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The space N(o) and the F. and M. Riesz theorem
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Abstract. We give a property of spectrum of measures on a certain LCA group. We
also give a characterization of the space N(o) of measures on a LCA group under our
setting.
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1. Introduction

Let (G,X) be a (topological) transformation group, in which G is a
locally compact abelian (LCA) group and X is a locally compact Hausdorff
space. Let M(X) be the Banach space of bounded regular measures on X.
Let L!(G) and M(G) be the group algebra and the measure algebra respec-
tively. mg stands for the Haar measure of G. M,(G) denotes the subspace
of M(G) consisting of singular measures. Let o be a quasi-invariant, (pos-
itive) Radon measure on X, and let N(o) = {p € M(X) : h*xp << o
for all h € L}(G)}. For u € M(X), let sp(u) be the spectrum of . Let
i = pg + ps be the Lebesgue decomposition of p with respect to o.

We define two families Cy (= Co(0)) and C§ (= C3(c)) of closed sets G
as follows:

Co={E C G : closed set, p € M(X),sp(n) C E = sp(us) C E};
Cd={E€Cy:"E' CE : closed set => E' € Cy}.

When G is a compact abelian group, the notion of Cy and CJ is introduced
in [5]. Finet and Tardivel-Nachef ([2]) obtained the following two results in
case GG is a compact abelian group.

Proposition 1.1 (cf. [2, Proposition 4.9]). Suppose G is a compact abe-
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lian group. Let E € CJ. Let u be a measure in N(o) with sp(p) C E. Then
u<<o.

Theorem 1.1 (cf. [2, Theorem 4.10]). Suppose G is a compact abelian
group. Let E be a Riesz set in G. Let u be a measure in N(o) with sp(u) C
E. Then p<<o.

On the other hand, the author obtained the following theorem in [17].

Theorem 1.2 (cf. [17, Theorem 2.4]). Suppose G is a compact abelian
group. Let E be a Riesz set in G. Let pu be a measure in M(X) with sp(u)
contained in E. Then sp(pq) and sp(ps) are both contained in sp(u).

We note that [Proposition 1.1 and [Theorem 1.2 imply Theorem 1.1.
When G is a LCA group, we shall give a corresponding result of
1.1 (Proposition 2.1)). For a closed semigroup E in G with EU (—E) = G,
a result related to [Theorem 1.2 holds ([18, Theorem 2.1]). But, when G is
a LCA group, we do not know whether corresponding results of
1.1 and 1.2 hold or not.

When X is a LCA group, G = R (the reals) and there exists a nontrivial
continuous homomorphism ¢ from R into X, an action of R on X is defined
byt-z=¢(t)+z (t € R, z € X). By this action, we get a transformation
group (R, X). For such a transformation group, we shall give results related
to Theorems L1 and (Theorem 2.1 and [Corollary 2.1)). In [9], a char-
acterization of N (o) is given for a general transformation group. We shall
also give another characterization of N (o) under our setting (Theorem 5.1).

2. Notation and results

Let (G, X) be a transformation group, in which G is a LCA group and X
is a locally compact Hausdorff space. Suppose that the action of G on X is
given by (g,z) — g-=, where g € G and z € X. Let Cy(X) and M (X) be the
Banach space of continuous functions on X which vanish at infinity and the
Banach space of bounded regular measures on X respectively. For z € X,
6. denotes the point mass at z. Let MT(X) be the set of nonnegative
measures in M(X). For p € M(X) and f € L'(|u|), we often use the
notation u(f) as [y f(z)du(z). A Borel measure o on X is called quasi-
invariant if |o|(F") = 0 implies |o|(g- F) =0 for all g € G.

Let G be the dual group of G. For A € M(G), X denotes the Fourier-
Stieltjes transform of A, i.e., X(fy) = Jo(=z,v)d\(z) (v € G). For a closed
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subset E of G, Mg(G) denotes the space of measures in M(G) whose
Fourier-Stieltjes transforms vanish off E. L% (G) means Mg(G)NLY(G). A
closed subset E of G is called a Riesz set if Mg(G) C LY(G).

For A € M(G) and p € M(X), we define A x u € M(X) by

aeu(h) = [ [ 1o-2)aN@)du(a) (2.1)

for f € Cy(X). When there is a possibility of confusion, we may use A 2 )
instead of A x u. Let J(u) = {h € LY(G) : hx p = 0},

Definition 2.1 For p € M(X), define the spectrum sp(u) of p by
ﬂhEJ(,LL) h—l(o)

Let o be a quasi-invariant Radon measure on X. In general, we have
L'(s) € N(o) C M(X). According to choice of (G,X) and o, it may
happen that N(c) # M(X) and N(o) # L'(0). We can find several ex-
amples of N (o) in [2] and [8]. We give another example of N (o) such that
L(0) € N(0) € M(X).

Example 2.1. Let G = Rand X = R, where R is the Bohr compactification
of R. Then there exists a continuous isomorphism ¢ : R — R such that ¢(R)
is dense in R. We define the action of R on R by t -z = ¢(t) + z (t € R,
z € R). By this action, we get a transformation group (R,R). Set ¢ = mg.
Let A =Z C R= Ry, and let K = AL (the annihilator of A in R). Then
mg L o. For h € L}(R), let hﬁng be the convolution of A and mg defined

n (2.1). Then

h};mK:gb(h)*mK:a(thK) << o,

where o : R® K — R is a continuous homomorphism defined by a(t,u) =
&(t) + u (see [3.2) and Proposition 4.1). Thus mg € N(o), and we have
L'(o) C N(o). Let z € R. Then o(R-z) = mg(R-z) = 0, and we have
hﬁ;ém = ¢(h) * 8, L o for all h € L(R). This shows that &, ¢ N(o), and

so N(¢) € M(R). Thus we have L*(c) C N(0) C M(R).

Now we state our first result.

Proposition 2.1 (cf. [2, Proposition 4.9]). Let (G, X) be a transforma-
tion group, in which G is a LCA group and X 1s a locally compact Hausdorff
space. Let o be a quasi-invariant Radon measure on X. Let E be a closed
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set in C§, and let p be a measure in N (o) with sp(u) C E. Then u << 0.

Proof.  Since E € Cy, we have

sp(us) C E. (2.2)

Moreover we have

v ¢ sp(us) for any v € E. (2.3)

In fact, for v € E, let V, be an open neighborhood of v with compact
closure. We choose f, € L1(G) so that fy=1onV,.

Claim. sp(u— fy*p) C E\V,.
Let g € L'(G) with supp(g) C V,,. Then

g¥(—Ffyxp) = gxp—gxfyxp=gxp—gxp
= 0,

which yields g € J(u— f,*p). We note that ﬂgEL%, @) g 1(0) = V,€. Hence
Y

we have

sp(p—frxp) = () BTH0) Csp(p)NV,e
heJ(p—fyxp)
C E\V,,

which shows that the claim holds. Since E € C8 and V, is an open set,
E\V,, belongs to Cy. It follows from Claim that

3p(1a) = sp((1 — f * u)s) C E\Vi.

Since v € V,,, we have v ¢ sp(us), and (2.3) holds. By and (2.3),
we have sp(us) = ¢. It follows from [12, 7.2.5 (c)] that u, = 0. Thus
= pe << o, and the proof is complete. (]

Next we state our second result. We consider the case when X is a
LCA group and there exists a nontrivial continuous homomorphism from R
into X.

Let G be a LCA group and ¢ a nontrivial continuous homomorphism
from G into R. We may assume that there exists xo € G such that Y(xo0) =1
by considering a multiplication of v if necessary. Let ¢ : R — G be the dual
homomorphis of ¥, i.e., (¢(t),7) = exp(it(y)t) for t € R and v € G. Then
¢ is a nontrivial continuous homomorphism from R into G. We define an
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action of R on G by t -z = ¢(¢t) + z. Then we get a transformation group
(R, G).

Theorem 2.1 (cf. [17, Theorem 2.4]). Let o be a quasi-invariant Radon

measure on G. Let 0 < ¢ < %, and let E be a closed set in R such that

E+[—¢,¢€] is a Riesz set in R. Let u be a measure in M(G) with sp(u) C E.
Then sp(u,) and sp(us) are contained in E.

As for [[heorem 2.1, we mention that the Haar measure m¢ is an ex-
ample of a quasi-invariant Radon measure on G and E € CJ. Examples of
closed set in R, which satisfies the condition in [Theorem 2.1, are provided in

section 4. The following corollary follows from [Proposition 2.1 and [Theoremn
2.1.

Corollary 2.1 (cf. [2, Theorem 4.10]). Let o and E be as in Theorem
2.1. Let p be a measure in N (o) with sp(u) C E. Then p << o.

Remark 2.1. Let (R, X) be a transformation group, in which the reals R
acts on a locally compact Hausdorff space X. Let o be a quasi-invariant
Radon measure on X. Let u be a measure in N(o) with sp(u) C [0, 00).
Then p << o0: In fact, this follows from [4, Theorem 5] and [Proposition 2.1.

Remark 2.2. Let (G, X) be a transformation group, in which G is a LCA
group and X is alocally compact Hausdorff space. Let o be a quasi-invariant
Radon measure on X, and let E be a compact set in G. Let 1 be a measure
in N(o) with sp() C E. Then p << o: In fact, let h be in L!(G) such
that h =1 on E. Then h* pu = p (cf. [4, Lemma 2, p.36]), and u << o.

3. Some operator

Let G be a LCA group and v a nontrivial continuous homomorphism
from G into R. We assume that there exists Xo € G such that Y(xo) = 1.
Let A be a discrete subgroup of G generated by xo, and let K be the
annihilator of A. In this section, we define an isometry from M(G) into
MR @ K) and consider its properties. This operator will be used to prove
[(I’heorem 2.1 in next section. Let ¢ : R — G be the dual homomorphism of
®. We define a continuous homomorphism « : R@ K — G by

a(t,u) = ¢(t) + u. (3.1)
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Then a((—m, 7] x K) = G, and a is a homeomorphism on the interior of
(—m, 7] x K. In particular, o is an onto, open continuous homomorphism
(cf. [13, Lemma 2.3]). We note that ker(a) = {(27n, —¢(27n)) : n € Z}.
Let D = ker(). Then Dt = {(¥(v),7|k) : v € G} (cf. [13, Lemma 2.2])
and D+ = G (cf. [13, (2.3)]). For u € M(R @& K), we have a(p)(y) =
a(¥(7),7|k) for v € G. Moreover, we have the following (cf. [13, Proposi-
tion 2.2]).

o(L'(R® K)) ¢ LY(G); (3.2)
a(M,(R& K)) ¢ M(G). | (3.3)

For 0 < € < & (we fix ¢ in this section), we define a function Aq(z,w) on
ReK by

max (1 - gm,o) @=0)
0 (w #0)

Ac(z,w) =

Definition 3.1 For u € M(G), define a function ®%(t,w) on R & K by

O(t,w) = Y BA((tw) — ($(),7lk))-

~eG

By [15, (2.5)—(2.8)], we have the following:

¢, e MRS K)™ and [(2))"]| = ||lul| for p € M(G); (3.4)
e L'R® K)™ if pe L'(G); (3.5)
@ € M,(R® K)™ if pe My(G); (3.6)
a((®5)") =p for pe M(G), (3.7)

where (®%)" is the measure in M(R & K) such that ((@)Y)" = @. We
define an isometry Ty : M(G) — M(R & K) by

T () = (35)". (33)
We note that T (u) > 0 if u € M*(G) (cf. [7, A. 7.1 Theorem] or Theoreml
3.1). Let ke(t) = 1. —1—%3;(6—0 Then k<(s) = 22 ke(t)e™tdt = max(1 —
1|s],0). Put .A(s) = max(1l — Lls],0).
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Let G be the Bohr compactification of G and K the closure of K in
G. Then K is the annihilator of A in G. Let 1, be the homomorphism
from Gy into R such that v, (v) = ¥(vy), where G, is the group G with the
discrete topology. Let ¢, be the dual homomorphism of 1,. We note that
#.(R) is contained in G (C G) and ¢(t) = ¢.(t) for all t € R. We define a
continuous homomorphism oy : R® K — G by au(t,7) = ¢.(t) + u. We
define a function V¥ on R @ K by VI (¢, 1) = k().

Lemma 3.1 (cf. [6, Lemma 6, (9)]). For z € R, let v be an element in
G4 such that |z — . (7)| < % Then

{Z e~ i@ (t+2mn) (t + 2mn)(d«(27n), ’Y‘K)}(—U, V%)

nez

1

=5 e~V y|2) Az — 9u (7))

for all (t,w) € [0,27) x K.
Proof. We define functions F; and F; on R @ K as follows:

Fl(tvﬂ> = e_ixtv:(taﬂ)(—ﬂy'ﬂf)a

1 _
5. € VO, | 2)e Az — Pu(7))
Fy(t,u) = for (t,u) € [0,27) x K
0 otherwise.
Then we have
Fy(#.(x), Xlz) = F2(¥+(x), Xl ) for all x € Ga. (3.9)

In fact,

Alz+v(x) i vgt+xlg=0

| (3.10)
0 if ylg+ x|z #0.

Fi((x), xlg) = {

On the other hand, we have
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Pab0xl) = Al =) 5o [ (=6t )

X (=, (7 + x)lz)dt dm—(a)
= Al —(y)) /5(—y, ¥+ x)dmz(y)

{EA(x—tb*(v)) f y+x=0

(3.11)
0 if v+ x#0.

We consider (3.9) by dividing two cases.

Case 1: Suppose | (y) — z| > ¢.
Since [ (7) —z| < L, [9u(v)—n—z| > e foralln € Z. If Y%+ x|z =0, we

have y+x = nxo for some n € Z. Hence .A(z+1x(x)) = «A(z—1), (7)+n) =
0. Thus, in this case, F1(v(x), x|z) = Fa(¥«(x), xI%) = 0.

Case 2: Suppose |1 (y) — z| < e.
In this case, we note that | — 1,(v) + n| > 1 — ¢ for all nonzero integer n.
Hence, by (3.10) and (3.11), we have

EA(x+¢*(X)) if 7]?+X|?=O

F1(¢*(X)aX|f) = {O if 7"}?+X|f7£0

Al +(x)) if v+x=0
0 if y+x#0
= ﬁ2(¢*(X)7XIf)'

Thus (3.9) holds.
a.(F;) belongs to L'(G) because F; € L'(R® K) (i = 1,2). Since
@, (F;)™(x) = Fi(¥«(x), x|), we have, by (3.9),

a*(Fl) = a*(FQ). (312)

For z € G, there exists a unique (t,%) € [0,27) x K such that a(t, ) =
¢«(t) + u = . We note

a(F;)(z) =27 Z Fi(t+2mn,7 — ¢, (27n)). (i=1,2)
nez

Hence, by (3.12), we have
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27 Z Fi(t+ 2mn,7 — ¢4 (27n))

neZ 3.13)
=27 Z Fo(t +2mn,u — ¢, (2mn)) (3.13)

nez

for (mg X my) —a.a. (¢,%) € [0,27) x K. On the other hand, by definition
of F} and F5, we have

27 Z Fy(t+ 2mn,u — ¢.(27n))
= (3.14)
= e (9 ). Al — 6 (1)
for (t,u) € [0,27) x K and

27 Z Fi(t+ 2mn,u — ¢.(27n))

nez
=21y e IMGE (L 4 270, U — i (270)) (—T + G4 (27), 7IR)
nez
— QW{Ze 2t+2m) (8 + 27n) (¢ (27700), |K)}(—ﬂ,'y|—K—) (3.15)
nez

for (t,u) € [0,2r) x K. Since Y, ¢z sup{ke(t + 2mn) : t € [0,27)} < oo,
the function in (3.15) is continuous on [0,27) x K. Evidently the function
in is also continuous on [0,27) x K. Hence the lemma follows from
(3.13)~(3.15). O

We define a function V. on R&® K by V.(t,u) = kc(t). Then the
following holds.

Theorem 3.1 For u € M*(G), let i be the periodic extension of u to
R&® K, i.e., for a Borel set E CR® K,

(B) = 3 w(a(E N [27m, 27(n + 1)) x K)).
nez

=

Then Tj (k) = 27V, fi.

Proof.  We first note that 27V, belongs to M(R @ K). We define u# €
M([0,27) x K) by p#(F) = p(a(F)) for a Borel set F in [0,27) x K. For
(z,w) € R® K, we note that there exists v € G such that () — x| < 3
and vy|x = w. Then
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(27Vepn)(z,w)
= (27Vep) (z,7|K)
—2r Y / e (| ke () dfE(E, )

nel [2mn,2m(n+1))x K

_ 27r/ {Z e—iﬂﬁ(t”””)ks(t + 27n)(p(27n), ’Y|K)}
[0,2)x K 7

X (_ua')/lK)d:u#(t?u)' (316)
By [Lemma 3.1, we note that

{Z e iw(t+2mn) g (t + 2mn)(p(27n), 'y’K)}(—u,fﬂK)

nez

= e N —u x) A — () (3.17)

2w
for all (t,u) € [0,27) x K. Hence, by and (3.17), we have
(2nVep) ™ (z,w)

- / e VO (—u,y|K)e Az — (7)) du (¢, u)
[0,27)x K
= A=) [ (-altu)dit ()

[0,2m) x K
= Az —9Y(v)) /G(—y, v)dp(y)
= Az —p(v)A(y)-
Since |z — ¥ (v)] < &, we get
Ty () (z,w) = T (k)" (z,v|K)
= D B0)A((z,71k) — ((x), X|k))

xeG
= B(7)eAlr = ¥(7)).
Hence we have T (u) = 2wV, i, and the proof is complete. L]

Corollary 3.1 Forpu € M(G), let p= py — po +i(us — ps) be the Jordan
decomposition of p (u; > 0 (i = 1,2,3,4)). Then Ty(p) = 27V —
2mV g +1(27V i3 — 2V [ig).

The following proposition follows from [Theorem 3.1I.
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Proposition 3.1 Let p € M+ (G) and f € L*(u). Then

Ty (fu) = (f o a)Tg ().

Hence foa € Ll(Ti(,u)) and T;(fp) << T5(n). In particular, £ << p
(€ € M(G)) implies Tj(§) << Ty (u).

A Borel set E in G is called a null set in the direction of ¢ if {t €
R : ¢(t) + x € E} is a set of Lebesgue measure zero for each z € G. We
shall call a measure ;1 € M(G) absolutely continuous in the direction of ¢
if |u|(E) = 0 for each Borel set F that is a null set in the direction of ¢.
The following lemma is obtained as same as in .

Lemma 3.2 (cf. [1, Proposition 2.3]). Suppose v € M(G) is quasi-invar-
want. Then v is absolutely continuous in the direction of ¢.

Definition 3.2 Let 7 : R - R® K be a continuous homomorphism de-
fined by 7(z) = (x,0). We say that u € M(R ® K) is quasi-invariant under
7 if the collection of Borel sets in R & K on which |v| vanishes is invariant
under translation by elements in R & {0}.

Proposition 3.2 Let u € M (G). Then the following are equivalent.

(i) p is quasi-invariant.

(i) Ty(u) is quasi-invariant under 7.

Proof.  (ii) = (i): Suppose u(E) = 0. Then Ti(u)(a‘l(E)) =u(E)=0.
Hence, for any t € R, we have

WE +¢(t)) = Ti(u)(a (B + (1) = Tj(u)(a " (E) + (£,0))
= 0.

(i) = (ii): Suppose T;j(u)(F) = 0. It follows from [Theorem 3.1 that
(vsﬁ)(F) = 0.

Claim 1. pu(F)
In fact, noting {(¢, ) ERD K : Ve(t,u) =0} = Upez{#2} x K, we have

(Ul )
-2({) )
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Y Y (a ({2”7”} < K 1 [2mk, 27(k + 1)) x K))

neZ kel
2
()
nez €
On the other hand, a({#2} x K) is a null set in the direction of ¢ and p is

absolutely continuous in the direction of ¢. Hence fi(J,cz{#22} x K) = 0.
Thus Claim 1 follows from the fact that (V.n)(F) = 0.

Claim 2. p(a(F)) =0.
In fact,

pla(F)) = u(a(U FN[2mn,2r(n+1)) x K>>

nez

< Z pla(F N 2mn,2r(n+ 1)) X K))
nez

— A(F)
= 0. (by Claim 1)

For each t € R, we have, by Claim 2,

T5()(F + (t,0)) < Ty(p)(a™ (a(F + (£,0)))) = p(a(F) + 4(t))
= 0.

Thus (i) implies (ii). This completes the proof. n

4. Proof of Theorem 2.1

In this section, we give the proof of [Theorem 2.1. Let G be a LCA
group and ¢ a nontrivial continuous homomorphism from G into R. We
assume that there exists xo € G such that 1(xo) = 1. Let ¢ be the dual
homomorphism of 3. We define an action of R on G by ¢t -z = ¢(¢) + z.
Then we get a transformation group (R, G).

Proposition 4.1 For A € M(R) and p € M(G), we have
Axp= o) p,

where )\IEM is the convolution of A and p on the transformation group (R, G)
(cf. (2.1)) and ¢(X) * p is the convolution of ¢(A) and p in M(G).
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Proof.  For f € Cy(G), we have

- / / f(z+y)do(M)(y)du(z)

=//fw+¢ ))AA()dps(x)

= )\*,u

This completes the proof. []

For y € M(G), we recall J(u) = {h € L}(R) : hﬁgu = 0}, and let sp(u)
be the spectrum of i on the transformation group (R, G).

Remark 4.1. For p € M(G) and a closed set FE in R, the following are
equivalent.

(i) sp(p) C E.

(ii) SUPp( ) CYHE).
In fact, assume (i), and suppose there exists v ¢ ¥ ~1(E) such that fi(y) #
0. Then ¢(y) ¢ E. Since E is closed, there exists h € L!(R) such that
h((v)) # 0 and E is in the interior of h— 1(0). Then we have h € J(u), by
[12, 7.2.5 (a)]. Hence ¢(h) * p = hﬁgu = 0. Since ¢(h)"(y) = h(¥(7)) # 0,
we have fi(y) = 0, which contradicts the choice of v. Thus (i) implies (ii).
Next suppose supp(i) C ¢~ 1(E), and let z € R\E. There exists h € L'(R)
such that h(z) # 0 and h = 0 on E. Then é(h)"=hot =0on Y=Y E);
hence hﬁli,u, = ¢(h) x p = 0. Thus h € J(u). Since h(z) # 0, we have

x ¢ sp(p). This shows that sp(p) C E. Thus (ii) implies (i).

Lemma 4.1 Let 0 be a quasi-invariant measure in M (G), and let v €
MT*RO®K). If v L Tj(0), then a(v) Lo.

Proof. By [lheorem 3.1, Tj(0) = 27V.5, and we note that {(t,u) €

ROK : V(t,u) =0} = U,z {22} x K. As seen in the proof of [Proposition]
3.2, we have

(Y n) -e

because ¢ is quasi-invariant and a({#22} x K) is a null set in the direction
of ¢. Thus, since v L be(a), we have v 1 &. Hence there exists a Borel
set £ in R @ K such that v(E°) = 0 and 6(E) = 0. Since ker(a) =
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{(2mn, —¢(27n)) : n € Z}, we have
(o (a(E)))
=0(E + ker(a)) < Z d(E + (2mn, —¢(2mn)))

nez
— Z Z ((E + (2mn, —¢(27n))) N 27k, 2m(k + 1)) x K))

I

_ZZ (En2n(k—n),2n(k—n+1)) x K)

(27rn —¢(2mn))))
- ZZ a(EnN 2n(k —n),2n(k — n+ 1)) x K))

—Z(

3

I
.O

(by 6(E) =0)
Hence
o(a(E)) = a(Ty(0))((E)) = Tj(o) (e ((E)))
= (27V5)(a " (a(E))) =0.
)

Since a(v) is concentrated on a(E), we have a(v) L . This completes the

proof. []

Lemma 4.2 Let o be a quasi-invariant measure in M+ (G). Then (p x
é0) * Tj;(0) and Tj (o) are mutually absolutely continuous, where dp(t) =

1

Proof. It follows from [Proposition 3.2 that T;;(0) is quasi-invariant under
7. Suppose (p x &) * Tjj(0)(E) = 0. Then

[ To@)(E = (6,0))dp(t) = (o x 65) + T5(0)(B) =0,

which yields T3 (o) (E — (¢,0)) = 0 for mg —a.a. t € R. Thus T;(o)(E) = 0.
Conversely, suppose T (0)(E) = 0. Then T} (0)(E —(t,0)) =0 for allt € R.
Hence (p x o) x T (o )(E) JrTj(0)(E — (t 0))dp(t) = 0. This completes
the proof. []

The following proposition is easily obtained.

Proposition 4.2 Let o be a quasi-invariant Radon measure on G, and let
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n € M(G). Then there exist a quasi-invariant measure o, in M*(G) and
a o-compact subset X, of G such that

() 14(6E) = 0,(X,) = 0, and

(ii) oulx, and o|x, are mutually absolutely continuous.

Proposition 4.3 Let o be a quasi-invariant measure in M (G). Let V. =
[—e,e] (0 < e < 2), and let E be a closed set in R such that E + V. is a
Riesz set in R. Let p be a measure in M(G) with sp(p) C E. Then sp(juq)
and sp(ps) are contained in E.

Proof. By Remark 4.1, we note that supp(zz) C ¥ ~}(E). It follows from
that

(p % 60) * Tjj(c) and T3 (o) are mutually absolutely continuous.
(4.1)

Let 1k : R@® K — K be the projection. By [15, Corollary 1.5], there exists
a family {£u}uek of measures in M T (R) with the following properties:

u — (§u X 6u)(f) is Tk (T} (0))-measurable for each bounded Borel

function f on R® K; (4.2)
1&ull = 1; (4.3)
T(0)(f) = [ (6 x 6)(N)dmic(T3(0))(w) (4.4

for each bounded Borel function f on R® K.
Then we have, by (4.2) and [4.4),

u — {(p* &) X 6u}(f) is Tk (T} (0))-measurable for each bounded
Borel function f on R® K, (4.5)

and
(p x bo) x Ty (0)(f) = /K{(p *&u) X u}(f)dmg (Ty(0))(u)  (4.6)

for each bounded Borel function f on R K.
Since &, is a nonzero measure in M+ (R),

p * &, and p are mutually absolutely continuous. (4.7)
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On the other hand, since T3 (1) (z,w) = Zwea B(v)Ae((z,w)— (¥ (7),v|K))
and supp(zi) C ¥~ 1(E), we have

supp(T5 (1)) C (E+V.) x K. (4.8)

Let n = 71’K(|T§) (1)]), and let n = n, + ns be the Lebesgue decomposition of
n with respect to 7k (T} (0)). By [15, Corollary 1.6], there exists a family
{A}uek of measures in M (R) such that

u — (Ay X 8,)(f) is n-measurable (4.9)
for each bounded Borel function f on R ® K,
Iull = 1, (4.10)

and

T3 = [ x 8)(dn(a) (4.11)

for each bounded Borel function f on R ® K.
By (4.8) and [15, Lemma 2.1], we have

A € Mp,v7 (R) n—aa ueK, (4.12)
which yields
M €LYR) n—aa ueK (4.13)

because E + V. is a Riesz set in R. We define measures v,, vs € M (R K)
by

va(f) = fK(Au X 6u)(f)dna(u),

Vs(f) = fK(/\u X 6u)(f)dns(u)

for f € Co(RBK). We note that (4.14) holds for all bounded Borel functions
fonR& K. It follows from and (4.14) that

(4.14)

supp(7y ), supp(Ps) C (E+V.) x K. (4.15)
By (4.1), (4.6)—(4.7) and (4.13), we have
ve << Ty(o) and wvs L Ty(o).

That is, Tjj(u) = va + vs is the Lebesgue decomposition of Tj(u) with
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respect to T (o). By Lemma 4.1, o(vs) L . Thus
p=a(ve) + a(vs)
is the Lebesgue decomposition of 1 with respect to o. Hence
pa = (va) and ps = o(vs).
Suppose that there exists g ¢ ¥~ 1(E) such that fiz(79) # 0. Then
a(¥(70), Y0lK) = a(70) # 0,
which together with (4.15) yields
Y(v) € E+ V.. (4.16)
Let

Yo = 1nf{|ya' : 1/)(70) = Lo +yaa Lo € Ea ya € VE}

Then yo > 0. In fact, suppose yo = 0. Then there exists y, € V. such that
lim, yo = 0. Then lim, x4 = lima(¥(70) — Ya) = ¥(70). Since z, € E and
E is a closed set, this shows that ¥(7) € E, which yields a contradiction.
Thus yg > 0.

We choose a positive real number 6 so that 0 < § < min(yp,e}. Then,
by [15, Corollary 1.6], there exists a family {\%},cx of measures in M (R)
such that

u — (A x &,)(f) is n°-measurable (4.9)
for each bounded Borel function f on R® K,

Il =1, (4.10)’
and

T80 = [ (¥ x 8.)(H)dn’ (w) (4.11)

for each bounded Borel function f on R® K,
where 7° = WK(|T£(M)|). By a similar argument as in (4.8) and (4.12), we
have supp(T{Z(u)A) C (E+Vs) x K and

X e Mg,y (R) n° —a.a. ueK. (4.12)
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Since E+ Vs C E4+ V., E+ Vyis a Riesz set in R. Hence
Nel'(R) 7’ —aa ueK. (4.13)’
We define measures 12, v € M(R @ K) by

) = [ 08 x ) (w),
(F) = [ 08 x ) ()dnd(w)

for f € Co(R® K), where n° = ng + 772 is the Lebesgue decomposition of 7?
with respect to WK(Ti(U)). Then, by a similar argument as before, we have

Ha = a(”ﬁ) and ps = a(”.f)'

Hence
0 # Ha(0) = (¥2) (¥ (30), Yol k). (4.17)
By ’ and construction of Vg , we have
supp((v5)7) C (E+ V) x K,
which together with yields
V(1) =e+z
for some e € E and z € V5. Then
|z] <6 < yo,

which contradicts the choice of y. This shows that supp(fi,) C ¥~ }(E),
and the proof is complete. L]

Now we prove [Theorem 2.1l Let p be a measure in M (G) with sp(u) C
E. Tt follows from [Proposition 4.7 that there exists a quasi-invariant mea-
sure 0, in M*(G) such that pu, << 0, and ps L o,. That is, g = g + s
is the Lebesgue decomposition of u with respect to 0,. Then the theorem
follows from [Proposition 4.3

Ezample 4.1. We give examples of closed set E in R satisfying condition
in [['heorem 2.1..

(i) Let E = [0,00). Then F + V. = [~¢,00) is a Riesz set in R for
O<e< —é.
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(i) Let F = {ny € Z: k € N} be a A(2)-set in Z, i.e., L%(T) = L(T).
Let 0 < e < %, and choose § > 0 so that e +6 < %. Put E = F+ V. Then
E+V.=F+ V. is a Riesz set in R. In fact, let p € Mp_ 3 (R). Let
7m: R — T = R/2nZ be the canonical map, and let § = é + . Then, for
each u € Vi, m(e™™ 1) belongs to Mp(T); hence (e~ u) € L%(T). Since
F is a A(2)-set, there exists a constant C' > 0, depending on F', such that

Im(e™™ w)ll2 < Clim(e™ w1 < Cllull.

It follows from the Plancherel theorem that

Yo lam+u)? = Y (e u) ()] = lln(e ™ w3

nez nez
< C?||ull.

/R A(z)|Pde = ) /n - 7i(2)|?dx

nez

~ [ S iatn+ o)

&' nez
< [ CPlulda
V5/
= 28'C?||u|”.

Thus i € L?(R), and so u € L'(R), by [10, (31.33) Theorem|. Hence E+V,
is a Riesz set in R.

Remark 4.2. Every Sidon set in Z is a A(2)-set. In particular, let F' =
{ng € N:ngy/ng >3 (k€ N)}. Then F' U (—F") is a A(2)-set in Z.

5. A characterization of N(o)

In this section, we give a characterization of N (o) when X is a locally
compact abelian group and there exists a nontrivial continuous homomor-
phism from the reals R into X. Let G, ¥ and ¢ be as in section 4.

For a quasi-invariant Radon measure o on G, let N(o) = {{ € M(G) :
hﬂﬂif << o for all h € LY(R)} (= {¢€ € M(G) : ¢(h) x & << o for all

h € L'(R)}) as in §1.

Proposition 5.1 Let u € M(G), and let o be a quasi-invariant measure
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in M+ (G). Then the following are equivalent.
() ueN@).
(i) (h x ég) * Ty (1) << Tj(o) for all h € L(R).

Proof.  (ii) = (i): For h € L'(R), we have, by (ii),

B(1) * 1= al(h x bo) T (1)) << a(T5(0)) = o

Thus p belongs to N (o).

(i) = (ii): Let u € N(o). Since N(o) is an L-subspace of M(G) (cf.
19, Corollary 5]) and T} is a positive operator, we may assume that p > 0.
Suppose there exists a nonzero, nonnegative function A in L'(R) such that
(h X 80) * T (u) is not absolutely continuous with respect to Tj(o). Let
(h x 60) * Tjj(11) = v4 + vs be the Lebesgue decomposition of (h x &) * Ty ()
with respect to Ti(a). Then vy # 0 and v, > 0. It follows from
that

0# a(vs) Lo

Since a(v,) << a(Tj(0)) = o, we have

¢(h) * p = a((h x &o) * Tg (1)) = e(va) + a(vs) ¢ L' (0),
which contradicts the fact that u € N(o). Thus
(h x bo) * Ty, (1) << Ty (o)

for all nonzero, nonnegative function & in L*(R). This shows that (ii) holds.

[]

Proposition 5.2 Let 0 be a quasi-invariant measure in M+ (G), and let
p€MROK). Let mg : R® K — K be the projection. Then the following
are equivalent.

(i) (hxébg)*u<< T; (o) for all h € Li(R).

(i) mx(|u]) << mx(T5(0)).

Proof.  (ii) = (i): By [15, Corollary 1.5 and Corollary 1.6], there ex-
ist families {A\y}uex € M(R) and {&u}uex C MT(R) with the following
properties:

u = (Ay X 6,)(f) is g (|p])-measurable and u — (&, x &,)(f) is
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7k (T;;(0))-measurable for each bounded Borel function f on R @ K,
(5.1)

[Aull =1 and [|&.]| = 1, (5.2)

p() = [ Oux 62)(F)dmx () and T(o)()
— [ (€ x 8)(1dmic(T5 () () (5.3)

for each bounded Borel function f on R® K.
For each bounded Borel function f on R ® K, we have

u — {(p* &) X 6u}(f) is T (T} (0))-measurable (5.4)

and

(p x bo) * Tj(o)(f) = /K{(P x &u) X Ou}(f)dmg (Ti5(0))(u).  (5.5)
Similarly, for each h € L'(R) and bounded Borel function f on R & K,

u — {(h* Ay) X 64 }(f) is mx (|p|)-measurable (5.6)

and

(hx 80) + ) = [ A0+ ) x 63 (dmac ) ). (5.7

Since p * &, and p are mutually absolutely continuous, h * A, << p * &, for
all u € K. Thus, by (ii), we have

(h x 60) * p << (p X bo) x Ty (o)

for each h € L}(R), which together with yields (i).

(i) = (ii): Suppose 7 (|p|) is not absolutely continuous with respect
to Tx (Tj(0)). Let mx(|ul) = mk(|ul)a+7K (|1])s be the Lebesgue decompo-
sition of 7 (|u|) with respect to mx (T (). Then mx(|u|)s # 0, and there
exists a Borel set B in K such that mg (|u|)s(B¢) = 0 and WK(T;;(U))(E) = 0.
Set A=Rx B°and B=R x B, and let us = p|4 and up = p|p. Then
pp # 0 since mx (|up|) = T (|p])s # 0. Hence there exists h € L!(R) such
that (h X ég) * up # 0. We note

ik (|(h x 80) * pupl) < Tr((|h] X bo) * |15])
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= |[hllhmk (lusl)-

Hence, since mx (|up|) L mx(T;(0)), we have
0# (h X(So)*,u,B LT{Z(O’) (58)

On the other hand, we have (h x 6g) x u = (h x &) * pa + (b x &) * up
and (h x 60) * pa L (h x ) * up, which yields (h x &) * up << (h x &) *
p << Ty (o). This contradicts [5.8). Thus (i) implies (ii), and the proof is
complete. []

The following theorem follows from Propositions and 5.2.

Theorem 5.1 Let p € M(G), and let o be a quasi-invariant measure in
M™(G). Then the following are equivalent.

(i) weN(o).
(if) 7 (T3 (R)]) << 7K (T5(0)).
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