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On the scattering theory for the cubic nonlinear
Schrodinger and Hartree type equations in
one space dimension
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Abstract. We study the scattering problem and asymptotics for large time of solutions
to the Cauchy problem for the nonlinear Schrédinger and Hartree type equations with
subcritical nonlinearities

e+ Suee = J(lulP)u, (,2) € R?
u(0,z) = uo(z), = €R,

where the nonlinear interaction term is f(|jul?) = V * |u|?, V(z) = Mz|7%, A € R,
0 < 6 < 1 in the Hartree type case, or f(|ul|?) = Ajt|'~%|u|? in the case of the cubic
nonlinear Schrédinger equation. We suppose that the initial data e®l®lug € L2, 8 > 0
with sufficiently small norm e = ||e#!%lug||; 2. Then we prove the sharp decay estimate
Hu(®)|lLr < Cet%“%, for all t > 1 and for every 2 < p < oo. Furthermore we show that
for % < § < 1 there exists a unique final state @4 € L? such that for all ¢ > 1

418

lu(t) = exp (T £a+1?) (3 ) )U(Ous 2 = 0(¢=2)

and uniformly with respect to x

[z w2 s T _
iy (;) eXp(g S 6f(|u+|2)(;)) + OtV /2-2),

u(t,x) =

1
(1t)2
where 43 denotes the Fourier transform of ¢. Our results show that the regularity condition

on the initial data which was assumed in the previous paper E]I is not needed. Also a
smoothing effect for the solutions in an analytic function space is discussed.

Key words: nonlinear Schrodinger, scattering, subcritical case.

1. Introduction

We study the asymptotic behavior for large time of solutions to the
Cauchy problem

i0pu = —%8511 + f(lu)u, (t,z) € R?,
U(O,IE) = UO(IE), z € R,

(1.1)
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for the Hartree type equation with a long range potential, when

FluP) =V e ul? = [ Ve = y)lul*w)dy. (12

Viz)=Mz|™°, XeR, 0<d<1

and for the cubic nonlinear Schrodinger equation with time growth condi-
tion, when

F(lul?) = Mt 0wz, 0<6< 1. (1.3)

In the previous paper [9] we proved that if the initial function ug has
an analytic continuation on the strip S(8) = {z = = +iy; —00 < z < o0,
— 3 < y < B} and satisfies some exponential decay condition with respect to
z, then the solution of (1.1) w1th |(1 2) or [1.3) exists and satisfies the sharp

decay estimate ||u(t)||rr < Cetr™ , for all ¢ > 1 and for every 2 < p < oo.

Furthermore we showed that for 1 3 < d < 1 there exists a unique final state
u4 € L? such that for all ¢ > 1

t16

Ju(t) - exp(~ 35 ) (3) ) U s iz = O ),

where ¢ denotes the Fourier transform of ¢.

Our purpose in this paper is to remove the regularity condition on the
data which was assumed in the previous paper [ﬂ We also discuss a smooth-
ing effect for the solutions in an analytic function space. Smoothing effect
for nonlinear Schrodinger equation was studied in in the framework of
the usual Sobolev space and in in the framework of analytic function
spaces.

Scattering problem for the Hartree type equations with short range
potentials was studied in [5, 15] for the space dimensions greater than 2.
Existence of modified scattering states and modified wave operators for the
Hartree equation was shown in [8] and [3], respectively. The Hartree equa-
tion (i.e., (1.1)-{T.2) with § = 1) is considered as a critical case in the
scattering problem. For the nonlinear Schrédinger equations with power
nonlinearities there are many works (see, e.g., [1, 3, 4, 7, 8, 13, 14, 17, 18,
19]). In the super-critical case (§ > 1) the scattering problem was studied in
4, 6, 14, 19]. For the critical case (6 = 1) in [8, 17] the modified wave oper-
ators were constructed and in [3, 18] the existence of the modified scattering
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states was proved. However there are a few works on the scattering problem
for sub-critical case (0 < § < 1). In this paper we consider two types of sub-
critical cases. If § € (0,1) then we prove in [Theorem 1.1 below the sharp
time decay estimates of the solutions and large time asymptotics (1.4). For
the case § € (1/2,1) we will construct in Theorem 1.2 the modified scat-
tering states and write the phase function more precisely in the asymptotic
formula (1.4). Finally in [Corollary 1.3 we describe the smoothing effect in
an analytic function space.

In what follows we consider the positive time ¢ only since for the neg-
ative one the results are analogous. Before stating our results we give
some notations and function spaces. We let 9, = 9/0x and F¢ or ¢ be
the Fourier transform of ¢ defined by Fe(x) = er“”xqﬁ(x)da: and

F~l¢(z) or ¢(x) be the inverse Fourier transform of ¢, ie. Flo(x) =
(2—7T§m [ eX¢(x)dx. We introduce some function spaces. As usual the

Lebesgue space is L? = {¢ € §';||¢]|, < 0o}, where ||¢]l, = ([ |¢(z)|Pdx)!/?
if1 < p < ooand |¢llec = ess.sup{|¢(z)|;z € R} if p = 0o. For sim-
plicity we let [|¢]| = [|¢[l2. Weighted Sobolev space H™* = {¢ € &,
[Dllm,s = (1 + |2[2)*/2(1 — A)™/2¢| < o}, m,s € R and the homoge-
neous Sobolev space H™* = {¢ € &';|||z|*(- A)™2¢| < oo} with the
seminorm |[¢|| gm.. = |||z|*(—=A)™/2¢||. Also we define the analytic func-
tion space Hy = {¢ € L% ||(1 + |x|)*/2e’X¢(x)|| < oo}, s € R with
the norm ||q5||9{3 = ||(1 + |x| 2)5/2¢91X1g(x) ||, which can be expressed in z-
representation in terms of the analyticity in the strip —o < Imz < o via
the following norm ||¢(- + io)||gs0 + ||¢(- — i0)| gso. Indeed we have the
el el < o+ s 119~ 0lls < 2ol o .
[7, 16]). We let (¢, ¢) = [4(z) - B(z)dz. By C(I; E) we denote the space
of continuous functlons from an 1nterval I to a Banach space E.

The free Schrodinger evolution group U(t) = e®2/2 gives us the solution
of the Cauchy problem for the linear Schrodinger equation ((1.1) with f=
0). It can be represented explicitly in the following manner

1 o o
Ve = W/ eV 2 () dy = F1emithl /2 g,

: 2

) = exp(%) and

) 1/21/)( ). Then
sz 'D(1)M,

Note that U(t) = M(t)D(¢t)FM(t), where M =
D(t) is the dilation operator defined by ( ( )¥)(x)

M (t
since D(t)~! = zD(;) we have U(-t) = D(t)"'M =
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where M = M(—t) = exp(—iz‘%?).
Different positive constants might be denoted by the same letter C.
We now state our results in this paper.

Theorem 1.1 Let 6 € (0,1). We assume that (1 + |z|2)%/4e28lzlyy € L2,
B >0 and the value € = ||(1 + |z|2)%/4e2P17lyy || is sufficiently small. Then

(1) there exists a unique global solution u € C(R; L?) of the equation
(1.1) with (1.2) or (1.3) satisfying

()l = luoll, 111+ 2121 ORIU (~tyu(t)]| < Ceexp(Cet' ™),

where 0 = o(t) = B+ B +t)77, v € (0, %] Moreover the following decay
estimate

1

1
u(t)|l, < Cetr 2
is valid for all t > 1, where 2 < p < 00;
(2) there exists a unique final state uy such that ePlely, € L? and the
following asymptotics

ult:z) = (Z-tl)%f“r(f) exp (2~ g4, ) (5)

+0(1+ t1‘25)) ot 2%  (14)

is true for t — oo uniformly with respect to x € R.

For the values § € (3,1) we obtain the existence of the modified scat-
tering states.

Theorem 1.2 Let § € (3,1) and u be the solution of (1.1) obtained in
Theorem 1.1. Then there ewists a unique final state uy € L? such that
ePlelu, € L? and the following asymptotics

2 itl—d

1 x 1T N z

+ O(t_%“_?‘s)

is valid for t — oo uniformly with respect to x € R and the estimate

|lu(t) — eXp(_ zltl__;f(m_‘_'?)(fc_)) Ut)us| < 41 —20
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18 true for all t > 1.

Corollary 1.3 Let u be the solution of (1.1) obtained in Theorem 1.1.
Then this solution satisfies the analytical smoothing effect, i.e. u(t,z) has
an analytic continuation to the strip {z = z +iy; —R < © < R, —to(t) <
y < to(t)} on the complex plane and satisfies the following estimate

R
/ lu(t, — ito(t))2dz + / ult, z + ito())2dz
-R
< Cé? exp(Cet1 =0 4 CRp).
for any R >0, where 0 = B+ (1 +¢)77,0 <y <6/2.

This corollary shows that all singularities of the initial data in the inter-
val (—R, R) go to infinity at once and so the solution becomes real analytic
with respect to z € (—R, R).

2. Local existence to the Cauchy problem (1.1)

We introduce the function space

Xp = {soec<[o,TJ;L2>;||<p||%<Ts sup V(=D (01

+2/ o (Ol1y/]2]U (- ||ydt<oo}

where [lo(t)lly = [IE@)et)l, E(t,z) = (1 + |z?)¥e”@ll and o(t) =
B+ B(1+1t)77,0< vy <6/2. Welet X7, be the closed ball in Xp with
a center at the origin and a radius p. In this section we will prove the
following local existence theorem.

Theorem 2.1 Suppose that the initial data ug satisfies the condition of
Theorem 1.1. Then there exists a time T > 1 and a unique solution u €
C([0,T); L?) such that |lul|x, < 2e.

Proof. ~ We consider the linearized Cauchy problem (1.1)

{z'atu =~ 30+ (b, (1) € R 1)

’U,(O,I) = uO(x)v LS R7
where v € X7 ,. Multiplying both sides of (2.1) by E(t)U(—t) with E(t,z) =
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(1 + ||2)5/4e”®1=l we obtain
i B()U (~t)u — io' (1) || E@)U (~t)u = E()U(=1)f(Jv]*)v,

whence multiplying both sides by E(t)U(—t)u(t) integrating with respect
to  and taking the imaginary part we get

U @)+ b @y JelU (-0l

<NU (=6 f ([o*)olly IU(=t)u(®)lly- (2.2)

Since U(t)E(t)U(~t) = MFE(t,xt)F~'M by Hélder’'s and Sobolev’s in-
equalities we obtain

IU(=t)f(Jo*)ully

(1 — £292)/4 £ (| v ) M|
< Ct70)(1 - 202" M|}, |
Ct |\ U(-t)v|)}.

o(t)t

Hence we have by
IU(=t)u(t)lly < e+ CpT'°. (2.3)

Substituting to the right hand side of we get
lullk, < €+ Cp*T' (e + CP*T' )
which implies
lullx, < 2, (2.4)

if we take p sufficiently small such that Cp3T' % (e +Cp3T'~%) < €. In the
same way we prove the estimate

1
lur — uallxy < §||v1 - v2|l X7, (2.5)

where uj, j = 1,2 are the corresponding solutions of the Cauchy problems
_ 1
10yu; = —§8£uj + f(|vj|2)vj,

Uy (0, .’13) = U()(:E)

We have the desired result from and (2.5). Theorem 2.1 is proved.
L]
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3. Proof of Theorems

—iz? iz?
We define a new function v(t,x) = D(t) ezt u = Fe2x U(-t)u(t),
X = z/t, then as in we see that v satisfies

Sz = 0 F (o). (3.1)

Decay in time of the right hand side of the equation is not sufficient to get
the existence of global solutions with the sharp decay estimates. In order
to remove the nonlinear term we introduce a phase function g such that

{gt =70 f(ju]?) +

g(1) =0.
The function g is well defined by [Theorem 2.1 since

1y +

1
—(g)()za t> 17

212 (3.2)

lo@yzre =1+ 2 2)p/eoOlele 5 U (~t)u(t)|

= (1 + [2[)> " OFlU (~t)u(t)]
= [U(=t)u()lly < llullxs < 2€

forall0 < t < T, where T > 1. We put w = ve¥, then w is also well defined
and exists locally in time. Furthermore if we multiply by €9 and use
(3.2) we easily see that w satisfies the Cauchy problem
i 1
wy = t—z-wxgx + ﬁwxx + EZ"U]QXX, t>1,

w(l) = v(1) = Fe'F U(=1)u(1).

Thus we removed the nonlinear term with the insufficient time decay but
instead we now encounter the derivative loss. This is the reason why we need
an analytic function space. Note that analytic function spaces were used to
solve some nonlinear evolution equations with nonlinearities involving the
derivatives of unknown function (see, e.g., [2, 7, 16]).
Therefore we consider the system of equations
( 1
wy = t2wxgx + wax thngx, t>1,

(3.3)

_ 1
Vo=t () + 55(0)% t> 1,
iz?

(9(1) =0, w(1)=0v(1) =Fez U(-1)u(d).
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In order to obtain the desired result we prove the global in time existence

of solutions to (3.3) under the condition that ||v(1)]|s/» is sufficiently small.

H
a(1)
And by virtue of [Theorem 2.1 the norm |[v(1)[|, /2 is sufficiently small
a(l)
provided that the initial data ug are sufficiently small.

Theorem 3.1 Suppose that the initial data v(1) is such that the value
2¢ = ||lv(1 )|| ss2 18 sufficiently small.

G(l)
Then there exists a unique solution w € C([l,oo),H}@), g € C([1,00),L>),
gy € C([l,oo),?—[%) of the Cauchy problem (3.3) satisfying the following
estimates

lwllysn <3¢, 7 lglloo + llgxllaz) < 3€, 7 llgylly s < 3e,

_ — é
where 0 = B+ B(1+1)77, 0< vy < 5.

Remark. 1In the case of the power nonlinearity we can replace the
a-priori estimate 71 (]|g|loo + ||9x||;¢§) < 3¢ by t‘5_1||g||7{?[,i in the theorem.

PT’OOf. Let us consider the linearized version of 31
A /
( | 1

Wy = ﬁwxgx + ‘éﬁwxx 942 ngX’
) _ N | 3.4
g = (1) + 55 (50", (34)

Lg(1) =0, w(l)=v(1) = FeTU(-1)u(l).

We introduce the function space

M)
z ={ (so 2)) o) e C([1,00); L7),

o
) ¢ C([1,00); L® N HYY) H (‘P(l)) < oo}
90 ) ) ) (2) )
¥ Z
where
90(1) 2 2(6—1— 2
|(Zer) |, = suw_ '@l + 2601 Dol

+ 1707 (o ()I|§o+llw§f)(t)||3{z)

+z/] Oll/121F O ()3t
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o0
2 [T Il P 0t

We denote by Z, the closed ball in Z with a center at the origin and a
radius p. We define the mapping A by

(3)=4() v (3) e

and w, ¢ are the solutions of the Cauchy problem (3.4). Denote h =
t9=1=7g,, h = 7177, then from the system (3.4) we get

( 1
W= 5y — (2117~ 5h'wx Fiwyy + T Swh )
< 1 ~2 1 -~ 1+’Y_5~ (3.5)
ht = ﬁaxf(lwl ) + ﬁlﬂhhx B —T—h,
[ A(1) =0, w(l)=r0(1).

Taking the Fourier transform of (3.5), multiplying the resulting system

by E2(t,z)w(t, ), E*(t,x)h(t,r) respectively, integrating with respect to
space variable and taking the real part of the result we obtain

d -
Zlwl2s = 20" (1)1 /lal Bl = 2Re(Ew0, BF G,

ﬁ ||h||25/2 20’ (1)||\/|z| ER||? = 2Re(Eh, EF ~1Gy) (3.6)
l+v—-9
—“—_Hh”?s/?»

-2

where

1

~ | 12 1
Gy = t1—+70xf(|w| )+ sy b

By the Schwarz inequality we get

Gy = (2haby + why,)

|Re(Ew, EF~1G))|
< Jlwllaz Gl
< Ot~ M|y (||A(t, - + i0) by (¢, - + i0)[l2,0
+ |A(t, - — io)Dy (t, - — i0)||20 + [lhy(t, - + i0)d(t, - + i0) (2,0
+ ||hy (¢, - = i0)d(t, - = i0)||2,0)
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—(146— ~ = . = -
<ct U 7)||w||%5’;(||h||7{3,||w||7ttf'; + [l 23 10|92
< Com (2, + [l )
and since |w|* = ww has an analytic continuation as w(¢, z)w(t, z) for the

complex values of the independent variable z in a strip —o < Imz < o we
obtain

|Re(Eh, EF~1G,)|

< [lhll2 | Gallaz

< Cllhllyg (¢ (o (8, - + io)in(t, - — io)|l2460
+w(t, - —io)d(t, +io)ll24s0)
+ IR (¢, - + o) la0 + 1B3(t, - — i0)l]3,0))

< Cllbllag (¢ D llagg 101z + ¢ R lggs 12l 542 )

< Cpt™ 7 (J[wl3s + 1Bl53)-

Thus for the value J = ||w||;£2/2 + Ilhllg{g/2 from the system (3.6) we get

d 1 B ~
g7+ U Ol + 1hl3g) < CE ' p(l[dl5 + IRl ).

Integrating with respect to t, we get

720 +2 [ 16 o) + W)l )ds

< P2(1)+ Cp [ 1o/ 5) sy + 1 (5) 3 )ds
< (1) + O < 207+ (3.7

if we take p such that Cp3 < €2. And for the L® norm of g we get

lglleo = “/1 gtdt“oo S/ 0N (o)) Iloodt+/ I1(Gy ||Ooit_

t2
< G (@l o + gk} o) < C 002,

Hence
" glloo < €, (3.8)
if we take p satisfying Cp? < €2. Similarly we have

P gl < € (3.9)
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From [3.7)-(3.9) the estimate

G, =1+(5)

follows, which shows that A is a mapping from Z3, into itself. In the same
way we can show that A is a contraction mapping from Zj, into itself.
Therefore there exists a unique solution of the system in Z. From
and Sobolev’s inequality we easily have the continuity in time since

< e
Z

1h(t) = h($)lyz < Ot = s, Nw(t) = w(s)lhay < Cet — 5.

This completes the proof of [[heorem 3.1. ]

We are now in a position to prove Theorems [.1-1.2.

Proof of [Theorem 1.1. From the second equation of the system (3.3) we
have

1/, 1
(Eg)e ~ 20 ()|alBg = B~ (07 () + 550"
whence integrating with respect to t we get
Eqg(t) — Eg(1)

t
= [ (20 )alEgs) + 5 BF 1 (1uP) + 55 BF g ) ds.

Hence by Sobolev’s inequality and [['heorem 3.1

IFE§ oo < 1FEGW)llso + Cllaxllra
t
+ [ (s—“||fEf—1f(|wl2>||oo
1

1 _
+ 5l FEF (9 ) ds
< e+ CEXL0, (3.10)
Using the identity F MU (—t)u(t) = w(t) exp(—ig(t)) and (3.10) we have

11+ 22 4O T (- tyu(p)]
= IFMU(~t)u(®)l] 2

= |lw(¢) exp(—ig(t))Hng < Ceexp(Cetl_‘s). (3.11)
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From (3.10), (3.11), Mheorem 2.1 and [Theorem 3.1 we find that there exists

a unique global solution u of (1.1) such that ||ju|x, < oo

lu@)]] = lluoll and
(1 + |z[?)5%e” Oy (—t)u(t)|| < Ceexp(Cet! ) (3.12)

for any t € [0,T]. In view of the definitions of w and g we have
u(t) = M(t)D(t)w(t) exp(~ig)
1 T _ x
Whence we easily get
1
)l < e 2fu(n )] < oot ( [, Dypaz)
= Ctl/p_1/2 /|w(t, y)lpdy) p
= Ct'/P=12||y]|,, < Cet!/P=1/2 (3.13)

for all 2 < p < oco. Inequalities (3.12) and yield the first part of
[Cheorem 1.1.

Further we have

t
Joo(t) =g < [ lwr(llgar

t dr
< € [ lgllag + ol + lugylg) 27
s T
t dT —6
< C’e/s —; < Ces (3.14)

forallt > s > 1 since by [Theorem 3.1 we see that “g”oo"‘”gx”?{é < Cetl—9,

Therefore there exists a unique limit W, € H% such that limy_,o w(t) = W,
in Hg and thus we get

u(t,z) =



Scattering for NLS and the Hartree type equation 663

uniformly with respect to z € R since for all 2 < p < oo we have

Hu(t) - L,M(t)m(é)e—ig“’%) |p

Vit
<ct () -wa (I,

< CEYP 2 w(t) — Willp < CEP2|lw(t) = Willija-1/p0

For the phase g we obtain

t dr d’/" _

o) = [ 1P 5+ [0 5 = [ 1005 + 0 )
uniformly with respect to z € R. Then we write the identity
t dr (t1=0 —1)
2 2
— = U(t
[ 105 = fW) g + )
(tl—é __ 1)

+ (f(wl) = FIW ) =5

where ¥ = ff(f(lw(T)IZ)—f(lw( £)|%)) % Since ||f(Jw(t)]*)—f (jw(7 )‘2)”00 <
Cellw(t) — w(r)ll1o < Ce2r=® we get [ f(lw) % = L5 f(IW4?) +

t1=29). From these estimates the second result of (I hggrem 1.1 follows w1th
’ll_{_ — W+. D

Proof of Theorem 1.2. Denote

o) = [ B — iR 5+ [ o)
Then we have
a(t) ~2(s) = [ ()P - Fw0F) 5
O ()P
+ (o) (3.15)

where 1 < s < t. We apply Theorem 3.1 and [3.14) to (3.15) to get
| ®(t) — fb(s)HHg < Ces'™2 for 1 < s < t. This implies that there exists a
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unique limit ®; = limy_,, ®(¢t) € H% such that
19(t) = @ llag < Cet' ™ (3.16)

since we now consider the case % <6 <1.

Furthermore ®(t) = g(t) — tll_is_lf(|w(t)|2) so we have by virtue of
(3.14) and [3.16)

1-6

lo(t) - ——

LAWAP) - @4l < Cet1=2. (3.17)

We now put 4, = W, exp(—i<I>++1%6f(|W+|2)) € Hg. Therefore we obtain
the asymptotics for ¢ — co uniformly with respect to z € R

1 T ix? itl=o

L e ~ 2 (T 1/2—26
ultse) = i () e (G = T3/ (04 ) () + 0027%),
Via [3.17), and [Theorem 3.1 we have

| FMU(=tyut) - ay exp(‘iltl__isf (|ﬁ+|2)> |

_ ”w(t) exp(—ig(t)) — W, exp(—itll“i—é 1f(|W+,2) - i‘I’+> “

1-6 _
t1_51 —(D+"oo

< (e = Wall + (W l||g(t) = F(W?)

S C€t1—2(5,

whence we get

1-6 T

Jutt) = exp(=i7— 112+ P ) U0y |

- Hu(t) — M(t)D(t) exp(—z'ltI:;f(lﬁ+l2))ff‘4(t)“+"
)

-

< ”M(t)D(t) <fM(t)U(—t)U(t) — Uy exp(*i 1= 5f(|@+|2))> H

+ |a@pee) exp(—iltl__isf(lﬁ+|2)>f(M(t) - Duy |

< CH 2 4 C|F(M(t) = Vuy | < C2 + Ot Y|22u, |
< Cgl=%
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since ||z2uy|| = ||8>2<ﬂ+|| = ||8>2<( s (W ))|| < Ce. This completes
the proof of [I’heorem 1.2 ]

Proof of [Corollary 1.3. We have U(t)p(x)U(—t) = M(t)p(it0y)M(—t).
Hence by [I'heorem 1.1

1M (=t)u)lae = U #)e” U (—tyu(t)|
< Ceexp(Cet'™%). (3.18)

Estimate (3.18) yields

R
/ lu(t, z — ito(t)) |2dx+/ u(t, z + ito(t))|*dzx
-R

R
< (CRol) ( / 2Ot 3 — ito(t))|2dz

+/ u(t,x + ito(t ))|2dx)

(- +zta(t))2 2
< ¢CRa(t) (He ult, - + ito(t)) “

i(-—ito(t))? ) 2
e T ult, - ito )] >
< Ce“F M| M (=t)u(t) 150
to(t)
< Ce? exp(Cet' =% + CRp).
This completes the proof of the result. 0
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