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Abstract. A basis of the quotient ring P/J4 is given, where P is the ring of polynomials
and Jy is the ideal generated by the fundamental invariants under the action of the
complex reflection group G(r,p,n).
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1. Introduction

This note is concerned with a certain graded module over the imprim-
itive complex reflection group G(r,p,n) [ST]. The group G(r,p,n) (r,p,n
> 1, p|r) consists of the monomial matrices whose nonzero entries are of
the form (7 (0 < j < r) and such that the d-th power of the product of all
nonzero entries is equal to 1, where we denote by ( a primitive r-th root of
1, and d = r/p. In some special cases, G(r,p,n) is isomorphic to the Weyl
group:

G(1,1,n) = W(An_1),

G(2,1,n) = W(By) = W(Cy),
G(2,2,n) = W(D),

G(6,6,2) = W(G2).

Also it is naturally identified as a normal subgroup of the wreath product

G(r,n) = (Z/rZ)1 S, = {(Cil,...,gi";o) |ix € N, 0 € Sp},

whose product is given by

(Cilﬂ"')cin;o)(€j17'"’Cjn;T) _ (Ci1+ja_l(l)a"'a<ln+3 1) o).
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506 H. Morita and H.-F. Yamada

Let P = C[z1, ..., ;] be the polynomial ring of n indeterminates, on which
the group G(r,n) acts as follows:

((<i17 . ,CiHQU)f)(CUl, e ,xn) - f(Cia(l)xU(l)a SRR Cia(n)xg("))'

It is known that the fundamental invariants under this action are given by
the elementary symmetric functions e;(zf,...,2}), 1 < j < n. Let J} be
the ideal of P generated by these fundamental invariants and R’ = P/J',
be the quotient ring, which is sometimes called the coinvariant algebra. It
is also known that the G(r,n)-module R’ is isomorphic to the group ring
CG(r,n), which affords the left regular representation. A description of
all the irreducible components of R’ has been known in , in terms of
what we call higher Specht polynomials. (See also for the case r = 1.)
The irreducible representations of G(r, n) are parameterized by the r-tuples
of Young diagrams (A\°,..., A1) with |AO] +--- + [\ = n. In
(and [TY]) combinatorics of Young diagrams is used to determine a basis
for each irreducible component of R’.

Now we consider the restriction of the above action of G(r,n) on P
to the subgroup G(r,p,n). The fundamental invariants are e;(z7,...,y)
(1 <j<n-—1)and ey(zf,...,z¢). Denote by J; the ideal generated by
these polynomials and let R = P/J;. The representation of G(r,p,n) on
R is again isomorphic to the left regular representation. Our problem is to
describe the irreducible components of R as well as their bases. The key to
our description is the Clifford theory [S] for a finite group G and its normal
subgroup H.

2. Higher Specht polynomials for G(r,n)

Here we recall the results of on an irreducible decomposition of
the graded G(r, n)-module

R =P/J,,

where P = Clz1,...,7,] and J = (e1(2],...,2}), ..., en(2],...,27)). As
is well-known the irreducible representations of G(r,n) are parameterized
by the set Py, of the r-tuples of Young diagrams A = (X0, ..., A7) with
|A%| 4+ --- 4+ |X\"71] = n. By filling each cell with a positive integer in such
a way that every k (1 < k < n) occurs once, we obtain an r-tableau T' =

(T°,..., 771} of shape A = (A%,...,A""1). If the number k occurs in the
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A= ( , : )€P3,7

, 3 7 ) € STab(\)
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Fig. 1.

component 7%, we may write k£ € T". The set of the r-tableaux of shape
A is denoted by Tab()\). An r-tableau T = (T%,...,T"7!) is said to be
standard if the numbers are increasing along each column and each row of
TV (0 < v < r). The set of the standard r-tableaux of shape A is denoted
by STab(\).

Let S = (S°...,87!) € STab()). We associate a word w(S) in the
following way. First we read each column of the component S® from the
bottom to the top starting from the left. We continue this procedure for
the components S' and so on. For the word w(S) we define the index
i(w(S)) inductively as follows. The number 1 in the word w(S) has index
i(1) = 0. If the number k has index i(k) = p and the number k + 1 is
sitting to the left (resp. right) of k, then k + 1 has index p + 1 (resp. p).
Finally, assigning the indices to the corresponding cells, we get a shape
A= (A% ..., X"1), with each cell filled with a nonnegative integer, which is
denoted by i(S) = (i(S)?,...,i(S)""!). An example of standard 3-tableaux
and the indices is given in Figure 1.

Let T = (T°,...,T""!) be an r-tableau of shape A. For each component
T" (0 < v < r), the Young symmetrizer ep» of T is defined by
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1
ey = — Z sgn(7)70,

AT e R(TY),7€C(T?)

where R(T") and C(T") are the row stabilizer and the column stabilizer of
TV, respectively, and ap» is the product of hook lengths for the shape A”.
To state the definition of higher Specht polynomials, we regard a tableau T°
on a Young diagram A as a map

T : {cells of A} — Z>q,

which assigns to a cell £ of A the number T'(¢) written in the cell ¢ in T'. For
S € STab(\) and T € Tab(\), define the higher Specht polynomial Agr(x)

where

RGN s GRZOUG]
genr

The following is a fundamental result of on the higher Specht
polynomials for G(r, n).
Theorem 1
1. The subspace Vs(A) = Lpetab(n) CAs,r(x) of P affords an irreducible
representation of the complex reflection group G(r,n).
2. The set {Agr(z) | T € STab()\)} gives a basis for Vg(A).
3. For S; € STab(\) and Sy € STab(u), the representations afforded by
Vs, (A) and Vs,(p) are isomorphic if and only if S1 and Sy have the
same shape, i.e., A = u. The isomorphism is given by

Ag, ,T(l‘) = ASQ’T(LL‘) (T € STab()\)).

4. The coinvariant algebra R' = P/J\ admits an irreducible decomposi-
tion

@ @ (Vs(A) mod J%)

AEP; n SESTab(X)

as a G(r,n)-module.
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3. Review of the Clifford theory

We briefly review the Clifford theory following [S, pp. 380-381]. Let H
be a normal subgroup of a finite group G such that the quotient group G/H
is cyclic. We have in mind the case G = G(r,n) and H = G(r,p,n). Let C
denote the group of 1-dimensional representations, or characters, (9, Cs) of
G such that H C Kerd. In other words, C is the group of the characters of
G/H, which is isomorphic to G/H. Two irreducible representations (¢, V')
and (1, W) of G are said to be associates if there exists § € C such that
¥ =0 ® ¢. For a fixed irreducible representation (¢, V') of G, let

Co={0€C|9p=i®s}

be the stabilizer of ¢ and let (J,Cs) be a generator of Cy. There exists
a G-module isomorphism V. — Cs; ® V. Composing this with the H-
module isomorphism C5; @ V — V, 1; ® v — v (where 1; is a fixed basis
element of Cy), we obtain an H-module isomorphism A : V' — V satisfying
A(p(g)v) = 6(g)p(g)A(v) for all g € G and v € V. If |Cy| = e, then
A® commutes with G and, by Schur’s lemma, A€ is a nonzero scalar. By
normalizing the constant, we assume that A° = 1y and call such A the
associator of (¢, V). Choose an associator A for (¢, V) and let

denote the eigenspace decomposition of V with respect to A, where E()
is the eigenspace with eigenvalue e**. Since H C Ker 8, each E(® is an
H-module. Moreover the E(¥)’s are inequivalent irreducible H-modules of
the same dimension (dimV)/e. The Frobenius reciprocity tells us that
IndgE(e) is the multiplicity free direct sum of all the associates of (¢, V).
From these results, we can conclude that the irreducible representations of
H are parameterized by the pairs (O, ¢) consisting of a C-orbit @ through
an irreducible representation of G' and a character ¢ € C that stabilizes O.

4. Higher Specht polynomials for G(r,p,n)

We now apply the Clifford theory to the case G = G(r,n) and H =
G(r,p,n). Define the linear character 6 of G(r,n) by 6(¢%,...,(";0) =
¢irt+in g0 that our cyclic group is C = (§%) = Z/pZ. Define the shift
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operator sh on P, , (resp. on Tab())) by
sh(A%,..., A" ) = (W10 L )
(resp. sh(T9,...,T7"1) = (T""1,T°,...,T""?)).

By the realization of the irreducible representations of G(r,n) described in
Section 2, one sees that

Cs ® Vs(A) — Vins)(sh(N)) = 15 ® Asr(x) = Agn(s)sn(r) (%),

is a G-module isomorphism for any S € STab(A), A € P,,. Hence the
C-orbits are characterized by Py, /~, where we denote A ~ p if p = sh¥ )\
for some j = 0,1,...,p — 1. For convenience we will denote Sh = sh?. For
A € Py, let b(A) be the minimal j such that Sh/A = X, i.e, b(A) = [{u €
Prn | A ~ p}] and put e(A) = p/b(A). The stabilizer Cy of A is a subgroup
of C generated by 6*4, so that |Cy| = e(A) and |C/Cy| = b(A). The
corresponding associator is denoted by Ay. In other words, the associator
A) is realized on Vs(\) by

Ay (Bsr(@) = Aggrownp(@) (T € Tab(N)).
For h=1,2,...,r, let
STab(A)p, = {T = (T°,...,T"" ") € STab(X) | 1 € T", 0 < v < h}.
Note that, if T € STab(A)gp(»), then the standard r-tableaux
T, Sh*™ (T), Sh®N(T), ..., Sh(eN =D (T)

are all distinct. Let A = (A%,...,A""!) be an element of P,,. Fix § €

STab(\) and ¢ = 0,1,...,e(A) — 1. For each T" € STab(A), we define a
polynomial

e(A)—1
¢ m
A (@)= Y (AL G meon gy (),
m=0

as an element of R = P/J. Since Ag)Tl (x) coincides with A(SE)TQ(x) up

to constant if T and T are in the same (Sh®™)-orbit in STab(}), we only
have to consider the polynomials associated with T' € STab(A)gp(»)-

Let Dg(T) (S,T € STab())) denote the set {AS,Shmb(A)T(CI:) | m =
0,...,e(A\) —1}. Then, for each S € STab()), we have a partition of the
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polynomials Agr(z), T € Stab()) as follows:

{Asr(e) |TeSTab(A)} = [ Ds(D).
TGST&b(A)db(X)

Since {Agr(x) | T € STab(\)} is linearly independent over C, the polyno-

mials {Ag)T(:c) | T € STab(A)gp(n)} is also linearly independent for fixed S
and ¢.

Lemma 2 Let S and T be standard r-tableauz of shape \ and ¢ =
0,1,...,e(A) — 1. Then the polynomial Agy(z) is a nonzero element in
R = P/J; if and only if S € STab()\)y.

Proof.  Suppose that S € STab(A) \ STab());. Then the number 0 does
not appear in i(S)%,...,i(S)4"!.  Hence the partial product ]—[g;(l)
{epv xTV ) Hrerr 21} of Agp(z) has the factor ]—[V_O(erTV z}). On the
other hand the remaining product []’_L{er u(a:TV )erT“ mk} has the
factor 174 ([Teer» #§). Since d | r, Agp(x) is divisible by (z;---2,)? in
P,ie., Vg(A) C J,.

To prove that Vg(A) survives in R = P/J; for S € STab()\)g4, it is
enough to see that m(S) equals the multiplicity of the irreducible G(r, p, n)-
module which is isomorphic to Vég)()\), where

= S"#{S" € STab(u)q | V7 () = v (),
u
for some ¢/ =0,1,...,e(u) — 1},

and the sum is taken over the set {u € Pr, | p ~ A}. Indeed, it is easily
seen that

m(S) = [STab(A)a| X #{p € Prn | p ~ A}
_ |Stab(\)| < b(\)
D
_|Stab(A)]
e())
dim Vs()\)
e()

= dim VP ().

Since R is isomorphic to the regular representation of G(r,p,n), the proof
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completes. ]

We now have a family of polynomials

{AY)(z) € R| S € STab(A)a, T € STab(A) gy,
(=0,1,...,e(A) — 1}.

It is shown in below that they are linearly independent. We call
these polynomials the higher Specht polynomials for the complex reflection

group G(r,p,n).

Theorem 3 Let A = (\°,..., A1) € P.,, and for each S € STab()\)
and 0 < ¢ < e(A) — 1, put VS(Z) = Dresmabn) CAFS?)Y’(x) as a subspace of
R'.
1. We have the eigenspace decomposition Vg(z) = EBE(:)‘(])_I Vs(e) () for
the assoctator Ay.
2. The space Vs(e)()\) affords an irreducible representation of G(r,p,n).
3. The G(r,p,n)-module R = P/J; admits an irreducible decomposition

R=D @ GBVS,

A SEeSTab())g ¢=0

where X runs over a system of complete representatives of Prp/ ~.

Proof.

1. For a standard r-tableau S € STab(\), a subspace Vée)()\) of Vs())
is defined by

14 14
= @ cag@),
TGSTab()\)db(A)

for each ¢ = 0,1,...,e(A) — 1. Recall that the associator Ay of Vg(A\)
is defined by Ax(Asr(z)) = AS,Sh_me(:v). Since A)\(Ag)T( ) =

Cédb(’\)A(Se’)T(:v), the subspaces Vée)()\) are contained in distinct eigenspaces
of Ay. Hence we have

e(A)—1 .
D VP c Vs(N).
=0
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Since the dimension of Vs(e)()\) is

1 I ..

for each £ =0,1,...,e(\) — 1, the dimensions of the both side of the above
inclusion coincide. Therefore we have the direct sum decomposition

ISTab(A) gu(x)| =

e(A)—

EBVg(A Vs(X).

This also gives the eigenspace decomposition of Vs(A) with respect to the
associator Ay.
2. This follows directly from 1 and the Clifford theory in Section 3.
3. Let 7 be the G(r,n)-module epimorphism

m:R =P/J. - R=P/Jy; f mod J| — f mod J,.

By Lemma 2, we have n(Vs())) = 0 if S € STab()) \ STab()\)4, and
m(Vs()\)) = Vs(A) if S € STab(A)4. This implies that {Asr(z) € R |
S € STab(\)g, T € STab(\)} are linearly independent in R. Hence the
higher Specht polynomials

{AY)(z) € R| S € STab(A)g, T € STab(X)gy(x),
¢=0,1,...,e(A) — 1},

are also linearly independent. Therefore we have the direct sum decompo-
sition

R=n(R) = ( b P VS()\)>

AEP,n SESTab(A)

. P Vs

AEP, n/~ SESTab(A)g

e(A)—1
- G b vw

AEPy ./~ SESTab(A)g =0

IR

This is an irreducible decomposition of the left regular representation R of

G(r,p,n). O
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5. Examples

In this section, we give some examples of higher Specht polynomi-
als. First we consider G(2,1,4) = W(By). Let A\ = B B T, =

), T = sh(Th) = ( 51

4,2)and5—( so that i(S) =

4,3),

(2’4
(5

5 ) The higher Specht polynomials associated with (S,77) and

(S, T: 2) are, respectively,

Asri(z) = {%(id s )mg} {%(id _ 53)x§} T34

1
= (@ — 2} (@] — 73)z324,
1. 4 1. 9
Asm(z) = 5(1d — $3)xy 5(1d — 81)T5 ¢ T1T2
1
= (@3 - zi)(z — w3)w122.

Here s; = (12) and s3 = (34) are transpositions and id stands for the iden-
tity. Next consider the case G(2,2,4) = W(Dy4), where d = 1. For the
above A\, we see that b(\) = 1 and e()\) = 2. Therefore the 6-dimensional
representation Vg(A) of G(2,1,4) decomposes into 2 irreducible components
ngo)()\) and Vél)()\) under G(2,2,4), each of which is 3-dimensional. Ac-
cordingly the higher Specht polynomial associated with (S, T}) decomposes
to

qu(f)n (z) = Asr (7) + As (7)),

and

Ag)Tl(fE) = Agr (z) — Asy ().

K

1 O

IfwetakeSlz( 5 7 9

2 1 ) so that #(S1) = (

5 4 ),then

1. 1.
Asiin (@) = {54 = sn)atat} {50 - so)at | ana

1 45 4 4 _2v(.4 4
= Z(-’”lxz - 1’1372)(354 - ZC3)$3$4
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1
= Z(xla:g - xi)’xg)(xﬁ — :vg):clmga:gm,

which does not survive in R.
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