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The diameter of the solvable graph of a finite group

Mina HAGIE
(Received September 27, 1999)

Abstract. Let G be a finite group. We define the solvable graph I's(G) as follows:
the vertices are the primes dividing the order of G and two vertices p, q are joined by
an edge if there is a solvable subgroup of G of order divisible by pq. We will prove that
the diameter of I's(G) is less than or equal to 4 for any finite group G. We use the
classification of finite simple groups.
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1. Introduction

Let G be a finite group and 7(G) the set of primes dividing the order
of G. We denote by m(n) the set of primes dividing a natural number n.

We define the prime graph I'(G) as follows: the vertices are elements of
7(G), and two distinct vertices p, g are joined by an edge, we write p ~ g,
if there is an element of order pq in G. Note that p ~ ¢ if and only if there
is a cyclic subgroup of G of order pq.

We define the solvable graph I's(G) as follows: the vertices are the
elements of 7(G), and two distinct vertices p, g are joined by an edge, we
write p = g, if there is a solvable subgroup of G of order divisible by pq.
The concept of solvable graphs was defined recently in Abe-Iiyori [1].

It has been studied about the connected components of TI'(G) in
Williams [8], Iiyori and Yamaki [5], Kondrat'ev [6]. Abe and Iiyori
proved that I's(G) is connected. The diameter of I'(G) has been deter-
mined by Lucido [7]. We denote the connected components of I'(G) by
T1, -« Tn(r(G)), Where n(['(G)) is the number of connected components of
I'(G). If the order of G is even, we take 7 to be the component containing
2. Let d(p,q) (resp. ds(p,q)) be the distance between two vertices p, ¢ in
I'(G) (resp. I's(G)). We can define the diameter of I's(G) as follows:

diam(I's(G)) = max{ds(p, q) | p,q € ©(G)}.

The purpose of this paper is to prove:
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Theorem 1 Let G be a finite group. Then diam(I's(G)) < 4.

Corollary If G is a non-abelian simple group, then diam(I'g(G)) = 2,3
or 4.

Theorem 2 Let G be a finite group. Then dg(2,p) < 3 for any p € 7(G).

Example Let G be the Mathieu simple group Mo3 of degree 23. We can
draw easily I'g(G) by the table of the maximal subgroups of Ms3 in Atlas
14]. Indeed, T's(G) is:

2 7
><C O O
3 5 11 23

Thus diam(I's(G)) = 4, since dg(7,23) = 4.

2. Preliminaries
The following Lemma is fundamental to the study of solvable graphs.

Lemma 2.1 (Abe-liyori [1]) We take two distinct vertices p,q € 7(G).

(1) If p~q, thenp=q.

(2) Let H be a subgroup of G. If p=q in T's(H), then p = q in I's(G).

(3) If G has a non-trivial normal subgroup K, then p = q in T's(G) for
p € m(K) and q € 7(G/K).

(4) Let K be a normal subgroup of G. If p=~ q in I's(G/K), then p = q
in L's(G).

We will apply the following propositions.

Proposition 1 (Williams [8]) Let G be a non-abelian simple group such
that n(I'(G)) > 2. Then

(1) G has a Hall m;-subgroup H; for a connected component m; (i > 2) of
I(G),
(2) Hj; is an isolated abelian subgroup of G.

Note A subgroup H of G is called isolated if HN HY9 = (1) or H for any
g € G, and for any h € H — {1}, Cg(h) C H.

Proposition 2 (Abe-liyori [1]) The following claims hold:
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(1) Let G be a non-abelian simple group such that n(I'(G)) > 2. If H; is
a Hall m;-subgroup (i > 2), then H; is a proper subgroup of Ng(H;).

(2) T's(G) is connected.

(3) If G is a non-abelian simple group, then T's(G) is incomplete, i.e.,
diam(I's(G)) > 2.

Proposition 3 (Chigira-liyori-Yamaki [2], [3], Lucido [7]) If G is a sim-
ple group, then d(2,p) < 2 for any p € m.

Lemma 2.2 If |7(G)| < 4, then diam(I's(G)) < 3 and dg(2,p) < 3 for
any p € 7(G).

Proof.  This is immediate from Proposition 2(2). 4

Lemma 2.3 Let G be a simple group with n(I'(G)) > 2. Suppose that G
has a subgroup H, such that p € 7(Hp) and |Ng(Hp) : Hp| is even for any
p € 7(G) — m1. Then diam(I's(G)) < 4.

Proof.  As G is simple, d(2,7) < 2 for any r € ;. Since |[Ng(H,)| is even,
2=~ pfor any p € m; (i > 2). Thus diam(T's(G)) < 4. O

Notation Put 7(Cr) = U, m(Ca(t)), where I(G) is the set of all
involutions in G. Put 7(Cy) = U,e g 7(Ca(u)), where J(G) is the set of
all elements of order 3 in G.

Lemma 2.4 Let G be a non-abelian simple group. If n(T'(G)) = 2 and
71 = w(Cr), then diam(I's(G)) < 3.

Proof.  There is an abelian Hall mo-subgroup H by Proposition 1. Propo-
sition 2(1) claims the existence of p € m; such that p||[Ng(H)|. For any
q € ma, p = q. Thus diam(I's(G)) < 3. O

Lemma 2.5 Let G be a non-abelian simple group. If n(I'(G)) = 2 and
G has an abelian subgroup H satisfying n(G) — (7(Cr) Umg) C w(H), then
diam(T's(G)) < 4.

Proof.  There is p € m; such that p = ¢ for any ¢q € 72 by Proposition 2(1).
If p € 7(Cr), then dg(2,r) < 2 for any r € n(G) by Proposition 3. If p €
7(H), then ds(2,¢) < 3 for any g € my. Since H is abelian, diam(I's(G)) <
4. O
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3. Proof of Theorem 1
We will give a proof of [Theorem 1.
Lemma 3.1 If G is not a simple group, then diam(I's(G)) =1 or 2.

Proof.  Suppose G has a non-trivial proper normal subgroup N. It follows
from Lemma 2.7(3) that there is ¢ € w(N) such that p; ~ q =~ ps for any
p1,p2 € m(G/N). Similarly, there is p € 7(G/N) such that ¢; = p = g9 for
any qi, g2 € m(N). Since 7(G) = 7(G/N)Un(N), diam(I's(G)) < 2. O

Lemma 3.2 If G is the alternating group, then diam(I's(G)) < 3.

Proof.  Suppose that G is the alternating group A, of degree n (n > 5).
If n =5, 6, then diam(I's(G)) = 2. Suppose n > 7. If there is a prime p
such that n — 2 < p < n, then Sylow p-subgroups of G are cyclic. There is
g € m((p—1)/2) U {2} such that p = q. Thus diam(I's(G)) < 3. O]

Remark Let A, be the alternating group of degree n (n > 5). If
diam(I's(Ay)) = 3, then either n or n — 1 is a prime p such that p = 3 mod
4.

Proof.  Suppose n and n — 1 are not prime p = 3 mod 4. Since A,, has a
subgroup which is isomorphic to a symmetric group of degree n — 2, 2 = p
for any prime p < n —2. If n or n — 1 is a prime p such that p = 1 mod
4, then A, has a dihedral subgroup of order 2p, and so 2 ~ p. Thus 2 = p
for any p € w(A,). It follows from Proposition 2(3) that diamT's(A4,) = 2.

O

Lemma 3.3 If G is a sporadic simple group, then diam(I's(G)) < 4.

Proof. ~ We can draw I's(G) for a sporadic simple group G by tables of
maximal subgroups and p-local subgroups in Atlas [4] using Lemma 2.1. It
have been completely classified that the maximal subgroups of the Baby
Monster simple group B by Wilson [9].

For example, let M be the Monster simple group. Then 7(M) =
{2,3,5,7,11,13,17,19,23,29,31,41,47,59,71}. M has a 2-local subgroup
isomorphic to 2'B, n(B) = {2,3,5,7,11,13,17,19,23,31,47}. For any
p € m(B), p = 2. M has p-local subgroups isomorphic to 71 : 35, 59 : 29,
41 : 40, 29 : 14 for p = 71, 59, 41, 29. It follows that 59 =~ 29 = 7 =~ T71.
Since dg(59,71) = 3, diam(I's(M)) = 3.
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The following table shows the diameter of I's(G) for a sporadic simple
group G.

Sporadic simple group Diameter
Ji, Jo, He, Ru, Suz, O’N, Fiy, 2
Ly, Th, Fizg, COl, J4, Fi'24
My, Mo, Mag, HS, Js3, May, 3
M°L, Cos, Coy, HN, B, M
Mos 4

Lemma 3.4 If G is either Eg(q) or ?Eg(q?), then diam(I's(G)) < 3.

Proof. Let G = Fg(q). Suppose that q is odd. Then m((¢® + ¢ +
1)(g* — ¢* +1)/(3,g — 1)) contains 7(G) — n(C) by [8]. m(Cy) > 2,3 and
p1 ~ 3 for any pp € m((¢® + ¢® +1)/(8,g — 1)), p2 = 2 for any py €
m(g* —¢*+1) by [1]. Thus diam(I's(G)) < 3. Suppose that g is even. Then
(g% + ¢ + 1)(q¢* + 1)(¢* — ¢* + 1)/(3,q — 1)) contains 7(G) -- n(Cy) by
[5]. 7(Cr) 22,3 and py ~ 3 for any p; € 7((¢® + ¢ +1)/(3,g - 1)), p2 = 2
for any py € m(¢* + 1), ps = 2 for any p3 € 7(¢* — ¢* + 1) by [1]. Thus
diam(I's(G)) < 3.

Let G = 2Eg(q). Suppose that q is odd. Then 7((q® — ¢®+1)(¢* — ¢* +
1)/(3,g+1)) contains 7(G) — 7(Cy) by [8]. 7(Cr) 2,3 and p; = 3 for any
p1 € m((¢®—¢*>+1)/(3,q+1)), pa = 2 for any ps € m(q*—¢*+1) by [1]. Thus
diam(I's(G)) < 3. Suppose that q is even. Then 7((¢® — ¢ + 1)(¢* — ¢* +
1)(g*+1)/(3,g+ 1)) contains n(G) — m(Cy) by [5]. 7(Cr) 2,3 and p1 =3
for any p1 € 7((¢° — ¢* +1)/(3,g+ 1)), p2 = 2 for any p; € 7(¢* — ¢* + 1),
p3 =~ 2 for any p3 € m(q* + 1) by [1]. Thus diam(I's(G)) < 3. O

Lemma 3.5 If G is a simple group of Lie type such that n(I'(G)) = 1,
then diam(I's(G)) < 4.

Proof.  For any p € n(G), d(2,p) < 2 by [Proposition 3.
Thus diam(I's(G)) < 4. O

Lemma 3.6 If G is a simple group of Lie type such that n(T'(G)) = 3,4
or 5, then diam(I's(G)) < 4.

Proof. If G satisfies the hypotheses of [Lemma 2.2 or [Lemma 2.3, then
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diam(I's(G)) < 4. Thus we can assume that G is one of the following groups

by the tables of [8], [5] and [1].

A (q), ¢ = -1 (mod 4), ¢>19,
245(2),

2D,(3?), p=2"+1, n>2,
2E6(22)

It follows that diam(I's(Ai(g))) < 3. Indeed, diam(I'g(*A45(2))) = 3 by
Atlas [4]. We showed diam(T's(®Eg(22))) < 3 in Lemma 3.4. Let G
be 2D,(3%). G has an abelian subgroups Ha such that m C 7(H,) and
|Ng(Hz) : Ha| is a power of 2. Since we can know that m; = 7(Cf) from
, 2 =~ r for any prime r in m; U mg. There is r € m U m9 such that r =~ s
for any s € w3 from [Proposition 1. Thus diam(I's(G)) < 3. O

Lemma 3.7 If G is a simple group of Lie type such that n(I'(G)) = 2,
then diam(I's(G)) < 4.

Proof.  If G satisfies the hypotheses of Lemma 2.2 or Lemma 2.3, then
the result is trivial. Groups in the following list satisfy the hypotheses of
Lemma 2.4.

Ap—l(q)7

BQ"(Q)a n Z 25
Bp(3)a

Can(q), n>1,
Cp(3)a

DP(3)7 D 2 57
Dp1(3), p=>3,
2Ap_1(q2)7

2Ap(¢®),  q+1lp+1,
2D2"(q2)a

where ¢ is odd and p is an odd prime.
Can(q), n=>1,

where q is even.
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Groups in the following list satisfy the hypotheses of [Lemma 2.5.

Ap(q), q—-1|p+1
Dp(5)v P>

2Dy(3%), 1#£2"+1, l=p
2Dy(32), l=2"+1, l#p,

where ¢ is odd and p is an odd prime.

Ap-1(q), p=>5,
Ap(q), q—1|p+1,
Cp(2),

2Ap—1(q2),

240(¢%), q+1|p+1,

where ¢ is even and p is an odd prime.
holds for these groups by [8] and [5].

Thus we can assume that G is one of the following groups:

Dp(z)a
DP+1(2)’
2D2n(q2), n>2,

where ¢ is even and p is an odd prime.

Suppose that G is Dy(2). G contains a subgroup isomorphic to
Dy_1(2) x Z3. We have | Dy(2) : Di_1(2)] = 22(:=D (25 +1)(25-1+1). There
is a maximal torus T(Dy), of order 3(25~1 + 1). w(Dw(2)) = 7(Cy) U ma.
Thus diam(I'g(G)) < 3.

Suppose that G is 2Dg(q). G contains subgroups isomorphic to
Dy_1(q) X Zg11, 2Dp_1(q) X Z4_1. We have |2Dy(q) : Dr_1(q)|=¢**D(¢*+
1)(¢* ' +1), PDi(q) : 2De-1(g)l = ¢**V(¢" + 1)(¢*~ — 1). There are
maximal tori T1, Ty, T3 such that |T1| = ¢* + 1, |Ty| = (¢*~! + 1)(¢ — 1),
T3] = (g +1)(¢*~! — 1). Suppose ¢ = 2% (« is even), then 3 |IT2!, 3||T5].
Suppose ¢ = 2% (a is odd) and k = 2", then 3 ||T3/, 3 ||T5|. Suppose g = 2,
k =2"+1, then 3||Ty|, 3||T3|. Thus 7(G) = m(Cy)Ums, diam(I's(G)) < 3.

Suppose that G is A2(2"), n > 3. Then 7(Cy) = 2(¢ — 1)/(3,q — 1).
There are tori of order (¢ —1)2/(3,q—1), (¢* —1)/(3,q—1) and (¢*> + q +
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1)/(3,¢g— 1) in G. It follows that r ~ s for any r € 7(q — 1/(3,q — 1)),
s € m1. Thus diam(T'g(G)) < 3. O

Proof of Theorem 1. If G is not simple group, then diam(I's(G)) = 1 or
2 from Lemma 3.1. We may assume that G is isomorphic to one of the
following simple groups:

(1) an alternating group A, with n > 5,

(2) one of the 26 sporadic simple groups,

(3) a simple group of Lie type.
Thus we have proved that diam(I's(G)) < 4 for a non-abelian simple group

G. This completes the proof of [Theorem 1. O
Proof of If G is a non-abelian simple group, then diam(I's(G))
> 2 from Proposition 2(3). Thus this is trivial from Theorem 1. g

4. Proof of Theorem 2

We can assume that G is a simple group by Lemma 3.1 and G is not
an alternating group by Lemma 3.2. The diameter of any sporadic simple
group is 2 or 3, except for Ma3. If G is Mas, then dg(2,p) < 3 for any
p € m(G) by I's(Ma3).

Proof of Theorem 2. 'We can assume that G is a simple group of Lie type.
Actually, we have also proved that dg(2,p) < 3 for p € n(G) in Lemmas
3.4, 3.5, 3.6 and 3.7. The proof of Theorem 2 is complete. 0
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