Higher Specht polynomials for the complex reflection group G(r, p, n)

(To Professor Takeshi Hirai on his sixtieth birthday)

H. MORITA and H.-F. YAMADA

(Received December 16, 1996; Revised December 12, 1997)

Abstract. A basis of the quotient ring P/J_+ is given, where P is the ring of polynomials and J_+ is the ideal generated by the fundamental invariants under the action of the complex reflection group G(r, p, n).

Key words: complex reflection groups, coinvariant rings, Clifford theory, tableaux.

1. Introduction

This note is concerned with a certain graded module over the imprimitive complex reflection group G(r, p, n) [ST]. The group G(r, p, n) $(r, p, n) \ge 1$, p|r) consists of the monomial matrices whose nonzero entries are of the form ζ^j $(0 \le j < r)$ and such that the d-th power of the product of all nonzero entries is equal to 1, where we denote by ζ a primitive r-th root of 1, and d = r/p. In some special cases, G(r, p, n) is isomorphic to the Weyl group:

$$G(1,1,n) = W(A_{n-1}),$$

$$G(2,1,n) = W(B_n) = W(C_n),$$

$$G(2,2,n) = W(D_n),$$

$$G(6,6,2) = W(G_2).$$

Also it is naturally identified as a normal subgroup of the wreath product

$$G(r,n) = (\mathbf{Z}/r\mathbf{Z}) \wr S_n = \{(\zeta^{i_1},\ldots,\zeta^{i_n};\sigma) \mid i_k \in \mathbf{N}, \ \sigma \in S_n\},$$

whose product is given by

$$(\zeta^{i_1},\ldots,\zeta^{i_n};\sigma)(\zeta^{j_1},\ldots,\zeta^{j_n};\tau)=(\zeta^{i_1+j_{\sigma^{-1}(1)}},\ldots,\zeta^{i_n+j_{\sigma^{-1}(n)}};\sigma\tau).$$

Let $P = \mathbf{C}[x_1, \dots, x_n]$ be the polynomial ring of n indeterminates, on which the group G(r, n) acts as follows:

$$((\zeta^{i_1},\ldots,\zeta^{i_n};\sigma)f)(x_1,\ldots,x_n)=f(\zeta^{i_{\sigma(1)}}x_{\sigma(1)},\ldots,\zeta^{i_{\sigma(n)}}x_{\sigma(n)}).$$

It is known that the fundamental invariants under this action are given by the elementary symmetric functions $e_j(x_1^r, \ldots, x_n^r)$, $1 \leq j \leq n$. Let J'_+ be the ideal of P generated by these fundamental invariants and $R' = P/J'_+$ be the quotient ring, which is sometimes called the coinvariant algebra. It is also known that the G(r,n)-module R' is isomorphic to the group ring CG(r,n), which affords the left regular representation. A description of all the irreducible components of R' has been known in [ATY], in terms of what we call higher Specht polynomials. (See also [TY] for the case r = 1.) The irreducible representations of G(r,n) are parameterized by the r-tuples of Young diagrams $(\lambda^0, \ldots, \lambda^{r-1})$ with $|\lambda^0| + \cdots + |\lambda^{r-1}| = n$. In [ATY] (and [TY]) combinatorics of Young diagrams is used to determine a basis for each irreducible component of R'.

Now we consider the restriction of the above action of G(r,n) on P to the subgroup G(r,p,n). The fundamental invariants are $e_j(x_1^r,\ldots,x_n^r)$ $(1 \leq j \leq n-1)$ and $e_n(x_1^d,\ldots,x_n^d)$. Denote by J_+ the ideal generated by these polynomials and let $R = P/J_+$. The representation of G(r,p,n) on R is again isomorphic to the left regular representation. Our problem is to describe the irreducible components of R as well as their bases. The key to our description is the Clifford theory [S] for a finite group G and its normal subgroup H.

2. Higher Specht polynomials for G(r, n)

Here we recall the results of [ATY] on an irreducible decomposition of the graded G(r, n)-module

$$R' = P/J'_+,$$

where $P = \mathbf{C}[x_1, \ldots, x_n]$ and $J'_+ = (e_1(x_1^r, \ldots, x_n^r), \ldots, e_n(x_1^r, \ldots, x_n^r))$. As is well-known the irreducible representations of G(r, n) are parameterized by the set $\mathcal{P}_{r,n}$ of the r-tuples of Young diagrams $\lambda = (\lambda^0, \ldots, \lambda^{r-1})$ with $|\lambda^0| + \cdots + |\lambda^{r-1}| = n$. By filling each cell with a positive integer in such a way that every k $(1 \le k \le n)$ occurs once, we obtain an r-tableau $T = (T^0, \ldots, T^{r-1})$ of shape $\lambda = (\lambda^0, \ldots, \lambda^{r-1})$. If the number k occurs in the

$$\lambda = \begin{pmatrix} \boxed{2} & 5 \\ \hline 6 & \end{pmatrix}, \boxed{1} & \end{pmatrix}, \boxed{3} & 7 \end{pmatrix} \in \operatorname{STab}(\lambda)$$
 $(S) = \begin{pmatrix} \boxed{1} & 3 \\ \hline 4 & \end{pmatrix}, \boxed{0} & \end{bmatrix}, \boxed{1} & 4 \end{pmatrix}$

Fig. 1.

component T^{ν} , we may write $k \in T^{\nu}$. The set of the r-tableaux of shape λ is denoted by $\mathrm{Tab}(\lambda)$. An r-tableau $T = (T^0, \dots, T^{r-1})$ is said to be standard if the numbers are increasing along each column and each row of T^{ν} $(0 \le \nu < r)$. The set of the standard r-tableaux of shape λ is denoted by $\mathrm{STab}(\lambda)$.

Let $S = (S^0, \ldots, S^{r-1}) \in \operatorname{STab}(\lambda)$. We associate a word w(S) in the following way. First we read each column of the component S^0 from the bottom to the top starting from the left. We continue this procedure for the components S^1 and so on. For the word w(S) we define the index i(w(S)) inductively as follows. The number 1 in the word w(S) has index i(1) = 0. If the number k has index i(k) = p and the number k+1 is sitting to the left (resp. right) of k, then k+1 has index p+1 (resp. p). Finally, assigning the indices to the corresponding cells, we get a shape $\lambda = (\lambda^0, \ldots, \lambda^{r-1})$, with each cell filled with a nonnegative integer, which is denoted by $i(S) = (i(S)^0, \ldots, i(S)^{r-1})$. An example of standard 3-tableaux and the indices is given in Figure 1.

Let $T = (T^0, ..., T^{r-1})$ be an r-tableau of shape λ . For each component T^{ν} $(0 \le \nu < r)$, the Young symmetrizer $e_{T^{\nu}}$ of T^{ν} is defined by

$$e_{T^{\nu}} = \frac{1}{\alpha_{T^{\nu}}} \sum_{\sigma \in R(T^{\nu}), \tau \in C(T^{\nu})} \operatorname{sgn}(\tau) \tau \sigma,$$

where $R(T^{\nu})$ and $C(T^{\nu})$ are the row stabilizer and the column stabilizer of T^{ν} , respectively, and $\alpha_{T^{\nu}}$ is the product of hook lengths for the shape λ^{ν} . To state the definition of higher Specht polynomials, we regard a tableau T on a Young diagram λ as a map

$$T: \{ \text{cells of } \lambda \} \longrightarrow \mathbf{Z}_{>0},$$

which assigns to a cell ξ of λ the number $T(\xi)$ written in the cell ξ in T. For $S \in \operatorname{STab}(\lambda)$ and $T \in \operatorname{Tab}(\lambda)$, define the higher Specht polynomial $\Delta_{S,T}(x)$ by

$$\Delta_{S,T}(x) = \prod_{\nu=0}^{r-1} \left\{ e_{T^{\nu}}(x_{T^{\nu}}^{ri(S)^{\nu}}) \prod_{k \in T^{\nu}} x_k^{\nu} \right\},\,$$

where

$$x_{T^{\nu}}^{r i(S)^{\nu}} = \prod_{\xi \in \lambda^{\nu}} x_{T^{\nu}(\xi)}^{r i(S)^{\nu}(\xi)}.$$

The following is a fundamental result of [ATY] on the higher Specht polynomials for G(r, n).

Theorem 1

- 1. The subspace $V_S(\lambda) = \sum_{T \in \text{Tab}(\lambda)} \mathbf{C}\Delta_{S,T}(x)$ of P affords an irreducible representation of the complex reflection group G(r,n).
- 2. The set $\{\Delta_{S,T}(x) \mid T \in STab(\lambda)\}\$ gives a basis for $V_S(\lambda)$.
- 3. For $S_1 \in \operatorname{STab}(\lambda)$ and $S_2 \in \operatorname{STab}(\mu)$, the representations afforded by $V_{S_1}(\lambda)$ and $V_{S_2}(\mu)$ are isomorphic if and only if S_1 and S_2 have the same shape, i.e., $\lambda = \mu$. The isomorphism is given by

$$\Delta_{S_1,T}(x) \mapsto \Delta_{S_2,T}(x) \ (T \in STab(\lambda)).$$

4. The coinvariant algebra $R' = P/J'_+$ admits an irreducible decomposition

$$R' = \bigoplus_{\lambda \in \mathcal{P}_{r,n}} \bigoplus_{S \in \operatorname{STab}(\lambda)} (V_S(\lambda) \mod J'_+)$$

as a G(r, n)-module.

3. Review of the Clifford theory

We briefly review the Clifford theory following [S, pp. 380–381]. Let H be a normal subgroup of a finite group G such that the quotient group G/H is cyclic. We have in mind the case G = G(r, n) and H = G(r, p, n). Let C denote the group of 1-dimensional representations, or characters, $(\delta, \mathbf{C}_{\delta})$ of G such that $H \subset \text{Ker } \delta$. In other words, C is the group of the characters of G/H, which is isomorphic to G/H. Two irreducible representations (ϕ, V) and (ψ, W) of G are said to be associates if there exists $\delta \in C$ such that $\psi = \delta \otimes \phi$. For a fixed irreducible representation (ϕ, V) of G, let

$$C_{\phi} = \{ \delta \in C \mid \phi \cong \delta \otimes \phi \}$$

be the stabilizer of ϕ and let $(\delta, \mathbf{C}_{\delta})$ be a generator of C_{ϕ} . There exists a G-module isomorphism $V \longrightarrow \mathbf{C}_{\delta} \otimes V$. Composing this with the H-module isomorphism $\mathbf{C}_{\delta} \otimes V \longrightarrow V$, $1_{\delta} \otimes v \mapsto v$ (where 1_{δ} is a fixed basis element of \mathbf{C}_{δ}), we obtain an H-module isomorphism $A: V \longrightarrow V$ satisfying $A(\phi(g)v) = \delta(g)\phi(g)A(v)$ for all $g \in G$ and $v \in V$. If $|C_{\phi}| = e$, then A^{e} commutes with G and, by Schur's lemma, A^{e} is a nonzero scalar. By normalizing the constant, we assume that $A^{e} = \mathbf{1}_{V}$ and call such A the associator of (ϕ, V) . Choose an associator A for (ϕ, V) and let

$$V = \bigoplus_{\ell=0}^{e-1} E^{(\ell)}$$

denote the eigenspace decomposition of V with respect to A, where $E^{(\ell)}$ is the eigenspace with eigenvalue $e^{\frac{2\pi i\ell}{e}}$. Since $H\subset \operatorname{Ker}\delta$, each $E^{(\ell)}$ is an H-module. Moreover the $E^{(\ell)}$'s are inequivalent irreducible H-modules of the same dimension $(\dim V)/e$. The Frobenius reciprocity tells us that $\operatorname{Ind}_H^G E^{(\ell)}$ is the multiplicity free direct sum of all the associates of (ϕ,V) . From these results, we can conclude that the irreducible representations of H are parameterized by the pairs $(\mathcal{O},\varepsilon)$ consisting of a C-orbit \mathcal{O} through an irreducible representation of G and a character $\varepsilon\in C$ that stabilizes \mathcal{O} .

4. Higher Specht polynomials for G(r, p, n)

We now apply the Clifford theory to the case G = G(r, n) and H = G(r, p, n). Define the linear character δ of G(r, n) by $\delta(\zeta^{i_1}, \ldots, \zeta^{i_n}; \sigma) = \zeta^{i_1+\cdots+i_n}$ so that our cyclic group is $C = \langle \delta^d \rangle \cong \mathbf{Z}/p\mathbf{Z}$. Define the *shift*

operator sh on $\mathcal{P}_{r,n}$ (resp. on $\mathrm{Tab}(\lambda)$) by

$$\operatorname{sh}(\lambda^{0}, \dots, \lambda^{r-1}) = (\lambda^{r-1}, \lambda^{0}, \dots, \lambda^{r-2})$$

(resp. $\operatorname{sh}(T^{0}, \dots, T^{r-1}) = (T^{r-1}, T^{0}, \dots, T^{r-2})$).

By the realization of the irreducible representations of G(r, n) described in Section 2, one sees that

$$\mathbf{C}_{\delta} \otimes V_{S}(\lambda) \stackrel{\sim}{\longrightarrow} V_{\mathrm{sh}(S)}(\mathrm{sh}(\lambda)) : 1_{\delta} \otimes \Delta_{S,T}(x) \mapsto \Delta_{\mathrm{sh}(S),\mathrm{sh}(T)}(x),$$

is a G-module isomorphism for any $S \in \operatorname{STab}(\lambda)$, $\lambda \in \mathcal{P}_{r,n}$. Hence the C-orbits are characterized by $\mathcal{P}_{r,n}/\sim$, where we denote $\lambda \sim \mu$ if $\mu = \operatorname{sh}^{dj}\lambda$ for some $j = 0, 1, \ldots, p-1$. For convenience we will denote $\operatorname{Sh} = \operatorname{sh}^d$. For $\lambda \in \mathcal{P}_{r,n}$, let $b(\lambda)$ be the minimal j such that $\operatorname{Sh}^j\lambda = \lambda$, i.e., $b(\lambda) = |\{\mu \in \mathcal{P}_{r,n} \mid \lambda \sim \mu\}|$ and put $e(\lambda) = p/b(\lambda)$. The stabilizer C_λ of λ is a subgroup of C generated by $\delta^{b(\lambda)d}$, so that $|C_\lambda| = e(\lambda)$ and $|C/C_\lambda| = b(\lambda)$. The corresponding associator is denoted by A_λ . In other words, the associator A_λ is realized on $V_S(\lambda)$ by

$$A_{\lambda}(\Delta_{S,T}(x)) = \Delta_{S,\operatorname{Sh}^{-b(\lambda)}(T)}(x) \qquad (T \in \operatorname{Tab}(\lambda)).$$

For h = 1, 2, ..., r, let

$$\operatorname{STab}(\lambda)_h = \{ T = (T^0, \dots, T^{r-1}) \in \operatorname{STab}(\lambda) \mid 1 \in T^{\nu}, \ 0 \le \nu < h \}.$$

Note that, if $T \in STab(\lambda)_{db(\lambda)}$, then the standard r-tableaux

$$T, \operatorname{Sh}^{b(\lambda)}(T), \operatorname{Sh}^{2b(\lambda)}(T), \dots, \operatorname{Sh}^{(e(\lambda)-1)b(\lambda)}(T)$$

are all distinct. Let $\lambda = (\lambda^0, \dots, \lambda^{r-1})$ be an element of $\mathcal{P}_{r,n}$. Fix $S \in \operatorname{STab}(\lambda)$ and $\ell = 0, 1, \dots, e(\lambda) - 1$. For each $T \in \operatorname{STab}(\lambda)$, we define a polynomial

$$\Delta_{S,T}^{(\ell)}(x) := \sum_{m=0}^{e(\lambda)-1} \zeta^{\ell m d b(\lambda)} \Delta_{S,\operatorname{Sh}^{m b(\lambda)}(T)}(x),$$

as an element of $R' = P/J'_+$. Since $\Delta_{S,T_1}^{(\ell)}(x)$ coincides with $\Delta_{S,T_2}^{(\ell)}(x)$ up to constant if T_1 and T_2 are in the same $\langle \operatorname{Sh}^{b(\lambda)} \rangle$ -orbit in $\operatorname{STab}(\lambda)$, we only have to consider the polynomials associated with $T \in \operatorname{STab}(\lambda)_{db(\lambda)}$.

Let $\mathcal{D}_S(T)$ $(S, T \in \operatorname{STab}(\lambda))$ denote the set $\{\Delta_{S,\operatorname{Sh}^{mb(\lambda)}T}(x) \mid m = 0, \ldots, e(\lambda) - 1\}$. Then, for each $S \in \operatorname{STab}(\lambda)$, we have a partition of the

polynomials $\Delta_{S,T}(x)$, $T \in \text{Stab}(\lambda)$ as follows:

$$\{\Delta_{S,T}(x) \mid T \in \operatorname{STab}(\lambda)\} = \coprod_{T \in \operatorname{STab}(\lambda)_{db(\lambda)}} \mathcal{D}_S(T).$$

Since $\{\Delta_{S,T}(x) \mid T \in \operatorname{STab}(\lambda)\}$ is linearly independent over \mathbb{C} , the polynomials $\{\Delta_{S,T}^{(\ell)}(x) \mid T \in \operatorname{STab}(\lambda)_{db(\lambda)}\}$ is also linearly independent for fixed S and ℓ .

Lemma 2 Let S and T be standard r-tableaux of shape λ and $\ell = 0, 1, \ldots, e(\lambda) - 1$. Then the polynomial $\Delta_{S,T}(x)$ is a nonzero element in $R = P/J_+$ if and only if $S \in STab(\lambda)_d$.

Proof. Suppose that $S \in \operatorname{STab}(\lambda) \setminus \operatorname{STab}(\lambda)_d$. Then the number 0 does not appear in $i(S)^0, \ldots, i(S)^{d-1}$. Hence the partial product $\prod_{\nu=0}^{d-1} \{e_{T^{\nu}}(x_{T^{\nu}}^{ri(S)^{\nu}}) \prod_{k \in T^{\nu}} x_k^{\nu}\}$ of $\Delta_{S,T}(x)$ has the factor $\prod_{\nu=0}^{d-1} (\prod_{k \in T^{\nu}} x_k^{r})$. On the other hand, the remaining product $\prod_{\nu=d}^{r-1} \{e_{T^{\nu}}(x_{T^{\nu}}^{ri(S)^{\nu}}) \prod_{k \in T^{\nu}} x_k^{\nu}\}$ has the factor $\prod_{\nu=d}^{r-1} (\prod_{k \in T^{\nu}} x_k^d)$. Since $d \mid r, \Delta_{S,T}(x)$ is divisible by $(x_1 \cdots x_n)^d$ in P, i.e., $V_S(\lambda) \subset J_+$.

To prove that $V_S(\lambda)$ survives in $R = P/J_+$ for $S \in STab(\lambda)_d$, it is enough to see that m(S) equals the multiplicity of the irreducible G(r, p, n)module which is isomorphic to $V_S^{(\ell)}(\lambda)$, where

$$m(S) := \sum_{\mu} \sharp \{ S' \in \mathrm{STab}(\mu)_d \mid V_{S'}^{(\ell')}(\mu) \cong V_S^{(\ell)}(\lambda),$$

for some $\ell' = 0, 1, \dots, e(\mu) - 1 \},$

and the sum is taken over the set $\{\mu \in \mathcal{P}_{r,n} \mid \mu \sim \lambda\}$. Indeed, it is easily seen that

$$m(S) = |\operatorname{STab}(\lambda)_d| \times \sharp \{\mu \in \mathcal{P}_{r,n} \mid \mu \sim \lambda\}$$

$$= \frac{|\operatorname{Stab}(\lambda)|}{p} \times b(\lambda)$$

$$= \frac{|\operatorname{Stab}(\lambda)|}{e(\lambda)}$$

$$= \frac{\dim V_S(\lambda)}{e(\lambda)}$$

$$= \dim V_S^{(\ell)}(\lambda).$$

Since R is isomorphic to the regular representation of G(r, p, n), the proof

completes. \Box

We now have a family of polynomials

$$\{\Delta_{S,T}^{(\ell)}(x) \in R \mid S \in \operatorname{STab}(\lambda)_d, \ T \in \operatorname{STab}(\lambda)_{db(\lambda)}, \ \ell = 0, 1, \dots, e(\lambda) - 1\}.$$

It is shown in Theorem 3 below that they are linearly independent. We call these polynomials the higher Specht polynomials for the complex reflection group G(r, p, n).

Theorem 3 Let $\lambda = (\lambda^0, \dots, \lambda^{r-1}) \in \mathcal{P}_{r,n}$, and for each $S \in \operatorname{STab}(\lambda)$ and $0 \leq \ell \leq e(\lambda) - 1$, put $V_S^{(\ell)} = \bigoplus_{T \in \operatorname{STab}(\lambda)} \mathbf{C}\Delta_{S,T}^{(\ell)}(x)$ as a subspace of R'.

- 1. We have the eigenspace decomposition $V_S(x) = \bigoplus_{\ell=0}^{e(\lambda)-1} V_S^{(\ell)}(x)$ for the associator A_{λ} .
- 2. The space $V_S^{(\ell)}(\lambda)$ affords an irreducible representation of G(r, p, n).
- 3. The G(r, p, n)-module $R = P/J_+$ admits an irreducible decomposition

$$R = \bigoplus_{\lambda} \bigoplus_{S \in \operatorname{STab}(\lambda)_d} \bigoplus_{\ell=0}^{e(\lambda)-1} V_S^{(\ell)}(\lambda),$$

where λ runs over a system of complete representatives of $\mathcal{P}_{r,n}/\sim$.

Proof.

1. For a standard r-tableau $S \in \operatorname{STab}(\lambda)$, a subspace $V_S^{(\ell)}(\lambda)$ of $V_S(\lambda)$ is defined by

$$V_S^{(\ell)}(\lambda) := \bigoplus_{T \in \operatorname{STab}(\lambda)_{db(\lambda)}} \mathbf{C}\Delta_{S,T}^{(\ell)}(x),$$

for each $\ell=0,1,\ldots,e(\lambda)-1$. Recall that the associator A_{λ} of $V_S(\lambda)$ is defined by $A_{\lambda}(\Delta_{S,T}(x))=\Delta_{S,\operatorname{Sh}^{-b(\lambda)}T}(x)$. Since $A_{\lambda}(\Delta_{S,T}^{(\ell)}(x))=\zeta^{\ell db(\lambda)}\Delta_{S,T}^{(\ell)}(x)$, the subspaces $V_S^{(\ell)}(\lambda)$ are contained in distinct eigenspaces of A_{λ} . Hence we have

$$\bigoplus_{\ell=0}^{e(\lambda)-1} V_S^{(\ell)}(\lambda) \subset V_S(\lambda).$$

Since the dimension of $V_S^{(\ell)}(\lambda)$ is

$$|\operatorname{STab}(\lambda)_{db(\lambda)}| = \frac{1}{e(\lambda)}|\operatorname{STab}(\lambda)| = \frac{1}{e(\lambda)}\dim V_S(\lambda)$$

for each $\ell = 0, 1, \dots, e(\lambda) - 1$, the dimensions of the both side of the above inclusion coincide. Therefore we have the direct sum decomposition

$$\bigoplus_{\ell=0}^{e(\lambda)-1} V_S^{(\ell)}(\lambda) = V_S(\lambda).$$

This also gives the eigenspace decomposition of $V_S(\lambda)$ with respect to the associator A_{λ} .

- 2. This follows directly from 1 and the Clifford theory in Section 3.
- 3. Let π be the G(r, n)-module epimorphism

$$\pi: R' = P/J'_{+} \to R = P/J_{+}; f \mod J'_{+} \mapsto f \mod J_{+}.$$

By Lemma 2, we have $\pi(V_S(\lambda)) = 0$ if $S \in \operatorname{STab}(\lambda) \setminus \operatorname{STab}(\lambda)_d$, and $\pi(V_S(\lambda)) \cong V_S(\lambda)$ if $S \in \operatorname{STab}(\lambda)_d$. This implies that $\{\Delta_{S,T}(x) \in R \mid S \in \operatorname{STab}(\lambda)_d, T \in \operatorname{STab}(\lambda)\}$ are linearly independent in R. Hence the higher Specht polynomials

$$\{\Delta_{S,T}^{(\ell)}(x) \in R \mid S \in \operatorname{STab}(\lambda)_d, \ T \in \operatorname{STab}(\lambda)_{db(\lambda)}, \ \ell = 0, 1, \dots, e(\lambda) - 1\},$$

are also linearly independent. Therefore we have the direct sum decomposition

$$R = \pi(R') = \pi \left(\bigoplus_{\lambda \in \mathcal{P}_{r,n}} \bigoplus_{S \in \operatorname{STab}(\lambda)} V_S(\lambda) \right)$$

$$\cong \bigoplus_{\lambda \in \mathcal{P}_{r,n}/\sim} \bigoplus_{S \in \operatorname{STab}(\lambda)_d} V_S(\lambda)$$

$$= \bigoplus_{\lambda \in \mathcal{P}_{r,n}/\sim} \bigoplus_{S \in \operatorname{STab}(\lambda)_d} \bigoplus_{\ell=0}^{e(\lambda)-1} V_S^{(\ell)}(\lambda).$$

This is an irreducible decomposition of the left regular representation R of G(r, p, n).

5. Examples

In this section, we give some examples of higher Specht polynomi-

als. First we consider
$$G(2,1,4) = W(B_4)$$
. Let $\lambda = \left(\begin{array}{c} \square \end{array}, \begin{array}{c} \square \end{array} \right)$, $T_1 = \left(\begin{array}{c} 1 \\ 2 \end{array}, \begin{array}{c} 3 \\ 4 \end{array} \right)$, $T_2 = \sinh(T_1) = \left(\begin{array}{c} 3 \\ 4 \end{array}, \begin{array}{c} 1 \\ 2 \end{array} \right)$ and $S = \left(\begin{array}{c} 1 \\ 4 \end{array}, \begin{array}{c} 2 \\ 3 \end{array} \right)$, so that $i(S) = \left(\begin{array}{c} 0 \\ 2 \end{array}, \begin{array}{c} 0 \\ 1 \end{array} \right)$. The higher Specht polynomials associated with (S, T_1) and (S, T_2) are, respectively,

$$\Delta_{S,T_1}(x) = \left\{ \frac{1}{2} (\mathrm{id} - s_1) x_2^4 \right\} \left\{ \frac{1}{2} (\mathrm{id} - s_3) x_4^2 \right\} x_3 x_4$$
$$= \frac{1}{4} (x_2^4 - x_1^4) (x_4^2 - x_3^2) x_3 x_4,$$

$$\Delta_{S,T_2}(x) = \left\{ \frac{1}{2} (\mathrm{id} - s_3) x_4^4 \right\} \left\{ \frac{1}{2} (\mathrm{id} - s_1) x_2^2 \right\} x_1 x_2$$
$$= \frac{1}{4} (x_2^2 - x_1^2) (x_4^4 - x_3^4) x_1 x_2.$$

Here $s_1 = (12)$ and $s_3 = (34)$ are transpositions and id stands for the identity. Next consider the case $G(2,2,4) = W(D_4)$, where d = 1. For the above λ , we see that $b(\lambda) = 1$ and $e(\lambda) = 2$. Therefore the 6-dimensional representation $V_S(\lambda)$ of G(2,1,4) decomposes into 2 irreducible components $V_S^{(0)}(\lambda)$ and $V_S^{(1)}(\lambda)$ under G(2,2,4), each of which is 3-dimensional. Accordingly the higher Specht polynomial associated with (S,T_1) decomposes to

$$\Delta_{S,T_1}^{(0)}(x) = \Delta_{S,T_1}(x) + \Delta_{S,T_2}(x),$$

and

$$\Delta_{S,T_1}^{(1)}(x) = \Delta_{S,T_1}(x) - \Delta_{S,T_2}(x).$$

If we take
$$S_1=\left(\begin{array}{cc}2&,&1\\3&,&4\end{array}\right)$$
 so that $i(S_1)=\left(\begin{array}{cc}1&,&0\\2&,&2\end{array}\right)$, then

$$\Delta_{S_1,T_1}(x) = \left\{ \frac{1}{2} (\mathrm{id} - s_1) x_1^2 x_2^4 \right\} \left\{ \frac{1}{2} (\mathrm{id} - s_3) x_4^4 \right\} x_3 x_4$$
$$= \frac{1}{4} (x_1^2 x_2^4 - x_1^4 x_2^2) (x_4^4 - x_3^4) x_3 x_4$$

$$= \frac{1}{4}(x_1x_3^3 - x_1^3x_2)(x_4^4 - x_3^4)x_1x_2x_3x_4,$$

which does not survive in R.

References

- [ATY] Ariki S., Terasoma T. and Yamada H.-F., *Higher Specht polynomials*. Hiroshima Math. J. **27** (1997), 177–188.
- [S] Stembridge J.R., On the eigenvalues of representations of reflection groups and wreath products. Pacific J. Math. 140 (1989), 353–396.
- [ST] Shephard G.C. and Todd J.A., Finite unitary reflection groups. Canadian J. Math. 6 (1954), 274–304.
- [TY] Terasoma T. and Yamada H.-F., Higher Specht polynomials for the symmetric group. Proc. Japan Acad. 69 A (1993), 41-44.

H. MoritaDepartment of MathematicsHokkaido UniversitySapporo 060-0810, JapanE-mail: h-morita@math.sci.hokudai.ac.jp

H.-F. Yamada
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
E-mail: yamada@math.sci.hokudai.ac.jp