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On a non-linear prediction analysis for multi-
dimensional stochastic processes with

its applications to data analysis
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Abstract. Recently, Matsuura-Okabe solved the prediction problem for one-dimen-
sional stochastic processes which had remained to be solved for forty years after Masani-
Wiener’s work. In this paper, we shall develop a non-linear prediction analysis for
multi-dimensional local stochastic processes based upon the theory of KM_{2O}-Langevin
equations, which gives a refinement of Okabe-Yamane’s work for causal problems and
Matsuura-Okabe’s work for prediction problems that have been investigated for one-
dimensional stochastic processes. Moreover, we apply our results to concrete time series
which concern the increase problem of earth temperature.
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1. Introduction

The non-linear prediction problem for stochastic processes has a long
history. Masani-Wiener ([1]) have given a prediction formula for calculating
the non-linear predictor for the one-dimensional strictly stationary process
satisfying the boundedness and the non-degenerateness. As stated in [1],
their formula lacks a workable and computable algorithm. It has remained
to weaken these conditions and give certain workable and computable alg0-
rithms for calculating the non-linear predictor.

Under the same conditions as in [1], Okabe-Ootsuka ([7]) have given a
workable and computable algorithm for calculating the non-linear predictor
by using the theory of KM_{2O}-Langevin equations for non-degenerate flows
in inner product spaces. Based upon the fluctuation-dissipation principle
behind this theory, one of the authors has proposed a method for detecting
non-linear information behind a given time series data by using three kinds
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of tests: the first one is Test(S) introduced in [5] which judges whether a
given data has stationarity; the second one is Test(CS) introduced in [6]
and [8] which judges whether there exists a causal direction between two
given data; third one is Test(D) introduced in [8] which judges whether a
given data has deterministic property.

However, it has still remained to weaken both the boundedness and
the non-degenerate properties. Recently, Matsuura-Okabe ([12]) succeeded
in replacing the boundedness by an exponential integrability condition by
using a theory of polynomial functionals developed in Dobrushin-Minlos
([2]) and then in removing the non-degenerateness by developing a theory
of KM_{2O}-Langevin equations for degenerate flows in inner product spaces.

Let X=(X(n);0\leq n\leq N) be a one-dimensional stochastic pr0-

cess defined on a probability space (\Omega, B, P) such that all random variables
X(n)(0\leq n\leq N) are square integrable. By the local non-linear predic-
tor for the stochastic process X , we mean the conditional expectation of
the future random variable X(n+p) conditioned by the past sub \sigma-field
B_{0}^{n}(X)(0\leq n\leq N-1, 1\leq p\leq N-n) :

E(X(n+p)|B_{0}^{n}(X)) , (1.1)

where for each n(0\leq n\leq N) , B_{0}^{n}(X) stands for the smallest \sigma-field with
respect to which all random variables X(k)(0\leq k\leq n) are measurable.
By regarding each random variable X(n)(0\leq n\leq N) as an element of the
real Hilbert space L^{2}(\Omega, B, P) , we find that the local non-linear predictor
accords with the vector obtained by projecting the vector X(n+p) on the
closed subspace N_{0}^{n}(X)\equiv L^{2}(\Omega, B_{0}^{n}(X), P) :

P_{N_{0}^{n}(X)}X(n+p) , (1.2)

where P_{N_{0}^{n}(X)} stands for the projection operator from L^{2}(\Omega, B, P) onto
N_{0}^{n}(X) .

The purpose of this paper is to extend the results of [12] to the case
for multi-dimensional stochastic processes. A practical reason is as follows:
It is an important problem to find a cause-and-effect relationship. There
exist various kinds of data in both natural and social science that seem to
influence each other. Therefore, when we intend to predict the future of a
target data, it is important for us to find another causal data that influences
the target data and then predict the future of the target data together with
the causal data. The causal analysis developed by one of the authors is
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restricted to the one-dimensional data. Therefore, we have to develop a
causal analysis for multi-dimensional data.

Let X=(X(n);0\leq n\leq N) and Y=(Y(n);0\leq n\leq N) be a
one-dimensional stochastic process and a d-dimensional stochastic process
defined on a probability space (\Omega, B, P) , respectively, such that all random
variables X(n) , Y(n)(0\leq n\leq N) are square integrable, where d is a
positive integer. The local non-linear predictor of the stochastic process X
together with the information of the stochastic process Y is given by

P_{N_{0}^{n}(X,Y)}X(n+p) , (1.3)

where

B_{0}^{n}(X, Y)\equiv\sigma(X(k), Y_{j}(k);0\leq k\leq n, 1\leq j\leq d) (1.4)

N_{0}^{n}(X, Y)\equiv { f\in L^{2}(\Omega, B, P);f is B_{0}^{n}(X, Y)-measurable}. (1.5)

We define a (d+1)-dimensional stochastic process Z=(Z(n);0\leq n\leq

N) by

Z(n)\equiv{}^{t}(X(n), Y_{1}(n) , . . ’
Y_{d}(n)) . (1.6)

Since it follows that

N_{0}^{n}(X, Y)=N_{0}^{n}(Z) , (1.7)

we find that

P_{N_{0}^{n}(X,Y)}X(n+p)=the first component of P_{N_{0}^{n}(Z)}Z(n+p) , (1.3)

which implies that the local non-linear predictor of the one-dimensional
stochastic process X together with the information of the d-dimensional
stochastic process Y is reduced to the local non-linear predictor of the
(d+1)-dimensional stochastic process Z. This is one of the theoretical
reasons why we generalize the results of [12] to the case of multi-dimensional
stochastic processes.

Now we shall state the contents of this paper. In Section 2, we shall
generalize the results of [12] to the case of multi-dimensional local stochastic
processes satisfying the same conditions as in [12]. We first introduce a
non-linear information space and construct its generator as a nest system
of multi-dimensional local stochastic processes.
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Section 3 treats a causal analysis for the multi-dimensional local stochas-
tic processes. We have investigated in [6] and [8] a causal analysis based
upon the non-linear information spaces for the global stochastic processes.
We shall define a notion of local causality based upon the results of Section 2.
In particular, we shall give a notion of local non-linear weak causality that
can be introduced for the multi-dimensional stochastic processes. Moreover,
we shall characterize these causality quantitatively in terms of the causal
functions.

In Section 4, we shall deal with the multi-dimensional local stochastic
processes satisfying the same conditions as in [12]. In association with a
nest system of multi-dimensional stochastic processes constructed in Sec-
tion 2, we shall introduce the minimal KM_{2O}-Langevin dissipation matrix
functions and derive the KM_{2O}-Langevin equations describing their time
evolutions. By introducing the prediction matrix functions that can be given
in terms of the minimal KM_{2O}-Langevin dissipation matrix functions, we
shall give a workable and computable algorithm for calculating the local
non-linear predictor, which is a multi-dimensional version of the results of
[12].

We give in Section 3 a quantitative characterization of non-linear causal-
ity between two local stochastic processes by using a nest system of multi-
dimensional local stochastic processes. Generally speaking, it is impossible
to check whether there exists a non-linear causality between two stochastic
processes by taking a certain finite step procedure. However, if its causality
were a non-linear causality of finite rank in some sense, then it might be
possible to check its non-linear causality of finite rank. Thus, it is important
and effective in time series analysis to find a method for checking whether
there exists a non-linear causality of finite rank behind given two time series
data, by taking a finite step procedure. For that reason, as a continuation
of Section 2, we shall introduce in Section 5 a partial non-linear informa-
tion space for the multi-dimensional local stochastic processes. Moreover,
we shall deal with the stochastic processes with weakly stationary property
and give certain algorithms for calculating the minimal KM_{2O} dissipation
matrix functions from the covariance matrix functions, which will be found
to be equivalent to the s0-called fluctuation-dissipation theorem.

In Section 6, we shall develop a causal analysis and prediction analysis
based upon the results of Section 5 and give some prediction formulas for
calculating the non-linear predictor by using causality.
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We shall develop in Section 7 a non-linear time series analysis which
bridges the gap between theory and phenomena. As we have determined a
criterion of Test(CS) by using so many physical random number sequences
which have not any causal relation with a target data, it becomes a negative
assertion to say that there exist causal relations between given two time se-
ries data. In order to make the statement a positive assertion, we shall first
give a refinement of Test(CS) by using some data obtained by shifting the
target. Next, we shall give a method of model selection by using the max-
imal sample causal value associated with two given data. Finally, we shall
give a certain prediction formula based upon causal analysis. In Section 8,
we shall deal with three kinds of data related to meteorological phenomena:
the first one is SST (sea surface temperature at 0 degree in latitude and 100
degree west in longitude); the second one is LIT (air temperature observed
at Lima Callao Airport); the third one is LIP (air pressure observed at the
same place). By applying the method in Section 7 to these data, we shall
detect some information such that there exists a non-linear causal relation
from SST to LIT and both the data LIT and LIP affect each other. We
shall find that it is effective to predict the future of LIP by using not only
the past information of LIP but also the past information of LIT. These
confirm that it is effective to develop the prediction analysis together with
the causal analysis for multi-dimensional stochastic processes.

2. Non-linear information space

We shall generalize the results of [12] to the case of multi-dimensional
stochastic processes.

[2.1] (Local non-linear information space) Let d be a positive integer
and Z=(Z(n);l\leq n\leq r) be an R^{d}-valued stochastic process defined on a
probability space (\Omega, B, P) satisfying the following two conditions (E) and
(M):
(E) For any n(l\leq n\leq r) , there exists a positive constant \lambda_{0}(n) such that

for any real number \lambda(|\lambda|\leq\lambda_{0}(n)) and integer j(1\leq j\leq d) ,

E(\exp\{\lambda Z_{j}(n)\})<\infty ;

(M) E(Z_{j}(n))=0 (l\leq n\leq r, 1\leq j\leq d) .
For any n_{1} , n_{2}(l\leq n_{1}\leq n_{2}\leq r) , we define closed subspaces M_{n_{1}}^{n_{2}}(Z)
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and N_{n_{1}^{2}}^{n}(Z) of L^{2}(\Omega, B, P) by

M_{n_{1}^{2}}^{n}(Z)\equiv[\{Z_{j}(m);n_{1}\leq m\leq n_{2},1\leq j\leq d\}] (2.1)

N_{n_{1}}^{n_{2}}(Z)\equiv { Y\in L^{2}(\Omega, B, P);Y is B_{n_{1}^{2}}^{n}(Z) -measurable}, (2.2)

where for any subset S of L^{2}(\Omega, B, P) , we denote by [S] the closed subspace
of L^{2}(\Omega, B, P) which is generated by all elements in S and by B_{n_{1}}^{n_{2}}(Z) the
smallest \sigma-field with respect to which all random variables Z_{j}(k)(n_{1}\leq k\leq

n_{2},1\leq j\leq d) are measurable. We call M_{n_{1}^{2}}^{n}(Z) (resp. N_{n_{1}}^{n_{2}}(Z) ) a local linear
(resp. non-linear) information space associated with the stochastic process
Z.

As noted in Dobrushin and Minlos [2], it follows from condition (E)
that

Lemma 2.1
(i) For any integers n , j(l\leq n\leq r, 1\leq j\leq d) ,

Z_{j}(n) \in\bigcap_{1\leq p<\infty}L^{p}(\Omega, B, P) .
(ii) For any integers n,p_{k},j_{k}(l\leq n\leq r, p_{k}\in N^{*}, 1\leq j_{k}\leq d, l\leq k\leq n) ,

Z_{j_{l}}(l)^{pl}Z_{j_{l+1}}(l+1)^{pl+1} . . Z_{j_{n}}(n)^{p_{n}}\in N_{l}^{n}(Z) .

For each n(l\leq n\leq r) , we define a subset F_{l}^{n}(Z) of N_{l}^{n}(Z) by

F_{l}^{n}(Z)\equiv\{\prod_{k=0}^{n-l}\prod_{j=1}^{d}Z_{j}(n-k)^{pk,j}-E(\prod_{k=0}^{n-l}\prod_{j=1}^{d}Z_{j}(n-k)^{pk,j}) ;

p_{k,j} \in N^{*},\sum_{j=1}^{d}p_{0,j}>0\} . (2.3)

By virtue of condition (E), similarly as in Theorem 8.1 of [12], we can
apply Proposition 2.1 in [2] to the family \{Z_{j}(n);l\leq n\leq r, 1\leq j\leq d\} of
random variables to show that

Theorem 2.1 N_{l}^{n}(Z)=[\{1\}]\oplus[\bigcup_{m=l}^{n}F_{l}^{m}(Z)] (l \leq n\leq r) .

[2.2] (Generator of non-linear information space) In this subsection,
we shall construct a generator of non-linear information space by introduc-
ing a nest system of multi-dimensional stochastic processes.

[2.2.1] (Parameter) We parameterize the set \bigcup_{m=l}^{r}F_{l}^{m}(Z) . We put
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M\equiv(N^{*})^{d} :

M\equiv(N^{*})^{d}=\{p={}^{t}(p_{1},p_{2}, \ldots,p_{d});p_{j}\in N^{*}(1\leq j\leq d)\} (2.4)

We define a subset \Lambda_{loc} of the product space M^{r-l+1} by

\Lambda_{loc}\equiv\{p= (p^{0},p^{1}, , p^{r-l})\in M^{r-l+1} ; |p^{0}|\geq 1\} , (2.5)

where for any element p={}^{t}(p_{1},p_{2}, \ldots,p_{d}) of M, we define the norm of p
by

|p| \equiv\sum_{j=1}^{d}p_{j} . (2.6)

Moreover, we use the following notation: for any vector v={}^{t}(v_{1}, v_{2}, . . ’ v_{d})

of R^{d} and multi-index \alpha=t (\alpha_{1}, \alpha_{2}, . , \alpha_{d}) of (N^{*})^{d} , we define a real
number v^{\alpha}\in R by

v^{\alpha} \equiv\prod_{j=1}^{d}v_{j^{1}}^{\alpha_{j}} (2.7)

For any p= (p^{0},p^{1}, , p^{r-l})\in\Lambda_{loc} , we define a one-dimensional
stochastic process \varphi_{p}(Z)=(\varphi_{p}(Z)(n);l+\sigma(p)\leq n\leq r) by

\varphi_{p}(Z)(n)\equiv\prod_{k=0}^{\sigma(p)}Z(n-k)^{p^{k}}

where

(l+\sigma(p)\leq n\leq r) , (2.8)

\sigma(p)\equiv\max\{k\in\{0,1, \ldots , r-l\};|p^{k}|>0\} (2.9)

and we denote by G_{loc}(Z) the set of these stochastic processes:

G_{loc}(Z)\equiv\{\varphi_{p}(Z);p\in\Lambda_{loc}\} . (2.10)

It is to be noted that for each l\leq n\leq r ,

F_{l}^{n}(Z)=\cup\{\varphi_{p}(Z)(n)p\in\Lambda_{loc}-E(\varphi_{p}(Z)(n));l+\sigma(p)\leq n\}
. (2.11)

To classify the non-linear information space N_{l}^{r}(Z) , we define for any
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q\in N a subset \Lambda_{loc}(q) of \Lambda_{loc} and a subset G_{loc}(Z)(q) of G_{loc}(Z) by

\Lambda_{loc}(q)\equiv\{p\in\Lambda_{loc};\sum_{k=0}^{r-l}(k+1)|p^{k}|=q\} (2.12)

G_{loc}(Z)(q)\equiv\{\varphi_{p}(Z);p\in\Lambda_{loc}(q)\} . (2.13)

It is to be noted that

G_{loc}(Z)=q\in N\cup G_{loc}(Z)(q)
(direct sum). (2.14)

[2.2.2] (Lexicographical order) We first introduce a lexicographical or-
der in the set \Lambda_{loc} . Let p , p’ be any fixed elements of \Lambda_{loc} . There exist
q , q’\in N such that p\in\Lambda_{loc}(q) , p’\in\Lambda_{loc}(q’) . We say that p precedes p’
if q<q’ or if q=q’ and the j_{0}th component of p^{k_{0}} is larger than the j_{0}th

component of p^{\prime k_{0}} , where k_{0} , j_{0} are given by

k_{0} \equiv\min\{0\leq k\leq r-l;p\neq k(p’)^{k}\} (2.15)

j_{0} \equiv\min\{1\leq j\leq d ; the jth component of
p^{k_{0}}\neq thejth component of (p’)^{k_{0}}\} . (2.16)

By using a one-t0-0ne correspondence between G_{loc}(Z) and \Lambda_{loc} , we
can introduce an order into G_{loc}(Z) according to the lexicographical order
in \Lambda_{loc} and parameterize the set G_{loc}(Z) as follows:

G_{loc}(Z)=\{\varphi_{j}(Z);j\in N^{*}\} . (2.17)

Since there exists for each j\in N^{*} a unique element p_{j} of the set \Lambda_{loc}

such that \varphi_{j}(Z)=\varphi_{p_{j}}(Z) , we can define an integer \sigma(j)\equiv\sigma(p_{j}) and
represent the stochastic process \varphi_{j}(Z)=(\varphi_{j}(Z)(n);l+\sigma(j)\leq n\leq r) as

\varphi_{j}(Z)(n)\equiv\varphi_{p_{j}}(Z)(n) (l+\sigma(j)\leq n\leq r) . (2.18)

We define a natural number d_{q} by

d_{q}\equiv (the number of elements in s=1\cup^{q}G_{loc}(Z)(s) ) –1 (2.19)

and then we can see that

G_{loc}(Z)(q)=\{\varphi_{d_{q-1}+1}(Z), \varphi_{d_{q-1}+2}(Z), \ldots\varphi_{d_{q}}(Z)\} . (2.20)
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The concrete forms of elements of G_{loc}(Z)(q) are stated in (A.I) of
Appendix. In particular, the cases d=1 , q=6 and d=2 , q=6 are shown
in Tables Al and A2 of Appendix, respectively.

[2.2.3] (Nest system) Let us fix any q\in N . For any integer j(0\leq j\leq

d_{q}) , we define a one-dimensional stochastic process \phi_{j}(Z)=(\phi_{j}(Z)(n);l+

\sigma(j)\leq n\leq r) by

\phi_{j}(Z)(n)\equiv\varphi_{j}(Z)(n)-E(\varphi_{j}(Z)(n)) . (2.21)

It is to be noted that the time parameter space of stochastic process
\phi_{j}(Z) depends upon j . By enlarging this time parameter space to the com-
mon space \{l, l+1, \ldots, r\} , we define a one-dimensional stochastic process
\tilde{\phi}_{j}(\tilde{Z})=(\tilde{\phi}_{j}(\tilde{Z})(n);l\leq n\leq r) by

\tilde{\phi}_{j}(\tilde{Z})(n)\equiv\{

0 (l\leq n<l+\sigma(j))

\tilde{\varphi}_{j}(Z)(n)-E(\tilde{\varphi}_{j}(Z)(n)) (l+\sigma(j)\leq n\leq r) .
(2.22)

We call the set of these stochastic processes \tilde{\phi}_{j}(\tilde{Z}) the class of stochastic
processes obtained by non-linear transformations of rank q and denote it by
\mathcal{T}^{(q)}(Z) :

\mathcal{T}^{(q)}(Z)\equiv\{\tilde{\phi}_{j}(Z);0\leq j\leq d_{q}\} . (2.23)

Now, we define a (d_{q}+1) -dimensional stochastic process \tilde{Z}^{(q)}=(\tilde{Z}^{(q)}(n) ;
l\leq n\leq r) and a (d_{q+1}-d_{q}) -dimensional stochastic process \tilde{W}^{(q+1)}=

(\tilde{W}^{(q)}(n);l\leq n\leq r) by

\tilde{Z}^{(q)}(n)\equiv{}^{t}(\tilde{\phi}_{0}(Z)(n),\tilde{\phi}_{1}(Z)(n) , , \tilde{\phi}_{d_{q}}(Z)(n)) (2.24)

\tilde{W}^{(q+1)}(n)\equiv{}^{t}(\tilde{\phi}_{d_{q}+1}(Z)(n),\tilde{\phi}_{d_{q}+2}(Z)(n) , \ldots , \tilde{\phi}_{d_{q+1}}(Z)(n)) . (2.25)

Concerning the relation among these stochastic processes \tilde{Z}^{(q)},\tilde{W}^{(q)}

and the original stochastic process Z , we can see from Theorem 2.1 that

Theorem 2.2
(i) \tilde{Z}^{(1)}=Z .
(ii) The system \{\tilde{Z}^{(q)} ; q\in N\} has a nest structure, that is,

\tilde{Z}^{(q+1)}(n)=(\begin{array}{l}\tilde{Z}^{(q)}(n)\tilde{W}^{(q+1)}(n)\end{array}) (q\in N, l\leq n\leq r) .
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(iii) [_{l\leq m\leq n}\cup F_{l}^{m}(Z)]=[_{q=1}^{\infty}\cup M_{l}^{n}(\tilde{Z}^{(q)})] (l\leq n\leq r) .

(iv) N_{l}^{n}(Z)=[\{1\}]\oplus[_{q=1}^{\infty}\cup M_{l}^{n}(\tilde{Z}^{(q)})] (l\leq n\leq r) .

3. Non-linear causality

The purpose of this section is to give a refinement and a generalization of
the notion of causality and determinism for one-dimensional global stochas-
tic processes investigated in [6] and [8] to the case of multi-dimensional local
stochastic processes.

[3.1] (Causality) In this subsection, we investigate a non-linear causal
problem which gives a refinement of the results of [8].

Let X=(X(n);l\leq n\leq r) be a one-dimensional stochastic process
and Y=(Y(n);l\leq n\leq r) be a d-dimensional stochastic process defined
on a probability space (\Omega, B, P) such that all random variables X(m) and
Y_{j}(n)(l\leq m, n\leq r, 1\leq j\leq d) are square integrable, where d is a natural
integer, l and r are integers and Y_{j}(n) stands for the jth component of Y(n) .

[3.1.1] (Linear causality) We say that there exists a linear causality
from Y to X if there exist an integer M_{0}(l\leq M_{0}\leq r) and a linear function
L_{n} : R^{(n-l+1)d} – R such that

X(n)=L_{n}(Y(n), Y(n-1), \backslash Y(l)) (M_{0}\leq n\leq r) . (3.1)

We denote this relation by

(LC)
Yarrow X. (3.2)

The qualitative definition of linear causality can be stated quantitatively
as follows:

Theorem 3.1 The following three properties are equivalent:

(i) Yarrow X;(LC)

(ii) There exists an integer M_{0}(l\leq M_{0}\leq r) such that

M_{l}^{n}(X)\subset M_{l}^{n}(Y) (M_{0}\leq n\leq r) ;
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(iii) There exists an integer M_{0}(l\leq M_{0}\leq r) such that

||P_{M_{l}^{n}(Y)}X(n)||=||X(n)|| (M_{0}\leq n\leq r) ,

where (u, v) and ||w|| stand for the inner product of the vectors u , v and the
norm of the vector w in L^{2}(\Omega, B, P) , respectively.

[3.1.2] (Non-linear causality) We say that there exists a non-linear
causality from Y to X if there exist an integer M_{0}(l\leq M_{0}\leq r) and a
Borel-measurable function F_{n} : R^{(n-l+1)d} – R such that

X(n)=F_{n}(Y(n), Y(n-1) , . . ’ Y(l)) (M_{0}\leq n\leq r) . (3.3)

We denote this relation by

(C)
Yarrow X. (3.4)

From now on, we assume that the stochastic process Y satisfies condi-
tions (E) and (M). By applying Theorem 2.2 to Y , we can characterize a
qualitative definition of non-linear causality quantitatively in terms of linear
causality as follows:

Theorem 3.2 The following three properties are equivalent:

(i) Yarrow X;(C)

(ii) There exists an integer M_{0}(l\leq M_{0}\leq r) such that

N_{l}^{n}(X)\subset N_{l}^{n}(Y) (M_{0}\leq n\leq r) ;

(iii) There exists M_{0}(l\leq M_{0}\leq r) such that

\lim_{qarrow\infty}||P_{M_{l}^{n}(\tilde{Y}^{(q)}}X()n)||=||X(n)||
(M_{0}\leq n\leq r) .

[3.1.3] (Non-linear weak causality) We note that the definition of non-
linear causality from Y to X implies that the information at the time n of
the stochastic process X can be determined by the one of the past until the
time n of the stochastic process Y As stated in Section 1, it is effective to
use the information of the past of X in the description of causality relation
between X and Y We shall give a notion of non-linear weak causality.

We say that there exists a non-linear weak causality from Y to X if
there exist an integer M_{0}(l\leq M_{0}\leq r-1) and a Borel-measurable function
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G_{n} : R^{n-l+1+(n-l+2)d}arrow R such that for any n(M_{0}\leq n\leq r-1) ,

X(n+1)
=G_{n}(X(n), X(n-1) , . , X(l) , Y(n+1) , Y(n) , \ldots , Y(l))(3.5)

and we denote this relation by

(WC)
Yarrow X. (3.6)

Immediately from definition, we have

Theorem 3.3

Yarrow X(C)\Rightarrow Yarrow(WC) X.

In order to characterize the non-linear weak causality quantitatively,
we define two stochastic processes X_{+1}= (X_{+1}(n);l\leq n\leq r - 1) and
Y_{+1}=(Y_{+1}(n);l\leq n\leq r-1) by

X_{+1}(n)\equiv X(n+1) (l\leq n\leq r-1) (3.7)

Y_{+1}(n)\equiv Y(n+1) (l\leq n\leq r-1) (3.8)

and a (d+1)-dimensional stochastic process Z=(Z(n);l\leq n\leq r-1) by

Z(n)\equiv{}^{t}(X(n),{}^{t}Y_{+1}(n))={}^{t}(X(n),{}^{t}Y(n+1)) . (3.9)

Moreover, we assume that X together with Y satisfies conditions (E)
and (M). By applying Theorem 3.2 to Z , we have

Theorem 3.4 The following properties are equivalent:

(i) Yarrow X;(WC)

(ii) Zarrow X_{+1;}(C)

(iii) There exists an integer M_{0}(l\leq M_{0}\leq r-1) such that

\lim_{qarrow\infty}||P_{M^{n}(Z^{(q)}},X()n+1)||=||X(n+1)|| (M_{0}\leq n\leq r-1) .

[3.1.4] (Non-instantaneous and non-linear weak causality) Even if we
could find a stochastic process Y such that there exists a non-linear causality
or a non-linear weak causality from Y to X, it is only the information of
the past of X and Y for us to be able to use in predicting the future of X.



Non-linear prediction analysis 613

For this reason, we shall give a notion of non-instantaneous and non-
linear weak causality which is weaker than that of non-linear weak causality.
We say that there exists a non-instantaneous and non-linear weak causality
from Y to X if there exist an integer M_{0}(l\leq M_{0}\leq r-1) and a Borel-
measurable function H_{n} : R^{(n-l+1)(d+1)} – R such that for any n(M_{0}\leq

n\leq r-1) ,

X(n+1)
=H_{n}(X(n), X(n-1) , . . ’ X(l) , Y(n) , Y(n-1) , \ldots , Y(l)) (3.10)

and we denote this relation by

Yarrow(WC^{-}) X. (3.11)

In order to characterize the non-instantaneous and non-linear weak
causality quantitatively, we define a (d+1)-dimensional stochastic process
W=(W(n);l\leq n\leq r) by

W(n)\equiv{}^{t}(X(n),{}^{t}Y(n)) . (3.12)

Moreover, we assume that X together with Y satisfies conditions (E)
and (M). By applying Theorem 3.2 to W. we have

Theorem 3.5 The following properties are equivalent:

(i) Yarrow X;(WC^{-})

(ii) Warrow X_{+1;}(C)

(ii) There exist an integer M_{0}(l\leq M_{0}\leq r-1) such that

\lim_{qarrow\infty}||P_{M_{l}^{n}(W^{(q)}}X()n+1)||=||X(n+1)|| (M_{0}\leq n\leq r-1) .

[3.2] (Determinism) In this subsection, we investigate a non-linear de-
terministic problem which gives a refinement of the results of [8].

Let X=(X(n);l\leq n\leq r) be a one-dimensional stochastic process
defined on a probability space (\Omega, B, P) such that all random variables
X(n)(l\leq n\leq r) are square integrable. As in (3.7), we define a stochastic
process X_{+1}=(X_{+1}(n);l\leq n\leq r-1) by

X_{+1}(n)\equiv X(n+1) (l\leq n\leq r-1) . (3.13)

Moreover, we restrict the time domain of the stochastic process X to the
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subset \{l, l+1, , r-1\} and denote it by X^{(l,r-1)} . We say that X has
determinism if and only if

X^{(l,r-1)}arrow X_{+1}(C) , (3.14)

that is, there exist an integer M_{0}(l\leq M_{0}\leq r-1) and a Borel measurable
function I_{n} : R^{n-l+1}arrow R such that

X(n+1)=I_{n}(X(n), X(n-1) , , X(l)) (M_{0}\leq n\leq r-1) .
(3.15)

4. Non-linear prediction formula

In [12], we have developed a theory of KM_{2O}-Langevin equations for
degenerate flows in an inner product space and applied it to the non-linear
prediction problem for one-dimensional stochastic processes. In its course,
we have constructed a nest system consisting of multi-dimensional stochastic
processes and obtained the prediction formulas for calculating the linear
predictor for them.

In this section, we shall return to the same situation as in Section 2 and
give a prediction formula for the nest system \{\tilde{Z}^{(q)} ; q\in N\} constructed in
(2.24).

[4.1] (KM_{2O}-Langevin equation for \tilde{Z}^{(q)} ) We shall apply the theory of
KM_{2O}-Langevin equations to the degenerate stochastic processes \tilde{Z}^{(q)} . For
any q\in N , we define a (d_{q}+1)-dimensional stochastic process \nu_{+}(\tilde{Z}^{(q)})=

(\nu_{+}(\tilde{Z}^{(q)})(n);0\leq n\leq r-l) , to be called a KM_{2O}-Langevin fluctuation flow
associated with \tilde{Z}^{(q)} , by

\nu_{+}(\tilde{Z}^{(q)})(n)

\equiv\{

\tilde{Z}^{(q)}(l) (n=0)
(4.1)

\tilde{Z}^{(q)}(l+n)-P_{M_{l}^{l+n-1}()}\tilde{Z}^{(q)}\tilde{z}(q)(l+n) (0<n\leq r-l)

and define a matrix function V_{+}(\tilde{Z}^{(q)})(n)(0\leq n\leq r-l) , to be called a
KM_{2O}-Langevin fluctuation matrix function associated with \tilde{Z}^{(q)} , by

V_{+}(\tilde{Z}^{(q)})(n)\equiv E(\nu_{+}(\tilde{Z}^{(q)})(n){}^{t}\nu_{+}(\tilde{Z}^{(q)})(n)) (0\leq n\leq r-l) .

(4.2)
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It is to be noted that the set \{\tilde{Z}_{j}^{(q)}(n);l\leq n\leq r, 1\leq j\leq d_{q}+1\}

is degenerate, that is, not linearly independent in L^{2}(\Omega, B, P) . However,
we can apply Theorem 4.4 in [12] to the degenerate flow \tilde{Z}^{(q)} to find that
there exists a unique minimal KM_{2O}-Langevin dissipation matrix function
\gamma_{+}^{0}(\tilde{Z}^{(q)})=(\gamma_{+}^{0}(\tilde{Z}^{(q)})(n, k);0\leq k<n\leq r-l) such that

\tilde{Z}^{(q)}(l+n)=-\sum_{k=0}^{n-1}\gamma_{+}^{0}(\tilde{Z}^{(q)})(n, k)\tilde{Z}^{(q)}(l+k)+\nu_{+}(\tilde{Z}^{(q)})(n)

(0\leq n\leq r-l) . (4.3)

We call equation (4.3) a KM_{2O}-Langevin equation associated with \tilde{Z}^{(q)} .

[4.2] (Prediction formula for the linear predictor of \tilde{Z}^{(q)} ) According
to the algorithm in (6.1) of [12], we define a prediction matrix function
Q_{+}(\tilde{Z}^{(q)})=(Q_{+}(\tilde{Z}^{(q)})(n, m;k);0\leq k\leq m<n\leq r-l) by

Q_{+}(\tilde{Z}^{(q)})(n, m;k)

\equiv\{\begin{array}{l}-\gamma_{+}^{0}(\tilde{Z}^{(q)})(m+1,k) (n=m+1)- n-1\Sigma \gamma_{+}^{0}(\tilde{Z}^{(q)})(n,j)Q_{+}(\tilde{Z}^{(q)})(j,m..k)j=m+1 -\gamma_{+}^{0}(\tilde{Z}^{(q)})(n,k) (n>m+1).\end{array} (4.4)

By applying Theorem 6.1 of [12] to the degenerate flow \tilde{Z}^{(q)} , we have

Lemma 4.1 For any integers n,p(l\leq n\leq r-1,1\leq p\leq r-n) ,

P_{M_{l}^{n}(\tilde{Z}^{(q)}} \tilde{Z}^{(q)}()n+p)=\sum_{k=0}^{n-l}Q_{+}(\tilde{Z}^{(q)})(n-l+p, n-l;k)\tilde{Z}^{(q)}(l+k) .

[4.3] (Prediction formula for the non-linear predictor of Z) Now we
are in a position to state the main theorem of this section. By virtue of
Theorem 2.2, as in Theorem 9.1 of [12], we can let q tend to \infty in Lemma 4.1
to obtain

Theorem 4.1 (Multi-dimensional local non-linear predictor) For any in-
tegers n,p (l \leq n\leq r –1,1\leq p\leq r -n),
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P_{N_{l}^{n}(Z)}Z(n+p)=the fifirst d components of

\lim_{qarrow\infty}\sum_{k=0}^{n-l}Q_{+}(\tilde{Z}^{(q)})(n-l+p, n-l;k)\tilde{Z}^{(q)}(l+k) .

This theorem implies that the multi-dimensional local non-linear predic-
tor of Z can be expressed as a limit of local linear predictors of \tilde{Z}^{(q)}(q\in N) .

5. Partial non-linear information space and stationarity

As a continuation of the previous section, we shall deal with a d-
dimensional stochastic process Z=(Z(n);l\leq n\leq r) satisfying conditions
(E) and (M).

[5.1] (Partial non-linear information space) We have introduced in
(2.23) a class \mathcal{T}^{(q)}(Z) of non-linear transformations of rank q which con-
sists of one-dimensional stochastic processes. From a theoretical point of
view, there exists an unsatisfactory point that even if the stochastic process
Z has strict stationarity, any stochastic process \tilde{Z}^{(q)}(q\in N) does not have
weak stationarity, though the stochastic process \phi_{j}(Z)(0\leq j\leq d_{q}) has
strict stationarity. On the other hand, for the practical aim of applying our
results to non-linear time series analysis, we have to pay attention to the
usage of non-linear transformations of Z.

For that reason, for any fixed natural numbers q , D such that D\leq d_{q} ,
we define a space J^{(q,D)} of multi-indices by

J^{(q,D)}\equiv\{J=(j_{1}, j_{2}, \ldots, j_{D}) ;
0\leq j_{1}<j_{2}< <j_{D}\leq d_{q} , j_{k}\in N^{*}\} . (5.1)

For each element J= (j_{1}, j_{2}, . , j_{D}) of J^{(q,D)} , we define a D-dimensional
stochastic process Z_{J}=(Z_{J}(n);l+\sigma(J)\leq n\leq r) by

Z_{J}(n)\equiv{}^{t}(\phi_{j_{1}}(Z)(n), \phi_{j_{2}}(Z)(n), , \phi_{j_{D}}(Z)(n)) , (5.2)

where \sigma(J) is given by

\sigma(J)\equiv\max\{\sigma(j_{k});1\leq k\leq D\} . (5.3)

We denote by \mathcal{T}^{(q,D)}(Z) the system of these stochastic processes:

\mathcal{T}^{(q,D)}(Z)\equiv\{Z_{J;}J\in J^{(q,D)}\} (5.4)
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and call this system the partial non-linear information space of rank (q, D)
associated with the stochastic process Z.

[5.2] (Stationarity and Fluctuation-Dissipation Theorem) As noted in
[5.1], we know that if the stochastic process Z has strict stationarity, then all
the elements of I^{(q,D)}(Z) have strict stationarity and so weak stationarity.
On the other hand, it is important to check weak stationarity of time series
in a non-linear time series analysis, which will be done in Sections 7 and 8
based upon the s0-called fluctuation-dissipation theorem.

For this reason, we shall deal with the elements of \mathcal{T}^{(q,D)}(Z) satisfying
weak stationarity; for any fixed J\in J^{(q,D)} , we say that a stochastic process
Z_{J} has weak stationarity if there exists a covariance matrix function R(Z_{J}) :
\{-(r-l-\sigma(J)), -(r-l-\sigma(J))+1, \ldots, r-l-\sigma(J)\} – M(D;R) such
that

E(Z_{J}(m)^{t}Z_{J}(n))=R(Z_{J})(m-n) (0\leq m, n\leq r-l-\sigma(J)) .
(5.5)

We denote the subset of such stochastic processes by S\mathcal{T}^{(q,D)}(Z) :

S\mathcal{T}^{(q,D)}(Z)\equiv\{Z_{J}\in \mathcal{T}^{(q,D)}(Z);Z_{J} has weak stationarity\} (5.6)

We shall introduce two kinds of KM_{2O}-Langevin fluctuation flows as-
sociated with the stochastic process Z_{J} . As in (4.1), for each element J
of J^{(q,D)} , we define a forward KM_{2O}-Langevin fluctuation fiow \nu_{+}(Z_{J})=

(\nu_{+}(Z_{J})(n);0\leq n\leq r-l-\sigma(J)) by

\nu_{+}(Z_{J})(n)

\equiv\{\begin{array}{l}Z_{J}(l+\sigma(J))Z_{J}(l+\sigma(J)+n)-P_{M_{l+\sigma(J)}^{l+\sigma(J)+n-1}(Z_{J})}Z_{J}(l+\sigma(J)+n)\end{array}
(n=0)(0<n\leq r-l-\sigma(J))

(5.7)

and define a forward KM_{2O}-Langevin fiuctuation matrix function V_{+}(Z_{J})=

(V_{+}(Z_{J})(n);0\leq n\leq r-l-\sigma(J)) associated with Z_{J} by

V_{+}(Z_{J})(n)\equiv E(\nu_{+}(Z_{J})(n){}^{t}\nu_{+}(Z_{J})(n)) (0\leq n\leq r-l-\sigma(J)) .
(5.8)
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Moreover, by applying Theorem 4.4 in [12] to the flow Z_{J} , we find that
there exists a unique minimal forward KM_{2O}-Langevin dissipation matrix
function \gamma_{+}^{0}(Z_{J})=(\gamma_{+}^{0}(Z_{J})(n, k);0\leq k<n\leq r-l-\sigma(J)) such that for
any n(0\leq n\leq r-l-\sigma(J)) ,

Z_{J}(l+\sigma(J)+n)

=- \sum_{k=0}^{n-1}\gamma_{+}^{0}(Z_{J})(n, k)Z_{J}(l+\sigma(J)+k)+\nu_{+}(Z_{J})(n) . (5.9)

We call equation (5.9) a forward KM_{2O}-Langevin equation associated with
Z_{J} .

On the other hand, we define a backward KM_{2O}-Langevin fluctuation
flow \nu_{-}(Z_{J})=(\nu_{-}(Z_{J})(n);-r+l+\sigma(J)\leq n\leq 0) by

\nu_{-}(Z_{J})(n)

\equiv\{

Z_{J}(r) (n=0)
Z_{J}(r+n)-P_{M_{r+n+1}^{r}(Z_{J})}Z_{J}(r+n) (-r+l+\sigma(J)\leq n<0) .

(5.10)

As in (5.8), we define a backward KM_{2O}-Langevin fiuctuation matrix
function V_{-}(Z_{J})=(V_{-}(Z_{J})(n);0\leq n\leq r-l-\sigma(J)) associated with Z_{J}

by

V_{-}(Z_{J})(n)\equiv E(\nu_{-}(Z_{J})(-n){}^{t}\nu_{-}(Z_{J})(-n))

(0\leq n\leq r-l-\sigma(J)) . (5.11)

Moreover, by applying Theorem 4.4 in [12] to the stochastic process Z_{J} , we
find that there exists a unique minimal backward KM_{2O}-Langevin dissipa-
tion matrix function \gamma_{-}^{0}(Z_{J})=(\gamma_{-}^{0}(Z_{J})(n, k);0\leq k<n\leq r-l-\sigma(J))

such that

Z_{J}(r-n)=- \sum_{k=0}^{n-1}\gamma_{-}^{0}(Z_{J})(n, k)Z_{J}(r-k)+\nu_{-}(Z_{J})(-n)

(0\leq n\leq r-l-\sigma(J)) . (5.12)

We call equation (5.12) a backward KM_{2O}-Langevin equation associated
with Z_{J} .

In particular, we define a minimal forward (resp. backward) KM_{2O}-

Langevin partial correlation matrix function \delta_{+}(Z_{J})=(\delta_{+}(Z_{J})(n);1\leq n\leq
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r-l-\sigma(J)) (resp. \delta_{-}(Z_{J})=(\delta_{-}(Z_{J})(n);1\leq n\leq r-l-\sigma(J)) ) by

\delta_{\pm}(Z_{J})(n)\equiv\gamma_{\pm}(Z_{J})(n, 0) . (5.13)

We define a system \mathcal{L}\mathcal{M}(Z_{J}) , to be called a KM_{2O}-Langevin matrix ass0-

ciated with Z_{J} , by

\mathcal{L}\mathcal{M}(Z_{J})\equiv\{\gamma_{\pm}^{0}(Z_{J})(n, k) , \delta_{\pm}^{0}(Z_{J})(n) , V_{\pm}(Z_{J})(m) ;
0\leq k<n\leq r-l-\sigma(J) , 0\leq m\leq r-l-\sigma(J)\} .

(5.14)

From Theorem 5.3 in [12], we have

Theorem 5.1 Z_{J} has weak stationarity if and only if the following prop-
erties hold:
(i) \gamma_{\pm}^{0}(Z_{J})(n, k)=\gamma_{\pm}^{0}(Z_{J})(n-1, k-1)+\delta_{\pm}^{0}(Z_{J})(n)\gamma_{\mp}^{0}(n-1, n-1-k)

(1\leq k<n\leq r-l-\sigma(J)) ;
(ii) V_{\pm}(Z_{J})(n)=(I-\delta_{\pm}^{0}(Z_{J})(n)\delta_{\mp}^{0}(Z_{J})(n))V\pm(Z_{J})(n-1)(1\leq n\leq r-

l-\sigma(J)) ;
(iii) V_{+}(Z_{J})(n)^{t}\delta_{-}^{0}(Z_{J})(n+1)=\delta_{+}^{0}(Z_{J})(n+1)V_{-}(Z_{J})(n)(0\leq n\leq r-l-

\sigma(J)-1) .

We call the algorithms (i), (ii) and (iii) in Theorem 5.1 the fluctuation-
dissipation theorem ((FDT)) ([9], [12]).

Moreover, there exists an algorithm, to be called (PAC), by which the
KM_{2O}-Langevin partial correlation matrix functions can be calculated from
the covariance matrix function R(Z_{J}) . To explain it, we shall introduce an
additional noise flow which was used in [12]. We define for each positive
number w a stochastic process Z_{J}^{w}=(Z_{J}^{w}(n);l+\sigma(J)\leq n\leq r) by

Z_{J}^{w}(n)\equiv Z_{J}(n)+w\xi(n) , (5.15)

where \xi=(\xi(n);l+\sigma(J)\leq n\leq r) is an additional noise flow for the
stochastic process Z_{J} , that is, a D-dimensional stochastic process satisfying
the following properties:

\xi is a white noise, that is, (\xi(m),{}^{t}\xi(n))=\delta_{mn}I_{D}

(l+\sigma(J)\leq m, n\leq r) (5.16)

(\xi(m),{}^{t}Z_{J}(n))=0 (l+\sigma(J)\leq m, n\leq r) . (5.17)
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We note that the covariance matrix function R(Z_{J}^{w})=(R(Z_{J}^{w})(n);|n|\leq

r-l-\sigma(J)) is given by

R(Z_{J}^{w})(n)=R(Z_{J})(n)+w^{2}\delta_{n0}I_{D} (|n|\leq r-l-\sigma(J)) . (5.18)

From Theorem 6.1 in [9], we have

Theorem 5.2
(i) \delta_{+}(Z_{J}^{w})(n)

=- \{R(Z_{J}^{w})(n)+\sum_{k=0}^{n-2}\gamma_{+}(Z_{J}^{w})(n-1, k)R(Z_{J}^{w})(k+1)\}V_{-}(Z_{J}^{w})(n-1)^{-1} .

(ii) \delta_{-}(Z_{J}^{w})(n)

=-\{R(Z_{J}^{w}) (-n)+ \sum_{k=0}^{n-2}\gamma_{-}(Z_{J}^{w})(n-1, k)R(Z_{J}^{w})(-k-1)\}V_{+}(Z_{J}^{w})(n-1)^{-1} .

The algorithms (i) and (ii) in Theorem 5.2 are called (PAC).

[5.3] We shall investigate the algorithms (FDT) and (PAC) in The-
orems 5.1 and 5.2 from the viewpoint of calculating the KM_{2O}-Langevin
matrix from the covariance matrix function R(Z_{J}) . For that purpose, we
define for each n(0\leq n\leq r-l-\sigma(J)) a subsystem \mathcal{L}\mathcal{M}(Z_{J};n) of the
KM_{2O}-Langevin matrix \mathcal{L}\mathcal{M}(Z_{J}) by

\mathcal{L}\mathcal{M}(Z_{J}; n)\equiv\{\gamma_{\pm}^{0}(Z_{J})(m, k) , \delta_{\pm}^{0}(Z_{J})(m) , V_{\pm}(Z_{J})(j) ;
0\leq k<m\leq n , 0\leq j\leq n\} . (5.19)

It follows from (FDT) in Theorems 5.1 that for each n(1\leq n\leq r -

l-\sigma(J)) , the matrices \gamma_{\pm}^{0}(Z_{J})(n, k)(1\leq k<n) and V_{\pm}(Z_{J})(n) can be
calculated from the matrices \delta_{\pm}^{0}(Z_{J})(n) . Therefore, we have only to obtain
an algorithm by which the matrices \delta_{\pm}^{0}(Z_{J})(n) can be calculated from the
system \mathcal{L}\mathcal{M}(Z_{J}; n-1) and the matrices R(Z_{J})(m)(0\leq m\leq n) . This can
be done according to (PAC) in Theorem 5.2 as follows: by Theorems 4.1
and 4.5 in [12],

\lim_{warrow 0}\delta_{+}(Z_{J}^{w})(n)=\delta_{+}^{0}(Z_{J})(n) (5.20)

\lim_{warrow 0}\delta_{-}(Z_{J}^{w})(n)=\delta_{-}^{0}(Z_{J})(n) . (5.21)

From (PAC), (5.20) and (5.21), we can obtain a method by which
\delta_{\pm}^{0}(Z_{J})(n) can be calculated from the covariance matrix function R(Z_{J}) .
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Thus we have obtained a computational method for calculating the KM_{2O}-

Langevin matrix from the covariance matrix function. For this reason, we
define the KM_{2O}-Langevin matrix \mathcal{L}\mathcal{M}(Z_{J}) by

\mathcal{L}\mathcal{M}(Z_{J})\equiv \mathcal{L}\mathcal{M}(R(Z_{J}))

\equiv\{\gamma_{\pm}^{0}(R(Z_{J}))(n, k) , \delta_{\pm}^{0}(R(Z_{J}))(n) , V_{\pm}(R(Z_{J}))(m) ;
0\leq k<n\leq r-l-\sigma(J) , 0\leq m\leq r-l-\sigma(J)\} .

(5.22)

6. Non-linear causality of finite rank and non-linear prediction
with causality

We shall return to the same situation as in Section 3 and apply the
results of the previous section to both the causality problem and the non-
linear prediction problem.

Let X=(X(n);l\leq n\leq r) be a one-dimensional stochastic process
and Y=(Y(n);l\leq n\leq r) be a d-dimensional stochastic process on a
probability space (\Omega, B, P) such that both the processes satisfy conditions
(E) and (M), where d is a natural integer and l and r are integers.

[6.1] (Determinism and causality with partial non-linear information)
Corresponding to [3.2], [3.1.2], [3.1.3] and [3.1.4], we shall give a definition
of non-linear determinism of finite rank and three kinds of definitions of
non-linear causality of finite rank.

[6.1.1] (Non-linear determinism of finite rank) Let us fix any natural
numbers q , D(1\leq D\leq d_{q}) . We say that X has a non-linear determinism of

rank (q, D) if there exists an element J of J^{(q,D)} such that X_{J}^{(l+\sigma(J),r-1)}(LC)arrow

X_{+1}^{(l+\sigma(J),r-1)} . Immediately from the definition of determinism in [3.2], we
have

Theorem 6.1 Let us fifix any natural numbers q , D(1\leq D\leq d_{q}) . If X
has a non-linear determinism of rank (q, D) , then X has determinism.

[6.1.2] (Non-linear causality of finite rank) Let us fix any natural num-
bers q , D(1\leq D\leq d_{q}) . We say that there exists a non-linear causality of
rank (q, D) from Y to X if there exists an element J of J^{(q,D)} such that
Y_{J}(LC)arrow X^{(l+\sigma(J),r)} . Immediately from the definition of non-linear causality
in [3.1.2], we have
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Theorem 6.2 Let us fifix any natural numbers q , D(1\leq D\leq d_{q}) .

(i) If there exists a natural number q such that \tilde{Y}^{(q)}(LC)arrow X , then Yarrow(C)

X.
(ii) If there exists a non-linear causality of rank (q, D) from Y to X, then

(C)
Yarrow X.

[6.1.3] (Non-linear weak causality of finite rank) To give a definition
of non-linear weak causality of finite rank (cf. [3.1.3]), we define a (d+1)-

dimensional stochastic process Z=(Z(n);l\leq n\leq r-1) by

Z(n)\equiv{}^{t}(X(n),{}^{t}Y_{+1}(n)) (l\leq n\leq r-1) . (6.1)

Let us fix any natural numbers q , D(1\leq D\leq(d+1)_{q}) . We say
that there exists a non-linear weak causality of rank (q, D) from Y to X if
there exists an element J of J^{(q,D)} such that Z_{J}^{(l+\sigma(J),r-1)}(LC)arrow X_{+1}^{(l+\sigma(J),r-1)} .
Then, we have

Theorem 6.3 Let us fifix any natural numbers q , D(1\leq D\leq(d+1)_{q}) . If
there exists a non-linear weak causality of rank (q, D) from Y to X, then
Yarrow(WC) X.

[6.1.4] (Non-instantaneous and non-linear weak causality of finite rank)
Concerning the definition of non-instantaneous and non-linear weak causal-
ity in [3.1.4], we define a (d+1)-dimensional stochastic process W=(W(n) ;
l\leq n\leq r) by

W(n)\equiv{}^{t}(X(n), Y_{1}(n), Y_{2}(n) , . , Y_{d}(n)) (l\leq n\leq r) . (6.2)

Let us fix any natural numbers q , D(1\leq D\leq(d+1)_{q}) . We say
that there exists a non-instantaneous and non-linear weak causality of rank
(q, D) from Y to X if there exists an element J of J^{(q,D)} such that
W_{J}^{(l+\sigma(J),r-1)}(LC)arrow X_{+1}^{(l+\sigma(J),r-1)} Then, we have

Theorem 6.4 Let us fifix any natural numbers q , D(1\leq D\leq(d+1)_{q}) .
If there exists a non-instantaneous and non-linear weak causality of rank
(q, D) from Y to X, then Yarrow(WC^{-}) X.

[6.2] (Non-linear predictor with determinism and causality) We shall
give four kinds of prediction formulas for calculating the non-linear predic-
for
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[6.2.1] (Non-linear predictor with non-linear determinism of finite rank)
Corresponding to Theorem 6.1, we have the following prediction formula:

Theorem 6.5 We assume that there exist two natural numbers q , D(D\leq

q) and an element J=(j_{1},j_{2}, \ldots,j_{D}) of J^{(q,D)} such that X_{J}^{(l+\sigma(J),r-1)}(LC)arrow

x_{+1}^{(l+\sigma(J),r-1)}

(i) If j_{1}=0 , then there exists an M_{0}(l+\sigma(J)\leq M_{0}\leq r-1) such that
for any n,p(l+M_{0}\leq n\leq r-1,1\leq p\leq r-1-n) ,

P_{M_{l+\sigma(J)}^{n}(X_{J})}X(n+p)=the fifirst component of

\sum_{k=0}^{n-l-\sigma(J)}Q_{+}(X_{J})(n-l-\sigma(J)+p, n-l-\sigma(J);k)X_{J}(l+\sigma(J)+k) .

(ii) If j_{1}\neq 0 , then there exists an M_{0}(l+\sigma(J)\leq M_{0}\leq r-1) such that
for any n,p(l+M_{0}\leq n\leq r-1,1\leq p\leq r-1-n) ,

P_{M_{l+\sigma(J)}^{n}(S)}X(n+p)=the fifirst component of

\sum_{k=0}^{n-l-\sigma(J)}Q_{+}(S)(n-l-\sigma(J)+p, n-l-\sigma(J);k)S(l+\sigma(J)+k) ,

where S=(S(n);l+\sigma(J)\leq n\leq r-1) is the (D+1) -dimensional stochastic
process defifined by

S(n)\equiv{}^{t}(X(n),{}^{t}X_{J}(n)) . (6.3)

[6.2.2] (Non-linear predictor with non-linear causality of finite rank)
Corresponding to Theorem 6.2, we have the following prediction formula:

Theorem 6.6 We assume that there exist two natural numbers q , D(D\leq

q) and an element J=(j_{1}, j_{2}, . , j_{D}) of J^{(q,D)} such that Y_{J}arrow X^{(\sigma(J),r)}(LC) .
Then, for any n,p(l+M_{0}\leq n\leq r-1,1\leq p\leq r-1-n) ,

P_{M_{l+\sigma(J)}^{n}(T)}X(n+p)=the fifirst component of

\sum_{k=0}^{n-l-\sigma(J)}Q_{+}(T)(n-l-\sigma(J)+p, n-l-\sigma(J);k)T(l+\sigma(J)+k) ,

where T=(T(n);l+\sigma(J)\leq n\leq r-1) is the (D+1) -dimensional stochastic
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process defifined by

T(n)\equiv{}^{t}(X(n),{}^{t}Y_{J}(n+1)) . (6.4)

[6.2.3] (Non-linear predictor with non-linear weak causality of finite
rank) Corresponding to Theorem 6.3, we have the following prediction
formula:

Theorem 6.7 We assume that there exist two natural numbers q , D
(D\leq(d+1)_{q}) and an element J=(j_{1},j_{2}, . . ’ j_{D}) of J^{(q,D)} such that
Z_{J}^{(l+\sigma(J),r-1)}(LC)arrow X_{+1}^{(l+\sigma(J),r-1)} .

(i) If j_{1}=0 , then there exists an M_{0}(l+\sigma(J)\leq M_{0}\leq r-1) such that
for any n,p(l+M_{0}\leq n\leq r-1,1\leq p\leq r-1-n) ,

P_{M_{l+\sigma(J)}^{n}(Z_{J})^{(l+\sigma(J),r-1)})}X(n+p)=the fifirst component of

\sum_{k=0}^{n-l-\sigma(J)}Q_{+}(Z_{J}^{(l+\sigma(J),r-1)})(n-l-\sigma(J)+p, n-l-\sigma(J);k)

Z_{J}(l+\sigma(J)+k) .

(ii) If j_{1}\neq 0 , then there exists an M_{0}(l+\sigma(J)\leq M_{0}\leq r-1) such that
for any n,p (l+M_{0}\leq n\leq r-1, 1\leq p\leq r-1-n) ,

P_{M_{l+\sigma(J)}^{n}()}X(U^{(l+\sigma(J),r-1)}n+p)=the fifirst component of

\sum_{k=0}^{n-l-\sigma(J)}Q_{+}(U^{(l+\sigma(J),r-1)})(n-l-\sigma(J)+p, n-l-\sigma(J);k)

U(l+\sigma(J)+k) ,

where U=(U(n);\sigma(J)\leq n\leq r-1) is the (D+1) -dimensional stochastic
process defifined by

U(n)\equiv{}^{t}(X(n),{}^{t}Z_{J}(n)) . (6.5)

[6.2.4] (Non-linear predictor with non-instantaneous and non-linear
weak causality of finite rank) Corresponding to Theorem 6.4, we have
the following prediction formula:

Theorem 6.8 We assume that there exist natural numbers q , D
(D\leq(d+1)_{q}) and an element J=(j_{1},j_{2}, . , j_{D}) of J^{(q,D)} such that
W_{J}^{(l+\sigma(J),r-1)}(LC)arrow X_{+1}^{(l+\sigma(J),r-1)}
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(i) If j_{1}=0 , then there exists an M_{0}(l+\sigma(J)\leq M_{0}\leq r) such that for
any n,p(l+M_{0}\leq n\leq r, 1\leq p\leq r-1) ,

P_{M_{l+\sigma(J)}^{n}(W_{J}^{(l+\sigma(J),r-1)})}X(n+p)=the fifirst component of

\sum_{k=0}^{n-l-\sigma(J)}Q_{+}(W_{J}^{(l+\sigma(J),r-1)})(n-l-\sigma(J)+p, n-l-\sigma(J);k)

W_{J}(l+\sigma(J)+k) .

(ii) If j_{1}\neq 0 , then there exists an M_{0}(l+\sigma(J)\leq M_{0}\leq r) such that for
any n,p(l+M_{0}\leq n\leq r, 1\leq p\leq r-1-n) ,

P_{M_{l+\sigma(J)}^{n}(V)}X(n+p)=the fifirst component of

\sum_{k=0}^{n-l-\sigma(J)}Q_{+}(V)(n-l-\sigma(J)+p, n-l-\sigma(J);k)V(l+\sigma(J)+k) ,

where V=(V(n);l+\sigma(J)\leq n\leq r-1) is the (D+1) -dimensional stochastic
process defifined by

V(n)\equiv{}^{t}(X(n),{}^{t}W_{J}(n)) . (6.6)

7. Non-linear time series analysis

We first briefly recall Test(S) introduced in [5]. Next, we shall give
a refinement of Test(CS) and Test(D) introduced in [6] and [8], respec-
tively. Thirdly, we shall give a method of selecting a certain model behind
a given data. Finally, we shall give a prediction formula by taking account
of causality.

[7.1] (Test (S)) Let us be given any d-dimensional data Z =(Z(n);0\leq
n\leq N) .

[7.1.1] We shall briefly recall Test(S).

[Step 1] We define a sample mean vector \mu^{Z} and a sample covariance
matrix function R^{Z}=((R_{jk}^{Z}(n))_{1\leq j,k\leq d;}|n|\leq N) by

\mu^{Z}\equiv\frac{1}{N+1}\sum_{n=0}^{N}Z(n) (7.1)
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\{

R_{jk}^{Z}(n) \equiv\frac{1}{N+1}\sum_{m=0}^{N-n}(Z_{j}(n+m)-\mu_{j}^{Z})(Z_{k}(m)-\mu_{k}^{Z})

(0\leq n\leq N)

R_{jk}^{Z}(-n)\equiv R_{kj}^{Z}(n) (0\leq n\leq N) .

(7.2)

[Step 2] We define the normalized data \tilde{Z}=(\tilde{Z}(n);0\leq n\leq N) by

\tilde{Z}_{j}(n)\equiv R_{jj}^{Z}(0)^{-1/2}(Z(n)-\mu_{j}^{Z}) (1 \leq j\leq d, 0\leq n\leq N) . (7.3)

It follows that \mu^{\tilde{Z}}=0 and R^{\tilde{Z}}(0)=I_{d} . We know from an empirical
rule in data analysis [3] that the maximal number M such that the matrix
function (R^{\tilde{Z}}(n);|n|\leq M) is reliable is given by

M\equiv[3\sqrt{N+1}/d]-1 , (7.4)

where [x] stands for the integer part of a real number x .

[Step 3] By applying the algorithms in Section 5 to the sample cor-
relation matrix function R^{\tilde{Z}}=(R^{\tilde{Z}}(n);|n|\leq M) , we can construct the
sample KM_{2O}-Langevin matrix \{\gamma_{\pm}^{0}(R^{\tilde{Z}})(n, k) , \delta_{\pm}^{0}(R^{\overline{Z}})(m) , V_{\pm}(l);0\leq k<

n\leq M , 1\leq m\leq M , 0\leq l\leq M\} .

[Step 4] Let us fix any integer i(0\leq i\leq N-M) . We derive a
d-dimensional data \nu_{i}=(\nu_{i}(n);0\leq n\leq M) , to be called the sample
KM_{2O}-Langevin fluctuation data, by

\{

lJ_{i(0)}\equiv\tilde{Z}(i)

lJ_{i}(n) \equiv\tilde{Z}(i+n)+\sum_{k=0}^{n-1}\gamma_{+}^{0}(R^{\tilde{Z}})(n, k)\tilde{Z}(i+k)

(1\leq n\leq M) .

(7.5)

By taking M+1 elements W_{+}(n) of GL(d;R) such that

V_{+}(n)=W_{+}(n)^{t}W_{+}(n) (0\leq n\leq M) , (7.6)

we proceed to a standardization \xi_{+i}=(\xi_{+i}(n);0\leq n\leq M) of \nu_{i} :

\xi_{+i}(n)\equiv W_{+}(n)^{-1}\nu_{i}(n) (0\leq n\leq M) (7.7)

and construct a one-dimensional data \xi_{i}=(\xi_{i}(n);0\leq n\leq d(M+1) - 1)
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by

\xi_{i}(n)\equiv(\xi_{+i})_{j}(m) , n=dm+j-1 (1 \leq j\leq d, 0\leq m\leq M) .

(7.8)

[Step 5] By [9], \tilde{Z} has stationarity, that is, it is a realization of a local
and weak stationary process if and only if for any integer i(0\leq i\leq N-M) ,
\xi_{i} is a realization of a standard white noise. According to this important
principle, we have proposed Test(S) in [5] by running i(0\leq i\leq N-M)

and taking a statistical reasoning. By using Test(S), we shall investigate in
the next section whether a given time series data has stationarity.

[Step 6] By taking account of the prediction analysis that will be dis-
cussed in subsection [7.4], we put i=N-M in (7.5) to obtain the following
equation:

\{\begin{array}{l}Z(N-M)=\nu_{N-M}(0)\tilde{Z}(N-M+n)=-\Sigma\gamma_{+}^{0}(R^{\overline{Z}})(n,k)\tilde{Z}(N-M+k)n-1(7.9)k=0 +\nu_{N-M}(n) (1\leq n\leq M).\end{array}\sim

We call it a sample forward KM_{2O}-Langevin equation associated with the
d-dimensional data Z .

[7.1.2] We have constructed in Section 2 a generating system { \varphi_{j}(Z) ;
j\in N^{*}\} of the non-linear information space N_{l}^{n}(Z) for a given d-dimensional
local stochastic process Z.

By applying the class \{\varphi_{j}; j\in N^{*}\} of these non-linear transformations
to the given data \tilde{Z} , we define for any q\in N a class \mathcal{T}^{(q)}(\tilde{Z}) of non-linear
information of rank q by

\mathcal{T}^{(q)}(\tilde{Z})\equiv\{\varphi_{j}(\tilde{Z});0\leq j\leq d_{q}\} . (7.10)

In particular, in a similar way to (5.4), for any natural numbers q , D
such that D\leq d_{q} , we define a class \mathcal{T}^{(q,D)}(\tilde{Z}) of non-linear information of
rank (q, D) by

\mathcal{T}^{(q,D)}(\tilde{Z})\equiv\{\tilde{Z}_{J;}J\in J^{(q,D)}\} , (7.11)

where for each element J= (j_{1}, j_{2}, \ldots, j_{D}) of J^{(q,D)},\tilde{Z}_{J}=(\tilde{Z}_{J}(n);\sigma(J)\leq
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n\leq N) is the D-dimensional data defined by

\tilde{Z}_{J}(n)\equiv{}^{t}(\phi_{j_{1}}(\tilde{Z})(n), \phi_{j_{2}}(\tilde{Z})(n) , \ldots , \phi_{j_{D}}(\tilde{Z}(n)) . (7.12)

By applying Test(S) to these data \tilde{Z}_{J} , we can examine whether \tilde{Z}_{J} has
stationarity, that is, whether the original data Z has stationarity of certain
non-linear type.

[7.2] (Test(CS)) We shall briefly recall Test(CS) introduced in [6]
and [8] and propose a new Test(CS)-2 as its refinement.

[7.2.1] Let \mathcal{X}=(\mathcal{X}(n);0\leq n\leq N) and \mathcal{Y}=(\mathcal{Y}(n);0\leq n\leq N)

be a one-dimensional and a d-dimensional data, respectively. Moreover, we
assume not only that both the data \mathcal{X} and \mathcal{Y} have stationarity, but also
that the (d+1)-dimensional data \mathcal{U}\equiv{}^{t}(\mathcal{X},{}^{t}y) has stationarity. We denote
by R^{\chi y} the sample mutual covariance matrix function of \mathcal{X} and \mathcal{Y} , that is,

\{

R^{\chi y}(n) \equiv\frac{1}{N+1}\sum_{m=0}^{N-n}(\mathcal{X}(n+m)-\mu^{\mathcal{X}})(\mathcal{Y}(m)-\mu^{\mathcal{Y}})

(0\leq n\leq N)
(7.13)

R^{\chi y}(-n)\equiv {}^{t}R^{\mathcal{X}\mathcal{Y}}(n) (0\leq n\leq N) .

By using the sample KM_{2O}-Langevin matrix associated with the data \mathcal{Y}

and the matrix functions R^{\mathcal{Y}} , R^{\mathcal{X}\mathcal{Y}} , according to the definition in [6] and [8],
we can define the sample causality function C_{*}(\mathcal{X}|\mathcal{Y}) : \{0, 1, . , M\}arrow[0,1]

by

C_{n}( \mathcal{X}|\mathcal{Y})\equiv\{\sum_{k=0}^{n}C(n, k)V_{+}(k)^{t}C(n, k)\}^{1/2} (7.14)

where

M\equiv[3\sqrt{N+1}/(d+1)]-1 (7.15)

C(n, k)=\{\begin{array}{l}R^{\chi y}(n)R^{\mathcal{Y}}(0)^{-1} (k=0)\{R^{\mathcal{X}\mathcal{Y}}(n-k)+\sum_{l=0}^{k-1}R^{\chi y}(n-l)^{t}\gamma_{+}(k,l)\}V_{+}(k)^{-1}(1\leq k\leq M).\end{array}

(7.16)

Noting the stationarity of the data \mathcal{U} implies that the sample causality



Non-linear prediction analysis 629

function C_{*}(\mathcal{X}|\mathcal{Y}) is increasing, we called in [6] and [8] the value of the
sample causality function at n=M the sample causal value from \mathcal{Y} to \mathcal{X} .
Moreover, we gave a qualitative test to judge whether there exists a linear
causality from \mathcal{Y} to \mathcal{X} , to be denoted by

\mathcal{Y}arrow \mathcal{X}(LC) . (7.17)

by comparing the sample causal value from \mathcal{Y} to \mathcal{X} with the statistical
distribution of the sample causal values from 1000 kinds of random number
sequences to \mathcal{X} and called it Test(CS).

[7.2.2] Since we gave the above criterion of Test(CS) by using so many
physical random number sequences which do not have any causal relation
with a target data, it becomes a negative assertion to say that there exist
causal relations between given two data. In order to make the statement
a positive assertion, we shall give in this paper a new method for judging
qualitatively whether there exists a linear causality from \mathcal{Y} to \mathcal{X} by using
the shifted data of \mathcal{X} which affect \mathcal{X} always as a cause. We define for
each i(1\leq i\leq N) , \mathcal{X}^{(0,N-i)}=(\mathcal{X}^{(0,N-i)}(n);0\leq n\leq N-i) and \mathcal{X}_{+i}=

(\mathcal{X}_{+i}(n);0\leq n\leq N-i) by

\mathcal{X}^{(0,N-i)}(n)\equiv \mathcal{X}(n) (0\leq n\leq N-i) (7.18)

\mathcal{X}_{+i}(n)\equiv \mathcal{X}(n+i) (0\leq n\leq N-i) . (7.19)

We can see that for each i(1\leq i\leq N) , there exists a linear causality
from \mathcal{X}_{+i} to \mathcal{X}^{(0,N-i)} if and only if i\leq M(i) , where
M(i)\equiv[3\sqrt{N-i+1}/2] –1. The maximal value sh_{c} of i(1\leq i\leq N)

satisfying the inequality i\leq M(i) is given by

sh_{c}\equiv[(-17+3\sqrt{16N+41})/8] . (7.20)

This calculation is due to Mr. Masaya Matsuura.
test (CS)-2 : By running i(1\leq i\leq sh_{c}) , we first obtain a distribution

of the sample causal values C_{M(i)}(\mathcal{X}^{(0,N-i)}|\mathcal{X}_{+i}) from \mathcal{X}_{+i} to \mathcal{X}^{(0,N-i)} . We
judge that there exists a linear causality from \mathcal{Y} to \mathcal{X} if the sample causal
value C_{M}(\mathcal{X}|\mathcal{Y}) from \mathcal{Y} to \mathcal{X} lies inside 90% from the top of the distribution
obtained above.

[7.2.3] (Test(D)) Let \mathcal{X} be a one-dimensional data which passes
Test(S). We define two data \mathcal{X}^{(0,N-1)}=(\mathcal{X}^{(0,N-1)}(n);0\leq n\leq N-1) ,
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\mathcal{X}_{+1}=(\mathcal{X}_{+1}(n);0\leq N-1) by

\mathcal{X}^{(0,N-1)}(n)\equiv \mathcal{X}(n) (0\leq n\leq N-1) (7.21)

\mathcal{X}_{+1}(n)\equiv \mathcal{X}(n+1) (0\leq n\leq N-1) . (7.22)

Corresponding to [6.1.1], by applying the results in [7.1.2] to the data
\mathcal{X}^{(0,N-1)} , for any natural numbers q , D such that D\leq d_{q} , we can define a

class \mathcal{T}^{(q,D)}(\mathcal{X}^{(0,N-1)}) of non-linear information of rank (q, D) by

\mathcal{T}^{(q,D)}(\mathcal{X}^{\overline{(0,N-}1)})\equiv\{(\mathcal{X}^{\overline{(0,N-}1)})_{J;}J\in J^{(q,D)}\} (7.23)

and a subset S\mathcal{T}^{(q,D)}(\mathcal{X}^{\overline{(0,N-}1)}) of the set \mathcal{T}^{(q,D)}(\mathcal{X}^{\overline{(0,N-}1)}) by

S\mathcal{T}^{(q,D)}(\mathcal{X}^{\overline{(0,N-}1)})

\equiv\{(\mathcal{X}^{(0,N-1)})_{J}\in \mathcal{T}^{(q,D)}(\mathcal{X}^{(0,N-1)}) ; both the data (\mathcal{X}^{(0,N-1)})_{J}

and {}^{t}(\mathcal{X}.,{}^{t}(\mathcal{X}^{(0,N-1)})_{J}) pass Test(S) \} . (7.24)

By ap\underline{plyin}g Test(CS)-2 to any element (\mathcal{X}^{\overline{(0,N-}1)})_{J} of
S\mathcal{T}^{(q,D)}(\mathcal{X}^{(0,N-1)}\underline{),}we can judge qualitatively whether there exists a linear

causality from (\mathcal{X}^{(0,N-1)})_{J} to \mathcal{X}_{+1} , to be denoted by

(\mathcal{X}^{\overline{(0,N-}1)})_{J}arrow \mathcal{X}_{+1}(LC) . (7.25)

We say that \mathcal{X} has a non-linear determinism of rank (q, D) if (7.25)

holds for certain element (\mathcal{X}^{(0,N-1)})_{J} of SI^{(q,D)}(\mathcal{X}^{(0,N-1)}) .

[7.2.4] Let \mathcal{X}=(\mathcal{X}(n);0\leq n\leq N) and \mathcal{Y}=(\mathcal{Y}(n);0\leq n\leq N) be a
one-dimensional data and a d-dimensional data, respectively. Moreover, we
assume that \mathcal{X} passes Test(S).

Corresponding to [6.1.2], by applying the results in [7.1.2] to the data
\mathcal{Y} , for any natural numbers q , D such that D\leq d_{q} , we can define a class
\mathcal{T}^{(q,D)}(\tilde{\mathcal{Y}}) of non-linear information of rank (q, D) by

\mathcal{T}^{(q,D)}(\tilde{\mathcal{Y}})\equiv\{\tilde{\mathcal{Y}}_{J}; J\in J^{(q,D)}\} (7.26)

and a subset S\mathcal{T}^{(q,D)}(\tilde{\mathcal{Y}}) of the set I^{(q,D)}(\tilde{\mathcal{Y}}) by

S\mathcal{T}^{(q,D)}(\tilde{\mathcal{Y}})\equiv\{\tilde{\mathcal{Y}}_{J}\in \mathcal{T}^{(q,D)}(\tilde{\mathcal{Y}}) ; both the data \tilde{\mathcal{Y}}_{J} and
{}^{t}(\mathcal{X},{}^{t}\tilde{y}_{J}) pass Test(S) \} . (7.27)
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By applying Test(CS)-2 to any element \tilde{y}_{J} of S\mathcal{T}^{(q,D)}(\tilde{\mathcal{Y}}) , we can judge
qualitatively whether there exists a linear causality from \tilde{\mathcal{Y}}_{J} to \mathcal{X} , to be
denoted by

\tilde{\mathcal{Y}}_{J}arrow \mathcal{X}(LC) . (7.28)

We say that there exists a non-linear causal relation of rank (q, D) from
\mathcal{Y} to \mathcal{X} if (7.28) holds for certain element \tilde{y}_{J} of S\mathcal{T}^{(q,D)}(\tilde{\mathcal{Y}}) .

[7.2.5] Under the same situation as in [7.2.4], we define two data \mathcal{Y}_{+1}=

(\mathcal{Y}_{+1}(n);0\leq N-1) and Z=(Z(n);0\leq N-1) by

\mathcal{Y}_{+1}(n)\equiv \mathcal{Y}(n+1) (0\leq n\leq N-1) (7.29)

Z(n)\equiv{}^{t}(\mathcal{X}(n),{}^{t}y_{+1}(n))={}^{t}(\mathcal{X}(n),{}^{t}y(n+1)) (0\leq n\leq N-1) .

(7.30)

Corresponding to [6.1.3], by applying the results in [7.1.2] to the data
Z , for any natural numbers q , D such that D\leq(d+1)_{q} , we can define a
class \mathcal{T}^{(q,D)}(\tilde{Z}) of non-linear information of rank (q, D) by

\mathcal{T}^{(q,D)}(\tilde{Z})\equiv\{\tilde{Z}_{J;}J\in J^{(q,D)}\} (7.31)

and a subset S\mathcal{T}^{(q,D)}(\tilde{Z}) of the set \mathcal{T}^{(q,D)}(\tilde{Z}) by

S\mathcal{T}^{(q,D)}(\tilde{Z})\equiv\{\tilde{Z}_{J}\in \mathcal{T}^{(q,D)}(\tilde{Z}) ; both the data \tilde{Z}_{J} and
{}^{t}(\mathcal{X},{}^{t}\tilde{Z}_{J}) pass Test(S) \} . (7.32)

By applying Test(CS)-2 to any element \tilde{Z}_{J} of S\mathcal{T}^{(q,D)}(\tilde{Z}) , we can judge
qualitatively whether there exists a linear causality from \tilde{Z}_{J} to \mathcal{X}.

, to be
denoted by

\tilde{Z}_{J}arrow \mathcal{X}(LC) . (7.33)

We say that there exists a non-linear weak causal relation of rank (q, D)
from \mathcal{Y} to \mathcal{X} if (7.33) holds for certain element \tilde{Z}_{J} of S\mathcal{T}^{(q,D)}(\tilde{Z}) .

[7.2.6] Under the same situation as in [7.2.4], we define a (d+1)-

dimensional data \mathcal{W}=(\mathcal{W}(n);0\leq n\leq N-1) by

\mathcal{W}(n)\equiv{}^{t}(\mathcal{X}(n),{}^{t}y(n)) . (7.34)

Corresponding to [6.1.4], by applying the results in [7.1.2] to the data
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\mathcal{W} , for any natural numbers q , D such that D\leq(d+1)_{q} , we can define a
class \mathcal{T}^{(q,D)} (\tilde{\mathcal{W}}) of non-linear information of rank (q, D) by

\mathcal{T}^{(q,D)}(\tilde{\mathcal{W}})\equiv\{\tilde{\mathcal{W}}_{J;}J\in J^{(q,D)}\} (7.35)

and a subset S\mathcal{T}^{(q,D)} (\tilde{\mathcal{W}}) of the set \mathcal{T}^{(q,D)}(\tilde{\mathcal{W}}) by

S\mathcal{T}^{(q,D)}(\tilde{\mathcal{W}})\equiv\{\tilde{\mathcal{W}}_{J}\in \mathcal{T}^{(q,D)}(\tilde{\mathcal{W}}) ; both the data \tilde{\mathcal{W}}_{J} and
{}^{t}(\mathcal{X}^{ t},\tilde{\mathcal{W}}_{J}) pass Test (S) \} . (7.36)

By applying Test(CS)-2 to any element \tilde{\mathcal{W}}_{J} of S\mathcal{T}^{(q,D)}(\tilde{\mathcal{W}}) , we can
judge qualitatively whether there exists a linear causality from \tilde{\mathcal{W}}_{J} to \mathcal{X} ,
to be denoted by

\tilde{\mathcal{W}}_{J}arrow \mathcal{X}(LC) . (7.37)

We say that there exists a non-instantaneous and non-linear weak causal
relation of rank (q, D) from \mathcal{Y} to \mathcal{X} if (7.37) holds for certain element \tilde{\mathcal{W}}_{J}

of S\mathcal{T}^{(q,D)}(\tilde{\mathcal{W}}) .

[7.3] (Sample causal values and model selection) In this subsection,
we shall give a method of model selection by obtaining the maximal sample
causal values concerning the non-linear determinism of finite rank stated in
[7.2.3] and three kinds of non-linear causality of finite rank stated in [7.2.4],
[7.2.5] and [7.2.6]. Let us fix any natural number q .

[7.3.1] Under the same situation as i\underline{n[7.2}.3], for each \underline{natural} number

D(1\leq D\leq d_{q}) , we choose the e1em\underline{ent(}\mathcal{X}^{(0,N-1)})_{J^{(1)}}=((\mathcal{X}^{(0,N-1)})_{J^{(1)}}(n) ;

\sigma(J^{(1)})\leq n\leq N-1) of S\mathcal{T}^{(q,D)}(\mathcal{X}^{(0,N-1)}) in (7.24) such that the sample

causal value from (\mathcal{X}^{(0,N-1)})_{J^{(1)}} to \tilde{\mathcal{X}}_{+1} is the largest in the set
S\mathcal{T}^{(q,D)}(\mathcal{X}^{(0,N-1)}) , where D is restricted so as to satisfy the inequality
[3\sqrt{N-\sigma(J^{(1)})}/(D+1)]-1\geq 10 .

By taking account of Theorem 6.5 for the non-linear determinism of
rank (q, D) , we define a D^{(1)} -dimensional data \mathcal{X}^{(1)}=(\mathcal{X}^{(1)}(n);\sigma(J^{(1)})\leq

n\leq N) by

\mathcal{X}^{(1)}(n)\equiv\{

\tilde{\mathcal{X}}_{J^{(1)}}(n)

{}^{t}(\tilde{\mathcal{X}}(n), t\tilde{\mathcal{X}}_{J^{(1)}}(n))

if the first element of J^{(1)}=0

if the first element of J^{(1)}\neq 0 ,

(7.38)
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where D^{(1)} is given by

D^{(1)}\equiv\{

D if the first element of J^{(1)}=0

D+1 if the first element of J^{(1)}\neq 0 .
(7.39)

As a model selection, we adopt the sample forward KM_{2O}-Langevin
equation associated with the D^{(1)} -dimensional data \tilde{\mathcal{X}}^{(1)} .

[7.3.2] Under same situation as in [7.2.4], for each natural number
D(1\leq D\leq d_{q}) , we choose the element \tilde{\mathcal{Y}}_{J^{(2)}}=((\tilde{\mathcal{Y}}_{J^{(2)}}(n);\sigma(J^{(2)})\leq n\leq

N) of S\mathcal{T}^{(q,D)}(\tilde{\mathcal{Y}}) in (7.27) such that the sample causal value from \tilde{\mathcal{Y}}_{J^{(2)}} to
\tilde{\mathcal{X}} is the largest in the set S\mathcal{T}^{(q,D)}(\tilde{\mathcal{Y}}) , where D is restricted so as to satisfy
the inequality [3\sqrt{N-\sigma(J^{(2)})+1}/(D+1)]-1\geq 10 .

By taking account of Theorem 6.6 for the non-linear causality of rank
(q, D) , we define a D^{(2)} -dimensional data \mathcal{X}^{(2)}=(\mathcal{X}^{(2)}(n);\sigma(J^{(2)})\leq n\leq

N) by

\mathcal{X}^{(2)}\equiv{}^{t}(\tilde{\mathcal{X}},{}^{t}\tilde{y}_{J^{(2)}}) , (7.40)

where D^{(2)} is given by

D^{(2)}\equiv D+1 . (7.41)

As a model selection, we adopt the sample forward KM_{2O}-Langevin
equation associated with the D^{(2)} -dimensional data \mathcal{X}^{(2)} .

[7.3.3] Under same situation as in [7.2.5], for each natural number
D(1\leq D\leq(d+1)_{q}) , we choose the element \tilde{Z}_{J^{(3)}}=((\tilde{Z})_{J^{(3)}}(n);\sigma(J^{(3)})\leq

n\leq N-1) of S\mathcal{T}^{(q,D)}(\tilde{Z}) in (7.32) such that the sample causal value from
\tilde{Z}_{J^{(3)}} to \tilde{\mathcal{X}}_{+1} is the largest in the set S\mathcal{T}^{(q,D)}(\tilde{Z}) , where D is restricted so
as to satisfy the inequality [3\sqrt{N-\sigma(J^{(3)})}/(D+1)]-1\geq 10 .

By applying the linear prediction formula in [5] to the d-dimensional
data \mathcal{Y}=(\mathcal{Y}(n);0\leq n\leq N) , we obtain the value \mathcal{Y}(N+1) of the
one-step future of \mathcal{Y} , which will be explained in the subsequent subsec-
tion [7.4.1]. Therefore, by taking account of Theorem 6.7 for the non-
linear weak causality of rank (q, D) , we can define a D^{(3)} -dimensional data
\mathcal{X}^{(3)}=(\mathcal{X}^{(3)}(n);\sigma(J^{(3)})\leq n\leq N) by

\mathcal{X}^{(3)}(n)\equiv\{

(\tilde{Z})_{J^{(3)}}(n) if the first element of J^{(3)}=0

{}^{t}(\tilde{\mathcal{X}}(n),{}^{t}(\tilde{Z})_{J^{(3)}}(n)) if the first element of J^{(3)}\neq 0 ,

(7.42)
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where D^{(3)} is given by

D^{(3)}\equiv\{

D if the first element of J^{(3)}=0

D+1 if the first element of J^{(3)}\neq 0 .
(7.43)

As a model selection, we adopt the sample forward KM_{2O}-Langevin
equation associated with the D^{(3)} -dimensional data \mathcal{X}^{(3)} .

[7.3.4] Under same situation as in [7.2.6], for each natural number
D(1\leq D\leq(d+1)_{q}) , we choose the element \tilde{\mathcal{W}}_{J^{(4)}}=((\tilde{\mathcal{W}})_{J^{(4)}}(n);\sigma(J^{(4)})\leq

n\leq N-1) of S\mathcal{T}^{(q,D)}(\tilde{\mathcal{W}}) in (7.36) such that the sample causal value from
\tilde{\mathcal{W}}_{J^{(4)}} to \tilde{\mathcal{X}} is the largest in the set S\mathcal{T}^{(q,D)}(\tilde{\mathcal{W}}) , where D is restricted so as
to satisfy the inequality [3\sqrt{N-\sigma(J^{(4)})}/(D+1)]-1\geq 10 .

By taking account of Theorem 6.8 for the non-instantaneous and non-
linear weak causality of rank (q, D) , we define a D^{(4)} -dimensional data
\mathcal{X}^{(4)}=(\mathcal{X}^{(4)}(n);\sigma(J^{(4)})\leq n\leq N) by

\mathcal{X}^{(4)}(n)\equiv\{

(\tilde{\mathcal{W}})_{J^{(4)}}(n) if the first element of J^{(4)}=0

{}^{t}(\tilde{\mathcal{X}}(n),{}^{t}(\tilde{\mathcal{W}})_{J^{(4)}}(n)) if the first element of J^{(4)}\neq 0 ,

(7.44)

where D^{(4)} is given by

D^{(4)}\equiv\{

D if the first element of J^{(4)}=0

D+1 if the first element of J^{(4)}\neq 0 .
(7.45)

As a model selection, we adopt the sample forward KM_{2O}-Langevin
equation associated with the D^{(4)} -dimensional data \mathcal{X}^{(4)} .

[7.3.5] Model Selection We choose the number jo(1\leq jo\leq 4) such
that the sample causal value obtained in subsection [7.3.j_{0}] is the largest
among the maximal sample causal values obtained in four subsections [7.3.j]
(1\leq j\leq 4) .

As a model for the original data \mathcal{X} , we adopt the sample forward KM_{2O}-

Langevin equation associateed with the D^{(j_{0})} -dimensional data \mathcal{X}^{(j_{0})} .

[7.4] (Prediction Formulas) We shall give four kinds of prediction for-
mulas based upon the models selected in [7.3.1], [7.3.2], [7.3.3] and [7.3.4].

[7.4.1] (Linear predictor) Let Z=(Z(n);0\leq n\leq N) be a D-dimen-
sional data which passes Test(S). Therefore, there exists a D-dimensional
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stochastic process Z=(Z(n);0\leq n\leq M) defined on a probablity space
(\Omega, B, P) satisfying weak stationarity whose realizaion is equal to the data
\tilde{Z}_{N-M}=(\tilde{Z}(N-M+n);0\leq n\leq M) . In [5], we have given a linear

arrow-(L;1)

prediction formula for calculating the linear predictor Z_{M} (N+1) of the
one-step future of the data \tilde{Z} . The strategy is to assume that the stochas-
tic process Z would keep weak stationarity until the one-step future. By
applying the prediction formula (7.1) in [5] to the data Z_{N-M} , we have

\Xi_{M}^{(L;1)}(N+1)=H_{M}^{(L;1)}(Z(N), Z(N-1) , . . ’ Z(N-M+1)) ,

(7.46)

where H_{M}^{(L;1)}=H_{M}^{(L;1)} (z_{N}, z_{N-1}, \ldots, z_{N-M+1}) is the R^{D}-valued function
defined by

H_{M}^{(L;1)}(z_{n}, z_{N-1}, \ldots, z_{N-M+1})

\equiv\mu^{Z}-\sum_{k=0}^{M-1} ( \sqrt{R_{11}^{Z}(0)}0^{\cdot}. . \sqrt{R_{dd}^{Z}(0)}0 ) \gamma_{+}(\overline{Z})(M, k)

( \sqrt{R_{11}^{Z}(0)^{-1}}0^{\cdot}. . \sqrt{R_{dd}^{Z}(0)^{-1}}0 ) (z_{N-M+k+1}-\mu^{Z}) .

(7.47)

Moreover, for any p\in N , the linear predictor \Xi_{M}^{(L;1)}(N+p) of the
p-step future of the data Z is given by

\Xi_{M}^{(L;1)}(N+p)

\equiv H_{M}^{(L;1)} ( \Xi_{M}^{(L;1)}(N+p-1) , . ,_{\Xi_{M}^{(L;1)}(N+p-M))} , (7.48)

where for any k(0\leq k\leq N) ,

\Xi_{M}^{(L;1)}(k)\equiv Z(k) . (7.49)

[7.4.2] We deal with the one-dimensional target data \mathcal{X}=(\mathcal{X}(n);0\leq
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n\leq N+L) and the d-dimensional data \mathcal{Y}=(\mathcal{Y}(n);0\leq n\leq N) . For
each j(1\leq j\leq 4) , we apply the prediction formula (7.46) to the D^{(j)_{-}}

dimensional data \mathcal{X}^{(j)}=(\mathcal{X}^{(j)}(\sigma(J^{(j)})+n);0\leq n\leq N-\sigma(J^{(j)})) to obtain
the one-dimensional data \hat{\mathcal{X}}^{(j)}=(\hat{\mathcal{X}}^{(j)}(n);N+1\leq n\leq N+L) which is
made from the non-linear predictors of the p-step futures (1 \leq p\leq L) of
the original data \mathcal{X} .

[7.4.3] (Multiple correlation coefficient and FPE) Let us fix any j(1\leq

j\leq 4) . We examine the fitness of the data \hat{\mathcal{X}}^{(j)} with the rest \mathcal{X}^{(N+1,N+L)}

of the original data \mathcal{X} . For that purpose, we define a multiple correlation
coefficient R between the data \mathcal{X}^{(N+1,N+L)} and \mathcal{X}^{(j)}\wedge by

R \equiv\frac{\sum_{n=1(\mathcal{X}(n+N)-\mu)((n+N)-\mu^{\chi(j)})}^{L\chi^{\wedge}}\mathcal{X}^{(j)}\wedge}{\sqrt{\sum_{n_{-}^{-}1}^{L}(\mathcal{X}(n+N)-\mu^{\mathcal{X}})^{2}\sum_{n_{-1}^{-}}^{L}(\mathcal{X}^{(j)}\wedge\wedge(n+N)-\mu^{\mathcal{X}^{(j)}})^{2}}} .

(7.50)

We consider the predictor is purposive when

R^{2} \geq\frac{D^{(j)}F(D^{(j)},L-D^{(j)}-1,0.05)}{L-D(j)-1+D(j)F(D(j),L-D(j)-1\cdot 0.05)}.

,
, (7.51)

where F(*, \star;\alpha) is the F-distribution and \alpha is the level which defines the
critical region. We denote by LB(R^{2}) the right-hand side of (7.51).

Moreover, we can derive the sample forward KM_{2O}-Langevin equation
associated with the D^{(j)} -dimensional data \mathcal{X}^{(j)}=(\mathcal{X}^{(j)}(\sigma(J^{(j)})+n);0\leq

n\leq N-\sigma(J^{(j)})) :

\{\begin{array}{l}\frac{\mathcal{X}^{(j}}{\mathcal{X}^{(j}}))((N-M^{(j)})=\nu_{N-\sigma(J^{(j)}})-M(j)(0)N-M^{(j)}+n=-\Sigma^{o^{\frac{)}{\mathcal{X}^{(j}}})}\gamma_{+}(R)(n,k)\overline{\mathcal{X}^{(j)}}(N-M^{(j)}+k)n-1 (7.52)k=0 +\iota,N-\sigma(J(j))-M(j)(n) (1\leq n\leq M^{(j)}),\end{array}-

where M^{(j)} is the maximal reliable number of the sample covariance matrix
function R^{\overline{\chi(j})} given by

M^{(j)}\equiv[3\sqrt{N-\sigma(J^{j})+1}/D^{(j)}]-1 . (7.53)
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According to [3], we define the final prediction error FPE for the D^{(j)_{-}}

dimensional data \mathcal{X}^{(j)} by

FPE\equiv(1+\frac{M^{(j)}D^{(j)}+1}{N-\sigma(J^{j})+1})^{D^{(j)}}(1-\frac{M^{(j)}D^{(j)}+1}{N-\sigma(J^{j})+1})^{-D^{(j)}}

det (V_{+}(\mathcal{X}^{j})(M^{(j)})) . (7.54)

8. Data analysis

In this section, we shall apply the results of Section 7 to three kinds
of data such as the sea surface temperature at 0 degree in latitude and
100 degree west in longitude, the air temperature observed at Lima Callao
Airport and the air pressure observed at the same place. We call these data
SST*, LIT and LIP

\dagger

, respectively. These data are monthly average data
of length 130 from May, 1985 to February, 1996 (Figures 8.1, 8.2 and 8.3).

[8.1] (Meteorological data) SST is observed by buoy floating about
at OnlOOw, which is considered to be strongly connected with El-Nino. El-
Ni\tilde{n}0 is related to not only unusual meteorological phenomena but also earth
meteorological system. We examine the following two problems with deep
interest:

(i) Does SST give a certain meteorological effect to LIT or LIP?
(ii) Do LIT and LIP affect meteorologically each other?

Fig. 8.1. Graph of SST

*SST can be obtained via anonymous ftp from ftp.pmel.noaa.gov
\uparrow CD-ROM containing LIT and LIP can be obtained from Japan Meteorological Agency
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Fig. 8.2. Graph of LIT

Fig. 8.3. Graph of LIP

To investigate these problems, we denote the data SST, LIT and LIP
by \mathcal{X}_{1}=(\mathcal{X}_{1}(n);0\leq n\leq 129) , \mathcal{X}_{2}=(\mathcal{X}_{2}(n);0\leq n\leq 129) and \mathcal{X}_{3}=

(\mathcal{X}_{3}(n);0\leq n\leq 129) , respectively. We perform stationary analysis, deter-
ministic analysis and causal analysis among \mathcal{X}_{j}^{(0,119)}(1\leq j\leq 3) . Then
we predict the future of these data by using the information of the result
of causal analysis and then compare the predictor with the rest of data
\mathcal{X}_{j}^{(120,129)}(1\leq j\leq 3) .

[8.2] (Analysis for LIT with SST) In this subsection, we examine
whether there exists a causal relation from SST to LIT. For that purpose,
we transform the data through the following procedure:

Normalization arrow Non-linear transformation arrow Normalization. (8.1)

“Normalization” and “Non-linear transformation” are described in Sec-
tion 7. Throughout this section, we treat the class of non-linear trans-
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formations of rank 6. For one-dimensional case and tw0-dimensional case,
there are 19 transformations and 110 transformations, which are described
in Tables A.I and A.2 of Appendix, respectively.

[8.2.1] (Test(S)) We first check stationarity of LIT.

Table 8.1. Test(S) for one-dimensional non-linear transformations of LIT

Table 8.1 shows the result of the one-dimensional transformations of
LIT. It says that \phi(\tilde{\mathcal{X}}_{2})_{j} passes Test(S) when j=0,1,2,3,6,9,11,16,17,18
and does not pass when j=4,5,7,8,10,12,13,14,15 . Table 8.2 shows the
result of Test(S) for the tw0-dimensional non-linear transformations of LIT.
For example, the pair {}^{t}(\phi_{j}(\tilde{\mathcal{X}}_{2}), \phi_{k}(\tilde{\mathcal{X}}_{2})) passes Test(S) when (j, k)=(0,1)
and does not pass when (j, k)=(0,2) .

Table 8.2. Test(S) for one-dimensional non-linear transformations of LIT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 O \cross O \cross O O \cross \cross \cross \cross \cross \cross \cross \cross \cross \cross \cross O
1 O O \cross O O \cross \cross O O \cross \cross \cross x x \cross \cross O
2 O O \chi O \cross O \cross \cross \cross \cross \cross O \cross \cross \cross \cross

3 \cross \cross O \cross \cross \cross \cross \cross \cross \cross \cross \cross x x \cross

4 \cross \cross O \cross \cross \cross \cross \cross \cross \cross \cross \cross. x \cross

5 \cross \cross \cross \cross \cross \cross \cross \cross \cross \cross \cross \cross \cross

6 \cross \cross \cross x \cross \cross \cross x \cross \cross \cross \cross

7 \cross \cross \cross \cross \cross \cross \cross \cross x \cross \cross

8 \cross \cross \cross \cross \cross \cross \cross \cross \cross \cross

9 \cross \cross \cross x \cross \cross \cross \cross \cross

10 x \cross \cross \cross \cross O \cross \cross

11 \cross \cross x \cross \cross \cross \cross

12 \cross \cross x \cross \cross \cross

13 \cross \cross \cross \cross \cross

14 \cross \cross x \cross

15 \cross \cross \cross

16 x \cross

17 \cross
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On the other hand, Table 8.3 (resp. Table 8.4) shows the result of
Test(S) for the one (resp. two)-dimensional transformations of SST.

Table 8.3. Test(S) for one-dimensional non-linear transformations of SST

Table 8.4. Test(S) for one-dimensional non-linear transformations of SST

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 O O O O O O O x O O O x O \cross x O O O
1 O O \cross O O \cross \cross \cross O O x \cross O x \cross \cross O
2 O O O \cross \cross O O \cross \cross O O \cross \cross O x \cross

3 \cross \cross O \cross x \cross \cross x \cross \cross \cross x \cross \cross \cross

4 \cross \cross O O \cross \cross \cross O \cross \cross \cross \cross \cross \cross

5 \cross \cross \cross O \cross \cross \cross \cross \cross \cross x x \cross

6 \cross \cross \cross \cross \cross \cross \cross \cross \cross \cross \cross \cross

7 \cross \cross \cross \cross \cross x \cross \cross \cross \cross \cross

8 \cross \cross \cross \cross \cross O \cross \cross \cross \cross

9 O \cross \cross \cross \cross \cross \cross \cross x

10 \cross \cross \cross \cross x \cross \cross \cross

11 \cross \cross \cross \cross \cross \cross \cross

12 \cross \cross \cross \cross \cross \cross

13 \cross \cross \cross \cross \cross

14 \cross \cross \cross x

15 \cross \cross \cross

16 \cross \cross

17 \cross

It is to be noted that we have to apply Test(S) to the two dimensional
data {}^{t}(\mathcal{X}_{1}, \mathcal{X}_{2}) .

[8.2.2] (Test (CS)) We shall check whether there exists a certain causal
relation from SST to LIT. Table 8.5 shows the result of causal analysis from
SST to LIT. Combining with the result of Test(CS)-2 for LIT (Table 8.8),
we find that there does not exist either non-linear causality of rank (6,1) or
that of rank (6,2) from SST to LIT. It is to be noted that sh_{c} is 14 when
the length of data is 120.
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Table 8.5. Test(CS) from SST to LIT

Table 8.6. Test(CS) of weak causality from SST to LIT

Table 8.7. Test(CS) of non-instantaneous weak causality
from SST to LIT

On the other hand, Table 8.6 implies that there exist non-linear weak
causality of rank (6,1) and rank (6,2) from SST to LIT, but the pair (0, 8)

of non-linear transformation which has the maximal sample causal value
depends upon only the non-linear transformations of LIT. It follows from
Table 8.7 that the situation of the non-instantaneous and non-linear weak
causality of finite rank from SST to LIT is the same.

However, it follows from Table 8.10 that the sample causal value of the
pair (0, 20) which depends upon the non-linear transformations of LIT and
SST is the second. Therefore, we can say that there exists a non-linear weak

Table 8.8. Test (CS)- 2 for LIT Table 8.9. Test(CS)-2 for SST
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Table 8.10. Transformations which pass Test(CS)-2

Table 8.11. Test(D) for LIT

Table 8.12. Test(D) for SST

causality of rank (6,2) from SST to LIT

[8.2.3] (Test(D)) On the other hand, we see from Tables 8.8 and 8.11
that LIT has non-linear determinism of rank (6,1) and rank (6,2) , but we
find from Tables 8.9 and 8.12 that SST does not have either non-linear
determinism of rank (6,1) or that of rank (6,2) .

[8.2.4] (Prediction) We first predict SST whose predictors are shown
in Figure 8.4.

The R for the predictors of SST and FPE for the models (0), (0, 11) in
Figure 8.4 are shown in Table 8.13:
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oC

Fig. 8.4. Graph of predictor of SST

Table 8.13. Multiple correlation coefficient and FPE for SST

Though the predictors in Figure 8.4 are purposive, they are not fitted
to the original data. The reason seems to be that SST does not have either
non-linear determinism of rank (6,1) or that of rank (6,2) . We find that the
sample causal value (resp. FPE) of the pair (0, 1) is larger (resp. smaller)
than the sample causal value (resp. FPE) of the pair (0).

Next, we show in Figure 8.5 the non-linear predictor of LIT using only
LIT and both LIT and SST.
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\circ c

Fig. 8.5. Graph of predictor of LIT with SST

Table 8.14. Multiple correlation coefficient and FPE for LIT

The predictors are fitted well. The reason seems to be that LIT has
non-linear determinism of rank (6,1) and rank (6,2) .

[8.3] (Analysis for LIP with SST) In this subsection, we shall pursuit
the same analysis for LIP and SST.

[8.3.1] (Test(S)) The results of Test(S) for LIP are shown in Tables
8.15 and 8.16 which tell us that there exist many pairs of non-linear trans-
formations which pass Test(S) unlike the results of Test(S) for LIT and
SST.
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Table 8.15 Test(S) for one-dimensional non-linear transformations of LIP

Table 8.16. Test(S) for tw0-dimensional non-linear transformations of LIP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 O \cross O O O O \cross O O O O \cross \cross O O O O O
1 O O \cross \cross O O \cross O \cross O \cross \cross \cross \cross O O O
2 O O \cross O \cross O \cross O O O \cross O \cross O \cross O
3 O O O O O O O O O \cross O O O O O
4 \cross O \cross \cross O O O \cross O \cross \cross \cross O O
5 O \cross \cross O O O \cross O \cross \cross O O O
6 O O O O O O O O O O O O
7 O O O O \cross \cross O x O \cross O
8 \cross \cross O \cross \cross \cross \cross \cross \cross O
9 O O O O \cross \cross O O O
10 O \cross \cross x \cross O O \cross

11 O O O O O O O
12 O \cross \cross O \cross O
13 \cross \cross O O \cross

14 x O \cross \cross

15 O x \cross

16 O O
17 O

[8.3.2] (Test(CS)) We show in Tables 8.17, 8.18 and 8.19 the results
of Test(CS) from SST to LIP. From the results of Test(CS)-2 in Table 8.20,
it follows that there does not exist either non-linear causality of rank (6,1)
or that of rank (6,2) from SST to LIP.

Table 8.17. Test(CS) from SST to LIP
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Table 8.18. Test(CS) of weak causality from SST to LIP

Table 8.19. Test(CS) of non-instantaneous weak causality
from SST to LIP

Table 8.20. Test(CS)-2 for LIP

[8.3.3] (Test(D)) Table 8.21 shows the results of Test(D) for LIP. It
follows from the results of Test(CS)-2 in Table 8.20 that LIP does not have
either non-linear determinism of rank (6,1) or that of rank (6,2) .

Table 8.21. Test(D) for LIP

[8.3.4] (Prediction) Figure 8.6 shows the non-linear predictor of LIP
using only LIP and both LIP and SST. Though the predictors are purposive,
the predictors are not so good. The reason seems to be that LIP does not
have either non-linear determinism of rank (6,1) or that of rank (6,2) and
there does not exist either non-linear causality of rank (6,1) or that of rank
(6,2) from SST to LIP.
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Fig. 8.6. Graph of predictor of LIP with SST

Table 8.22. Multiple correlation and FPE for LIP

[8.4] (Analysis for LIP with LIT) We shall investigate whether there
exist causal relations from LIT to LIP and predict LIP.

[8.4.1] (Test(S)) We have given in Tables 8.1 and 8.2, and Tables 8.15
and 8.16 the results of Test(S) for LIT and LIP, respectively. It is to be
noted that we have to apply Test(S) to the two dimensional data {}^{t}(\mathcal{X}_{2}, \mathcal{X}_{3}) .

[8.4.2] (Test (CS))
We show in Tables 8.23, 8.24 and 8.25 the results of Test(CS) from LIT

to LIP. It follows from the results of Test(CS)-2 in Table 8.20 that there
exists a non-linear causality of rank (6,2) from LIT to LIP, but that there
exist neither non-instantaneous and non-linear weak causality of rank (6,1)
nor that of rank (6,2) from LIT to LIP.
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Table 8.23. Test(CS) from LIT to LIP

Table 8.24. Test(CS) of weak causality from LIT to LIP

Table 8.25. Test(CS) of non-instantaneous weak causality
from LIT to LIP

Fig. 8.7. Graph of predictor of LIP with LIT
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[8.4.3] (Test(D)) We have shown in Tables 8.11 and 8.21 the results
of Test(D) for LIT and LIP, respectively.

[8.4.4] (Prediction) Figure 8.7 shows the non-linear predictor of LIP
using only LIP and both LIP and LIT. Though LIP does not have either
non-linear determinism of rank (6,1) or that of rank (6,2) , the predictors
are so good. In Figure 8.6 and Table 8.22, we saw that the predictors of
LIP are purposive, but they are not so good. These imply that it is effective
to predict the future of LIP by using not only the past information of LIP
but also the past information of LIT.

Table 8.26. Multiple correlation and FPE for LIP

[8.5] (Analysis for LIT with LIP) Conversely, we shall examine whether
er there exist causal relations from LIP to LIT and predict LIT.

[8.5.1] (Test(S)) As noted in [8.4.1], we have given in Tables 8.1 and
8.2, and Tables 8.15 and 8.16 the results of Test(S) for LIT and LIP, re-
spectively.

[8.5.2] (Test(CS)) We show in Tables 8.27, 8.28 and 8.29 the results of
Test(CS) from LIP to LIT. By the result of Test(CS)-2 for LIT in Table 8.8,

Table 8.27. Test(CS) from LIP to LIT

Table 8.28. Test(CS) of weak causality from LIP to LIT
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Table 8.29. Test(CS) of non-instantaneous weak causality
from LIP to LIT

we can assert that there exist three types of non-linear causal relations from
LIP to LIT.

[8.5.3] (Test(D)) As noted in [8.4.3], we have shown in Tables 8.11
and 8.21 the results of Test(D) for LIT and LIP, respectively.

[8.5.4] (Prediction) Figure 8.8 shows the non-linear predictor of LIT
using only LIT and both LIT and LIP.

oC

Fig. 8.8. Graph of predictor of LIT with LIP

Table 8.30. Multiple correlation and FPE for LIP
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The predictors are so good. As stated in [8.2.4], we know that the
reason is due to the determinism of LIT.

[8.6] (Analysis for SST with LIT or LIP) For completeness, we shall
examine whether there exist causal relations from LIT to SST or from LIP
to SST. It follows from Tables 8.31, 8.32, 8.33, 8.34, 8.35 and 8.36 that there
do not exist either non-linear causal relations of rank (6,1) or that of rank
(6,2) in the both directions from LIT to SST and from LIP to SST.

Table 8.31. Test(CS) from LIT to SST

Table 8.32. Test(CS) of weak causality from LIT to SST

Table 8.33. Test(CS) of non-instantaneous weak causality
from LIT to SST

Table 8.34. Test(CS) from LIP to SST

Table 8.35. Test(CS) of weak causality from LIP to SST
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Table 8.36. Test(CS) of non-instantaneous weak causality
from LIP to SST

[8.7] (Conclusions) We show in Table 8.37 the results of the deter-
ministic analysis for LIP, the causal analysis from SST or LIT to LIP and
the prediction analysis for LIP with only LIP and with both SST and LIT.

We find that LIP does not have either non-linear determinism of rank
(6,1) or that of rank (6,2) and that there does not exist non-linear causality
of rank (6,1) or that of rank (6,2) from SST to LIP. However, we find that
there exists non-linear causality of rank (6,2) from LIT to LIP.

Table 8.37. Sample causal value, multiple correlation coefficient and FPE
for LIP
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The data chosen by model selection is the three-dimensional one:
{}^{t}(\phi_{0}(\mathcal{X}_{3}, (\mathcal{X}_{2})_{+1}) , \phi_{1}(\mathcal{X}_{3}, (\mathcal{X}_{2})_{+1}) , \phi_{36}(\mathcal{X}_{3}, (\mathcal{X}_{2})_{+1}) (8.2)

On the other hand, the data whose sample causal value is the second is the
three-dimensional one:

{}^{t}(\phi_{0}(\mathcal{X}_{3}), \phi_{0}((\mathcal{X}_{2})_{+1}) , \phi_{3}((\mathcal{X}_{2})_{+1}) (8.3)

The graph in Figure 8.7 of the non-linear predictor for the model (8.2)
is purposive. The value of FPE for the model (8.2) is larger than that of
FPE for the model (8.3). But, since their difference is about 0.002, it seems
that the difference can be ignored.

Figure 8.9 shows the results of Test(CS) for SST, LIT and LIP.

(D)

Fig. 8.9. Causal relations among SST, LIT and LIP
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A. Appendix

[A.1] Example of non-linear transformations of rank q for d-dimen-
sional data

{?}..\cdot.\cdot.\varphi_{d_{q}(Z)=(Z_{d}(n)Z_{d}(n.-q+2).,.,l+’.\cdot q-\cdot.\cdot 2\leq n\leq r)\varphi_{d_{q}-1}(Z)=(Z_{d}(n)z^{d-2(n-q+2),l+q-2\leq n\leq r)}\varphi_{d_{q}-2(Z)=(Z_{d}(n)z_{d-1(n-q’+2),l+q-2\leq n\leq r)}}\varphi d_{q-1}+d+4(Z)=(Z(n)^{q-2}Z_{1}(n)Z_{4}(n),l\leq n\leq r)\varphi d_{q-1}+d+3(Z)=(Z_{1}(n)^{q-2}Z_{1}(n)Z_{3}(n),l\leq n\leq r)\varphi d_{q-1}+d+2(Z)=(Z_{1}(n)^{q-2}Z_{1}(n)Z2(n),l\leq n\leq r)\varphi d_{q-1}+d+1(Z)=(Z_{1}(n)^{q-2}Z_{1}(n)^{2}\cdot l\leq n\leq r)\varphi d_{q-1}+d(Z)=(Z_{1}(n)^{q-1}Zd(n)\cdot l\leq n\leq r)\varphi d_{q-1}+3(Z)=(Z_{1}(n_{1})^{q-1}Z_{3}(n),l\leq n\leq r)\varphi d_{q-1}+2(Z)=(Z_{1}(n)^{q-1}Z_{2}(n)\cdot l\leq n\leq r)\varphi_{d_{q-1}+1}(Z)=(Z1(n)^{q},l\leq n\leq r) (A. 1)

[A.2] Non-linear transformations of rank 6 for one-dimensional data

Table A.I. One-dimensional non-linear transformations

[A.3] Non-linear transformations of rank 6 for tw0-dimensional data
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Table A.2. TwO-dimensional non-linear transformations
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