spaces with weighted supremum norm of those holomorphic func-
tions with fixed strip breadth of domain of definition and fixed exponential
decay. Since \mathscr{P}_{*}(D^{n})\subseteqarrow \mathscr{L} is a continuous inclusion with dense range, we
have \mathscr{L}’c_{->}\mathscr{O}(D^{n}) . Hyperfunctions with compact supports \mathscr{B}_{C}(R^{n}) , which
are characterized as the dual of the space \mathscr{A}(R^{n}) of real analytic func-
tions, are also contained in \mathscr{O}(D^{n}) . Exponentially decaying Fourier
hyperfunctions, simply defined as

\mathscr{O}_{*}(D^{n}) := \bigcup_{\epsilon>0}e^{-\epsilon\sqrt{1+\chi 2}}\mathscr{O}(D^{n}) (1. 3)
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also form a subclass of \mathscr{O} (D^{n}) .
Fourier transform is easily seen to act isomorphically to the space

\mathscr{P}_{*}(D^{n}) , hence it can be defined on \mathscr{O}(D^{n}) by the duality, in consistency
with the one for \mathscr{L}’ If the defining functions F_{j}(z) are exponentially
decaying on (R^{n}\backslash \Delta_{k}^{o})+iy locally uniformly in y\in\Gamma_{j} with a fixed decay
type -\delta , then for any small choice of y_{j}\in\Gamma_{j} the Fourier transform can be
directly calculated by

\hat{f}(\xi) := \int_{R^{n}}f(x)e^{-iX\xi}dx=G_{k}(\xi-i\Delta_{k}0) ,

where

G_{k}( \zeta)=\sum_{j=1}^{N}\int_{R^{n}}F_{j}(x+iy_{j})e^{-i(\chi+iyj\rangle\zeta}dx for \zeta\in(D^{n}-i\Delta_{k})\cap\{|{\rm Im}\zeta|<\delta\} . (1. 4)

The integral converges even on \Delta_{k}^{o} because of the exponential decay factor
appearing by the shift \xi->\zeta=\xi+i\eta with \eta\in-\Delta_{k} . G_{k}(\zeta) is seen to be of
infra-exponential growth by letting |y_{j}|arrow 0 . For a general Fourier hyper-
function we can decompose it to such ones with various \Delta_{k} ’s. Especially,
the Fourier transform of an exponentially decaying Fourier hyperfunction
can be directly calculated by means of the given defining functions and
becomes an analytic function which grows infra-exponentially on a strip-
neighborhood of the real axis. The Fourier image of \mathscr{O}_{*}(D^{n}) agrees with
the space \mathscr{P}(D^{n}) of functions each holomorphic and infra-exponential on
some strip neighborhood of R^{n}-

There is another type of Fourier hyperfunctions: f(x) is said to be a
modified Fourier hyperfunction if it is represented by the boundary values
of defining functions F_{j}(z) which are now defined and of infra-exponential
growth on wedges whose size in the imaginary direction increases linearly
with {\rm Re} z : More precisely, for any \Gamma_{j}’\subset\subset\Gamma_{j} , there exists c(\Gamma_{j}’)>0 such
that F_{j}(z) is holomorphic in (R^{n}+i\Gamma_{j}’)\cap\{|{\rm Im} z|<c(\Gamma_{j}’)(|{\rm Re} z|+1)\} and for
any \delta>0 it satisfies the infra-exponential estimate (1. 2) uniformly on
(R^{n}+i\Gamma_{j}’)\cap\{\delta(|{\rm Re} z|+1)<|{\rm Im} z|<c(\Gamma_{j}’)(|{\rm Re} z|+1)\} . The equivalence relation
is adjusted correspondingly. We denote by \overline{\mathscr{O}}(D^{n}) the space cf modified
Fourier hyperfunctions.

\tilde{\mathscr{O}}(D^{n}) is the dual of the space of modified type exponentially decay-
ing real analytic functions \overline{\mathscr{P}}_{*}(D^{n}) . This latter consists of functions
holomorphic and exponentially decaying on a conical neighborhood of the
real axis |{\rm Im} z|<\delta(|{\rm Re} z|+1) , and again becomes a DFS space. Since the
Fourier transform acts isomorphically on \overline{\mathscr{P}}_{*}(D^{n}) , so does it on \mathscr{O}(D^{n})- .
There is a natural continuous inclusion \tilde{\mathscr{P}}_{*}(D^{n})c_{arrow}\mathscr{P}*(D^{n}) with dense
range. Hence \mathscr{O}(D^{n})- is a generalization of functions for the Fourier
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transformation larger than \mathscr{O}(D^{n}) , but containing the latter densely.
In order to calculate the Fourier transform of an element f(x)\in

\tilde{\mathscr{O}}(D^{n}) we need a better decomposition: We decompose the support of f
via convex closed cones \Delta_{k}^{O}\subset D^{n} with vertex at the origin, and set

\hat{f}(\xi)=\sum_{k}\hat{f}_{k}(\xi)=\sum_{k}G_{k}(\xi-i\Delta_{k}0) ,

where
G_{k}(\zeta)=\langle f_{k}, e^{-ix\zeta}\rangle , for Im \zeta\in-\Delta_{k} .

The inner product has sense because on \Delta_{k}^{o}\supset suppf_{k} , e^{-i\chi\zeta} serves as a test
function depending holomophically on \zeta in the indicated region. Actually,
to obtain a set of defining functions of the above mentioned type for the
Fourier transform of a hyperfunction even with bounded support, we have
to employ just the same decomposition as for a general element of \overline{\mathscr{O}}(D^{n}) .
Alternatively, we can choose a boundary value representation such that
each defining function behaves like a modified type exponentially decaying
real analytic function outside a closed convex cone \Delta_{[mathring]_{k}} . For components
with this fixed \Delta_{k} , we calculate the integral (1. 4) where now the integral
path is of the form \{x+iy(x);x\in R^{n}\} , with |y(x)|-\delta(|x|+1) . Choosing
y(x) suitably in such a way that outside \Delta_{k}^{o} , y(x)\xi produces a decay fac-
tor, we see that the resulting function G_{k}(\zeta) becomes such that
G_{k}(\xi-i\Delta_{k}0) is a modified Fourier hyperfunction. The full image of f(x)
is obtained by further adding these with respect to k . This way may be
more practical than the one based on the decomposition by supports. But
the theory assuring the possibility of obtaining such a representation is not
yet explicitly developped in the literature.

Let us introduce the following modified type analogue of (1. 3):

\tilde{\mathscr{O}}_{*}(D^{n})
:= \bigcup_{\epsilon>0}e^{-\epsilon\sqrt{1+x^{2}}}\tilde{\mathscr{O}}(D^{n}) . (1. 5)

We call it the space of exponentially decaying modified Fourier hyperfunc-
tions.

Remark. The notation for various classes of Fourier hyperfunctions is
not well fixed. Here we shall use the upper –to indicate the modified
type, the suffix * to indicate the exponential decay, and the superfix * the
infra-exponential growth if necessary, throughout. This will produce in
some case a notation much different from Kawai’s original one, but will
finally be accepted to be more consistent. (Saburi [S] uses a similar nota-
tion but with a longer suffix inc and dec.)
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The above class did not appear in the literature, because its Fourier
image is not so nice. But it is important for the theory of Radon transfor-
mation.

The following assertions can be proved by a standard argument.
Therefore we only sketch their proofs. (A full development of these mate-
rials are planned in our forthcoming paper.)

Proposition 1. 1 The space \tilde{\mathscr{O}}_{*}(D^{n}) endowed with the natural inductive
limit topology is in duality with the following space of asymptotically infra
-exponential modified type real analytic functions endowed with the natural
topology :

\tilde{\mathscr{P}}=\{\varphi(z);\forall\epsilon>0\exists\delta>0\varphi is holomorphic in
|{\rm Im} z|\leq\delta(|{\rm Re} z|+1) and |\varphi(z)|\leq Ce^{\epsilon|z|}\}

= \lim\lim\{\varphi;\varphi is holomorphic in |{\rm Im} z|\leq\delta(|{\rm Re} z|+1) and (1. 6)
\overline{\epsilon>0}\vec{\delta>0}

|\varphi(z)|\leq Ce^{\epsilon|z|}\} .

In fact, a continuous linear functional \Phi on \tilde{\mathscr{O}}_{*}(D^{n}) is by definition
continuous on every e^{-\epsilon\sqrt{1+x^{2}}}\tilde{\mathscr{O}}(D^{n}) . Thus for any \epsilon>0 there exists \delta>0

such that \Phi is represented by a function \varphi holomorphic on | Im z|\leq

\delta(|{\rm Re} z|+1) and of O(e^{\epsilon|{\rm Re} z|}) there. Since there is a uniqueness for the
representative of an element of the dual of \tilde{g}(D^{n}) , we can finally find a
representative \varphi as above. Conversely, let f be a continuous linear func-
tional on \tilde{\mathscr{P}} . It is continuous for some fixed \epsilon>0 on the space in the
right-hand side of the above. Then e^{-2\epsilon\sqrt{x^{2}+1}}f becomes a continuous linear
functional on \overline{\mathscr{P}}_{*}(D^{n}) in an obvious manner. Thus f\in e^{-2\epsilon\sqrt{x^{2}+1}}\tilde{\mathscr{O}}(D^{n}) .

Remark that in view of the Phragr6n-Lindel\"of principle, the estimate
in (1. 6) is equivalent with the following:

\exists A>0 , \delta>0 such that for \forall\epsilon>0

|\varphi(z)|\leq C_{\epsilon}e^{\epsilon|{\rm Re} z|+A|{\rm Im} z|} on |{\rm Im} z|\leq\delta(|{\rm Re} z|+1) .
(1. 7)

Proposition 1. 2 The Fourier image of \tilde{\mathscr{P}} is the subspace of f\in\tilde{\mathscr{O}}_{*}(D^{n})

consisting of those with bounded singular supports, i.e. analytic and
exponentially decaying on a conical neighborhood of the complement of
some compact set in R^{n}

This is essentially contained in [Kw], Lemma 5. 1. 2, and can be
proved similarly. (Note, however, that there is a small confusion in the
statement of that Lemma. Cf. the reformulation given in (1. 7).) To prove
the direct implication, a use of partitions of unity employing factors
\Pi_{j=1}^{n}1/(e^{\sigma_{j}x_{J}}+1) , \sigma_{j}=\pm 1 can also be efficiently used as in [Kn2] to calcu-
late the defining functions of the Fourier image.



68 T. Takiguchi and A. Kaneko

Proposition 1. 3 The Fourier image of \overline{\mathscr{O}}_{*}(D^{n}) is the subspace of \overline{\mathscr{O}}(D^{n})

consisting of those of which the defifining functions are analytically
continued to a strip neighborhood of R^{n} .

In fact, applying the decomposition of support to f(x)e^{\delta\sqrt{x^{2}+1}}\in\tilde{\mathscr{O}}(D^{n})

as is employed in [Kw], and then by multiplication by the exponential
decay factor, we obtain a representation

f(x)= \sum_{j,k}f_{k}e^{-\delta\sqrt{x^{2}+1}} , f_{k}\in\overline{\mathscr{O}}(D^{n}) , supp f_{k}\subset\Delta_{k}^{o} .

Then

f( \xi)=\sum_{k}G_{k}(\xi-i\Delta_{k}0) ,

where
G_{k}(\zeta)=\langle f_{k}e^{-\delta\sqrt{x^{2}+1}}, e^{-ix\zeta}\rangle_{x}=\langle f_{k}, e^{-\delta\sqrt{x^{2}+1}-\iota x\zeta}\rangle_{x} .

Seeking for the condition that e^{-\delta\sqrt{x^{2}+1}-ix\zeta}\in\overline{\mathscr{P}}(\Delta_{k}^{o}) , we can see that the
result becomes analytic on a strip neighborhood of R^{n} . (But we cannot
manipulate the growth order in general.) The ver\dot{l}fification of the converse
is similar.

Corollary 1. 4 The image spaces described in Propositions 1. 2, 1. 3 are
dual to each other by their natural topologies.

Modified Fourier hyperfunctions do not behave well in respect with
convolutions:

Proposition 1. 5 The convolution of f\in\tilde{\mathscr{O}}(D^{n}) and \varphi\in\tilde{\mathscr{P}}*(D^{n}) , which
may be defifined by the inner product

f*\varphi=\langle f(\xi), \varphi(x-\xi)\rangle_{\xi}

realized via integration of appropriately chosen defifining functions through
appropriately chosen paths, gives an element of the space \mathscr{P}(D^{n}) of infra-
exponential analytic functions on a strip neighborhood of R^{n} . Hence so is
the case for the convolution between \overline{\mathscr{O}}_{*}(D^{n}) and \overline{\mathscr{P}}(D^{n}) .

Note that the result of the convolution does not necessarily belong to
\tilde{\mathscr{P}}(D^{n}) . This inconvenience comes from the inconsistency with the infinite
translation of the notion of modified type spaces.

The Radon transform has no converging factor available as e^{-iX\xi} in
the case of Fourier transform. Thus we must restrict the growth order in
some sense to calculate it. For example, the Fourier transform of 1 is a
well defined hyperfunction (2\pi)^{n}\delta(\xi) , but the Radon transform of 1 is
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meaningless. As definition of Radon transform, we can adopt several
ways: The first is to use the formula

Rf( \omega, t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{f}(\rho\omega)e^{it\rho}d\rho .

In this case, the validity of the substitution \rho\omega to \hat{f} requires some regu-
larity of \hat{f} at the origin, and this is equivalent to some decay condition of
f. For example, in relation with the above example remark that the sub-
stitution \delta(\rho\omega) is meaningless. The second is to define the Radon trans-
form by duality. (Here the duality is understood to be the Plancherel type
formula for the Radon transform.) For this we have to examine the
image of the adjoint Radon transform on the space of real analytic func-
tions exponentially decaying to the radial direction. The third is to calcu-
late the Radon transform by interpreting the formula

Rf( \omega, t)=\int_{R^{n}}\delta(t-x\omega)f(x)dx .

We may introduce the hyperfunctional defining function of \delta(t-x\omega) and
realize the integral as a kind of inner product or integration on a path
deformed to the complex domain. This is a hyperfunctional interpretation
of the hyperplane integrals. As a matter of fact, for a fairly wide sub-
class of hyperfunctions, it is directly realized as the integral of the
defining functions on a suitabe shift of the hyperplane x\omega=t to the com-
plex domain.

It is well known that for elements of \mathscr{L} these definitions of Radon
transform all agree. In the sequel we practice these ideas.

2. Radon transform of subspaces of Fourier hyperfunctions

In this section we collect Paley-Wiener type theorems for the Radon
transform of some subspaces of Fourier hyperfunctions with enough decay
for which Radon transform is rather easily extended. As the fundamental
space of test functions on the image side we adopt the space \mathscr{P}_{*}(S^{n-1}\cross D^{1})

consisting of functions g(\omega, t) satisfying the following conditions: g is
analytic and exponentially decaying in t when \omega runs a complex neighbor-
hood of S^{n-1} and t a strip neighborhood of R. We define the modified
version \mathscr{P}*\sim(S^{n-1}XD^{1}) in a similar way. In our framework, the result of
Radon transform shold be defined at least as a continuous linear functional
on this space.

Now recall the homogeneity condition of Helgason [H1] for functions
g(\omega, t) on S^{n-1}\cross D^{1} :
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for each k=0,1,2, \ldots p_{g}^{k}(\omega)=\int_{-\infty}^{\infty}g(\omega, t)t^{k}dt becomes a (2. 1)
homogeneous polynomial of order k.

First we give a characterization of the image by Radon transform of the
space of test functions of Fourier hyperfunctions, imitating Helgason’s
characterization for the Radon image of \mathscr{L} The result is neater for
modified type case:

Theorem 2. 1 Let \tilde{\mathscr{P}}_{*H}(S^{n-1}\cross D^{1}) denote the subspace of \tilde{\mathscr{P}}_{*}(S^{n-1}\cross D^{1})

consisting of even functions g(\omega, t) satisfying the homogeneity condition
(2. 1). Then the Radon transform induces an isomo\uparrow phism of \tilde{\mathscr{P}}_{*}(D^{n}) onto
\tilde{\mathscr{P}}_{*H}(S^{n-1}\cross D^{1}) . Incidentally the polynomials thus arising in (2. 1) as a
whole satisfy the estimate

\varlimsup_{karrow\infty}k\sqrt{su_{ff}|p_{g}^{k}(\omega)|/k!}<\infty\omega\in-1
’

(2. 2)

or equivalently,

\varlimsup_{k\sim\infty}k\sqrt{\sup|p_{g}^{k}(\zeta)|/k!}<\infty|\zeta|\leq 1^{\cdot} (2. 2’)

Proof We have

g( \omega, t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{it\rho}\hat{f}(\rho\omega)d\rho .

Since f\in\tilde{\mathscr{P}}_{*}(D^{n}) , it follows that \hat{f}\in\tilde{\mathscr{P}}_{*}(D^{n}) . Note that we can also con-
sider g(\omega, t) to be a function positively homogeneous of order -1 in (\omega, t)

\in(R^{n}\backslash \{0\})\cross R . If we let t complexify to t+is with |s|<\delta for suitable \delta

>0 and \omega to \omega+i\eta running in a suitable complex neighborhood U of S^{n-1}

in C^{n} (without posing the condition of (\omega+i\eta)^{2}=1 ), it is obvious that the
above integral still remains absolutely convergent. Hence, g(\omega, t) is jointly
ly holomorphic in \omega , t on U\cross\{|s|<\delta\} . Moreover, shifting the integral
path to \rho+i\sigma with sgn\sigma=sgnt , we see that it is exponentially decaying in
t there.

Consider finally the Taylor expansion of \hat{f}(\xi)=\sum a_{a}\xi^{a} . Since

p_{g}^{k}( \omega)=\int_{-\infty}^{\infty}g(\omega, t)t^{k}e^{-it\rho}dt|_{\rho=0}=(i\frac{d}{d\rho})^{k}\int_{-\infty}^{\infty}g(\omega, t)e^{-it\rho}dt|_{\rho=0}

=(i \frac{d}{d\rho})^{k}\hat{f}(\rho\omega)|_{\rho=0} ,

comparing with
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\hat{f}(\rho\omega)=\sum_{k}(\sum_{|a|=k}a_{a}\omega^{a})\rho^{k}

we obtain

p_{g}^{k}( \omega)=i^{k}k!\sum_{|a|=k}a_{a}\omega^{a} .

The estimate (2. 2) or (2. 2’) is easily obtained from the positivity of the
radius of convergence of the Taylor series.

Conversely, let g(\omega, t)\in\tilde{\mathscr{P}}_{*H}(S^{n-1}\cross D^{1}) . Set

\overline{f}(\rho\omega)=\int_{-\infty}^{\infty}e^{-it\rho}g(\omega, t)dt .

As in Helgason[Hl], this is legitimate because the right-hand side is even
in \omega , \rho by the assumption of evenness of g and for \rho=0 it reduces to a
constant by the homogeneity condition (2. 1). The analyticity of \overline{f}(\xi)

outside the origin on some conical neighborhood of the real axis is
obvions, because, for any \zeta\in C^{n} in such a neighborhood, we can find
\omega+i\eta with |\omega|=1 in the domain of g and \rho>0 such that \rho(\omega+i\eta)=\zeta .
Note, however, that in order to assure that \hat{f}(\xi) is well defined and
holomorphic, we need the homogeneity of g(\omega, t) in a complex neighbor-
hood, whence the conical domain of definition in t is required. Also we
can see its exponential decay from the same property of g by shifting t to
the strip neighborhood in the above integral. What is not so obvious is its
analyticity at the origin. Rewrite

\int_{-\infty}^{\infty}e^{it\rho}g(\omega, t)dt=\int\sum_{-\infty k=0}^{\infty N}\frac{(-it\rho)^{k}}{k!}g(\omega, t)dt

+ \int^{\infty}\sum_{-\infty k=N+1}^{\infty}\frac{(-it\rho)^{k}}{k!}g(\omega, t)dt .

Here the first term in the right-hand side is equal to

\sum_{k=0}^{N}(-i)^{k}\frac{p_{g}^{k}(\xi)}{k!} , \xi=\rho\omega .

This converges, as Narrow\infty , to a germ of analytic function at \xi=0 pr0-

side (2. 2’) holds, which we assume for the moment. On the other hand,
the second term is estimated as

| \int^{\infty}\sum_{-\infty k=N+1}^{\infty}\frac{(-it\rho)^{k}}{k!}g(\omega, t)dt|\leq C\int^{\infty}\sum_{-\infty k=N+1}^{\infty}\frac{|t\rho|^{k}}{k!}e^{-8|t|}dt

\leq\int_{-\infty}^{\infty}e^{|\rho||t|}e^{-\delta|t|}dt ,
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for some \delta>0 . Therefore, if |\rho|<\delta , this converges to 0 as Narrow\infty- by
Lebesgue’s theorem. Thus \hat{f}(\xi) is equal to the above analytic function
near \xi=0 . Thus \hat{f}(\xi)\in\overline{\mathscr{P}}_{*}(D^{n}) , hence it is actually the Fourier trans-
form of a function f\in\tilde{\mathscr{P}}_{*}(D^{n}) , and we conclude that g(\omega, t)=Rf .

Now we show (2. 2’) . First note that

|p_{g}^{k}( \omega)|\leq|\int_{-\infty}^{\infty}g(\omega, t)t^{k}dt|\leq 2C\int_{0}^{\infty}e^{-\delta t}t^{k}dt

=2C \delta^{-k-1}\int_{0}^{\infty}e^{-S}s^{k}ds=2C\delta^{-k-1}k! .

Hence \{p_{g}^{k}(\omega)\} satisfies (2. 2). We cannot let \omega vary in the complex ball in
the above estimation to deduce (2. 2’) directly, because we can only let \omega

run in a small complex neighborhood of the real unit ball. But we have
the following general fact in view of which (2. 2’) follows from (2. 2). \square

Lemma 2. 2 Let p(\zeta) be a polynomial of degree \leq m in n variables \zeta=

(\zeta_{1}\ldots, \zeta_{n}) . Let \Delta^{n} note the polydisc \{ \zeta\in C^{n} ; |\zeta_{j}|\leq 1, j=1, ..., n\} and
I^{n} the rectangle \{\xi\in R^{n} ; |\xi_{j}|\leq 1, j=1, \ldots, n\} . Then we have

\sup_{\zeta\in\Delta^{n}}|p(\zeta)|\leq c_{n}^{m}s\xi\in u,P_{n}^{|p(\xi)|} (2. 3)

with a constant c_{n}\leq 5^{n} independent of m.

Proof. We show it by induction on n . First notice that for a polynomial
of one variable

p( \tau)=c\prod_{j=1}^{m}(\tau-\lambda_{j})

we have

\sup_{\tau\in\Delta}|p(\tau)|\leq 5^{m}st\in u,P^{|p(t)|} . (2. 4)

For \lambda_{j} satisfying |\lambda_{j}|\geq 3/2 we have

\frac{|\tau-\lambda_{j}|}{|t-\lambda_{j}|}\leq\frac{|\lambda_{j}|+1}{|\lambda_{j}|-1}\leq 5

whatever \tau\in\Delta and t\in I may be. If |\lambda_{j}|\leq 3/2 we have

| \tau-\lambda_{j}|\leq 1+|\lambda_{j}|\leq\frac{5}{2} .

We need an estimate from below of
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S\mathfrak{U}t\in f^{\Pi’|t-\lambda_{j}|} ,

where \prod’ denotes the product of factors corresponding to such \lambda_{j} . Let m’

denote their total number. By a minimax theorem we have

sut\in P^{\Pi’|t-\lambda_{j}|}\geq sut\in P^{\Pi’|t-{\rm Re}\lambda_{j}|}\geq sut\in P^{\frac{1}{2^{m-1}}T_{m’}(t)\geq\frac{1}{2^{m-1}}}
”.

where T_{m’} denotes the Chebyshev polynomial of degree m’ . See e.g.
Henrici [Hn], Theorem 9. 4. Thus in any case we have (2. 4).

Now consider a polynomial p(\zeta) of n variables \zeta . Regarding p(\zeta) as
a polynomial of one variable \zeta_{n} , with parameters \zeta’=(\zeta_{1}, \ldots, \zeta_{n-1}) , we can
apply what we have shown above and obtain that for any \xi’\in I^{n-1} fixed

|p( \xi’\zeta_{n})|\leq\sup_{\xi n\in\Delta}|p(\xi’, \zeta_{n})|\leq 5^{m}\sup_{\xi n\in I}|p(\xi_{:}’\zeta_{n})| .

Now, p(\xi’. \zeta_{n}) , with \zeta_{n}\in\Delta fixed, is a polynomial of n-1 variables \xi’ of
degree m. Hence by the induction hypothesis we have

\sup_{\zeta’\in\Delta}
-1|p( \zeta’. \zeta_{n})|\leq 5^{(n-1)m}\sup_{\epsilon^{r}\in I} 1|p(\xi’. \zeta_{n})| .

Combining these we obtain (2. 3). \square

We still do not have a complete characterization of the Radon image
of the fundamental space \mathscr{P}_{*}(D^{n}) . What we know at present is the fol-
lowing:

Proposition 2. 3 The Radon transform of f\in \mathscr{P}_{*}(D^{n}) becomes an even
function g(\omega, t) of (\omega, t) on S^{n-1}\cross D^{1} . satisfying the homogeneity condi-
tion (2. 1) and the essimate (2. 2) or equivalently (2. 2’) . Further, it can
be considered as a\mathscr{P}_{*}(D_{t}^{1})- valued Gevrey function of index 2 in \omega\in S^{n-1}-

Namely, it satisfifies the following estimate: There exist \delta>0 , B>0 such that
|D_{\omega}^{a}g(\omega, \tau)|\leq C\delta^{-|a|}(|\alpha| ! )^{2}e^{-8|\tau|} on |{\rm Im}\tau|<\delta. (2. 5)

Proof It is obvious that for each fbced \omega , g(\omega, t) belongs to \mathscr{P}_{*}(D_{t}^{1}) .
We have \hat{f}(\xi)\in \mathscr{P}_{*}(D^{n}) , Hence

|D_{\omega}^{a}g( \omega, t+is)|\leq|D_{\omega}^{a}\int_{-\infty}^{\infty}e^{i(\rho+i\sigma)(t+is)}\hat{f}((\rho+i\sigma)\omega)d\rho|

\leq\int_{-\infty}^{\infty}e^{-\rho s-\sigma t}|\rho+i\sigma|^{|a|}|(D_{\xi}^{a}\hat{f})((\rho+i\sigma)\omega)|d\rho

\leq Ce^{-\sigma t}\int_{-\infty}^{\infty}e^{-\rho s}|\rho|^{|a|}\frac{|\alpha|!}{\delta^{|a|}}e^{-8|\rho|}d\rho .
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Here we have used, with \zeta=\xi+i\eta , z=x+iy , y=\delta\xi/|\xi| ,

|(D_{\xi}^{a} \hat{f})(\zeta)|\leq|\int_{R^{n}}e^{-iz\zeta}(-iz)^{a}f(z)dx|

\leq c\int_{R^{n}}e^{|\eta||x|-8|\xi||x^{a}|e^{-28|x|}dx\leq\frac{C}{\delta^{|a|}}|\alpha|!e^{-8|\xi|}} ,

for |\eta|<\delta ,

for sufficiently small \delta>0 . Choosing sgn\sigma suitably, we obtain (2. 5) with
a smaller \delta>0 . The remaining assertion can be shown similarly. \square

Remark. (2. 1) and (2. 5) are not enough to assure \hat{f}(\xi)\in \mathscr{P}_{*}(D^{n}) ,

although we have no counter-example. Note that the Gevrey 2 regularity
of g(\omega, t) in \omega is the best possible as will be shown in Example 3. 3, 4).

Now we pass to the study of the Radon image of generalized func-
tions. First we consider the space \mathscr{B}_{C}(R^{n}) of hyperfunctions with compact
supports. For f(x)\in \mathscr{B}_{C}(R^{n}) , the Radon transform can be defined either
by the following hyperfunctional integration along fiber as in [GGV] for
the case of distributions:

Rf( \omega, t)=\int_{R^{n}}\delta(t-x\omega)f(x)dx , (2. 6)

or by the formula via the Fourier transform:

Rf( \omega, t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{it\rho}\hat{f}(\rho\omega)d\rho .

In the first method, the result is interpreted as a hyperfunction by

g(\omega, t)=G(\omega, t+i0)-G(\omega, t-i0) , (2. 7)

where

G(\omega, \tau)=\langle f(x), - \frac{1}{2\pi i}\frac{1}{\tau-x\omega}\rangle_{x} . (2. 8)

In the second method, it is interpreted by the same formula (2. 6), where
now

G( \omega, \tau)=\frac{1}{2\pi}\int_{0}^{\pm\infty}e^{ir\rho}\hat{f}(\rho\omega)d\rho , for \pm{\rm Im}\tau>0 . (2. 8’)

The integral converges because by the Paley-Wiener-Ehrenpreis theorem
\hat{f}(\rho\omega) grows infra-exponentially (i. e . more slowly than any exponential
type). (2. 8) and (2. 8’) give the same function, as is easily seen by substi-
tution of \hat{f}(\rho\omega)=\langle f(x), e^{-i\rho x\omega}\rangle_{x} . The equivalence of these two definitions
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follows from this. Actually the above G(\omega, \tau) can be patched to one ana-
lytic function outside a bounded interval on Re \tau , corresponding to the fact
that g(\omega, t) has bounded support in t .

Theorem 2. 4 Let \mathscr{B}_{CH}(S^{n-1}\cross R) denote the space of even hyperfunctions
g(\omega, t) with compact support, containing \omega as real analytic parameters and
satisfying the homogeneity condition (2. 1). Then the Radon transform
induces an isomorphism of \mathscr{B}_{C}(R^{n}) onto \mathscr{B}_{CH}(S^{n-1}\cross R) . Incidentally, the
arising polynomials are subordinate to the estimate

\varlimsup_{karrow\infty}k\sqrt{\sup|p_{g}^{k}(\omega)|}<\omega\in S^{n-1}\infty , (2. 9)

or equivalently

\varlimsup_{karrow\infty}k\sqrt{\sup|p_{g}^{k}(\zeta)|}<|\zeta|\leq 1\infty . (2. 9’)

Proof As is well known (see e.g. [Kn2] Theorem 8. 1. 1) \hat{f} is an entire
function of exponential type. Although this time g(\omega, t) is not necessarily
a usual function, we can apply almost the same discussion as in Theorem
2. 1. Namely,

p_{g}^{k}( \zeta)=\int_{-\infty}^{\infty}g(\zeta, t)t^{k}e^{-it\rho}dt|_{r=0}=(i\frac{d}{d\rho})^{k}\hat{f}(\rho, \zeta)|_{\rho=0}=i^{k}k!(\sum_{|a|=k}a_{a}\zeta^{a}) .

The estimate (2.9) or (2. 9’) follows from the fact that \hat{f}(\zeta) is an entire
function of exponential type.

Conversely, given g(\omega, t)\in \mathscr{B}_{cH}(S^{n-1}XR) , consider its partial Fourier
transform

\hat{f}(\omega, \rho)=\int_{-\infty}^{\infty}e^{-it\rho}g(\omega, t)dt=-\oint_{r}e^{-i\tau\rho}G(\omega, \tau)d\tau , (2. 10)

where \gamma\subset C is a simple closed curve surrounding suppg(\omega, t)\subset R , the sup
port of g as a hyperfunction of one variable t , and G is a defining func-
tion. Estimating

p_{g}^{k}( \omega)=-\oint_{r}\tau^{k}G(\omega, \tau)d\tau

we obtain |p_{g}^{k}(\omega)|\leq CB^{k+1} . provided \gamma\subset\{|\tau|\leq B\} , whence (2. 9) and (2. 9’) .
As in the proof of Theorem 2. 1 we can show that it becomes an analytic
function of \xi=\rho\omega on R^{n} including the origin. (No estimate is needed
because now the chain of integration is compact.) The estimate (2. 9’) then
implies that its Taylor expansion at the origin defines an entire function of
exponential growth. Since it is of infra-exponential growth on the real
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axis as is seen from (2. 10) by choosing \gamma in the \epsilon^{-}neighborhood of the
real axis, it is actually the Fourier transform of an element f\in \mathscr{B}_{C}(R^{n}) .
We have g=Rf as before. \square

The following result may be known from long ago. But it is not ex-
plicitely written anywhere, including [GGV], [HI].

Corollary 2. 5 Let \mathscr{C}_{H}’(S^{n-1}\cross R) denote the space of even distributions
with compact support, containing \omega as real analytic parameters and satisfy-
ing the homogeneity condition (2. 1). Then the Radon transform induces
an isomorphism of \mathscr{C}’(R^{n}) onto \mathscr{C}^{r_{H}}(S^{n-1}\cross R) . The arising polynomials
are subordinate to the estimate (2. 9) or (2. 9’) .

In fact, the only difference is the singularity of g(\omega, t) which is now in
distributions reflecting the same singularity of f(x) .

The following theorem can be proved in a similar way:

Theorem 2. 6 The Radon transform of a modifified Fourier hyperfunction
with bounded singular support, i. e. which is a section of \mathscr{P}_{*}(D^{n}) outside a
compact subset of R^{n} . is defifined by the same formula as (2. 6)-(2.8) . The
image is characterized as an even function g(\omega, t) satisfying the homogene-
ity condition (2. 1), which can be regarded as a real analytic function of
\omega\in S^{n-1} with values in the space of modifified Fourier hyperfunctions with
bounded singular support in the variable t. Incidentally (2. 2) or (2. 2’)

holds.

Finally we consider the space of exponentially decaying Fourier
hyperfunctions. To our astonishment, the result is not necessarily ana-
lytic in \omega\in S^{n-1} even in the weakest sense for the modified case, too:

\overline{\mathscr{O}}_{*}(D^{n})=\bigcup_{8>0}e^{-8\prime x^{2}+1}\overline{\mathscr{O}}(D^{n}) . ( 1.^{4bis})

For f\in\overline{\mathscr{O}}_{*}(D^{n}) , its Radon transform is defined by

Rf(\omega, t)=G_{+}(\omega, t+i0)-G_{-}(\omega, t-i0) ,

where

G_{\pm}( \omega, \tau)=-\frac{1}{2\pi i}\langle f(x) , \frac{1}{\tau-x\omega}\rangle

=- \frac{1}{2\pi i}\langle f(x)e^{8\prime x^{2}+1} , \frac{e^{-8x^{2}+1}}{\tau-x\omega}\rangle , for \pm{\rm Im}\tau>0 ,

with some \delta>0 such that f(x)e^{8\sqrt{x^{2}+1}}\in\overline{\mathscr{O}}(D^{n}) . This is apparently the
same as (2. 7)-(2.8) but now l/(\mbox{\boldmath $\tau$}-x\omega ) resp. e^{-8\prime x^{2}+1}/(\tau-x\omega) is consid-
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ered as a test function for exponentially decaying Fourier hyperfunctions
resp. infra-exponential Fourier hyperfunctions. A paraphrase employing
Fourier transform is similar. This time the analogy of (2. 6) is ambigu-
ous.

Proposition 2. 7 The Radon transform of an element of \overline{\mathscr{O}}_{*}(D^{n})

becomes an even hyperfunction in (\omega, t) satisfying (2. 1), which can be
regarded as a\tilde{\mathscr{O}}_{*}(D_{t}^{1})- valued Gevrey function of order 2. It satisfifies (2. 2)
or equivalently (2. 2’) .

Proof Let f\in\tilde{\mathscr{O}}_{*}(D^{n}) . In view of Proposition 1. 3 \hat{f}(\xi) becomes ana-
lytic on a neighborhood of the orign. Thus we obtain (2. 1) just in the
same way as in Theorem 2. 1. We verify the Gevrey estimate for the
derivatives of g(\omega, t)=Rf(\omega, t) in \omega . Let \varphi(t)\in\tilde{\mathscr{P}}(D_{t}^{1}) . Denoting by

\tilde{\varphi}\in\overline{\mathscr{O}}_{*}(D_{\rho}^{1}) the inverse Fourier transform, we have

G( \omega):=\int_{-\infty}^{\infty}g(\omega, t)\varphi(t)dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i\rho t}\hat{f}(\rho\omega)\varphi(t)dtd\rho

= \int_{-\infty}^{\infty}\overline{f}(\rho\omega)\overline{\varphi}(\rho)d\rho

= \int_{-\infty}^{\infty}\int_{R^{n}}e^{-i\rho\omega x}f(x)dx\overline{\varphi}(\rho)d\rho

= \int_{R^{n}}f(x)\varphi(x\omega)dx .

Let \omega run in a neighborhood of S^{n-1} in R^{n} . We have

D_{\omega}^{a}G( \omega)=\int_{R^{n}}f(x)x^{a}(D_{t}^{|a|}\varphi)(x\omega)dx .

Since e^{8\sqrt{x^{2}+1}}f(x)\in\overline{\mathscr{O}}(D^{n}) for some fixed \delta>0 , we have, with a slightly
smaller \delta and with any \lambda>0 ,

|D_{\omega}^{a}G(\omega)|\leq||e^{8\sqrt{X^{2}+1}}f(\chi)||su|{\rm Im} z|\leq\lambda(|P_{ez|+1)}^{|e^{-8\sqrt{z^{2}+1}}z^{a}(D_{t}^{|a|}\varphi)(z\omega)|}’

||\circ|| denoting the seminorm dual to the one employed for
e^{-8\sqrt{x^{2}+1}}x^{a}\varphi^{(|a|)}(x\omega) . Since by Cauchy’s inequality we have, for any fixed
\epsilon>0 , with some \lambda=\lambda(\epsilon) ,

|(D_{\tau}^{m} \varphi)(\tau)|\leq C\frac{m!}{(\lambda(|{\rm Re}\tau|+1))^{m}}e^{\epsilon|{\rm Re}\tau|} ,

we obtain, again with a smaller \delta>0 ,

|D_{\omega}^{a}G( \omega)|\leq C\frac{(|\alpha|!)^{2}}{\delta^{|a|}} .
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Since the estimate is uniform in \varphi , we conclude that g(\omega, t) is in Gevrey
class of order 2 in \omega\in S^{n-1} in the sense of the strong topology of \mathscr{O}_{*}(D_{t}^{1})- .
\square

Next we consider the case of exponentially decaying Fourier hyperfun-
ctions of ordinary type:

\mathscr{O}_{*}(D^{n}):=\bigcup_{\epsilon>0}e^{-\epsilon\prime 1+x^{z}}\mathscr{O}(D^{n}) . (1. 3bis)

The definition of Radon transform described above for the modified type
case works equally well. Since now \hat{f}(\xi)\in \mathscr{P}(D^{n}) , i . e . analytic and
infra-exponential on a strip neighborhood of the real axis, the following
formula via the Fourier transform is also convenient:

G_{\pm}( \omega, \tau)=\pm\int_{0}^{\pm\infty}e^{i\rho\tau}\overline{f}(\rho\omega)d\rho , for \pm{\rm Im}\tau>0 .

Proposition 2. 8 The Radon transform of f\in \mathscr{O}_{*}(D^{n}) becomes a function
g(\omega, t) of \omega\in S^{n-1} with values in \overline{\mathscr{O}}_{*}(D_{t}^{1}) which is in Gevrey class of
order 2 by the strong topology. It is even in \omega, t and it satisfifies the homO-
geneity condition (2. 1). The estimate (2. 2) or equivalently, (2. 2’) is
satisfified.
Proof. \hat{f} becomes a holomorphic function of infra-exponential growth
on a strip neighborhood of the real axis. Arguing similarly as in Proposi-
tion 2, 3, we have

|D_{\omega}^{a}G_{+}( \omega, t+is)|=|D_{\omega}^{a}\int_{0}^{\infty}e^{i(\rho+i\sigma)(t+is)}\hat{f}((\rho+i\sigma)\omega)d\rho|

\leq|\int_{0}^{\infty}e^{-\rho s-\sigma t}\rho^{|a|}|(D_{\xi}^{a}\hat{f})((\rho+i\sigma)\omega)|d\rho|

\leq C_{\epsilon}\int_{0}^{\infty}\rho^{|a|}|\alpha|!e^{-s\rho-\sigma t}d\rho

\leq C_{\epsilon}\frac{(|\alpha|!)^{2}}{s^{|a|}}e^{-\sigma t} .

Similar estimate holds for G_{-}(\omega, \tau) . The remaining assertion can be
shown similarly as before. \square

For these two theorems we do not know if the converse holds. We
shall show in Example 3. 3, 4) that the Gevrey 2 is the best possible regu-
larity we can hope.

We give an identification result deduced from the fact that g(\omega, t) is
analytic in \omega in some sense. Similar assertion is given in [Z] for usual
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functions.

Corollary 2. 9 If the original f(x) is an exponenitally decaying Fourier
hyperfunction {hence especially a hyperfunction with compact support), then
it is uniquely determined from the restriction data g(\omega^{(k)}, t) , for a counta-
bly many points \omega^{(k)}\in S^{n-1}\wedge k=1,2 , ... constituting a uniqueness set for
real analytic functions on S^{n-1} .

Proof. By the assumption on f(x),\hat{f}(\xi)\in \mathscr{P}(D^{n}) is analytic on a strip
neighborhood of R^{n} We have, for each fixed real \omega .

\hat{f}(\rho\omega)=\int_{R}e^{-i\rho t}g(\omega, t)dt .

By the assumption, it vanishes on every line \{\rho\omega^{(k\rangle} ; \rho\in R\} . Thus by the
condition on \omega^{(k)} its restriction to every sphere centered at the origin van-
ishes. Thus we conclude \hat{f}\equiv 0 as an element of \mathscr{P}(D^{n}) , hence f\equiv 0 . \square

Note that when f(x) is a hyperfunction with compact support, this is
a variant of usual uniqueness theorem with respect to real analytic param-
eters, and may be discussed even locally with respect to \omega . In case f\in

\tilde{\mathscr{O}}(D^{n}) , the above argument does not work, because \hat{f}(\xi)=0 on R^{n} does
not exclude the possibility of supp \hat{f} remaining at infinity. Similar asser-
tion in this case is still open.

3. Radon hyperfunctios and their Radon transform

In order to define the Radon transform for more general hyperfunc-
tions we rather need the characterization of the image by the adjoint
Radon transform of \mathscr{P}_{*}(S^{n-1}\cross D^{1}) :

R^{\#} \varphi(x)=\int_{S^{n-1}}\varphi(\omega, x\omega)d\omega .

Lemma 3. 1 The adjoint Radon transform of a function \varphi(\omega, t)\in

\mathscr{P}_{*}(S^{n-1}\cross D^{1}) {resp. \varphi(\omega, t)\in\tilde{\mathscr{P}}_{*}(S^{n-1}\cross D^{1})) becomes real analytic in a

strip neighborhood {resp. conical neighborhood) of the real axis and
satisfifies the decay condition:

|{\rm Re} z|R^{\#}\varphi(z) is bounded. (3. 1)

Proof. Let x\neq 0 be fixed and write \omega=\eta+sx/|x|\in S^{n-1} . where \eta runs in
the (n-1)-dimensional disc perpendicular to the vector x . We have
|\eta|^{2}+s^{2}=1 . Denoting by Cn various constants depending only on n, we
find
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|R^{\#} \varphi(x+iy)|=|\int_{S^{n-1}}\varphi(\omega, (x+iy)\omega)d\omega|

=| \int_{-1}^{1}\frac{1}{\sqrt{1-s^{2}}}ds\int_{|\eta|=\sqrt{1-s^{2}}}\varphi(\omega, s|x|+iy\omega)d\eta|

\leq c_{n}\int_{0}^{1}(1-s^{2})^{(n-3)/2}e^{-8s|x|}ds

\leq\frac{c_{n}}{|x|}\int_{0}^{\infty}e^{-8t}dt\leq\frac{c_{n}}{|x|},

where in the last line we used (1-s^{2})^{(n-3)/2}\leq 1 . Hence we need a more
careful calculation for n=2 : Instead of the last line we have

\leq c_{n}\{\int_{0}^{1/2}(1-s^{2})^{(n-3)/2}e^{-\delta s|x|}ds+\int_{1/2}^{1}(1-s^{2})^{(n-3)/2}e^{-8s|x|}ds\}

\leq c_{n}\{\sup_{0\leq s\leq 1/2}(1-s^{2})^{(n-3)/2}\int_{0}^{\infty}e^{-8s|x|}dx+\int_{1/2}^{1}(1-s^{2})^{ds}(n-3)/2=_{S}u_{S}pse^{-8s|x|\}}

\leq\frac{c_{n}}{|x|}.

The analyticity of R^{\#}\varphi(x) is obvious. \square

Taking the above in mind, we can introduce the Radon transform by
the duality. The heuristic background is the following Plancherel type
formula:

Proposition 3. 2 Let f(x)\in \mathscr{O}_{*}(D^{n}) and \varphi(\omega, t)\in \mathscr{P}_{*}(S^{n-1}\cross D^{1}) (resp.
f\in\overline{\mathscr{O}}_{*}(D^{n}) and \varphi(\omega, t)\in\overline{\mathscr{P}}_{*}(S^{n-1}\cross D^{1})) . Then we have

\int_{S^{n-1}}\int_{R}(Rf)(\omega, t)\varphi(\omega, t)d\omega dt=\int_{R^{n}}f(x)R^{\#}\varphi(x)dx.

These integrals are to be understood as the respective inner products.

Notice that R^{\#}\varphi\in \mathscr{P}(D^{n}) (rest. R^{\#}\varphi\in\tilde{\mathscr{P}}(D^{n}) ) in view of the above
lemma, hence the right-hand side has sense. Also, the left-hand side has
sense in view of Propositions 2. 7, 2. 8. The proof is otherwise straight-
forward. (Cf. the calculation done in the proof of Proposition 2. 7).

Let us denote by \mathscr{P}_{(-1)} (resp. \mathscr{P}_{(-1)} )- the space of functions holomor-
phic in a strip neighborhood of the real axis and satisfying there (3. 1). It
allows a natural structure of DF type topological linear space as the
inductive limit of Banach spaces defined by the supremum norms (3. 1)
taken on |{\rm Im} z|<1/k , k=1,2 , \ldots . Because the topology is defined via su-
premum norms with a fixed weight, this space is unfortunately not
reflexive. Its dual will be called the space of Radon hyperfunctions (resp.
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modifed Radon hyperfunctions). As a matter of fact, elements of
R^{\#}\mathscr{P}_{*}(S^{n-1}\cross D^{1}) or of R^{\#}\overline{\mathscr{P}}_{*}(S^{n-1}\cross D^{1}) should have stronger restrictions
than the mere estimate (3. 1), and if we take them into account, we might
have a wider space of Fourier hyperfunctions admitting the Radon trans-
form. But here as a first attempt we adopt these handy spaces.

\mathscr{P}_{*}(D^{u}) is continuously imbedded into \mathscr{P}_{(-1)} , but not dense therein.
The closure of the image of the former consists of those elements such
that |z|\varphi(z)arrow 0 as {\rm Re} zarrow 0 . Such is the case for \overline{\mathscr{P}}_{*}(D^{n})c_{arrow\overline{\mathscr{P}}_{(-1)}} , too.
Consequently, the space of Radon hyperfunctions cannot be considered as
a subspace of Fourier hyperfunctions j we only have a canonical mapping
from the former to the latter which is not injective. Thus to a general
Radon hyperfunction the Fourier transform does not act faithfully. Also,
we have to prepare the sheaf theory for the Radon hyperfunctions indepen-
dently of the one for Fourier hyperfunctions. Because we only treat
global sections of Radon hyperfunctions in this article, we only define the
notion of supports: For a compact subset K of the compactification D^{n} .
let \mathscr{P}_{(-1)}(K) denote the space of real analytic functions defined on a neigh-
borhood of K in D^{n}+iR^{n} (hence possessing a fixed breadth near points at
infinity of K), and satisfying (3. 1) there. It has a natural structure of
topological vector space similar to \mathscr{P}_{(-1)} . A Radon hyperfunction f is
said to have support in K if it is extended to a continuous linear func-
tional up to \mathscr{P}_{(-1)}(K) . Malgrange’s theorem with bound given in
Lemma A. 1 in the Appendix assures that

suppf\subset K_{1} , suppf\subset K_{2} \supset suppf\subset K_{1}\cap K_{2} .
(See Corollary A. 2.) Thus the notion is legitimate. We still do not know
if similar assertion is valid for modified type case, too. Thus we will not
speak of support of a modified Radon hyperfunction in the sequel. We
shall call the natural image of (modified) Radon hyperfunctions in Fourier
hyperfunction as (modifified) Fourier Radon hyperfunctions. As we see
later, there is a good subclass common to both spaces for which the inter-
pretation as Fourier hyperfunction is faithful.

For a (modified) Radon hyperfunction f(x) its Radon transform is
defined via the duality;

\langle Rf(\omega, t), \varphi(\omega, t)\rangle=\langle f(x), R^{\#}\varphi(x)\rangle .

For an ordinary type Radon hyperfunction, we can also calculate Rf
directly, interpreting the formula

Rf( \omega, t)=\int_{R^{n}}\delta(t-x\omega)f(x)dx . (3. 2)
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Here the integral is to be understood in the sense of hyperfunctions as
follows: Decompose f into the sum of f_{k} , k=1,2 , \ldots , N such that each f_{k}

has support in a closed proper convex cone \Delta_{k}^{o} , which is the dual of an
open convex cone \Delta_{k}\subset R^{n} . (For the possibility of such decomposition see
Theorem A. 7 in Appendix.) Then

Rf( \omega, t)=\sum_{k=1}^{N}(G_{k}(\omega-i\Delta_{k}0, t+i0)-G_{k}(\omega+i\Delta_{k}0, t-i0)) ,

where

G_{k}( \zeta, \tau)=-\frac{1}{2\pi i}\int_{R^{n}}\frac{1}{\tau-x\zeta}f_{k}(x)dx for \pm Re \tau>0 , \eta\in\mp\Delta_{k} . (3. 3)

Here l/(\mbox{\boldmath $\tau$}-x\mbox{\boldmath $\zeta$}) can be considered as a test function for the Radon hyper-
functions, because it is of O(|x|^{-1}) thanks to the term x\eta\neq 0 in the denomi-
nator. Thus the integral (3. 3) is meaningful in this sense of inner prod-
uct. Remark that the limit t\pm i0 is necessary for this, because \omega\pm i\Delta_{k}0 is
not an efficient regularization when x=0. In this way we obtain a well
defined hyperfunction of (\omega, t) on (R^{n}\backslash \{0\})\cross R which is homogeneous of
degree -1. Hence it satisfies Euler’s differential equation.

\omega\nabla_{\omega}f+t\partial_{t}f=0 ,

which is non-characteristic to the radial direction in \omega . Thus the restric-
tion to |\omega|^{2}=1 is legitimate, and finally we obtain the desired Radon trans-
fo r

If we consider \omega to be points on S^{n-1} from the beginning in the above
formulas, they must be modified a little: Denoting by CS^{n-1} the complex
sphere

CS^{n-1}=\{\zeta\in C^{n} ; \zeta_{1}^{2}+\cdots+\zeta_{n}^{2}=1\} ,

and by \Delta_{k}^{\omega} the local profile of the (n-1)-dimensional twisted wedge
(R^{n}+i\Delta_{k})\cap CS^{n-1} . we have

Rf( \omega, t)=\sum_{k=1}^{N}(G_{k}(\omega-i\Delta_{k}^{\omega}0, t+i0)-G_{k}(\omega+i\Delta_{k}^{\omega}0, t-i0)) ,

with the same G_{k} as above. Let us examine the range where \eta runs.
\zeta=\omega+i\eta\in CS^{n-1} implies

\omega^{2}-\eta^{2}=1 , \omega\eta=0 .

Hence, in the region \omega\in S^{n-1}\cap(\pm\Delta_{k}^{o}) it follows \Delta_{k}\cap\{\omega\eta=0\}=\phi . But if
\Delta_{k}^{o} are small enough so that \Delta_{k}^{o}\subset\Delta_{k} holds for each k, then x\omega\neq 0 and (3. 3)
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has sense even with Im \eta=0 . This implies that the result is analytic in \omega

on such a region. Outside that region, it has S. S. (analytic wavefront
set) confined in the directions (\omega^{\perp}\cap\pm\Delta_{k})^{\circ}- where the dual cone is in the
sense of (n-1)-dimensional inner product in any local cooridnate system.
Usually it is not convenient to choose \Delta_{k} satisfying \Delta_{k}^{o}\subset\Delta_{k} . For example,
for the orthant cones, which are the most practical choices, this condition
is not satisfied. Thus in practical calculations it is preferable to find first
the homogeneous hyperfunction f(\omega, t) on R^{n}\backslash \{0\}\cross R and then restrict it
to |\omega|=1 .

As is easily seen by the duality argument, the space of Radon hyper-
functions injectively contains the space \mathscr{B}_{C}(R^{n}) of hyperfunctions with
compact supports and the space \mathscr{O}_{*}(D^{n}) of exponentially decaying Fourier
hyperfunctions. So it is for modified case. In these situations, specializa-
tion with respect to \omega is legitimate as we saw in the preceding section.
More generally, it contains Fourier hyperfunctions which admit represen-
tations by difining functions F_{j}(z) such that each F_{j}(z)/(|{\rm Re} z|+1) is abs0-
lutely integrable on R^{n}+iy , y\in\Gamma_{j} . This is a subclass common to both
spaces of Radon hyperfunctions and Fourier hyperfunctions. Hence for
such a subclass, the Radon transform agrees with the one calculated via
the Fourier transform as in \S 2. This situation includes most important
examples. We expect that the property stated above completely charac-
terizes the Fourier Radon hyperfunctions, i . e . the natural image of Radon
hyperfunctions in Fourier hyperfunctions. If it is true, we will have a
canonical right inverse of the natural mapping from the Radon hyperfunc-
tions to Fourier hyperfunctions.

Usual mesurable functions f such that f(x)/(|x|+1) is absolutely inte-
grable are contained therein as a particular case. For such a function f,
the Radon transform becomes a distribution, but the above formula calcu-
lating it may be interesting even in such a case.

There is a good subclass of Radon hyperfunctions, which may be
called absolutely integrable hyperfunctions. It constitutes of Fourier
hyperfunctions possessing a set of defining functions which are absolutely
integrable in {\rm Re} z locally uniformly in {\rm Im} z , constitute a nice subclass of
Radon hyperfunctions. Such is the case in particular if the defining func-
tions F_{j}(z) are of order O(|{\rm Re} z|^{-n-\epsilon}) at infinity for some \epsilon>0 . For such
class, the integral (3. 3) converges absolutely, irrespective of the contribu-
tion of l/(\mbox{\boldmath $\tau$}-x\mbox{\boldmath $\zeta$}) as damping factor. Hence its Radon transform becomes
continuous in \omega\in S^{n-1} in an appropriate sense. In this case a formula like
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Rf( \xi)=\sum_{j=1}^{N}\int_{\xi}F_{j}(x+i_{\mathcal{Y}j})dS

works for the Radon transform of a hyperfunction under a suitable inter-
pretation:

Rf( \omega, t)=\sum_{j=1}^{N}G_{j}(\omega, t+i\sigma_{j}0) ,

G_{j}( \omega, t+is)=\int_{(x+iy)\omega=t+is}F_{j}(x+iy)dS .

If we rotate S^{n-1} in such a way that \omega=(1, 0, \ldots, 0) , then setting x’=(x_{2} , \ldots ,
x_{n}) etc. the last formula leads to:

G_{j}( \omega, t+is)=\int_{R^{n-1}}F_{j}(t+is, x’+iy)\prime dx’r.

where (s, y’)\in\Gamma_{j} , and s can run in the projection image of \Gamma_{j} to the
y_{1}-axis. Note that the shift to the complex domain t+is is necessary
unless f is micr0-analytic to the conormal direction of the hyperplane \xi

( i . e . unless y_{1}=0 intersects \Gamma_{j} in the last situation).

The Radon transform thus defined is compatible with the usual one or
with the one already defined for \mathscr{B}_{C}(R^{n}) , as is easily seen via duality argu-
ment employing test functions from \mathscr{P}_{*}(S^{n-1}\cross D^{1}) . The equivalence of
this definition with the one by duality is also shown in the same way.
Especially, given any Radon hyperfunction we can always decompose it to
two parts, one with bounded support and the other with support confined
near the points at infinity, and calculate the Radon transform separately.

In the Appendix we give justification to these “delicate” subspaces of
Fourier hyperfunctions which were never treated in the literature. In this
article we do not discuss their analogy for modified Fourier hyperfunc-
tions, because it requires a basically profounder provision.

Example 3. 3. 1) Consider a hyperfunction with compact support f(x)=
J(D)\delta(x-a) , where a\in R^{n} is a fixed point and J(D) is a local operator.
Then we have

Rf( \omega, t)=\int_{R^{n}}\delta(t-x\omega)J(D)\delta(x-a)dx

= \int_{R^{n}}J(-D_{x})\delta(t-x\omega)\cdot\delta(x-a)dx

= \int_{R^{n}}J(\omega\frac{d}{dt})\delta(t-x\omega)\cdot\delta(x-a)dx
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=J( \omega\frac{d}{dt})\int_{R^{n}}\delta(t-x\omega)\cdot\delta(x-a)dx

=J( \omega\frac{d}{dt})\delta(t-a\omega) .

This result is micr0-analytic in \omega in concordance with Theorem 2. 3. It is
also micr0-analytic in t in the region a\omega\neq 0 , although not in the whole.
In this sense, the result is more regular for a\neq 0 than for a=0.

2) Take f(x)=1/(x_{1}+ix_{2})^{m+1} in R^{2} . The interpretation at x=0 is
given by

\frac{1}{(x_{1}+ix_{2})^{m+1}}=\frac{(-1)^{m}}{m!}\partial^{m}\frac{1}{x_{1}+ix_{2}},

with

\partial=\frac{1}{2}(\frac{\partial}{\partial x_{1}}-i\frac{\partial}{\partial x_{2}}) , \overline{\partial}=\frac{1}{2}(\frac{\partial}{\partial x_{1}}+i\frac{\partial}{\partial x_{2}}) ,

and 1/(x_{1}+ix_{2}) is considered to be a hyperfunction coming from the locally
integrable function by the canonical imbedding. This example allows a
Radon hyperfunction for m\geq 1 . Calculating its Radon transform, we
obtain

Rf( \omega, t)=2\pi\frac{(-1)^{m}}{m!2^{m}}\frac{(\omega_{1}-i\omega_{2})^{m}}{\omega_{1}+i\omega_{2}}\delta^{(m-1)}(t) . (3. 4)

On the unit sphere S^{n-1} the factor \omega_{1}+i\omega_{2} in the denominator may be
transformed to \omega_{1}-i\omega_{2} and joined to the numerator. But this causes the
change in the homogeneity degree. In this sense, (3. 4) does not satisfy
the homogeneity condition (2. 1), hence does not come from a hyperfunc-
tion with compact support, although after this rewriting it becomes a
polynomial in \omega and has support bounded in t .

For m=0 we would have

R \frac{1}{x_{1}+ix_{2}}=\pi\frac{1}{\omega_{1}+i\omega_{2}} sgnt.

But this is not covered by our present theory. It requres a kind of princi-
pal value at infinity for the line integral of Radon transform.

3) Consider another Radon hyperfunction f(x)= \prod_{j=1}^{n}(x_{j}+i\epsilon)^{-1} with
\epsilon\geq 0 . By a similar calculus, we obtain

Rf( \omega, t)=-(-2\pi i)^{n-1}(\frac{\chi(\omega)}{t+i\epsilon|\omega_{1}+\cdots+\omega_{n}|}-\frac{\chi(-\omega)}{t-i\epsilon|\omega_{1}+\cdots+\omega_{n}|}) ,
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where \chi(\omega) denotes the characteristic function of the part of S^{n-1} lying in
the first orthant. This is analytic in t for \epsilon>0 but discontinuous in \omega

whatever \epsilon may be. By a similar calculus we obtain the Radon transform
of f(x)= \prod_{j=1}^{n}(x_{j}+i\epsilon)^{-m} :

Rf(\omega, t)=-(-2\pi i)_{(m-1)!^{2}}^{n-1_{i}}(\omega_{1}\cdots\omega_{n})^{m-1}(2m-2)^{1}

\cross(\frac{\chi(\omega)}{t+i\epsilon|\omega_{1}+\cdots+\omega_{n}|}-\frac{\chi(-\omega)}{t-i\epsilon|\omega_{1}+\cdots+\omega_{n}|}) .

This becomes more and more regular in \omega as m grows.
4) Let f(x)=e^{-|x_{1}|-|x_{2}|} on R^{2} . This is in \mathscr{O}_{*}(D^{2}) . A simple calcula-

tion gives

Rf( \omega, t)=\frac{2}{\omega_{1}^{2}-\omega_{2}^{2}}(|\omega_{1}|e^{-|t|/|\omega_{1}|}-|\omega_{2}|e^{-|t|/|\omega_{2}|}) .

This is not analytic in \omega , e.g., near \omega_{1}=0 , even if considered to be
\tilde{\mathscr{O}}_{*}(D_{t}^{1})-valued. To see this more clearly, let \varphi(t)\in\overline{\mathscr{P}}_{*}(D_{t}^{1}) and consider
the inner product

G( \omega):=\langle|\omega_{1}|e^{-|t/|\omega_{1}|}, \varphi(t)\rangle_{t}=|\omega_{1}|\int_{-\infty}^{\infty}e^{-|t|/|\omega_{1}|}\varphi(t)dt

=| \omega_{1}|^{2}\int_{0}^{\infty}e^{-S}\{\varphi(|\omega_{1}|s)+\varphi(-|\omega_{1}|s)\}ds

=| \omega_{1}|^{2}\int_{0}^{\infty}e^{-S}\{\sum_{k=0}^{2N}a_{k}t^{k}+\varphi_{2N+2}(|\omega_{1}|s)\}ds

=| \omega_{1}|^{2}\sum_{k=0}^{N}a_{2k}(2k)!|\omega_{1}|^{2k}+O(|\omega_{1}|^{2N+4}) .

Here a_{k} are the Taylor coefficients of \varphi at the origin and \varphi_{2N+2} is the
composed remainder. Note that generally what we can expect is the esti-
mate |a_{k}|\leq cb^{k}k! . Hence this shows the Gevrey 2 regularity of G(\omega) at
\omega_{1}=0 and no more in general. Thus the regularity asserted in Proposition
2. 7 or 2. 8 is the best possible.

Next choose a radially symmetric element \varphi(x)\in\tilde{\mathscr{P}}_{*}(D^{n})(e. g. \varphi(x)=

e^{-x^{2}}) and consider h=f*\varphi , which lies in \mathscr{P}_{*}(D^{n}) in view of Proposition
1. 5. Then \hat{\varphi}(\xi) is again radially symmetric. Denoting by \phi(t) the
inverse Fourier transform of \hat{\varphi} as a function of one variable \rho , we will
have

Rh( \omega, t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i\rho t}\hat{f}(\rho\omega)\hat{\varphi}(\rho)d\rho=Rf(\omega, t)*_{t}\phi(t)

= \frac{2}{\omega_{1}^{2}-\omega_{2}^{2}}\int_{-\infty}^{\infty}(|\omega_{1}|e^{-|u|/|\omega_{1}|}-|\omega_{2}|e^{-|u|/|\omega_{2}|})\phi(t-u)du
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= \frac{2}{\omega_{1}^{2}-\omega_{2}^{2}}\int_{0}^{\infty}(|\omega_{1}|^{2}e^{-v}\{\phi(t-|\omega_{1}|v)+\phi(t+|\omega_{1}|v)\}

-|\omega_{2}|^{2}e^{-v}\{\phi(t-|\omega_{2}|v)+\phi(t+|\omega_{2}|v)\}dv .

By the same way as above we can see that this is in Gevrey 2, and not
analytic in \omega in general. This shows that the regularity asserted in Prop-
osition 2. 3 is also best possible. In view of Theorem 2. 1 we can infer
that h(x)\not\in\tilde{\mathscr{P}}_{*}(D^{n}) , hence the assertion of Proposition 1. 5 is also just
what we can expect.

5) The Radon tranform of f(x)=|x|^{-\mu}-. \mu>n-1 , which is regularized
by the finite part at the origin, becomes as follows when \mu-n is not an
even integer:

Rf( \omega, t)=\pi^{(n-1)/2}\frac{\Gamma(\frac{\mu-n+1}{2})}{\Gamma(\frac{\mu}{2})}f.p.|t|^{n-\mu-1} .

When \mu-n is an even integer, it should be replaced by

Rf(\omega, t)=\pi^{(n-1)/2_{\frac{\Gamma(\frac{\mu-n+1}{2})}{\Gamma(\frac{\mu}{2})}\{c_{\mu,n}\delta^{(\mu-n)}(t)+t_{+}^{-\mu+n-1}\frac{i}{\pi}[\tau^{-\mu+n-1}\log\tau]\}}} ,

c_{\mu,n}= \frac{1}{\pi}f.p.\Gamma(n-\mu)-\frac{1}{2\pi}\frac{1}{(\mu-n)!}(\frac{\Gamma’(\frac{\mu-n+1}{2})}{\Gamma(\frac{\mu-n+1}{2})}-\frac{\Gamma’(\frac{\mu}{2})}{\Gamma(\frac{\mu}{2})})

-2 \frac{\Gamma’(\mu-n+1)}{(\mu-n)!^{2}}.

Here we used the standard notation for hyperfunctions of one variable:

[F(\tau)]:=F(t+i0)-F(t-i0) .

This suggests the possibility of generalization of Radon transforms by
means of analytic continuation for some special hyperfunctions which do
not necessarily decay at all. This type of calculation is elaborately made
in [GGV]. But our present objective is to introduce a general theory,
instead of treating special functions.

Some people use Radon transform defined on the projective space P^{n}

by means of a standard hyperplane measure element on it. In that sense,
every hyperfunction on P^{n} admits the Radon transform, because it reduces
to an integration with respect to compact fibers. We therefore examine
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here relation between that one and our Radon transform which agrees
with the classical definition. First note that Radon hyperfunction can be
canonically extended to hyperfunctions on the compact manifold P^{n} . In
fact, fix a volume element d\mu on P^{n} For example, we can use the one
whose restriction to R^{n} reads as (1+x^{2})^{-(n+1)/2}dx . This measure takes the
same form after the coordinate transformation on P^{n} . e.g.,

\xi_{1}=1/x_{1} , \xi_{j}=x_{j}/x_{1} , j=2 , \ldots , n . (3. 5)

As a measure on a hypersurface P^{n} it is natural to adopt the one induced
from the above. In the local coordinates of R^{n} . this reads as ds/(1+x^{2})^{n/2} .

ds being usual Euclidean hyperplane element. See [GGV].
Now let \varphi be an element of \mathscr{A}(P^{n}) . Its restriction to R^{n} is a bounded

real analytic function extendable up to a strip neighborhood. Hence, the
inner product

\langle\tilde{f}, \varphi\rangle_{P^{n}} := \int_{R^{n}}f(x)\varphi(x)d\mu=\langle f(x) , \frac{\varphi(x)}{(1+x^{2})^{(n+1)/2}}\rangle_{R^{n}} (3. 6)

is meaningful. Notice that the duality between \mathscr{A}(P^{n}) and \mathscr{B}(P^{n}) is
meanigful although P^{n} is non-0rientable.

Lemma 3. 4 The canonical map defifined by (3. 6) is injective. Near the
hyperplane t=0 at infifinity, the extended hyperfunction has the regularity
such that it is canonically divisible by t^{n} .

In fact, notice that the Cauchy kernel (-2\pi i)^{-n}\Pi_{j=1}^{n}1/(\zeta_{j}-x_{j}) as a
function of x becomes an element of \mathscr{A}(P^{n}) for Im \zeta_{j}\neq 0 , j=1 , \ldots , n . Thus
if the extended elements \tilde{f} is zero, we will have

G(\zeta)=\langle f(x) , \frac{1}{(-2\pi i)^{n}}\prod_{j=1}^{n}\frac{1}{\zeta_{j}-x_{j}}\frac{1}{(1+x^{2})^{(n+1)/2}}\rangle_{x}

= \langle\frac{f(x)}{(1+x^{2})^{(n+1)/2}}, \frac{1}{(-2\pi i)^{n}}\prod_{j=1}^{n}\frac{1}{\zeta_{j}-x_{j}}\rangle_{x}=0 ,

for \forall\zeta\in(C\backslash R)^{n} .

Since in view of Corollary A. 4 in Appendix f/(1+x^{2})^{(n+1)/2} as a Fourier
hyperfunction admits a set of defining functions which are of class L^{1} in
{\rm Re} z , we can easily see by a standard argument (cf. e.g. [K2], proof of
Theorem 4. 1. 5) that G(\zeta) is again a defining function of f/(1+x^{2})^{(n+1)/2}

Thus f/(1+x^{2})^{(n+1)/2}=0 , hence f=0 in view of the fact that (1+x^{2})^{tn+1)/2}

\mathscr{P}_{*}(D^{n})=\mathscr{P}_{*}(D^{n}) .
Concerning the latter assertion, notice that for a Radon hyperfunction

f the last term of (3. 6) is meaningful even if \varphi(x)/(1+x^{2})^{(n+1)/2} is replaced
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by \varphi(x)/(1+x^{2})^{1/2}- This means that not only a Radon hyperfunction but
also its multiple by (1+x^{2})^{n/2} can be canonically extended to P^{n} by the
above method. This gives a canonical solution of the division by t^{n}

Rewriting our Radon tranform to the one on P^{n} for thus defined exten-
sion of f, we obtain an integral with respect to a measure having singular-
ity of the type dS/t^{n} at the hyperplane t=0 at infinity. For example, the

integral \int_{x_{n}=\lambda x_{1}}f(x)dS=\int f(x_{1} ,\ldots , Xn-l,\lambda x_{1} ) \sqrt{1+\lambda^{2}}dx_{1}\cdots dx_{n-1} on x_{n}=\lambda x_{1}

after the transformation (3. 5) leads to

\int f(1/\xi_{1}, \xi_{2}, \ldots, \xi_{n-1}, \lambda/\xi_{1})\sqrt{1+\lambda^{2}}\frac{1}{\xi_{1}^{n}}d\xi_{1}\cdots d\xi_{n-1} .

By the above lemma, the integrand has a canonical meaning as a hyper-
function near \xi_{1}=0 . Thus the line integral is meaningful just in the same
sense as the Radon transform for \mathscr{B}_{c} on R^{n}- Thus we have a well defined
paraphrase between these two kinds of Radon transforms. For this sub-
ject in a more general setting, see [B1].

Remark. General Fourier hyperfunctions cannot be considered canonical-
ly to be a hyperfunction on P^{n} But for some good (hyper)functions, such
interpretation may be possible. Some of the examples of calculations
given in [GGV], such as the Radon transform of the characteristic func-
tion of an orthant, are made in that sense. In our next paper, we shall
try to include such a situation from a new point of view. Note however,
that the neglection of things at infinity is sometimes very dangerous. In
this respect we refer to a counter-example to the uniqueness of the Radon
transform given by Zalcman [Z]: It is an entire function f(x) on C\simeq R^{2}

such that f(z)=O(|z|^{-3}) and f’(z)=O(|z|^{-2}) on every line, hence its line
integral converges absolutely and the Radon transform is equal to 0. (In

order to be consistent with Fubini’s theorem, e.g., \int|f(x+iy)|dy can no

more be an integrable function.) This function should have strong singu-
larity at infinity, so that any of its interpretation as a Fourier hyperfunc-
tion should possess a non-zero Fourier image in spite of the vanishing of
the line integral itself. We cannot ignore what is going on at infinity. As
a matter of fact, any hyperfunction can be extended to an exponentially
decaying Fourier hyperfunction, which possesses a well defined Radon
tranform image. But the result is meaningless as the Radon transform of
the original hyperfunction, because the ambiguity of extension at infinity
remains in the result. We already know such a situation in the case of
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Fourier transformation.
We leave the discussion of inversion formula to our forthcoming

paper. Remark that for elements of \mathscr{P}_{*}(D^{n})\subset \mathscr{L} the usual definition of
Radon transform applies. Hence the inverse formula is the same as given
in Helgason [H1] or Natterer [N].

4. Support theorem

In this article we use the term “rapidly decreasing Fourier hyperfunc-
tions” to indicate those hyperfunctions which admit representation by
defining functions of order O(|x|^{-N}) for any N>0 . (The class of Fourier
hyperfunctions usually called by this name (cf [Kn2]) is called here as of
exponential decay for distinction.) This subclass of Radon hyperfunctions
has a special meaning in the support theorem for the Radon transform:

Theorem 4. 1 Let f(x) be a rapidly decreasing Fourier hype\prime function .
Assume that Rf(\omega, t) vanishes for |t|\geq A . Then f(x) vanishes on |x|\geq A .

We can prove this either by Helgason’s method [H1] or by Boman’s
method [B1]. For the former we cannot employ the regularization by con-
volution and have to prove the sphere theorem directly for hyperfunctions.
For the latter, we should notice that near the hyperplane at infinity, we
can consider Rf(\omega, 1/t) as a hyperfunction defined on S^{n-1}\cross\{|t|<\epsilon\} and
even in \omega , t , containing t as real analytic parameter and with support
compact in \omega . The compactness of support in \omega , allows us to use the
usual uniqueness theorem for hyperfunctions with analytic parameters.
Since both proofs are interesting to clarify the characteristic feature of
hyperfunctions, we explain below the essential points of them.

First we prepare;

Lemma 4. 2 Let f be a rapidly decreasing Fourier hyperfunction defifined
on R^{n} . Suppose f has surface integral 0 over every sphere which encloses
the unit ball in the sence (4. 1) below). Then f(x)\equiv 0 for |x|>1 .

Proof Denote the sphere of radius R with center x by S(x:R) and the
corresponding ball by B(x;R). The assumption means that

\int_{S(0,R)}f(x+s)ds=\int_{s^{n-1}}f(x+Rs)R^{n-1}d\omega(s)=0 , (4. 1)

for any (x, R)\in R^{n}\cross(0, \infty] such that S(x;R) encloses the unit ball,
where ds resp. d\omega(s) denotes the standard surface measure on S(0;R)
resp. S^{n-1}=S(0;1) . Note that the integral is legitimate as the one along
compact fibers of a hyperfunction of the variables {x ,R,s) defined on
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\Sigma\equiv\{(x, R, s)|s\in S^{n-1}, B(0;1)\subset B(x;R)\} .

Since f decays rapidly enough as |x|arrow\infty we obtain for |x|<\epsilon<1 , R\geq 1+\epsilon

\int_{R^{n}}f(y)dy=\int_{R^{n}}f(x+y)dy=\int_{0}^{\infty}r^{n-1}dr\int_{s^{n-1}}f(x+Rs)d\omega(s)

= \int_{B(0,R)}f(x+y)dy .

Thus the last integral is constant for such x , R . Differentiating with
respect to x_{i} and then employing the divergence theorem just as in [HI],
we obtain

\int_{S(0,R)}f(x+s)s_{i}d\omega(s)=0 . (4. 2)

Since this holds for any such x , R , we can say that (4. 1) holds for f(x+s)
replaced by f(x+s)s_{i} . Repeating this, we conclude that

\int_{S(0,R)}f(x+s)P(s)d\omega(s)=0 , (4. 3)

for any polynomial P(s) .
Hence

\int_{R^{n}}f(x+y)P(y)dy=\int_{B(0,R)}f(x+y)P(y)dy

(4. 4)
= \int_{R^{n}}f(x+y)\chi_{R}(y)P(y)dy ,

where \chi_{R} denotes the characteristic function of B(0;R) . Viewing this as
an identity in \mathscr{O}(D^{n}) , we see that it can be extended by continuity to any
P(y) which is analytic and of polynomial growth on a strip neighborhood
of R^{n}\wedge Thus we see that (4. 3) holds for any P\in \mathscr{A}(S^{n-1}) . By a theorem
of [Kn 4] we first conclude that the hyperfunction F(x, R, s)\equiv f(x+Rs) of
(x, R, s) defined on \Sigma contains x , R as real analytic parameters and sup-
port compact in s . Then by Theorem 4. 4. 7 of [Kn2] we conclude that
F(x, R, s)=f(x+Rs)\equiv 0 for such x , R , s , hence finally on \Sigma . Therefore
the lemma follows. \square

From this Lemma we can easily obtain a proof of Theorem 4. 1 just as
in the same way as in the proof of Theorem 2. 6 in [HI]. Note that the
explicit inversion formula for radial functions is still valid by continuity
for rapidly decreasing radial Fourier hyperfunctions (at least if the origin
is apart from their supports, which case is enough for us).

For the second proof of Theorem 4. 1, first remark that a rapidly
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decreasing Fourier hyperfunction f(x) can be naturally considered to be a
hyperfunction \overline{f}(x) on the projective space P^{n} via the duality, as is ex-
plained at the end of \S 2. The assumption on the support of g(\omega, t)

implies that this hyperfunction \tilde{f}(x) becomes micr0-analytic to the conor-
mal direction at the hyperplane at infinity. The proof of this fact is just
similar to the one in Boman [B1]. In fact, the pseud0-differential opera-
tors with analytic coefficients used there equally act to hyperfunctions.
(Note that the Radon transform on P^{n} used in [B1] is not the natural one
on P^{n} but the one induced from the one on R^{n} . hence singular at infinity.
Thus we do not need any paraphrase in this respect.)

Now consider \tilde{f} to be an even hyperfunction \tilde{f} on the 2-fold covering
S^{n} of P^{n} . Then by introducing the local coordinates near the great circle
corresponding to the hypersurface at infinity in a canonical way, we can
consider \overline{f} to be a hyperfunction \tilde{f}(\omega, t) on the product manifold S^{n-1}\cross

\{|t|<\delta\} with the real analytic parameter t , such that \tilde{f}(\omega, t)=f((1/t)\omega)

for t\neq 0 . We shall show that

( \frac{\partial}{\partial t})^{k}\tilde{f}|_{t=0}=0 , k=0,1,2,\ldots (4. 5)

Let \varphi(\omega)\in \mathscr{A}(S^{n-1}) be arbitrary. Noticing that

\langle\tilde{f}. \varphi(\omega)\rangle_{\omega}dt=\overline{f}\varphi(\omega)d\mu=f(x)\varphi(\frac{x}{|x|})\frac{dx}{(1+x^{2})^{(n+1)/2}}

=f(r \omega)\varphi(\omega)\frac{r^{n-1}}{(1+r^{2})^{(n+1)/2}}d\omega dr

=f((1/t) \omega)\varphi(\omega)d\omega\frac{dt}{(1+t^{2})^{(n+1)/2}},

we have

\langle(\frac{\partial}{\partial t})^{k}\tilde{f}|_{t=0} , \varphi(\omega)\rangle_{s^{n-1}}=(\frac{\partial}{\partial t})^{k}\langle\tilde{f}, \varphi(\omega)\rangle_{\omega}|_{t=0}

= \lim_{tarrow+0}(\frac{\partial}{\partial t})^{k}[\frac{1}{(1+t^{2})^{(n+1)/2}}\langle f((1/t)\omega), \varphi(\omega)\rangle_{\omega}] .

By the assumption, the Fourier hyperfunction f allows a set of rapidly
decreasing defining functions. Their derivatives also decrease rapidly by
Cauchy’s inequality. Thus the last term in the above, when calculated via
such defining functions, turns out to be equal to zero. Then by the duality
we conclude (4. 5). This calculas of limit may formally seem trivial, but
the fact is not so much. It had better be verified carefully:

It suffices to consider g(r)=\langle f(r\omega), \varphi(\omega)\rangle_{\omega} as r -arrow\infty . From the
lemma below, we can see that g(r) then becomes a rapidly decreasing
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hyperfunction of one variable. Since we know that it is in fact analytic
and bounded in r>>1 on the real axis, we can apply the three-line the0-
rem to a function bounded on a strip and rapidly dereasing on one of the
sides to conclude that g(r) is rapidly decreasing on the real axis, too.
Hence the limit is zero.

Since \tilde{f}(\omega, t) has support compact in \omega , the local vanishing theorem
holds. (See e.g. Theorem 4. 4. 5 in [Kn2]. Although it is stated for the
case when \omega is limited in a compact subset of a Euclidean space, it holds
also for compact manifolds. To see this, we can simply imbedd the mani-
fold into a Euclidean space, and extend f correspondingly, using the single
layer.) Thus we conclude \tilde{f}\equiv 0 , Hence f\equiv 0 near the hyperplane at
infinity. The remaining precise estimation of support is the same as [B1].

Lemma 4. 3 Let f be a rapidly decreasing Fourier hyperfunction. Then
g(\rho)=\langle f(\rho\omega), \varphi(\omega)\rangle_{S^{n-1}} , calculated in the sense of integration along com-
pact fifiber for \rho>0 , becomes a rapidly decreasing Fourier hyperfunction.

Proof By decomposing the support of f employing Theorem A. 7, we
can assume that supp f is contained in a truncated proper cone \Delta , say \Delta=

\{x_{n}>|x’|, x_{n}>1\} , where x’=(x_{1},\ldots, x_{n-1}) in this proof. Then the integral can
be rewritten as

g( \rho)=\int_{|\omega’|\leq\omega_{n}}f(\rho\omega’, \rho\omega_{n})\varphi(\omega’, \omega_{n})\frac{d\omega’}{\sqrt{1-|\omega’|^{2}}}

= \int_{|\omega’|\leq 1/\sqrt{2}}f(\rho\omega’, \rho\sqrt{1-|\omega’|^{2}})\varphi(\omega’, \sqrt{1-|\omega’|^{2}})\frac{d\omega’}{\sqrt{1-|\omega’|^{2}}}

= \int_{|\xi’|\leq\rho/\sqrt{2}}f(\xi’. \sqrt{\rho^{2}-|\xi’|^{2}})\varphi((1/\rho)\xi’, \sqrt{1-|\xi’|^{2}/\rho^{2}})\frac{d\xi’}{\sqrt{\rho^{2}-\xi^{\prime 2}}} .

In the domain of integration, \phi(\xi’, r)=\varphi((1/\rho)\xi’. \sqrt{1-|\xi’|^{2}/\rho^{2}})/\sqrt{\rho^{2}-\xi^{\prime 2}} is
bounded analytic. Here remark that we cas assume f given as

f(x)=x(x) \sum_{k=1}^{M}F_{k}(x+i\Gamma_{k}0) ,

where F_{k} are holomorphic up to the real axis near the boundary of \Delta , and
\chi denotes the charecteristic function of \Delta . (This can be seen from the
proof of Theorem A.7.) Then we have obviously

g( \rho\pm is)=\int_{D(0,S)}f(\xi’, \sqrt{(\rho\pm is)^{2}-|\xi’|^{2})}\psi(\xi’, \rho\pm is)d\xi’

= \sum_{k=1}^{M}\int_{D(\eta k’S)},f(\xi’+i\eta_{k}\sqrt{(\rho\pm is)^{2}-|\xi’|^{2}+|\eta_{k}’|^{2}\pm 2\rho is-2i\xi’\eta_{k}’}’,)

x \psi(\xi’+i\eta_{k}’, \rho\pm is)d(\xi’+i\eta_{k})’ ,
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where \xi’->\eta_{k}’=\eta_{k}’(\xi’) is a mapping such that it is zero on the boundary
of the original domain of integration D and that on the deformed domain
of integral

D(\eta_{k}’. s):=\{\zeta’ ; \zeta’\in(\rho\pm is)D+i\eta(’{\rm Re}\zeta)\}

the falls in the
dom

- \sqrt{\rho^{2}-s^{2}-|\xi’|^{2}+|\eta_{k}’|^{2}}+\frac{\pm i\rho s-i\xi’\eta_{k}’}{\sqrt{\rho^{2}-s^{2}-|\xi’|^{2}+|\eta_{k}’|^{2}}}

this is legitimate. Now it is clear that the rapid decrease follows from
the same property of F_{k} . \square

Remark. It should be recalled that there are Fourier hyperfunctions,
even exponentially decreasing, such that their supports are concentrated at
infinity. In the case of one variable, the defining functions of such Fourier
hyperfunctions patch holomorphically on the real axis but with growth
like e^{e^{X^{2}}} hence the three-line theorem does not apply. For such a Fourier
hyperfunction, its canonical extension to P^{n} defined in \S 2 has support con-
centrated in the hyperplane at infinity, but is never a trivial extension by
zero in view of Lemma 3. 4.

In the case of distributions Boman [B1] gave a local version of TheO-
rem 4. 1. It holds also for non-quasi-analytic type ultradistributions with-
out modification [TT]. As remarked by Boman, the agrument does not
apply to hyperfunctions in view of M. Sato’s counter-example to the local
uniqueness. Nevertheless we expect a local type support theorem for
hyperfunctions. The main difficulty for this seems to us not lying in the
local vanishing theorem but in the possibility of interpretation of the local
rapid decay as the local vanishing of the restriction data to the hyperplane
at infinity. This is not at all trivial because local test functions with com-
pact supports are not available in the analytic category.

Our discussion can be generalized to the X-ray transform or to the
integral transform with respect to general linear subvarieties. We can
treat as well the two point homogeneous spaces as in Helgason [HI].
These will be studied in our forthcoming papers.

The outline of these results were reported in [KnT] . Some conditions
are improved after that report.
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Appendix. Properties of Fourier hyperfunctions of slow decay

Here we gather and prove some properties of Radon hyperfunctions or
polynomially decaying Fourier hyperfunctions cited above. These prop-
erties are more or less of cohomological nature. But instead of develop-
ing the corresponding cohomology theory, we preferred here to deduce the
necessary properties by elementary arguments from the known facts on
Fourier hyperfunctions given in [Kw], [Kn2], [Kn3]. In this article we do
not intend to develop the local theory, or the sheaf theoretic treatment.
But we use the word “support” for these, because it is meaningful as the
one for a global section of the sheaf of usual Fourier hyperfunctions
(except for the Radon hyperfunctions themselves for which we prepare this
notion separately).

In the sequel we will denote by \mathscr{O}^{*}(D^{n}+i\Gamma_{j}0) the space of holomor-
phic functions of infra-exponential growth defined on a tubular domain
whose imaginary profile is asymptotically equal to the cone \Gamma_{j} near the
real axis. ( \mathscr{O}^{*} is the complexified notion of \mathscr{P} . Here we add superfix *

to indicate the infra-exponential growth property. As remarked in \S 1, we
avoid the formerly used notation “over -,, because it is confusing with the
symbol for the modified objects.)

Our main tool is an argument based on Kashiwara’s twisted Radon
decomposition of the delta function. We employ its exponential decay
version:

\delta(x)=\int_{s^{n-1}}W_{*}(x, \omega)d\omega ,

W_{*}(x, \omega)=\frac{(n-1)!}{(-2\pi i)^{n}}\frac{(1-ix\omega)^{n-1}-(1-ix\omega)^{n-2}(x^{2}-(x\omega)^{2})}{(x\omega+i(x^{2}-(x\omega)^{2})+i0)^{n}}e^{-x^{2}}

When we treat modified version of these notions, we need a variant where
the factor in the denominator is asymptotically linear in x as was em-
ployed in [Kn3] in order that the component becomes a section of \overline{\mathscr{P}}_{*}(D^{n})

outside the origin:

\overline{W}_{*}(x, \omega)=\frac{(n-1)!}{(-2\pi i)^{n}}\frac{J(x,\omega)}{(x\omega+i(x^{2}-(x\omega)^{2})/\sqrt{x^{2}+1}+i0)^{n}}e^{-\chi 2}

where J(x, \omega) denotes a function calculated by the same procedure as
Kashiwara’s from the denominator. However, the property of convolution
for modified Fourier hyperfunctions is not so simple, as remarked after
Proposition 1. 5. In the sequel we do not treat the case of modified
Fourier hyperfunctions.
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Put

W_{*}(x, \Delta^{o})=\int_{S^{n1}\cap\Delta\circ}W_{*}(x, \omega)d\omega .

This is the boundary value of W_{*}(z, \Delta^{o})\in \mathscr{O}_{*}(D^{n}+i\Delta 0) which decays
(more rapidly than) exponentially. Then for a Fourier hyperfunction
F(x+i\Gamma 0) the convolution F(x+i\Gamma 0)*W_{*}(x, \Delta^{o}) is meaningful, and the
result can be written as G(x+i(\Gamma+\Delta)0) , where

G(x+iy)= \int_{R^{n}}F(\xi+i\eta)W_{*}(x+iy-\xi-i\eta, \Delta^{o})d\xi , y-\eta\in\Delta , \eta\in\Gamma

Note that G satisfies the same decay estimate as F if there are any, such
as F(z)=O(|{\rm Re} z|^{-m}) as |{\rm Re} z|arrow\infty . Recall that (\Gamma+\Delta)^{\circ}=\Gamma^{o}\cap\Delta^{o} Hence
in particular, if \Gamma^{o}\cap\Delta^{o}=\emptyset , then G becomes holomorphic in a strip neigh-
borhood of the real axis, conserving the estimate. For a general Fourier
hyperfunction f= \sum_{j=1}^{N}F_{j}(x+i\Gamma_{j}0) , the convolution

f*W_{*}(x, \Delta)=\sum_{j=1}^{N}F_{j}(x+i\Gamma_{j}0)*W_{*}(x, \Delta) , (A. 1)

which is calculated termwise as above, can be shown to be independent of
the choice of defining functions, based on the Martineau type edge of the
wedge theorem for \mathscr{O}* . It can also be shown by noticing that (A. 1)
agrees with the one given via the inner product:

f*W_{*}(x, \Delta)=G(x+i\Delta 0) , G(z)=\langle f(\xi), W_{*}(z-\xi, \Delta)\rangle_{\xi} , (A. 2)

where W_{*}(z-\xi, \Delta) is considered to be a test function in \mathscr{P}_{*}(D^{n}) of the
variable \xi with holomorphic parameter z. (A. 2) is also meaningful for
Radon hyperfunctions because \mathscr{P}_{*}(D^{n}) is continuously imbedded into the
space \mathscr{P}(-1) of test functions for the Radon hyperfunctions.

Proposition A. 1 (Weak form of Malgrange’s theorem with bounds)
Let K_{j}, j=1,2 be two compact subsets of D^{n}\wedge Let \varphi(x) be holomorphic
and bounded on a strip complex neighborhood of K_{1}\cap K_{2} with fifixed breadth
at infifinity. Then we can fifind similar functions \varphi_{j}(x) on a neighborhood
of K_{j}, j=1,2 resp. such that

\varphi(x)=\varphi_{1}(x)-\varphi_{2}(x) on K_{1}\cap K_{2} .

Proof Choose a real neighborhood D of K_{1}\cap K_{2} with a smooth bound-
ary. Set

F_{\sigma}(x)= \int_{D}W_{*}(x-\xi, \Gamma_{\sigma})\varphi(\xi)d\xi ,
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where \Gamma_{\sigma} denotes the \sigma-th orthant. Obviously, each F_{\sigma}(z) is holomorphic
and bounded on a strip wedge of type R^{n}+i\Gamma_{\sigma} . Further, by deformation
of the integral path we can see that it is further holomorphic and bounded
on a strip neighborhood of the interior of D. Choose a thus deformed
path D_{\sigma} for each \sigma , and decompose it to two parts D_{\sigma,1} , D_{\sigma,2} in such a
way that D_{\sigma,j}\cap K_{j}=\emptyset , j=1,2 . Then

\varphi_{j}(x)=\int_{D\sigma,j}W_{*}(x-\xi, \Gamma_{\sigma})\varphi(\xi)d\xi , j=1,2
will be a desired decomposition. \square

Actually, the above proof works when \varphi(x) is a real analytic function
given on an open set D\subset D^{n} which is the intersection of two open sets D_{j}

\subset D^{n} , j=1,2 , which is extendable as bounded holomorphic function to
respective type of complex neighborhood of D. We only have to apply
the same formula. This gives the cohomology vanishing theorem in
degree 1 of the presheaf of bounded real analytic functions of respective
type. That’s why we referred to Malgrange.

Corollary A. 2 If supp f\subset K_{j}, j=1,2, then we have supp f\subset K_{1}\cap K_{2} .

Proof. In view of Banach’s open mapping theorem we can choose \varphi j in
the above Proposition in such a way that their supremum norms are
bounded by constant times the bound of the original \varphi . Applying this
observation after multiplication by (1+x^{2})^{-1/2} , we see that a continuous
linear functional on both \mathscr{P}_{*}(K_{j}) , j=1,2 can be extended continuously on
\mathscr{P}_{*}(K_{1}\cap K_{2}) . \square

Lemma A. 3 1) The convolution \varphi\in \mathscr{P}_{(-1)}->\varphi*W_{*}(x, \Delta) defifines a con-
tinuous linear mapping from \mathscr{P}_{t-1)} into itself.

2) For a Radon hyperfunction f, G(z) in (A. 2) satisfifies G(z)=
O(|{\rm Re} z|^{-1}) and G(x+i\Delta 0) again becomes a Radon hyperfunction (of which
the interpretation is given in the proof).

Proof. 1) Choosing {\rm Im} z- Im \zeta\in\Delta and N>n+1 , we have

|{\rm Re} z|| \int\varphi(\zeta)W_{*}(z-\zeta, \Delta)d({\rm Re}\zeta)|

\leq c\int(|{\rm Re}\zeta|+1)\varphi(\zeta)_{\frac{|{\rm Re} z|}{|{\rm Re}\zeta|+1}}\frac{1}{(|z-\zeta|+1)^{N}}d({\rm Re}\zeta)

\leq C |{\rm Im}\zeta P_{<S}^{(|{\rm Re}\zeta|+1)\varphi(\zeta)\int\frac{1}{(|z-\zeta|+1)^{N-1}}d({\rm Re}\zeta)}Su,

\leq C ,
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where we have used Peetre’s inequality ({\rm Re} z|+1)/(|{\rm Re}\zeta|+1)\leq|{\rm Re} z- Re \zeta|

+1 . The continuity is obvious.
2) Estimating (A. 2) in a similar way by choosing N\geq 1 and \epsilon>0

such that Imz-B(0; \epsilon)\subset\Delta , we find

|\langle f(\xi), W_{*}(z-\xi, \Delta)\rangle_{\xi}\leq C
|{\rm Im}\zeta P_{<\epsilon}^{|{\rm Re}\zeta||W_{*}(z-\zeta,\Delta)|}Su,

\leq C(|{\rm Re} z|+1)su|{\rm Im}\zeta\rho_{<\epsilon}^{\frac{|{\rm Re}\zeta|}{|{\rm Re} z|+1}}\frac{1}{(|z-\zeta|+1)^{N}}

\leq C(|{\rm Re} z|+1) ,

C depending on {\rm Im} z in a locally uniform way. The result of the convolu-
tion is again a Radon hyperfunction. In fact, first choose \varphi\in \mathscr{P}_{(-1)}(D^{n}) .
Then, in the sense of calculus for usual Fourier hyperfunctions we have,
for any \epsilon>0 ,

\langle G(x+i\Delta 0), \varphi\rangle=\langle f*W_{*}(x, \Delta^{o}), \varphi\rangle=\langle\langle f(\xi), W_{*}(x-\xi, \Delta^{o})\rangle_{\xi}, \varphi(x)\rangle_{x}

:=\langle f(\xi), \langle W_{*}(x-\xi, \Delta^{o}), \varphi(x)\rangle_{x}\rangle_{\xi}

\leq c_{\epsilon} ^{su}|{\rm Im}\zeta’ p_{<\epsilon}^{|\zeta||\langle W_{*}(x+iy-\zeta,\Delta^{O})} ’
\varphi(x+iy)\rangle_{x}|

\leq C_{\epsilon}\sup_{z}|{\rm Re} z||\varphi(z)||{\rm Im}|<2\epsilon

by the calculus done in 1). Here it should be noted that the first line only
has a symbolic meaning and the second line is the true definition of this
functional. This implies by definition that G(x+i\Delta 0) , interpreted in this
way, becomes a Radon hyperfunction. \square

Corollary A. 4 Rodan hype\uparrow functions are characterized as those hypelfun-
ctions which admit a set of defifining functions \{F_{j}(z)\} such that F_{j}(z)=

O(|{\rm Re} z|^{-1}) and that each F_{j}(x+i\Gamma_{j}0) defifines a Radon hyperfunction {in the
above sense).

Proof In fact, by means of a set of polyhedral cones \{\Gamma_{j}^{o}\} covering R^{n}

without redundancy, we can decompose a Radon hyperfunction f as
f(x)=\Sigma F_{j}(x+i\Gamma_{j}0) , F_{j}(z)=\langle f(\xi), W_{*}(z-\xi, \Gamma_{j}^{o})\rangle_{\xi} ,

F_{j}(z) satisfying 2) of the above lemma with \Delta replaced by \Gamma_{j} . Note that
this decomposition is assured by a more obvious one:

\varphi(x)=\Sigma W(x, \Delta_{j}^{o})*\varphi . \square

Remark. Assume that as a consequence of calculation of Lemma A. 3,
we could show the following:

\int_{R^{n}}G(x+ib)\varphi(x+ib)dx=\int_{R^{n}}\frac{G(x+ib)}{|x|+1}\cdot (|x|+1)\varphi(x+ib)dx
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\leq Csux\in g_{n}^{(|x|}+1)\varphi(x+ib) .

Since (|{\rm Re} z|+1)\mathscr{P}_{*}(D^{n}) in dense in the space c_{0}(R^{n}) of continuous func-
tions tending to zero at infinity with the supremum norm, (G(z)/(|{\rm Re} z|

+1))d({\rm Re} z) would then define a continuous linear functional on c_{0}(R^{n}) .
Hence it would come from a measure of finite total mass, and we could
conclude that G(z)/(|{\rm Re} z|+1))\in L^{1}(R^{n}) as a function of {\rm Re} z , locally uni-
formly in y . This would give a much more pleasant characterization of
Radon hyperfunctions via defining functions. But the above passage is
false because as we remarked in \S 3, Radon hyperfunctions do not consti-
tute a subclass of Fourier hyperfunctions. It should be emphasized that
for the component supplied by the above corollary, the representation of
inner product

\langle F_{j}(x+i\Gamma_{j}0), \varphi(x)\rangle=\int_{R^{n}}F(z)\varphi(z)d({\rm Re} z)

is valid for \varphi\in \mathscr{P}_{*}(D^{n}) , but not justified for \varphi\in \mathscr{P}_{(-1)} . It is legal of course
if \varphi(z)=O(|{\rm Re} z|^{-n}) , because of the indicated estimate for |F_{j}(z)| .

Theorem A. 5 (weak decomposition theorem of analytic wave-front set)
Let f(x)=F(x+i\Gamma 0) be a Fourier hyper/unction such that F(z)=
O(|{\rm Re} z|^{-m}) as |{\rm Re} z| - \infty for some (resp. any) m. Let \{\Gamma_{j}^{o}\}_{j=1}^{N} be proper
closed cones such that \{Int\Gamma_{j}^{o}\}_{j=1}^{N} covers \Gamma^{O} Then we can fifind F_{j}(z)\in

\mathscr{O}^{*}(D^{n}+i\Gamma_{j}0) with the same decay property as F such that

f(x)= \sum_{j=1}^{N}F_{j}(x+i\Gamma_{j}0) .

The same assertion holds also for absolutely integrable Fourier hype\tau func -

tions or for Radon hyperfunctions under an appropriate interpretation.

Proof Choose polyhedral cones \Delta_{j}^{O}\subset\subset\Gamma_{j}^{o} intersecting only by faces to
each other, such that \bigcup_{j=1}^{N}Int\Delta_{j}^{o}\supset\Gamma^{o} (Here and in the sequel, for two
cones \Delta\subset\subset\Gamma means \Delta\cap S^{n-1}\subset\subset\Gamma\cap S^{n-1} as sets of S^{n-1} .) Then decom-
pose f as

f= \sum_{j=1}^{N}f*W_{*}(x, \Delta_{j}^{o})+f*W_{*}(x, S^{n-1}\backslash \bigcup_{j=1}^{N}\Delta_{j}^{o}) .

Here the second convolution is calculated by decomposing the indicated
subregion of S^{n-1} by convex polyhedral cones, and term by term. As
remarked above, this term becomes holomorphic on a strip neighborhood
of the real axis. Thus attaching this to any of the components in the sum
at the right-hand side, we obtain a desired decomposition. The corre-
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sponding assertion holds for Radon hyperfunctions in view of Lemma A. 3.
\square

Theorem A. 6 (Martineau type edge of the wedge theorem with
polynomial decay condition) Let f(x) be a Fourier hyperfunction possessing
a set of defifining functions \{F_{j}(z)\in \mathscr{O}^{*}(D^{n}+i\Gamma_{j}0)\}_{j=1}^{N} , satisfying F_{j}(z)=

O(|{\rm Re} z|^{-m}) for some (resp. any) m. Assume that f=0 in \mathscr{O}(D^{n}) . Then
for any choice of smaller cones \Gamma_{j}’\subset\subset\Gamma_{j}, we can fifind F_{jk}(z)\in \mathscr{O}^{*}(D^{n}

+i(\Gamma_{j}’+\Gamma_{k}’)0) , j, k=1 , \cdots-N, satisfying F_{jk}(z)=O(|{\rm Re} z|^{-m}) for the same
(resp. any) m and

F_{jk}(z)=-F_{kj}(z) , F_{j}(z)= \sum_{k=1}^{N}F_{ik}(z) on D^{n}+iI_{j}’0 .

Similar assertion holds also for absolutely integrable Fourier hyperfunctions,
or for Radon hyperfunctions under an appropriate interpretation.

Proof The proof is made by the induction on the number N of terms.
First let N=2 . Then F_{1}(x+i\Gamma_{1}0)+F_{2}(x+i\Gamma_{2}0)=0 implies g(x):=
F_{1}(x+i\Gamma_{1}0)=-F_{2}(x+i\Gamma_{2}0) . Choose a polyhedral cone \Delta^{O} such that \Gamma_{1}^{o}\cap\Gamma_{2}^{o}

\subset\subset\Delta^{o}\subset\subset\Gamma_{1}^{\prime O}\cap\Gamma_{\acute{2}}^{O} and decompose g as
g=g*W_{*}(x, \Delta^{o})+g*W_{*}(x, S^{n-1}\backslash \Delta^{o}) . (A. 3)

Hence choosing the suitable one from F_{j}(z) , j=1,2 in calculating the con-
volution, we conclude that the second term is holomorphic in a strip neigh-
borhood of the real axis. Since the first term gives a function holomor-
phic in D^{n}+i(\Gamma_{1}’+\Gamma_{2}’)0 , the sum of these two functions gives a desired
function F_{12}(z) . Notice that in case n=1 , this gives another proof of the
three-line theorem.

Now assume that the assertion is proved up to N-1 terms. Consider

g(x):=F_{N}(x+i \Gamma_{N}0)=-\sum_{j=1}^{N-1}F_{j}(x+i\Gamma_{j}0) .

By Teorem A. 5 we have a decompositon

g=F_{N}(x+i \Gamma_{N}0)=\sum_{j=1}^{N-1}G_{j}(x+i\Delta_{j}0)+\sum_{k=1}^{M}H_{k}(x+iE_{k}0) ,

where \Delta_{j}^{O} , j=1 , \cdots . N-1 , E_{k}^{o} , k=1 , \cdots , M constitutes a covering of \Gamma_{N}^{o} such
that \Gamma_{j}^{o}\cap\Gamma_{N}^{o}\subset\Delta_{j}^{o}\subset\subset\Gamma_{j}^{\prime 0}\cap\Gamma_{\acute{N}}^{O} , E_{k}^{o} \cap\bigcup_{j=1}^{N-1}\Gamma_{j}^{o}=0 . The calculation of H_{k}=g*

W_{*}(x, E_{k}^{o}) employing the other expression of g shows that it is holomor-
phic in a strip neighborhood of R^{n} , with estimate. Thus replacing F_{j} by
F_{j}+G_{j} and attaching E_{k} to one of them, we obtain a situation in N-1
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terms. Thus by the induction hypothesis, we can find F_{jk}(z)\in \mathscr{O}^{*}(D^{n}+

i(\Gamma_{j}’+I_{\acute{k}})0) , j , k=1 , \cdots . N-1 satisfying the required properties. Put
F_{Nj}(z)=-F_{jN}(z)=G_{j}(z) , j=1 , \cdots , N-1 .

These, together with the already found F_{jk} ’s satisfy the required properties
in the case of N terms. \square

Theorem A. 7 (softness) Let f be a Fourier hyperfunction possessing a
set of defifining functions \{F_{j}(z)\in \mathscr{O}^{*}(D^{n}+i\Gamma_{j}0)\}_{j=1}^{N} , satisfying F_{j}(z)=

O(|{\rm Re} z|^{-m}) for some (resp. any) m. Let \{\Delta_{k}^{o}\}_{k=1}^{M} be a set of closed cones
which cover R^{n} without redundancy ( i.e. with superposition only by faces).
Then for any choice of \Delta_{k}^{\prime O}\supset\supset\Delta_{k}^{O} , we can fifind \{f_{k}\}_{k=1}^{M} with the same decay
property and with

supp f_{k}\subset\Delta_{k}^{r\circ},r f= \sum_{k=1}^{M}f_{k} .

Similar assertion holds for an absolutely integrable Fourier hyperfunction,
or for a Radon hyperfunction.

Proof. We first show that f can be decomposed in such a way with
respect to the singular support, allowing a flow out of support by
exponentially decreasing real analytic functions. (If the sheaf theory is
introduced for the classes of Fourier hyperfunctions we are treating, this
can be precisely stated as a decomposition in the meaning of sections of
the corresponding quotient sheaves.) For this we can assume that f(x)=
F(x+i\Gamma 0) . With a fixed point b\in\Gamma . set

G_{k}(z)= \int_{\Delta_{k}^{o}}W_{*}(z-\xi-ib, \Delta^{o})F(\xi+ib)d\xi , k=1 , \cdots . M .

By the standard argument we can see that G_{k}(x+i\Delta 0) defines a Fourier
hyperfunction of the same class as f, and that it is an exponentially
decreasing real analytic function outside \Delta_{k}^{o} . The difference

f(x)- \sum_{k=1}^{M}G_{k}(x+i\Delta 0)=\int_{R^{n}}W_{*}(z-\xi-ib)F(\xi+ib)d\xi

which may be symbolically written as W(x-ib, S^{n-1}\backslash \Delta^{o})*f(x) (but its
exact meaning is given via the sum of complex integrals of above type
with \Delta^{o} replaced by decomposed parts \Delta_{j}^{o} of S^{n-1}\backslash \Delta^{o} ), is seen to be an
exponentially decreasing real analytic function on the whole space just in
the same way as in the proof of Theorem A. 5. Combining this term to
any one of G_{k} , we thus obtained a decomposition by singular support.
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Now it suffices to cut off the support of each G_{k}(x+i\Delta 0) , using the
characteristic functions, with a small merge on \Delta_{k}^{o} and exactly on the bor-
der of \Delta_{[mathring]_{t}} , l\neq k . (It should be noted that on any compact set, precise de-
composition of support is possible in view of the flabbiness of the sheaf \mathscr{B}

of usual hyperfunctions. Hence this theorem is meaningful only in the
neighborhood of points at infinity.) \square
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