The space $N(\sigma)$ and the F. and M. Riesz theorem

(Dedicated to Professor Satoru Igari on his sixtieth birthday)

Hiroshi Yamaguchi

(Received August 7, 1995)

Abstract. We give a property of spectrum of measures on a certain LCA group. We also give a characterization of the space $N(\sigma)$ of measures on a LCA group under our setting.

Key words: locally compact abelian group, transformation group, measure, quasi-invariant measure, Fourier transform, spectrum.

1. Introduction

Let (G,X) be a (topological) transformation group, in which G is a locally compact abelian (LCA) group and X is a locally compact Hausdorff space. Let M(X) be the Banach space of bounded regular measures on X. Let $L^1(G)$ and M(G) be the group algebra and the measure algebra respectively. m_G stands for the Haar measure of G. $M_s(G)$ denotes the subspace of M(G) consisting of singular measures. Let σ be a quasi-invariant, (positive) Radon measure on X, and let $N(\sigma) = \{\mu \in M(X) : h * \mu << \sigma \text{ for all } h \in L^1(G)\}$. For $\mu \in M(X)$, let $\operatorname{sp}(\mu)$ be the spectrum of μ . Let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposition of μ with respect to σ .

We define two families C_0 (= $C_0(\sigma)$) and C_0^0 (= $C_0^0(\sigma)$) of closed sets \widehat{G} as follows:

$$C_0 = \{ E \subset \widehat{G} : \text{closed set}, \ \mu \in M(X), \text{sp}(\mu) \subset E \Longrightarrow \text{sp}(\mu_s) \subset E \};$$

 $C_0^0 = \{ E \in C_0 : {}^{\forall}E' \subset E : \text{closed set} \Longrightarrow E' \in C_0 \}.$

When G is a compact abelian group, the notion of C_0 and C_0^0 is introduced in [5]. Finet and Tardivel-Nachef ([2]) obtained the following two results in case G is a compact abelian group.

Proposition 1.1 (cf. [2, Proposition 4.9]). Suppose G is a compact abe-

¹⁹⁹¹ Mathematics Subject Classification: 43A05, 43A10, 43A25.

This research was partially supported by Grand-in-Aid for Scientific Research (No. 06640266), Ministry of Education.

lian group. Let $E \in \mathcal{C}_0^0$. Let μ be a measure in $N(\sigma)$ with $\operatorname{sp}(\mu) \subset E$. Then $\mu << \sigma$.

Theorem 1.1 (cf. [2, Theorem 4.10]). Suppose G is a compact abelian group. Let E be a Riesz set in \widehat{G} . Let μ be a measure in $N(\sigma)$ with $\operatorname{sp}(\mu) \subset E$. Then $\mu << \sigma$.

On the other hand, the author obtained the following theorem in [17].

Theorem 1.2 (cf. [17, Theorem 2.4]). Suppose G is a compact abelian group. Let E be a Riesz set in \widehat{G} . Let μ be a measure in M(X) with $\operatorname{sp}(\mu)$ contained in E. Then $\operatorname{sp}(\mu_a)$ and $\operatorname{sp}(\mu_s)$ are both contained in $\operatorname{sp}(\mu)$.

We note that Proposition 1.1 and Theorem 1.2 imply Theorem 1.1. When G is a LCA group, we shall give a corresponding result of Proposition 1.1 (Proposition 2.1). For a closed semigroup E in \widehat{G} with $E \cup (-E) = \widehat{G}$, a result related to Theorem 1.2 holds ([18, Theorem 2.1]). But, when G is a LCA group, we do not know whether corresponding results of Theorem 1.1 and 1.2 hold or not.

When X is a LCA group, $G = \mathbb{R}$ (the reals) and there exists a nontrivial continuous homomorphism ϕ from \mathbb{R} into X, an action of \mathbb{R} on X is defined by $t \cdot x = \phi(t) + x$ ($t \in \mathbb{R}$, $x \in X$). By this action, we get a transformation group (\mathbb{R} , X). For such a transformation group, we shall give results related to Theorems 1.1 and 1.2 (Theorem 2.1 and Corollary 2.1). In [9], a characterization of $N(\sigma)$ is given for a general transformation group. We shall also give another characterization of $N(\sigma)$ under our setting (Theorem 5.1).

2. Notation and results

Let (G,X) be a transformation group, in which G is a LCA group and X is a locally compact Hausdorff space. Suppose that the action of G on X is given by $(g,x) \to g \cdot x$, where $g \in G$ and $x \in X$. Let $C_0(X)$ and M(X) be the Banach space of continuous functions on X which vanish at infinity and the Banach space of bounded regular measures on X respectively. For $x \in X$, δ_x denotes the point mass at x. Let $M^+(X)$ be the set of nonnegative measures in M(X). For $\mu \in M(X)$ and $f \in L^1(|\mu|)$, we often use the notation $\mu(f)$ as $\int_X f(x) d\mu(x)$. A Borel measure σ on X is called quasi-invariant if $|\sigma|(F) = 0$ implies $|\sigma|(g \cdot F) = 0$ for all $g \in G$.

Let \widehat{G} be the dual group of G. For $\lambda \in M(G)$, $\widehat{\lambda}$ denotes the Fourier-Stieltjes transform of λ , i.e., $\widehat{\lambda}(\gamma) = \int_{G} (-x, \gamma) d\lambda(x) \ (\gamma \in \widehat{G})$. For a closed

subset E of \widehat{G} , $M_E(G)$ denotes the space of measures in M(G) whose Fourier-Stieltjes transforms vanish off E. $L_E^1(G)$ means $M_E(G) \cap L^1(G)$. A closed subset E of \widehat{G} is called a Riesz set if $M_E(G) \subset L^1(G)$.

For $\lambda \in M(G)$ and $\mu \in M(X)$, we define $\lambda * \mu \in M(X)$ by

$$\lambda * \mu(f) = \int_{X} \int_{G} f(g \cdot x) d\lambda(g) d\mu(x) \tag{2.1}$$

for $f \in C_0(X)$. When there is a possibility of confusion, we may use $\lambda * \mu$ instead of $\lambda * \mu$. Let $J(\mu) = \{h \in L^1(G) : h * \mu = 0\}$.

Definition 2.1 For $\mu \in M(X)$, define the spectrum $\operatorname{sp}(\mu)$ of μ by $\bigcap_{h \in J(\mu)} \hat{h}^{-1}(0)$.

Let σ be a quasi-invariant Radon measure on X. In general, we have $L^1(\sigma) \subset N(\sigma) \subset M(X)$. According to choice of (G,X) and σ , it may happen that $N(\sigma) \neq M(X)$ and $N(\sigma) \neq L^1(\sigma)$. We can find several examples of $N(\sigma)$ in [2] and [8]. We give another example of $N(\sigma)$ such that $L^1(\sigma) \subsetneq N(\sigma) \subsetneq M(X)$.

Example 2.1. Let $G = \mathbb{R}$ and $X = \overline{\mathbb{R}}$, where $\overline{\mathbb{R}}$ is the Bohr compactification of \mathbb{R} . Then there exists a continuous isomorphism $\phi : \mathbb{R} \to \overline{\mathbb{R}}$ such that $\phi(\mathbb{R})$ is dense in $\overline{\mathbb{R}}$. We define the action of \mathbb{R} on $\overline{\mathbb{R}}$ by $t \cdot x = \phi(t) + x$ $(t \in \mathbb{R}, x \in \overline{\mathbb{R}})$. By this action, we get a transformation group $(\mathbb{R}, \overline{\mathbb{R}})$. Set $\sigma = m_{\overline{\mathbb{R}}}$. Let $\Lambda = \mathbb{Z} \subset \widehat{\mathbb{R}} \cong \mathbb{R}_d$, and let $K = \Lambda^{\perp}$ (the annihilator of Λ in $\overline{\mathbb{R}}$). Then $m_K \perp \sigma$. For $h \in L^1(\mathbb{R})$, let $h * m_K$ be the convolution of h and h defined in (2.1). Then

$$h * m_K = \phi(h) * m_K = \alpha(h \times m_K) << \sigma,$$

where $\alpha: \mathbb{R} \oplus K \to \overline{\mathbb{R}}$ is a continuous homomorphism defined by $\alpha(t,u) = \phi(t) + u$ (see (3.2) and Proposition 4.1). Thus $m_K \in N(\sigma)$, and we have $L^1(\sigma) \subsetneq N(\sigma)$. Let $x \in \overline{\mathbb{R}}$. Then $\sigma(\mathbb{R} \cdot x) = m_{\overline{\mathbb{R}}}(\mathbb{R} \cdot x) = 0$, and we have $h * \delta_x = \phi(h) * \delta_x \perp \sigma$ for all $h \in L^1(\mathbb{R})$. This shows that $\delta_x \notin N(\sigma)$, and so $N(\sigma) \subsetneq M(\overline{\mathbb{R}})$. Thus we have $L^1(\sigma) \subsetneq N(\sigma) \subsetneq M(\overline{\mathbb{R}})$.

Now we state our first result.

Proposition 2.1 (cf. [2, Proposition 4.9]). Let (G, X) be a transformation group, in which G is a LCA group and X is a locally compact Hausdorff space. Let σ be a quasi-invariant Radon measure on X. Let E be a closed

set in C_0^0 , and let μ be a measure in $N(\sigma)$ with $\operatorname{sp}(\mu) \subset E$. Then $\mu << \sigma$.

Proof. Since $E \in \mathcal{C}_0$, we have

$$\operatorname{sp}(\mu_s) \subset E. \tag{2.2}$$

Moreover we have

$$\gamma \notin \operatorname{sp}(\mu_s) \text{ for any } \gamma \in E.$$
(2.3)

In fact, for $\gamma \in E$, let V_{γ} be an open neighborhood of γ with compact closure. We choose $f_{\gamma} \in L^{1}(G)$ so that $\widehat{f}_{\gamma} = 1$ on V_{γ} .

Claim. $\operatorname{sp}(\mu - f_{\gamma} * \mu) \subset E \backslash V_{\gamma}$. Let $g \in L^1(G)$ with $\operatorname{supp}(\widehat{g}) \subset V_{\gamma}$. Then

$$g * (\mu - f_{\gamma} * \mu) = g * \mu - g * f_{\gamma} * \mu = g * \mu - g * \mu$$

= 0,

which yields $g \in J(\mu - f_{\gamma} * \mu)$. We note that $\bigcap_{g \in L^1_{V_{\gamma}}(G)} \widehat{g}^{-1}(0) = V_{\gamma}^c$. Hence we have

$$\operatorname{sp}(\mu - f_{\gamma} * \mu) = \bigcap_{h \in J(\mu - f_{\gamma} * \mu)} \widehat{h}^{-1}(0) \subset \operatorname{sp}(\mu) \cap V_{\gamma}^{c}$$
$$\subset E \setminus V_{\gamma},$$

which shows that the claim holds. Since $E \in \mathcal{C}_0^0$ and V_{γ} is an open set, $E \setminus V_{\gamma}$ belongs to \mathcal{C}_0 . It follows from Claim that

$$\operatorname{sp}(\mu_s) = \operatorname{sp}((\mu - f_{\gamma} * \mu)_s) \subset E \backslash V_{\gamma}.$$

Since $\gamma \in V_{\gamma}$, we have $\gamma \notin \operatorname{sp}(\mu_s)$, and (2.3) holds. By (2.2) and (2.3), we have $\operatorname{sp}(\mu_s) = \phi$. It follows from [12, 7.2.5 (c)] that $\mu_s = 0$. Thus $\mu = \mu_a \ll \sigma$, and the proof is complete.

Next we state our second result. We consider the case when X is a LCA group and there exists a nontrivial continuous homomorphism from \mathbb{R} into X.

Let G be a LCA group and ψ a nontrivial continuous homomorphism from \widehat{G} into \mathbb{R} . We may assume that there exists $\chi_0 \in \widehat{G}$ such that $\psi(\chi_0) = 1$ by considering a multiplication of ψ if necessary. Let $\phi : \mathbb{R} \to G$ be the dual homomorphis of ψ , i.e., $(\phi(t), \gamma) = \exp(i\psi(\gamma)t)$ for $t \in \mathbb{R}$ and $\gamma \in \widehat{G}$. Then ϕ is a nontrivial continuous homomorphism from \mathbb{R} into G. We define an action of \mathbb{R} on G by $t \cdot x = \phi(t) + x$. Then we get a transformation group (\mathbb{R}, G) .

Theorem 2.1 (cf. [17, Theorem 2.4]). Let σ be a quasi-invariant Radon measure on G. Let $0 < \varepsilon < \frac{1}{6}$, and let E be a closed set in \mathbb{R} such that $E + [-\varepsilon, \varepsilon]$ is a Riesz set in \mathbb{R} . Let μ be a measure in M(G) with $\operatorname{sp}(\mu) \subset E$. Then $\operatorname{sp}(\mu_a)$ and $\operatorname{sp}(\mu_s)$ are contained in E.

As for Theorem 2.1, we mention that the Haar measure m_G is an example of a quasi-invariant Radon measure on G and $E \in \mathcal{C}_0^0$. Examples of closed set in \mathbb{R} , which satisfies the condition in Theorem 2.1, are provided in section 4. The following corollary follows from Proposition 2.1 and Theorem 2.1.

Corollary 2.1 (cf. [2, Theorem 4.10]). Let σ and E be as in Theorem 2.1. Let μ be a measure in $N(\sigma)$ with $\operatorname{sp}(\mu) \subset E$. Then $\mu << \sigma$.

Remark 2.1. Let (\mathbb{R}, X) be a transformation group, in which the reals \mathbb{R} acts on a locally compact Hausdorff space X. Let σ be a quasi-invariant Radon measure on X. Let μ be a measure in $N(\sigma)$ with $\operatorname{sp}(\mu) \subset [0, \infty)$. Then $\mu << \sigma$: In fact, this follows from [4, Theorem 5] and Proposition 2.1.

Remark 2.2. Let (G, X) be a transformation group, in which G is a LCA group and X is a locally compact Hausdorff space. Let σ be a quasi-invariant Radon measure on X, and let E be a compact set in \widehat{G} . Let μ be a measure in $N(\sigma)$ with $\operatorname{sp}(\mu) \subset E$. Then $\mu << \sigma$: In fact, let h be in $L^1(G)$ such that $\widehat{h} = 1$ on E. Then $h * \mu = \mu$ (cf. [4, Lemma 2, p.36]), and $\mu << \sigma$.

3. Some operator

Let G be a LCA group and ψ a nontrivial continuous homomorphism from \widehat{G} into \mathbb{R} . We assume that there exists $\chi_0 \in \widehat{G}$ such that $\psi(\chi_0) = 1$. Let Λ be a discrete subgroup of \widehat{G} generated by χ_0 , and let K be the annihilator of Λ . In this section, we define an isometry from M(G) into $M(\mathbb{R} \oplus K)$ and consider its properties. This operator will be used to prove Theorem 2.1 in next section. Let $\phi : \mathbb{R} \to G$ be the dual homomorphism of ψ . We define a continuous homomorphism $\alpha : \mathbb{R} \oplus K \to G$ by

$$\alpha(t, u) = \phi(t) + u. \tag{3.1}$$

Then $\alpha((-\pi,\pi]\times K)=G$, and α is a homeomorphism on the interior of $(-\pi,\pi]\times K$. In particular, α is an onto, open continuous homomorphism (cf. [13, Lemma 2.3]). We note that $\ker(\alpha)=\{(2\pi n,-\phi(2\pi n)):n\in\mathbb{Z}\}$. Let $D=\ker(\alpha)$. Then $D^\perp=\{(\psi(\gamma),\gamma|_K):\gamma\in\widehat{G}\}$ (cf. [13, Lemma 2.2]) and $D^\perp\cong\widehat{G}$ (cf. [13, (2.3)]). For $\mu\in M(\mathbb{R}\oplus K)$, we have $\alpha(\mu)^\smallfrown(\gamma)=\widehat{u}(\psi(\gamma),\gamma|_K)$ for $\gamma\in\widehat{G}$. Moreover, we have the following (cf. [13, Proposition 2.2]).

$$\alpha(L^1(\mathbb{R} \oplus K)) \subset L^1(G);$$
 (3.2)

$$\alpha(M_s(\mathbb{R} \oplus K)) \subset M_s(G). \tag{3.3}$$

For $0 < \varepsilon < \frac{1}{6}$ (we fix ε in this section), we define a function $\Delta_{\varepsilon}(x,\omega)$ on $\mathbb{R} \oplus \widehat{K}$ by

$$\Delta_{arepsilon}(x,\omega) = \left\{ egin{array}{ll} \max\left(1-rac{1}{arepsilon}|x|,0
ight) & (\omega=0) \ 0 & (\omega
eq 0) \end{array}
ight. .$$

Definition 3.1 For $\mu \in M(G)$, define a function $\Phi^{\varepsilon}_{\mu}(t,\omega)$ on $\mathbb{R} \oplus \widehat{K}$ by

$$\Phi^{\varepsilon}_{\mu}(t,\omega) = \sum_{\gamma \in \widehat{G}} \widehat{\mu}(\gamma) \Delta_{\varepsilon}((t,\omega) - (\psi(\gamma), \gamma|_{K})).$$

By [15, (2.5)-(2.8)], we have the following:

$$\Phi_{\mu}^{\varepsilon} \in M(\mathbb{R} \oplus K)^{\widehat{}} \text{ and } \|(\Phi_{\mu}^{\varepsilon})^{\vee}\| = \|\mu\| \text{ for } \mu \in M(G);$$
(3.4)

$$\Phi^{\varepsilon}_{\mu} \in L^{1}(\mathbb{R} \oplus K)^{\hat{}} \text{ if } \mu \in L^{1}(G);$$
(3.5)

$$\Phi_{\mu}^{\varepsilon} \in M_s(\mathbb{R} \oplus K)^{\hat{}} \text{ if } \mu \in M_s(G);$$
(3.6)

$$\alpha((\Phi_{\mu}^{\varepsilon})^{\vee}) = \mu \text{ for } \mu \in M(G),$$
 (3.7)

where $(\Phi_{\mu}^{\varepsilon})^{\vee}$ is the measure in $M(\mathbb{R} \oplus K)$ such that $((\Phi_{\mu}^{\varepsilon})^{\vee})^{\hat{}} = \Phi_{\mu}^{\varepsilon}$. We define an isometry $T_{\psi}^{\varepsilon}: M(G) \to M(\mathbb{R} \oplus K)$ by

$$T_{\psi}^{\varepsilon}(\mu) = (\Phi_{\mu}^{\varepsilon})^{\vee}. \tag{3.8}$$

We note that $T_{\psi}^{\varepsilon}(\mu) \geq 0$ if $\mu \in M^{+}(G)$ (cf. [7, A. 7.1 Theorem] or Theorem 3.1). Let $k_{\varepsilon}(t) = \frac{1}{\pi} \cdot \frac{1-\cos(\varepsilon t)}{(\varepsilon t)^{2}}$. Then $\hat{k}_{\varepsilon}(s) = \int_{-\infty}^{\infty} k_{\varepsilon}(t)e^{-ist}dt = \max(1-\frac{1}{\varepsilon}|s|,0)$. Put $\varepsilon \Delta(s) = \max(1-\frac{1}{\varepsilon}|s|,0)$.

Let \overline{G} be the Bohr compactification of G and \overline{K} the closure of K in \overline{G} . Then \overline{K} is the annihilator of Λ in \overline{G} . Let ψ_* be the homomorphism from \widehat{G}_d into \mathbb{R} such that $\psi_*(\gamma) = \psi(\gamma)$, where \widehat{G}_d is the group \widehat{G} with the discrete topology. Let ϕ_* be the dual homomorphism of ψ_* . We note that $\phi_*(\mathbb{R})$ is contained in G ($\subset \overline{G}$) and $\phi(t) = \phi_*(t)$ for all $t \in \mathbb{R}$. We define a continuous homomorphism $\alpha_* : \mathbb{R} \oplus \overline{K} \to \overline{G}$ by $\alpha_*(t, \overline{u}) = \phi_*(t) + \overline{u}$. We define a function ∇_{ε}^* on $\mathbb{R} \oplus \overline{K}$ by $\nabla_{\varepsilon}^*(t, \overline{u}) = k_{\varepsilon}(t)$.

Lemma 3.1 (cf. [6, Lemma 6, (9)]). For $x \in \mathbb{R}$, let γ be an element in \widehat{G}_d such that $|x - \psi_*(\gamma)| \leq \frac{1}{2}$. Then

$$\left\{ \sum_{n \in \mathbb{Z}} e^{-ix(t+2\pi n)} k_{\varepsilon}(t+2\pi n) (\phi_{*}(2\pi n), \gamma|_{\overline{K}}) \right\} (-\overline{u}, \gamma|_{\overline{K}})
= \frac{1}{2\pi} \cdot e^{-i\psi_{*}(\gamma)t} (-\overline{u}, \gamma|_{\overline{K}})_{\varepsilon} \Delta(x-\psi_{*}(\gamma))$$

for all $(t, \overline{u}) \in [0, 2\pi) \times \overline{K}$.

Proof. We define functions F_1 and F_2 on $\mathbb{R} \oplus \overline{K}$ as follows:

$$F_{1}(t,\overline{u}) = e^{-ixt} \nabla_{\varepsilon}^{*}(t,\overline{u})(-\overline{u},\gamma|_{\overline{K}}),$$

$$F_{2}(t,\overline{u}) = \begin{cases} \frac{1}{2\pi} \cdot e^{-i\psi_{*}(\gamma)t}(-\overline{u},\gamma|_{\overline{K}})_{\varepsilon} \Delta(x-\psi_{*}(\gamma)) & \text{for } (t,\overline{u}) \in [0,2\pi) \times \overline{K} \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$\widehat{F}_1(\psi_*(\chi), \chi|_{\overline{K}}) = \widehat{F}_2(\psi_*(\chi), \chi|_{\overline{K}}) \text{ for all } \chi \in \widehat{G}_d.$$
(3.9)

In fact,

$$\widehat{F}_1(\psi_*(\chi), \chi|_{\overline{K}}) = \begin{cases} \varepsilon \Delta(x + \psi_*(\chi)) & \text{if } \gamma|_{\overline{K}} + \chi|_{\overline{K}} = 0\\ 0 & \text{if } \gamma|_{\overline{K}} + \chi|_{\overline{K}} \neq 0. \end{cases}$$
(3.10)

On the other hand, we have

$$\widehat{F}_{2}(\psi_{*}(\chi), \chi|_{\overline{K}}) = \varepsilon \Delta(x - \psi_{*}(\gamma)) \cdot \frac{1}{2\pi} \int_{[0,2\pi)\times\overline{K}} (-\phi_{*}(t), \gamma + \chi) \\
\times (-\overline{u}, (\gamma + \chi)|_{\overline{K}}) dt \, dm_{\overline{K}}(\overline{u}) \\
= \varepsilon \Delta(x - \psi_{*}(\gamma)) \cdot \int_{\overline{G}} (-y, \gamma + \chi) dm_{\overline{G}}(y) \\
= \begin{cases} \varepsilon \Delta(x - \psi_{*}(\gamma)) & \text{if } \gamma + \chi = 0 \\ 0 & \text{if } \gamma + \chi \neq 0. \end{cases} (3.11)$$

We consider (3.9) by dividing two cases.

Case 1: Suppose $|\psi_*(\gamma) - x| \ge \varepsilon$.

Since $|\psi_*(\gamma) - x| \leq \frac{1}{2}$, $|\psi_*(\gamma) - n - x| \geq \varepsilon$ for all $n \in \mathbb{Z}$. If $\gamma|_{\overline{K}} + \chi|_{\overline{K}} = 0$, we have $\gamma + \chi = n\chi_0$ for some $n \in \mathbb{Z}$. Hence $\varepsilon \Delta(x + \psi_*(\chi)) = \varepsilon \Delta(x - \psi_*(\gamma) + n) = 0$. Thus, in this case, $\widehat{F}_1(\psi_*(\chi), \chi|_{\overline{K}}) = \widehat{F}_2(\psi_*(\chi), \chi|_{\overline{K}}) = 0$.

Case 2: Suppose $|\psi_*(\gamma) - x| < \varepsilon$.

In this case, we note that $|x - \psi_*(\gamma) + n| > 1 - \varepsilon$ for all nonzero integer n. Hence, by (3.10) and (3.11), we have

$$\widehat{F}_{1}(\psi_{*}(\chi), \chi|_{\overline{K}}) = \begin{cases} \varepsilon^{\Delta}(x + \psi_{*}(\chi)) & \text{if} \quad \gamma|_{\overline{K}} + \chi|_{\overline{K}} = 0\\ 0 & \text{if} \quad \gamma|_{\overline{K}} + \chi|_{\overline{K}} \neq 0 \end{cases}$$

$$= \begin{cases} \varepsilon^{\Delta}(x + \psi_{*}(\chi)) & \text{if} \quad \gamma + \chi = 0\\ 0 & \text{if} \quad \gamma + \chi \neq 0 \end{cases}$$

$$= \widehat{F}_{2}(\psi_{*}(\chi), \chi|_{\overline{K}}).$$

Thus (3.9) holds.

 $\alpha_*(F_i)$ belongs to $L^1(\overline{G})$ because $F_i \in L^1(\mathbb{R} \oplus \overline{K})$ (i = 1, 2). Since $\alpha_*(F_i)^{\hat{}}(\chi) = \widehat{F}_i(\psi_*(\chi), \chi|_{\overline{K}})$, we have, by (3.9),

$$\alpha_*(F_1) = \alpha_*(F_2). \tag{3.12}$$

For $x \in \overline{G}$, there exists a unique $(t, \overline{u}) \in [0, 2\pi) \times \overline{K}$ such that $\alpha_*(t, \overline{u}) = \phi_*(t) + \overline{u} = x$. We note

$$\alpha_*(F_i)(x) = 2\pi \sum_{n \in \mathbb{Z}} F_i(t + 2\pi n, \overline{u} - \phi_*(2\pi n)). \quad (i = 1, 2)$$

Hence, by (3.12), we have

$$2\pi \sum_{n \in \mathbb{Z}} F_1(t + 2\pi n, \overline{u} - \phi_*(2\pi n))$$

$$= 2\pi \sum_{n \in \mathbb{Z}} F_2(t + 2\pi n, \overline{u} - \phi_*(2\pi n))$$
(3.13)

for $(m_{\mathbb{R}} \times m_{\overline{K}}) - a.a.$ $(t, \overline{u}) \in [0, 2\pi) \times \overline{K}$. On the other hand, by definition of F_1 and F_2 , we have

$$2\pi \sum_{n \in \mathbb{Z}} F_2(t + 2\pi n, \overline{u} - \phi_*(2\pi n))$$

$$= e^{-i\psi_*(\gamma)t}(-\overline{u}, \gamma|_{\overline{K}})_{\varepsilon} \Delta(x - \psi_*(\gamma))$$
(3.14)

for $(t, \overline{u}) \in [0, 2\pi) \times \overline{K}$ and

$$2\pi \sum_{n\in\mathbb{Z}} F_{1}(t+2\pi n, \overline{u}-\phi_{*}(2\pi n))$$

$$=2\pi \sum_{n\in\mathbb{Z}} e^{ix(t+2\pi n)} \nabla_{\varepsilon}^{*}(t+2\pi n, \overline{u}-\phi_{*}(2\pi n))(-\overline{u}+\phi_{*}(2\pi n), \gamma|_{\overline{K}})$$

$$=2\pi \left\{ \sum_{n\in\mathbb{Z}} e^{-ix(t+2\pi n)} k_{\varepsilon}(t+2\pi n)(\phi_{*}(2\pi n), \gamma|_{\overline{K}}) \right\} (-\overline{u}, \gamma|_{\overline{K}}) \quad (3.15)$$

for $(t, \overline{u}) \in [0, 2\pi) \times \overline{K}$. Since $\sum_{n \in \mathbb{Z}} \sup\{k_{\varepsilon}(t + 2\pi n) : t \in [0, 2\pi)\} < \infty$, the function in (3.15) is continuous on $[0, 2\pi) \times \overline{K}$. Evidently the function in (3.14) is also continuous on $[0, 2\pi) \times \overline{K}$. Hence the lemma follows from (3.13)–(3.15).

We define a function ∇_{ε} on $\mathbb{R} \oplus K$ by $\nabla_{\varepsilon}(t,u) = k_{\varepsilon}(t)$. Then the following holds.

Theorem 3.1 For $\mu \in M^+(G)$, let $\widetilde{\mu}$ be the periodic extension of μ to $\mathbb{R} \oplus K$, i.e., for a Borel set $E \subset \mathbb{R} \oplus K$,

$$\widetilde{\mu}(E) = \sum_{n \in \mathbb{Z}} \mu(\alpha(E \cap [2\pi n, 2\pi(n+1)) \times K)).$$

Then $T_{\psi}^{\varepsilon}(\mu) = 2\pi \nabla_{\varepsilon} \widetilde{\mu}$.

Proof. We first note that $2\pi\nabla_{\varepsilon}\widetilde{\mu}$ belongs to $M(\mathbb{R}\oplus K)$. We define $\mu^{\#}\in M([0,2\pi)\times K)$ by $\mu^{\#}(F)=\mu(\alpha(F))$ for a Borel set F in $[0,2\pi)\times K$. For $(x,\omega)\in\mathbb{R}\oplus\widehat{K}$, we note that there exists $\gamma\in\widehat{G}$ such that $|\psi(\gamma)-x|\leq\frac{1}{2}$ and $\gamma|_{K}=\omega$. Then

$$(2\pi\nabla_{\varepsilon}\widetilde{\mu})^{\hat{}}(x,\omega)$$

$$= (2\pi\nabla_{\varepsilon}\widetilde{\mu})^{\hat{}}(x,\gamma|_{K})$$

$$= 2\pi\sum_{n\in\mathbb{Z}}\int_{[2\pi n,2\pi(n+1))\times K} e^{-ixt}(-u,\gamma|_{K})k_{\varepsilon}(t)d\widetilde{\mu}(t,u)$$

$$= 2\pi\int_{[0,2\pi)\times K} \left\{\sum_{n\in\mathbb{Z}} e^{-ix(t+2\pi n)}k_{\varepsilon}(t+2\pi n)(\phi(2\pi n),\gamma|_{K})\right\}$$

$$\times (-u,\gamma|_{K})d\mu^{\#}(t,u). \tag{3.16}$$

By Lemma 3.1, we note that

$$\left\{ \sum_{n \in \mathbb{Z}} e^{-ix(t+2\pi n)} k_{\varepsilon}(t+2\pi n) (\phi(2\pi n), \gamma|_{K}) \right\} (-u, \gamma|_{K})
= \frac{1}{2\pi} e^{-i\psi(\gamma)t} (-u, \gamma|_{K})_{\varepsilon} \Delta(x-\psi(\gamma))$$
(3.17)

for all $(t, u) \in [0, 2\pi) \times K$. Hence, by (3.16) and (3.17), we have

$$(2\pi\nabla_{\varepsilon}\widetilde{\mu})^{\hat{}}(x,\omega)$$

$$= \int_{[0,2\pi)\times K} e^{-i\psi(\gamma)t} (-u,\gamma|_K)_{\varepsilon} \Delta(x-\psi(\gamma)) d\mu^{\#}(t,u)$$

$$= {}_{\varepsilon}\Delta(x-\psi(\gamma)) \int_{[0,2\pi)\times K} (-\alpha(t,u),\gamma) d\mu^{\#}(t,u)$$

$$= {}_{\varepsilon}\Delta(x-\psi(\gamma)) \int_{G} (-y,\gamma) d\mu(y)$$

$$= {}_{\varepsilon}\Delta(x-\psi(\gamma)) \widehat{\mu}(\gamma).$$

Since $|x - \psi(\gamma)| \le \frac{1}{2}$, we get

$$\begin{split} T^{\varepsilon}_{\psi}(\mu) \hat{\ } (x, \omega) &= T^{\varepsilon}_{\psi}(\mu) \hat{\ } (x, \gamma|_K) \\ &= \sum_{\chi \in \widehat{G}} \widehat{\mu}(\chi) \Delta_{\varepsilon}((x, \gamma|_K) - (\psi(\chi), \chi|_K)) \\ &= \widehat{\mu}(\gamma)_{\varepsilon} \Delta(x - \psi(\gamma)). \end{split}$$

Hence we have $T_{\psi}^{\varepsilon}(\mu) = 2\pi \nabla_{\varepsilon} \widetilde{\mu}$, and the proof is complete.

Corollary 3.1 For $\mu \in M(G)$, let $\mu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)$ be the Jordan decomposition of μ ($\mu_i \geq 0$ (i = 1, 2, 3, 4)). Then $T_{\psi}^{\varepsilon}(\mu) = 2\pi \nabla_{\varepsilon} \widetilde{\mu}_1 - 2\pi \nabla_{\varepsilon} \widetilde{\mu}_2 + i(2\pi \nabla_{\varepsilon} \widetilde{\mu}_3 - 2\pi \nabla_{\varepsilon} \widetilde{\mu}_4)$.

The following proposition follows from Theorem 3.1.

Proposition 3.1 Let $\mu \in M^+(G)$ and $f \in L^1(\mu)$. Then

$$T_{\psi}^{\varepsilon}(f\mu) = (f \circ \alpha)T_{\psi}^{\varepsilon}(\mu).$$

Hence $f \circ \alpha \in L^1(T_{\psi}^{\varepsilon}(\mu))$ and $T_{\psi}^{\varepsilon}(f\mu) << T_{\psi}^{\varepsilon}(\mu)$. In particular, $\xi << \mu$ $(\xi \in M(G))$ implies $T_{\psi}^{\varepsilon}(\xi) << T_{\psi}^{\varepsilon}(\mu)$.

A Borel set E in G is called a null set in the direction of ϕ if $\{t \in \mathbb{R} : \phi(t) + x \in E\}$ is a set of Lebesgue measure zero for each $x \in G$. We shall call a measure $\mu \in M(G)$ absolutely continuous in the direction of ϕ if $|\mu|(E) = 0$ for each Borel set E that is a null set in the direction of ϕ . The following lemma is obtained as same as in [1].

Lemma 3.2 (cf. [1, Proposition 2.3]). Suppose $\nu \in M(G)$ is quasi-invariant. Then ν is absolutely continuous in the direction of ϕ .

Definition 3.2 Let $\tau : \mathbb{R} \to \mathbb{R} \oplus K$ be a continuous homomorphism defined by $\tau(x) = (x,0)$. We say that $\mu \in M(\mathbb{R} \oplus K)$ is quasi-invariant under τ if the collection of Borel sets in $\mathbb{R} \oplus K$ on which $|\nu|$ vanishes is invariant under translation by elements in $\mathbb{R} \oplus \{0\}$.

Proposition 3.2 Let $\mu \in M^+(G)$. Then the following are equivalent.

- (i) μ is quasi-invariant.
- (ii) $T_{\psi}^{\varepsilon}(\mu)$ is quasi-invariant under τ .

Proof. (ii) \Rightarrow (i): Suppose $\mu(E) = 0$. Then $T_{\psi}^{\varepsilon}(\mu)(\alpha^{-1}(E)) = \mu(E) = 0$. Hence, for any $t \in \mathbb{R}$, we have

$$\mu(E + \phi(t)) = T_{\psi}^{\varepsilon}(\mu)(\alpha^{-1}(E + \phi(t))) = T_{\psi}^{\varepsilon}(\mu)(\alpha^{-1}(E) + (t, 0))$$

= 0.

(i) \Rightarrow (ii): Suppose $T_{\psi}^{\varepsilon}(\mu)(F) = 0$. It follows from Theorem 3.1 that $(\nabla_{\varepsilon}\widetilde{\mu})(F) = 0$.

Claim 1. $\widetilde{\mu}(F) = 0$.

In fact, noting $\{(t,u) \in \mathbb{R} \oplus K : \nabla_{\varepsilon}(t,u) = 0\} = \bigcup_{n \in \mathbb{Z}} \{\frac{2\pi n}{\varepsilon}\} \times K$, we have

$$\begin{split} \widetilde{\mu} \bigg(\bigcup_{n \in \mathbb{Z}} \left\{ \frac{2\pi n}{\varepsilon} \right\} \times K \bigg) \\ &= \sum_{n \in \mathbb{Z}} \widetilde{\mu} \left(\left\{ \frac{2\pi n}{\varepsilon} \right\} \times K \right) \end{split}$$

$$\begin{split} &= \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \mu \left(\alpha \left(\left\{ \frac{2\pi n}{\varepsilon} \right\} \times K \cap \left[2\pi k, 2\pi (k+1) \right) \times K \right) \right) \\ &= \sum_{n \in \mathbb{Z}} \mu \left(\alpha \left(\left\{ \frac{2\pi n}{\varepsilon} \right\} \times K \right) \right). \end{split}$$

On the other hand, $\alpha(\{\frac{2\pi n}{\varepsilon}\} \times K)$ is a null set in the direction of ϕ and μ is absolutely continuous in the direction of ϕ . Hence $\widetilde{\mu}(\bigcup_{n \in \mathbb{Z}} \{\frac{2\pi n}{\varepsilon}\} \times K) = 0$. Thus Claim 1 follows from the fact that $(\nabla_{\varepsilon}\widetilde{\mu})(F) = 0$.

Claim 2. $\mu(\alpha(F)) = 0$. In fact,

$$\mu(\alpha(F)) = \mu\left(\alpha\left(\bigcup_{n\in\mathbb{Z}} F \cap [2\pi n, 2\pi(n+1)) \times K\right)\right)$$

$$\leq \sum_{n\in\mathbb{Z}} \mu(\alpha(F \cap [2\pi n, 2\pi(n+1)) \times K))$$

$$= \widetilde{\mu}(F)$$

$$= 0. \qquad \text{(by Claim 1)}$$

For each $t \in \mathbb{R}$, we have, by Claim 2,

$$T_{\psi}^{\varepsilon}(\mu)(F + (t,0)) \le T_{\psi}^{\varepsilon}(\mu)(\alpha^{-1}(\alpha(F + (t,0)))) = \mu(\alpha(F) + \phi(t))$$

= 0.

Thus (i) implies (ii). This completes the proof.

4. Proof of Theorem 2.1

In this section, we give the proof of Theorem 2.1. Let G be a LCA group and ψ a nontrivial continuous homomorphism from \widehat{G} into \mathbb{R} . We assume that there exists $\chi_0 \in \widehat{G}$ such that $\psi(\chi_0) = 1$. Let ϕ be the dual homomorphism of ψ . We define an action of \mathbb{R} on G by $t \cdot x = \phi(t) + x$. Then we get a transformation group (\mathbb{R}, G) .

Proposition 4.1 For $\lambda \in M(\mathbb{R})$ and $\mu \in M(G)$, we have

$$\lambda * \mu = \phi(\lambda) * \mu,$$

where $\lambda * \mu$ is the convolution of λ and μ on the transformation group (\mathbb{R}, G) (cf. (2.1)) and $\phi(\lambda) * \mu$ is the convolution of $\phi(\lambda)$ and μ in M(G).

Proof. For $f \in C_0(G)$, we have

$$\begin{split} \phi(\lambda) * \mu(f) &= \int_G \int_G f(x+y) d\phi(\lambda)(y) d\mu(x) \\ &= \int_G \int_{\mathbb{R}} f(x+\phi(t)) d\lambda(t) d\mu(x) \\ &= \lambda \mathop{*}_{\mathbb{R}} \mu(f). \end{split}$$

This completes the proof.

For $\mu \in M(G)$, we recall $J(\mu) = \{h \in L^1(\mathbb{R}) : h * \mu = 0\}$, and let $\operatorname{sp}(\mu)$ be the spectrum of μ on the transformation group (\mathbb{R}, G) .

Remark 4.1. For $\mu \in M(G)$ and a closed set E in \mathbb{R} , the following are equivalent.

- (i) $\operatorname{sp}(\mu) \subset E$.
- (ii) $\operatorname{supp}(\widehat{\mu}) \subset \psi^{-1}(E)$.

In fact, assume (i), and suppose there exists $\gamma \notin \psi^{-1}(E)$ such that $\widehat{\mu}(\gamma) \neq 0$. Then $\psi(\gamma) \notin E$. Since E is closed, there exists $h \in L^1(\mathbb{R})$ such that $\widehat{h}(\psi(\gamma)) \neq 0$ and E is in the interior of $\widehat{h}^{-1}(0)$. Then we have $h \in J(\mu)$, by [12, 7.2.5 (a)]. Hence $\phi(h) * \mu = h * \mu = 0$. Since $\phi(h) \hat{}(\gamma) = \widehat{h}(\psi(\gamma)) \neq 0$, we have $\widehat{\mu}(\gamma) = 0$, which contradicts the choice of γ . Thus (i) implies (ii). Next suppose $\sup(\widehat{\mu}) \subset \psi^{-1}(E)$, and let $x \in \mathbb{R} \setminus E$. There exists $h \in L^1(\mathbb{R})$ such that $\widehat{h}(x) \neq 0$ and $\widehat{h} = 0$ on E. Then $\phi(h) \hat{} = \widehat{h} \circ \psi = 0$ on $\psi^{-1}(E)$; hence $h * \mu = \phi(h) * \mu = 0$. Thus $h \in J(\mu)$. Since $\widehat{h}(x) \neq 0$, we have $x \notin \operatorname{sp}(\mu)$. This shows that $\operatorname{sp}(\mu) \subset E$. Thus (ii) implies (i).

Lemma 4.1 Let σ be a quasi-invariant measure in $M^+(G)$, and let $\nu \in M^+(\mathbb{R} \oplus K)$. If $\nu \perp T_{\psi}^{\varepsilon}(\sigma)$, then $\alpha(\nu) \perp \sigma$.

Proof. By Theorem 3.1, $T_{\psi}^{\varepsilon}(\sigma) = 2\pi \nabla_{\varepsilon} \tilde{\sigma}$, and we note that $\{(t, u) \in \mathbb{R} \oplus K : \nabla_{\varepsilon}(t, u) = 0\} = \bigcup_{n \in \mathbb{Z}} \{\frac{2\pi n}{\varepsilon}\} \times K$. As seen in the proof of Proposition 3.2, we have

$$\widetilde{\sigma}\left(\bigcup_{n\in\mathbb{Z}}\left\{\frac{2\pi n}{\varepsilon}\right\}\times K\right)=0$$

because σ is quasi-invariant and $\alpha(\{\frac{2\pi n}{\varepsilon}\} \times K)$ is a null set in the direction of ϕ . Thus, since $\nu \perp T_{\psi}^{\varepsilon}(\sigma)$, we have $\nu \perp \widetilde{\sigma}$. Hence there exists a Borel set E in $\mathbb{R} \oplus K$ such that $\nu(E^c) = 0$ and $\widetilde{\sigma}(E) = 0$. Since $\ker(\alpha) = 0$

$$\{(2\pi n, -\phi(2\pi n)) : n \in \mathbb{Z}\}, \text{ we have}$$

$$\widetilde{\sigma}(\alpha^{-1}(\alpha(E)))$$

$$= \widetilde{\sigma}(E + \ker(\alpha)) \leq \sum_{n \in \mathbb{Z}} \widetilde{\sigma}(E + (2\pi n, -\phi(2\pi n)))$$

$$= \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \sigma(\alpha((E + (2\pi n, -\phi(2\pi n))) \cap [2\pi k, 2\pi(k+1)) \times K))$$

$$= \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \sigma(\alpha((E \cap [2\pi(k-n), 2\pi(k-n+1)) \times K))$$

$$+ (2\pi n, -\phi(2\pi n))))$$

$$= \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \sigma(\alpha(E \cap [2\pi(k-n), 2\pi(k-n+1)) \times K))$$

$$= \sum_{n \in \mathbb{Z}} \widetilde{\sigma}(E)$$

$$= 0. \qquad \text{(by } \widetilde{\sigma}(E) = 0)$$

Hence

$$\sigma(\alpha(E)) = \alpha(T_{\psi}^{\varepsilon}(\sigma))(\alpha(E)) = T_{\psi}^{\varepsilon}(\sigma)(\alpha^{-1}(\alpha(E)))$$
$$= (2\pi\nabla_{\varepsilon}\widetilde{\sigma})(\alpha^{-1}(\alpha(E))) = 0.$$

Since $\alpha(\nu)$ is concentrated on $\alpha(E)$, we have $\alpha(\nu) \perp \sigma$. This completes the proof.

Lemma 4.2 Let σ be a quasi-invariant measure in $M^+(G)$. Then $(\rho \times \delta_0) * T_{\psi}^{\varepsilon}(\sigma)$ and $T_{\psi}^{\varepsilon}(\sigma)$ are mutually absolutely continuous, where $d\rho(t) = \frac{1}{1+t^2}dt$.

Proof. It follows from Proposition 3.2 that $T_{\psi}^{\varepsilon}(\sigma)$ is quasi-invariant under τ . Suppose $(\rho \times \delta_0) * T_{\psi}^{\varepsilon}(\sigma)(E) = 0$. Then

$$\int_{\mathbb{R}} T_{\psi}^{\varepsilon}(\sigma)(E - (t, 0))d\rho(t) = (\rho \times \delta_0) * T_{\psi}^{\varepsilon}(\sigma)(E) = 0,$$

which yields $T_{\psi}^{\varepsilon}(\sigma)(E-(t,0))=0$ for $m_{\mathbb{R}}-a.a.$ $t\in\mathbb{R}$. Thus $T_{\psi}^{\varepsilon}(\sigma)(E)=0$. Conversely, suppose $T_{\psi}^{\varepsilon}(\sigma)(E)=0$. Then $T_{\psi}^{\varepsilon}(\sigma)(E-(t,0))=0$ for all $t\in\mathbb{R}$. Hence $(\rho\times\delta_0)*T_{\psi}^{\varepsilon}(\sigma)(E)=\int_{\mathbb{R}}T_{\psi}^{\varepsilon}(\sigma)(E-(t,0))d\rho(t)=0$. This completes the proof.

The following proposition is easily obtained.

Proposition 4.2 Let σ be a quasi-invariant Radon measure on G, and let

 $\mu \in M(G)$. Then there exist a quasi-invariant measure σ_{μ} in $M^+(G)$ and a σ -compact subset X_{μ} of G such that

- (i) $|\mu|(X_{\mu}^{c}) = \sigma_{\mu}(X_{\mu}^{c}) = 0$, and
- (ii) $\sigma_{\mu}|_{X_{\mu}}$ and $\sigma|_{X_{\mu}}$ are mutually absolutely continuous.

Proposition 4.3 Let σ be a quasi-invariant measure in $M^+(G)$. Let $\overline{V}_{\varepsilon} = [-\varepsilon, \varepsilon]$ $(0 < \varepsilon < \frac{1}{6})$, and let E be a closed set in \mathbb{R} such that $E + \overline{V}_{\varepsilon}$ is a Riesz set in \mathbb{R} . Let μ be a measure in M(G) with $\operatorname{sp}(\mu) \subset E$. Then $\operatorname{sp}(\mu_a)$ and $\operatorname{sp}(\mu_s)$ are contained in E.

Proof. By Remark 4.1, we note that $\operatorname{supp}(\widehat{\mu}) \subset \psi^{-1}(E)$. It follows from Lemma 4.2 that

$$(\rho \times \delta_0) * T_{\psi}^{\varepsilon}(\sigma)$$
 and $T_{\psi}^{\varepsilon}(\sigma)$ are mutually absolutely continuous.
$$(4.1)$$

Let $\pi_K : \mathbb{R} \oplus K \to K$ be the projection. By [15, Corollary 1.5], there exists a family $\{\xi_u\}_{u \in K}$ of measures in $M^+(\mathbb{R})$ with the following properties:

$$u \to (\xi_u \times \delta_u)(f)$$
 is $\pi_K(T_{\psi}^{\varepsilon}(\sigma))$ -measurable for each bounded Borel function f on $\mathbb{R} \oplus K$; (4.2)

$$\|\xi_u\| = 1; \tag{4.3}$$

$$T_{\psi}^{\varepsilon}(\sigma)(f) = \int_{K} (\xi_{u} \times \delta_{u})(f) d\pi_{K}(T_{\psi}^{\varepsilon}(\sigma))(u)$$
(4.4)

for each bounded Borel function f on $\mathbb{R} \oplus K$.

Then we have, by (4.2) and (4.4),

$$u \to \{(\rho * \xi_u) \times \delta_u\}(f) \text{ is } \pi_K(T_{\psi}^{\varepsilon}(\sigma))\text{-measurable for each bounded}$$

Borel function f on $\mathbb{R} \oplus K$, (4.5)

and

$$(\rho \times \delta_0) * T_{\psi}^{\varepsilon}(\sigma)(f) = \int_K \{ (\rho * \xi_u) \times \delta_u \}(f) d\pi_K(T_{\psi}^{\varepsilon}(\sigma))(u)$$
 (4.6)

for each bounded Borel function f on $\mathbb{R} \oplus K$.

Since ξ_u is a nonzero measure in $M^+(\mathbb{R})$,

$$\rho * \xi_u$$
 and ρ are mutually absolutely continuous. (4.7)

On the other hand, since $T_{\psi}^{\varepsilon}(\mu) \hat{}(x,\omega) = \sum_{\gamma \in \widehat{G}} \widehat{\mu}(\gamma) \Delta_{\varepsilon}((x,\omega) - (\psi(\gamma), \gamma|_K))$ and $\operatorname{supp}(\widehat{\mu}) \subset \psi^{-1}(E)$, we have

$$\operatorname{supp}(T_{\psi}^{\varepsilon}(\mu)^{\widehat{}}) \subset (E + \overline{V}_{\varepsilon}) \times \widehat{K}. \tag{4.8}$$

Let $\eta = \pi_K(|T_{\psi}^{\varepsilon}(\mu)|)$, and let $\eta = \eta_a + \eta_s$ be the Lebesgue decomposition of η with respect to $\pi_K(T_{\psi}^{\varepsilon}(\sigma))$. By [15, Corollary 1.6], there exists a family $\{\lambda_u\}_{u\in K}$ of measures in $M(\mathbb{R})$ such that

$$u \to (\lambda_u \times \delta_u)(f)$$
 is η -measurable (4.9)

for each bounded Borel function f on $\mathbb{R} \oplus K$,

$$\|\lambda_u\| = 1,\tag{4.10}$$

and

$$T_{\psi}^{\varepsilon}(\mu)(f) = \int_{K} (\lambda_{u} \times \delta_{u})(f) d\eta(u)$$
(4.11)

for each bounded Borel function f on $\mathbb{R} \oplus K$.

By (4.8) and [15, Lemma 2.1, we have

$$\lambda_u \in M_{E+\overline{V}_{\varepsilon}}(\mathbb{R}) \quad \eta - a.a. \ u \in K,$$
 (4.12)

which yields

$$\lambda_u \in L^1(\mathbb{R}) \quad \eta - a.a. \ u \in K \tag{4.13}$$

because $E + \overline{V}_{\varepsilon}$ is a Riesz set in \mathbb{R} . We define measures $\nu_a, \nu_s \in M(\mathbb{R} \oplus K)$ by

$$\nu_a(f) = \int_K (\lambda_u \times \delta_u)(f) d\eta_a(u),
\nu_s(f) = \int_K (\lambda_u \times \delta_u)(f) d\eta_s(u)$$
(4.14)

for $f \in C_0(\mathbb{R} \oplus K)$. We note that (4.14) holds for all bounded Borel functions f on $\mathbb{R} \oplus K$. It follows from (4.12) and (4.14) that

$$\operatorname{supp}(\widehat{\nu}_a), \operatorname{supp}(\widehat{\nu}_s) \subset (E + \overline{V}_{\varepsilon}) \times \widehat{K}. \tag{4.15}$$

By (4.1), (4.6)–(4.7) and (4.13), we have

$$\nu_a << T_{\psi}^{\varepsilon}(\sigma) \quad \text{and} \quad \nu_s \perp T_{\psi}^{\varepsilon}(\sigma).$$

That is, $T_{\psi}^{\varepsilon}(\mu) = \nu_a + \nu_s$ is the Lebesgue decomposition of $T_{\psi}^{\varepsilon}(\mu)$ with

respect to $T_{\psi}^{\varepsilon}(\sigma)$. By Lemma 4.1, $\alpha(\nu_s) \perp \sigma$. Thus

$$\mu = \alpha(\nu_a) + \alpha(\nu_s)$$

is the Lebesgue decomposition of μ with respect to σ . Hence

$$\mu_a = \alpha(\nu_a)$$
 and $\mu_s = \alpha(\nu_s)$.

Suppose that there exists $\gamma_0 \notin \psi^{-1}(E)$ such that $\widehat{\mu}_a(\gamma_0) \neq 0$. Then

$$\widehat{\nu}_a(\psi(\gamma_0), \gamma_0|_K) = \widehat{\mu}_a(\gamma_0) \neq 0,$$

which together with (4.15) yields

$$\psi(\gamma_0) \in E + \overline{V}_{\varepsilon}. \tag{4.16}$$

Let

$$y_0 = \inf\{|y_\alpha| : \psi(\gamma_0) = x_\alpha + y_\alpha, \ x_\alpha \in E, \ y_\alpha \in \overline{V}_\varepsilon\}.$$

Then $y_0 > 0$. In fact, suppose $y_0 = 0$. Then there exists $y_\alpha \in \overline{V}_\varepsilon$ such that $\lim_{\alpha} y_\alpha = 0$. Then $\lim_{\alpha} x_\alpha = \lim_{\alpha} (\psi(\gamma_0) - y_\alpha) = \psi(\gamma_0)$. Since $x_\alpha \in E$ and E is a closed set, this shows that $\psi(\gamma_0) \in E$, which yields a contradiction. Thus $y_0 > 0$.

We choose a positive real number δ so that $0 < \delta < \min(y_0, \varepsilon)$. Then, by [15, Corollary 1.6], there exists a family $\{\lambda_u^{\delta}\}_{u \in K}$ of measures in $M(\mathbb{R})$ such that

$$u \to (\lambda_u^{\delta} \times \delta_u)(f)$$
 is η^{δ} -measurable (4.9)'

for each bounded Borel function f on $\mathbb{R} \oplus K$,

$$\|\lambda_u^\delta\| = 1,\tag{4.10}'$$

and

$$T_{\psi}^{\delta}(\mu)(f) = \int_{K} (\lambda_{u}^{\delta} \times \delta_{u})(f) d\eta^{\delta}(u)$$

$$(4.11)'$$

for each bounded Borel function f on $\mathbb{R} \oplus K$,

where $\eta^{\delta} = \pi_K(|T_{\psi}^{\delta}(\mu)|)$. By a similar argument as in (4.8) and (4.12), we have $\operatorname{supp}(T_{\psi}^{\delta}(\mu)^{\hat{}}) \subset (E + \overline{V}_{\delta}) \times \widehat{K}$ and

$$\lambda_u^{\delta} \in M_{E+\overline{V}_{\delta}}(R) \quad \eta^{\delta} - a.a. \ u \in K.$$
 (4.12)

Since $E + \overline{V}_{\delta} \subset E + \overline{V}_{\varepsilon}$, $E + \overline{V}_{\delta}$ is a Riesz set in \mathbb{R} . Hence

$$\lambda_u^{\delta} \in L^1(\mathbb{R}) \quad \eta^{\delta} - a.a. \ u \in K. \tag{4.13}$$

We define measures ν_a^{δ} , $\nu_s^{\delta} \in M(\mathbb{R} \oplus K)$ by

$$\nu_a^{\delta}(f) = \int_K (\lambda_u^{\delta} \times \delta_u)(f) d\eta_a^{\delta}(u),
\nu_s^{\delta}(f) = \int_K (\lambda_u^{\delta} \times \delta_u)(f) d\eta_s^{\delta}(u)$$

for $f \in C_0(\mathbb{R} \oplus K)$, where $\eta^{\delta} = \eta_a^{\delta} + \eta_s^{\delta}$ is the Lebesgue decomposition of η^{δ} with respect to $\pi_K(T_{\psi}^{\delta}(\sigma))$. Then, by a similar argument as before, we have

$$\mu_a = \alpha(\nu_a^{\delta})$$
 and $\mu_s = \alpha(\nu_s^{\delta})$.

Hence

$$0 \neq \widehat{\mu}_a(\gamma_0) = (\nu_a^{\delta}) \hat{} (\psi(\gamma_0), \gamma_0|_K). \tag{4.17}$$

By (4.12)' and construction of ν_a^{δ} , we have

$$\operatorname{supp}((\nu_a^{\delta})^{\widehat{}}) \subset (E + \overline{V}_{\delta}) \times \widehat{K},$$

which together with (4.17) yields

$$\psi(\gamma_0) = e + z$$

for some $e \in E$ and $z \in \overline{V}_{\delta}$. Then

$$|z| \le \delta < y_0,$$

which contradicts the choice of y_0 . This shows that $\operatorname{supp}(\widehat{\mu}_a) \subset \psi^{-1}(E)$, and the proof is complete.

Now we prove Theorem 2.1. Let μ be a measure in M(G) with $\operatorname{sp}(\mu) \subset E$. It follows from Proposition 4.2 that there exists a quasi-invariant measure σ_{μ} in $M^{+}(G)$ such that $\mu_{a} << \sigma_{\mu}$ and $\mu_{s} \perp \sigma_{\mu}$. That is, $\mu = \mu_{a} + \mu_{s}$ is the Lebesgue decomposition of μ with respect to σ_{μ} . Then the theorem follows from Proposition 4.3.

Example 4.1. We give examples of closed set E in \mathbb{R} satisfying condition in Theorem 2.1.

(i) Let $E=[0,\infty)$. Then $E+\overline{V}_\varepsilon=[-\varepsilon,\infty)$ is a Riesz set in $\mathbb R$ for $0<\varepsilon<\frac{1}{6}$.

(ii) Let $F = \{n_k \in \mathbb{Z} : k \in \mathbb{N}\}$ be a $\Lambda(2)$ -set in \mathbb{Z} , i.e., $L_E^2(\mathbb{T}) = L_E^1(\mathbb{T})$. Let $0 < \varepsilon < \frac{1}{6}$, and choose $\delta > 0$ so that $\varepsilon + \delta < \frac{1}{6}$. Put $E = F + \overline{V}_{\delta}$. Then $E + \overline{V}_{\varepsilon} = F + \overline{V}_{\varepsilon + \delta}$ is a Riesz set in \mathbb{R} . In fact, let $\mu \in M_{E + \overline{V}_{\varepsilon}}(\mathbb{R})$. Let $\pi : \mathbb{R} \to \mathbb{T} \cong \mathbb{R}/2\pi\mathbb{Z}$ be the canonical map, and let $\delta' = \delta + \varepsilon$. Then, for each $u \in \overline{V}_{\delta'}$, $\pi(e^{-iu\cdot}\mu)$ belongs to $M_F(\mathbb{T})$; hence $\pi(e^{-iu\cdot}\mu) \in L_F^2(\mathbb{T})$. Since F is a $\Lambda(2)$ -set, there exists a constant C > 0, depending on F, such that

$$\|\pi(e^{-iu\cdot}\mu)\|_2 \le C\|\pi(e^{-iu\cdot}\mu)\|_1 \le C\|\mu\|.$$

It follows from the Plancherel theorem that

$$\sum_{n \in \mathbb{Z}} |\widehat{\mu}(n+u)|^2 = \sum_{n \in \mathbb{Z}} |\pi(e^{-iu \cdot \mu})^{\hat{}}(n)|^2 = ||\pi(e^{-iu \cdot \mu})||_2^2$$

$$< C^2 ||\mu||^2.$$

Hence

$$\int_{\mathbb{R}} |\widehat{\mu}(x)|^2 dx = \sum_{n \in \mathbb{Z}} \int_{n+\overline{V}_{\delta'}} |\widehat{\mu}(x)|^2 dx$$

$$= \int_{\overline{V}_{\delta'}} \sum_{n \in \mathbb{Z}} |\widehat{\mu}(n+x)|^2 dx$$

$$\leq \int_{\overline{V}_{\delta'}} C^2 ||\mu||^2 dx$$

$$= 2\delta' C^2 ||\mu||^2.$$

Thus $\widehat{\mu} \in L^2(\mathbb{R})$, and so $\mu \in L^1(\mathbb{R})$, by [10, (31.33) Theorem]. Hence $E + \overline{V}_{\varepsilon}$ is a Riesz set in \mathbb{R} .

Remark 4.2. Every Sidon set in \mathbb{Z} is a $\Lambda(2)$ -set. In particular, let $F' = \{n_k \in \mathbb{N} : n_{k+1}/n_k > 3 \ (k \in \mathbb{N})\}$. Then $F' \cup (-F')$ is a $\Lambda(2)$ -set in \mathbb{Z} .

5. A characterization of $N(\sigma)$

In this section, we give a characterization of $N(\sigma)$ when X is a locally compact abelian group and there exists a nontrivial continuous homomorphism from the reals \mathbb{R} into X. Let G, ψ and ϕ be as in section 4.

For a quasi-invariant Radon measure σ on G, let $N(\sigma) = \{ \xi \in M(G) : h * \xi << \sigma \text{ for all } h \in L^1(\mathbb{R}) \}$ (= $\{ \xi \in M(G) : \phi(h) * \xi << \sigma \text{ for all } h \in L^1(\mathbb{R}) \}$) as in §1.

Proposition 5.1 Let $\mu \in M(G)$, and let σ be a quasi-invariant measure

in $M^+(G)$. Then the following are equivalent.

- (i) $\mu \in N(\sigma)$.
- (ii) $(h \times \delta_0) * T_{\psi}^{\varepsilon}(\mu) << T_{\psi}^{\varepsilon}(\sigma) \text{ for all } h \in L^1(\mathbb{R}).$

Proof. (ii) \Rightarrow (i): For $h \in L^1(\mathbb{R})$, we have, by (ii),

$$\phi(h) * \mu = \alpha((h \times \delta_0) * T_{\psi}^{\varepsilon}(\mu)) << \alpha(T_{\psi}^{\varepsilon}(\sigma)) = \sigma.$$

Thus μ belongs to $N(\sigma)$.

(i) \Rightarrow (ii): Let $\mu \in N(\sigma)$. Since $N(\sigma)$ is an L-subspace of M(G) (cf. [9, Corollary 5]) and T_{ψ}^{ε} is a positive operator, we may assume that $\mu \geq 0$. Suppose there exists a nonzero, nonnegative function h in $L^{1}(\mathbb{R})$ such that $(h \times \delta_{0}) * T_{\psi}^{\varepsilon}(\mu)$ is not absolutely continuous with respect to $T_{\psi}^{\varepsilon}(\sigma)$. Let $(h \times \delta_{0}) * T_{\psi}^{\varepsilon}(\mu) = \nu_{a} + \nu_{s}$ be the Lebesgue decomposition of $(h \times \delta_{0}) * T_{\psi}^{\varepsilon}(\mu)$ with respect to $T_{\psi}^{\varepsilon}(\sigma)$. Then $\nu_{s} \neq 0$ and $\nu_{s} \geq 0$. It follows from Lemma 4.1 that

$$0 \neq \alpha(\nu_s) \perp \sigma$$
.

Since $\alpha(\nu_a) \ll \alpha(T_{vb}^{\varepsilon}(\sigma)) = \sigma$, we have

$$\phi(h) * \mu = \alpha((h \times \delta_0) * T_{\psi}^{\varepsilon}(\mu)) = \alpha(\nu_a) + \alpha(\nu_s) \notin L^1(\sigma),$$

which contradicts the fact that $\mu \in N(\sigma)$. Thus

$$(h \times \delta_0) * T_{\psi}^{\varepsilon}(\mu) << T_{\psi}^{\varepsilon}(\sigma)$$

for all nonzero, nonnegative function h in $L^1(\mathbb{R})$. This shows that (ii) holds.

Proposition 5.2 Let σ be a quasi-invariant measure in $M^+(G)$, and let $\mu \in M(\mathbb{R} \oplus K)$. Let $\pi_K : \mathbb{R} \oplus K \to K$ be the projection. Then the following are equivalent.

- (i) $(h \times \delta_0) * \mu << T_{\psi}^{\varepsilon}(\sigma) \text{ for all } h \in L^1(\mathbb{R}).$
- (ii) $\pi_K(|\mu|) << \pi_K(T_{\psi}^{\varepsilon}(\sigma)).$

Proof. (ii) \Rightarrow (i): By [15, Corollary 1.5 and Corollary 1.6], there exist families $\{\lambda_u\}_{u\in K}\subset M(\mathbb{R})$ and $\{\xi_u\}_{u\in K}\subset M^+(\mathbb{R})$ with the following properties:

$$u \to (\lambda_u \times \delta_u)(f)$$
 is $\pi_K(|\mu|)$ -measurable and $u \to (\xi_u \times \delta_u)(f)$ is

 $\pi_K(T_{\psi}^{\varepsilon}(\sigma))$ -measurable for each bounded Borel function f on $\mathbb{R} \oplus K$, (5.1)

$$\|\lambda_u\| = 1 \text{ and } \|\xi_u\| = 1,$$
 (5.2)

$$\mu(f) = \int_{K} (\lambda_{u} \times \delta_{u})(f) d\pi_{K}(|\mu|)(u) \text{ and } T_{\psi}^{\varepsilon}(\sigma)(f)$$

$$= \int_{K} (\xi_{\mu} \times \delta_{u})(f) d\pi_{K}(T_{\psi}^{\varepsilon}(\sigma))(u)$$
(5.3)

for each bounded Borel function f on $\mathbb{R} \oplus K$. For each bounded Borel function f on $\mathbb{R} \oplus K$, we have

$$u \to \{(\rho * \xi_u) \times \delta_u\}(f) \text{ is } \pi_K(T_{\psi}^{\varepsilon}(\sigma))\text{-measurable}$$
 (5.4)

and

$$(\rho \times \delta_0) * T_{\psi}^{\varepsilon}(\sigma)(f) = \int_K \{ (\rho * \xi_u) \times \delta_u \}(f) d\pi_K(T_{\psi}^{\varepsilon}(\sigma))(u).$$
 (5.5)

Similarly, for each $h \in L^1(\mathbb{R})$ and bounded Borel function f on $\mathbb{R} \oplus K$,

$$u \to \{(h * \lambda_u) \times \delta_u\}(f) \text{ is } \pi_K(|\mu|)\text{-measurable}$$
 (5.6)

and

$$(h \times \delta_0) * \mu(f) = \int_K \{(h * \lambda_u) \times \delta_u\}(f) d\pi_K(|\mu|)(u). \tag{5.7}$$

Since $\rho * \xi_u$ and ρ are mutually absolutely continuous, $h * \lambda_u << \rho * \xi_u$ for all $u \in K$. Thus, by (ii), we have

$$(h \times \delta_0) * \mu << (\rho \times \delta_0) * T_{\psi}^{\varepsilon}(\sigma)$$

for each $h \in L^1(\mathbb{R})$, which together with Lemma 4.2 yields (i).

(i) \Rightarrow (ii): Suppose $\pi_K(|\mu|)$ is not absolutely continuous with respect to $\pi_K(T_{\psi}^{\varepsilon}(\sigma))$. Let $\pi_K(|\mu|) = \pi_K(|\mu|)_a + \pi_K(|\mu|)_s$ be the Lebesgue decomposition of $\pi_K(|\mu|)$ with respect to $\pi_K(T_{\psi}^{\varepsilon}(\sigma))$. Then $\pi_K(|\mu|)_s \neq 0$, and there exists a Borel set \widetilde{B} in K such that $\pi_K(|\mu|)_s(\widetilde{B}^c) = 0$ and $\pi_K(T_{\psi}^{\varepsilon}(\sigma))(\widetilde{B}) = 0$. Set $A = \mathbb{R} \times \widetilde{B}^c$ and $B = \mathbb{R} \times \widetilde{B}$, and let $\mu_A = \mu|_A$ and $\mu_B = \mu|_B$. Then $\mu_B \neq 0$ since $\pi_K(|\mu_B|) = \pi_K(|\mu|)_s \neq 0$. Hence there exists $h \in L^1(\mathbb{R})$ such that $(h \times \delta_0) * \mu_B \neq 0$. We note

$$\pi_K(|(h \times \delta_0) * \mu_B|) \le \pi_K((|h| \times \delta_0) * |\mu_B|)$$

$$= \|h\|_1 \pi_K(|\mu_B|).$$

Hence, since $\pi_K(|\mu_B|) \perp \pi_K(T_{\psi}^{\varepsilon}(\sigma))$, we have

$$0 \neq (h \times \delta_0) * \mu_B \perp T_{\psi}^{\varepsilon}(\sigma). \tag{5.8}$$

On the other hand, we have $(h \times \delta_0) * \mu = (h \times \delta_0) * \mu_A + (h \times \delta_0) * \mu_B$ and $(h \times \delta_0) * \mu_A \perp (h \times \delta_0) * \mu_B$, which yields $(h \times \delta_0) * \mu_B << (h \times \delta_0) *$

The following theorem follows from Propositions 5.1 and 5.2.

Theorem 5.1 Let $\mu \in M(G)$, and let σ be a quasi-invariant measure in $M^+(G)$. Then the following are equivalent.

- (i) $\mu \in N(\sigma)$.
- (ii) $\pi_K(|T_{\psi}^{\varepsilon}(\mu)|) \ll \pi_K(T_{\psi}^{\varepsilon}(\sigma)).$

References

- [1] DeLeeuw K. and Glicksberg I., Quasi-invariance and analyticity of measures on compact groups, Acta Math. 109 (1963), 179–205.
- [2] Finet C. and Tardivel-Nachef V., Lacunary sets on transformation groups, Hokkaido Math. J. 23 (1994), 1–19.
- [3] Folland G.B., Real Analysis: Modern Techniques and Their Applications, Wiley-Interscience, New York, 1984.
- [4] Forelli F., Analytic and quasi-invariant measures, Acta Math. 118 (1967), 33-57.
- [5] Godefroy G., On Riesz subsets on abelian discrete groups, Israel J. Math. **61** (1988), 301–331.
- [6] Graham C.C. and MacLean A., A multiplier theory for continuous measures, Studia Math. **LXVI** (1980), 213–225.
- [7] Graham C.C. and McGehee O.C., Essay in Commutative Harmonic Analysis, Springer-Verlag, New York-Heidelberg-Berlin, 1979.
- [8] Gulick S.L., Liu T.S. and van Rooij A.C., Group algebra modules II, Canad. J. Math. 19 (1967), 151–173.
- [9] Liu T.S., van Rooij A.C. and Wang J.K., Transformation groups and absolutely continuous measures II, Indag. Math. 32 (1970), 57-61.
- [10] Hewitt E. and Ross K.A., Abstract Harmonic Analysis, I and II, Springer-Verlag, New York-Heidelberg-Berlin, 1963 and 1970.
- [11] Inoue J., On a lifting problem of Fourier-Stieltjes transforms of measures, Hokkaido Math. J. 12 (1983), 113–118.
- [12] Rudin W., Fourier Analysis on Groups, New York, Interscience, 1962.
- [13] Yamaguchi H., Some multipliers on the space consisting of measures of analytic type,

- Hokkaido Math. J. 11 (1982), 173–200.
- [14] Yamaguchi H., An extension of a theorem of F. Forelli, Math. Scand. **52** (1982), 145–160.
- [15] Yamaguchi H., Idempotent multipliers on the space of analytic singular measures, Hokkaido Math. J. 14 (1985), 49–73.
- [16] Yamaguchi H., The F. and M. Riesz theorem on certain transformation groups, Hokkaido Math. J. 17 (1988), 289–332.
- [17] Yamaguchi H., The F. and M. Riesz theorem on certain transformation groups, II, Hokkaido Math. J. 19 (1990), 345–359.
- [18] Yamaguchi H., An F. and M. Riesz theorem on locally compact transformation groups, Hokkaido Math. J. 21 (1992), 349–364.

Department of Mathematics Josai University Sakado, Saitama, Japan