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The diameter of the solvable graph of a finite group

Mina HAGIE
(Received September 27, 1999)

Abstract. Let G be a finite group. We define the solvable graph \Gamma_{S}(G) as follows:
the vertices are the primes dividing the order of G and two vertices p , q are joined by
an edge if there is a solvable subgroup of G of order divisible by pq . We will prove that
the diameter of \Gamma_{S}(G) is less than or equal to 4 for any finite group G. We use the
classification of finite simple groups.
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1. Introduction

Let G be a finite group and \pi(G) the set of primes dividing the order
of G . We denote by \pi(n) the set of primes dividing a natural number n .

We define the prime graph \Gamma(G) as follows: the vertices are elements of
\pi(G) , and two distinct vertices p, q are joined by an edge, we write p\sim q ,
if there is an element of order pq in G . Note that p\sim q if and only if there
is a cyclic subgroup of G of order pq .

We define the solvable graph \Gamma_{S}(G) as follows: the vertices are the
elements of \pi(G) , and two distinct vertices p, q are joined by an edge, we
write p\approx q , if there is a solvable subgroup of G of order divisible by pq .
The concept of solvable graphs was defined recently in Abe-Iiyori [1].

It has been studied about the connected components of \Gamma(G) in
Williams [8], Iiyori and Yamaki [5], Kondrat’ev [6]. Abe and Iiyori [1]
proved that \Gamma_{S}(G) is connected. The diameter of \Gamma(G) has been deter-
mined by Lucido [7]. We denote the connected components of \Gamma(G) by
\pi_{1} , \ldots , \pi_{n(\Gamma(G))} , where n(\Gamma(G)) is the number of connected components of
\Gamma(G) . If the order of G is even, we take \pi_{1} to be the component containing
2. Let d(p, q) (resp. d_{S} (p , q)) be the distance between two vertices p, q in
\Gamma(G) (resp. \Gamma_{S}(G) ). We can define the diameter of \Gamma_{S}(G) as follows:

diam( \Gamma_{S}(G))=\max\{d_{S}(p, q)|p, q\in\pi(G)\} .

The purpose of this paper is to prove:
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Theorem 1 Let G be a finite group. Then diam(\Gamma_{S}(G))\leq 4 .

Corollary If G is a non-abelian simple group, then diam(\Gamma_{S}(G))=2,3

or 4.

Theorem 2 Let G be a finite group. Then d_{S}(2,p)\leq 3 for any p\in\pi(G) .

Example Let G be the Mathieu simple group M_{23} of degree 23. We can
draw easily \Gamma_{S}(G) by the table of the maximal subgroups of M_{23} in Atlas
[4]. Indeed, \Gamma_{S}(G) is:

2 7

3 5 11 23

Thus diam(\Gamma_{S}(G))=4 , since d_{S}(7,23)=4 .

2. Preliminaries

The following Lemma is fundamental to the study of solvable graphs.

Lemma 2.1 (Abe-Iiyori [1]) We take two distinct vertices p, q\in\pi(G) .
(1) If p\sim q , then p\approx q .
(2) Let H be a subgroup of G. If p\approx q in \Gamma_{S}(H) , then p\approx q in \Gamma_{S}(G) .
(3) If G has a non-trivial normal subgroup K, then p\approx q in \Gamma_{S}(G) for

p\in\pi(K) and q\in\pi(G/K) .
(4) Let K be a normal subgroup of G. If p\approx q in \Gamma_{S}(G/K) , then p\approx q

in \Gamma_{S}(G) .

We will apply the following propositions.

Proposition 1 (Williams [8]) Let G be a non-abelian simple group such
that n(\Gamma(G))\geq 2 . Then
(1) G has a Hall \pi_{i} subgroup H_{i} for a connected component \pi_{i}(i\geq 2) of

\Gamma(G) ,
(2) H_{i} is an isolated abelian subgroup of G .

Note A subgroup H of G is called isolated if H\cap H^{g}=\langle 1\rangle or H for any
g\in G , and for any h\in H-\{1\} , C_{G}(h)\subseteq H .

Proposition 2 (Abe-Iiyori [1]) The following claims hold:
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(1) Let G be a non-abelian simple group such that n(\Gamma(G))\geq 2 . If H_{i} is
a Hall \pi_{i} subgroup (i\geq 2) , then H_{i} is a proper subgroup of N_{G}(H_{i}) .

(2) \Gamma_{S}(G) is connected.
(3) If G is a non-abelian simple group, then \Gamma_{S}(G) is incomplete, i.e. ,

diam(\Gamma_{S}(G))\geq 2 .

Proposition 3 (Chigira-Iiyori-Yamaki [2], [3], Lucido [7]) If G is a sim-
ple group, then d(2,p)\leq 2 for any p\in\pi_{1} .

Lemma 2.2 If |\pi(G)|\leq 4 , then diam(\Gamma_{S}(G))\leq 3 and d_{S}(2,p)\leq 3 for
any p\in\pi(G) .

Proof. This is immediate from Proposition 2(2) . \square

Lemma 2.3 Let G be a simple group with n(\Gamma(G))\geq 2 . Suppose that G
has a subgroup H_{p} such that p\in\pi(H_{p}) and |N_{G}(H_{p}) : H_{p}| is even for any
p\in\pi(G)-\pi_{1} . Then diam(\Gamma_{S}(G))\leq 4 .

Proof. As G is simple, d(2, r)\leq 2 for any r\in\pi_{1} . Since |N_{G}(H_{p})| is even,
2\approx p for any p\in\pi_{i}(i\geq 2) . Thus diam(\Gamma_{S}(G))\leq 4 . \square

Notation Put \pi(C_{I})=\bigcup_{t\in I(G)}\pi(C_{G}(t)) , where I(G) is the set of all
involutions in G . Put \pi(C_{J})=\bigcup_{u\in J(G)}\pi(C_{G}(u)) , where J(G) is the set of
all elements of order 3 in G .

Lemma 2.4 Let G be a non-abelian simple group. If n(\Gamma(G))=2 and
\pi_{1}=\pi(C_{I}) , then diam(\Gamma_{S}(G))\leq 3 .

Proof. There is an abelian Hall \pi_{2} subgroup H by Proposition 1. PropO-
sition 2(1) claims the existence of p\in\pi_{1} such that p||N_{G}(H)| . For any
q\in\pi_{2} , p\approx q . Thus diam(\Gamma_{S}(G))\leq 3 . \square

Lemma 2.5 Let G be a non-abelian simple group. If n(\Gamma(G))=2 and
G has an abelian subgroup H satisfying \pi(G)-(\pi(C_{I})\cup\pi_{2})\subseteq\pi(H) , then
diam(\Gamma_{S}(G))\leq 4 .

Proof. There is p\in\pi_{1} such that p\approx q for any q\in\pi_{2} by Proposition 2(1) .
If p\in\pi(C_{I}) , then d_{S}(2, r)\leq 2 for any r\in\pi(G) by Proposition 3. If p\in

\pi(H) , then d_{S}(2, q)\leq 3 for any q\in\pi_{2} . Since H is abelian, diam(\Gamma_{S}(G))\leq

4 . \square
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3. Proof of Theorem 1

We will give a proof of Theorem 1.

Lemma 3.1 If G is not a simple group, then diam(\Gamma_{S}(G))=1 or 2.

Proof. Suppose G has a non-trivial proper normal subgroup Nt It follows
from Lemma 2.1(3) that there is q\in\pi(N) such that p_{1}\approx q\approx p_{2} for any
p_{1},p_{2}\in\pi(G/N) . Similarly, there is p\in\pi(G/N) such that q_{1}\approx p\approx q_{2} for
any q_{1} , q_{2}\in\pi(N) . Since \pi(G)=\pi(G/N)\cup\pi(N) , diam(\Gamma_{S}(G))\leq 2 . \square

Lemma 3.2 If G is the alternating group, then diam(\Gamma_{S}(G))\leq 3 .

Proof. Suppose that G is the alternating group A_{n} of degree n(n\geq 5) .
If n=5,6 , then diam(\Gamma_{S}(G))=2 . Suppose n\geq 7 . If there is a prime p
such that n-2\leq p\leq n , then Sylow p-subgroups of G are cyclic. There is
q\in\pi((p-1)/2)\cup\{2\} such that p\approx q . Thus diam(\Gamma_{S}(G))\leq 3 . \square

Remark Let A_{n} be the alternating group of degree n(n\geq 5) . If
diam(\Gamma_{S}(A_{n}))=3 , then either n or n-1 is a prime p such that p\equiv 3 mod
4.

Proof. Suppose n and n-1 are not prime p\equiv 3 mod 4. Since A_{n} has a
subgroup which is isomorphic to a symmetric group of degree n-2,2\approx p

for any prime p\leq n-2 . If n or n-1 is a prime p such that p\equiv 1 mod
4, then A_{n} has a dihedral subgroup of order 2p, and so 2\approx p . Thus 2\approx p

for any p\in\pi(A_{n}) . It follows from Proposition 2(3) that diam \Gamma_{S}(A_{n})=2 .
\square

Lemma 3.3 If G is a sporadic simple group, then diam(\Gamma_{S}(G))\leq 4 .

Proof. We can draw \Gamma_{S}(G) for a sporadic simple group G by tables of
maximal subgroups and p-local subgroups in Atlas [4] using Lemma 2.1. It
have been completely classified that the maximal subgroups of the Baby
Monster simple group B by Wilson [9].

For example, let M be the Monster simple group. Then \pi(M)=
\{2,3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71\} . M has a 2-local subgroup
isomorphic to 2^{\cdot}B , \pi(B)=\{2,3,5,7,11,13,17,19,23,31, 47\} . For any
p\in\pi(B) , p\approx 2 . M has p-local subgroups isomorphic to 71 : 35, 59 : 29,
41 : 40, 29. 14 for p=71,59,41,29 . It follows that 59\approx 29\approx 7\approx 71 .
Since d_{S}(59,71)=3 , diam(\Gamma_{S}(M))=3 .
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The following table shows the diameter of \Gamma_{S}(G) for a sporadic simple
group G .

Sporadic simple group Diameter
J_{1} , J_{2} , He, Ru , Suz , O’ N, Fi_{22} ,

Ly , Th, Fi_{23} , Co_{1} , J_{4} , Fi_{24}’

2

M_{11} , M_{12} , M_{22} , HS, J_{3} , M_{24} ,
M^{c}L , Co_{3} , Co_{2} , HN, B , M

3

M_{23} 4
\square

Lemma 3.4 If G is either E_{6}(q) or 2E_{6}(q^{2}) , then diam(\Gamma_{S}(G))\leq 3 .

Proof. Let G=E_{6}(q) . Suppose that q is odd. Then \pi((q^{6}+q^{3}+

1)(q^{4}-q^{2}+1)/(3, q-1)) contains \pi(G)-\pi(C_{I}) by [8]. \pi(C_{I})\ni 2,3 and
p_{1}\approx 3 for any p_{1}\in\pi((q^{6}+q^{3}+1)/(3, q - 1)) , p_{2}\approx 2 for any p_{2}\in

\pi(q^{4}-q^{2}+1) by [1]. Thus diam(\Gamma_{S}(G))\leq 3 . Suppose that q is even. Then
\pi((q^{6}+q^{3}+1)(q^{4}+1)(q^{4}-q^{2}+1)/(3, q-1)) contains \pi(G)-\pi(C_{I}) by
[5]. \pi(C_{I})\ni 2,3 and p_{1}\approx 3 for any p_{1}\in\pi((q^{6}+q^{3}+1)/(3, q-1)) , p_{2}\approx 2

for any p_{2}\in\pi(q^{4}+1) , p_{3}\approx 2 for any p_{3}\in\pi(q^{4}-q^{2}+1) by [1]. Thus
diam(\Gamma_{S}(G))\leq 3 .

Let G=2E_{6}(q) . Suppose that q is odd. Then \pi((q^{6}-q^{3}+1)(q^{4}-q^{2}+

1)/(3, q+1)) contains \pi(G)-\pi(C_{I}) by [8]. \pi(C_{I})\ni 2,3 and p_{1}\approx 3 for any
p_{1}\in\pi((q^{6}-q^{3}+1)/(3, q+1)) , p_{2}\approx 2 for any p_{2}\in\pi(q^{4}-q^{2}+1) by [1]. Thus
diam(\Gamma_{S}(G))\leq 3 . Suppose that q is even. Then \pi((q^{6}-q^{3}+1)(q^{4}-q^{2}+

1)(q^{4}+1)/(3, q+1)) contains \pi(G)-\pi(C_{I}) by [5]. \pi(C_{I})\ni 2,3 and p_{1}\approx 3

for any p_{1}\in\pi((q^{6}-q^{3}+1)/(3, q+1)) , p_{2}\approx 2 for any p_{2}\in\pi(q^{4}-q^{2}+1) ,
p_{3}\approx 2 for any p_{3}\in\pi(q^{4}+1) by [1]. Thus diam(\Gamma_{S}(G))\leq 3 . \square

Lemma 3.5 If G is a simple group of Lie type such that n(\Gamma(G))=1 ,
then diam(\Gamma_{S}(G))\leq 4 .

Proof. For any p\in\pi(G) , d(2,p)\leq 2 by Proposition 3.
Thus diam(\Gamma_{S}(G))\leq 4 . \square

Lemma 3.6 If G is a simple group of Lie type such that n(\Gamma(G))=3,4

or 5, then diam(\Gamma_{S}(G))\leq 4 .

Proof. If G satisfies the hypotheses of Lemma 2.2 or Lemma 2.3, then
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diam(\Gamma_{S}(G))\leq 4 . Thus we can assume that G is one of the following groups
by the tables of [8], [5] and [1].

A_{1}(q) , q\equiv-1 (mod 4), q\geq 19 ,
2A_{5}(2) ,
2D_{p}(3^{2}) , p=2^{n}+1 , n\geq 2 ,
2E_{6}(2^{2}) .

It follows that diam(\Gamma_{S}(A_{1}(q)))\leq 3 . Indeed, diam(\Gamma_{S}(^{2}A_{5}(2)))=3 by
Atlas [4]. We showed diam(\Gamma_{S}(^{2}E_{6}(2^{2})))\leq 3 in Lemma 3.4. Let G
be 2D_{p}(3^{2}) . G has an abelian subgroups H_{2} such that \pi_{2}\subseteq\pi(H_{2}) and
|N_{G}(H_{2}) : H_{2}| is a power of 2. Since we can know that \pi_{1}=\pi(C_{I}) from
[8], 2\approx r for any prime r in \pi_{1}\cup\pi_{2} . There is r\in\pi_{1}\cup\pi_{2} such that r\approx s

for any s\in\pi_{3} from Proposition 1. Thus diam(\Gamma_{S}(G))\leq 3 . \square

Lemma 3.7 If G is a simple group of Lie type such that n(\Gamma(G))=2 ,
then diam(\Gamma_{S}(G))\leq 4 .

Proof If G satisfies the hypotheses of Lemma 2.2 or Lemma 2.3, then
the result is trivial. Groups in the following list satisfy the hypotheses of
Lemma 2.4.

A_{p-1}(q) ,
B_{2^{n}}(q) , n\geq 2 ,
B_{p}(3) ,
C_{2^{n}}(q) , n\geq 1 ,
C_{p}(3) ,
D_{p}(3) , p\geq 5 ,
D_{p+1}(3) , p\geq 3 ,
2A_{p-1}(q^{2}) ,
2A_{p}(q^{2}) , q+1|p+1 ,
2D_{2^{n}}(q^{2}) ,

where q is odd and p is an odd prime.

C_{2^{n}}(q) , n\geq 1 ,

where q is even.
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Groups in the following list satisfy the hypotheses of Lemma 2.5.

A_{p}(q) , q-1|p+1
D_{p}(5) , p\geq 5

2D_{l}(3^{2}) , l\neq 2^{n}+1 , l=p
2D_{l}(3^{2}) , l=2^{n}+1 , l\neq p ,

where q is odd and p is an odd prime.

A_{p-1}(q) , p\geq 5 ,
A_{p}(q) , q-1|p+1 ,
C_{p}(2) ,
2A_{p-1}(q^{2}) ,
2A_{p}(q^{2}) , q+1|p+1 ,

where q is even and p is an odd prime.
Lemma 3.7 holds for these groups by [8] and [5].
Thus we can assume that G is one of the following groups:

D_{p+1}(2)D_{p}(2),

,
2D_{2^{n}}(q^{2}) , n\geq 2 ,
2D_{2^{n}+1}(q^{2}) , n\geq 2 ,
A_{2}(2^{n}) , n\geq 3 ,

where q is even and p is an odd prime.
Suppose that G is D_{k}(2) . G contains a subgroup isomorphic to

D_{k-1}(2)\cross Z_{3} . We have |D_{k}(2) : D_{k-1}(2)|=2^{2(k-1)}(2^{k}+1)(2^{k-1}+1) . There
is a maximal torus T(D_{k}) , of order 3(2^{k-1}+1) . \pi(D_{k}(2))=\pi(C_{J})\cup\pi_{2} .
Thus diam(\Gamma_{S}(G))\leq 3 .

Suppose that G is 2D_{k}(q) . G contains subgroups isomorphic to
D_{k-1}(q)\cross Z_{q+1},2D_{k-1}(q)\cross Z_{q-1} . We have |^{2}D_{k}(q) : D_{k-1}(q)|=q^{2(k-1)}(q^{k}+

1)(q^{k-1}+1) , |^{2}D_{k}(q) : 2D_{k-1}(q)|=q^{2(k-1)}(q^{k}+1)(q^{k-1}-1) . There are
maximal tori T_{1} , T_{2} , T_{3} such that |T_{1}|=q^{k}+1 , |T_{2}|=(q^{k-1}+1)(q-1) ,
|T_{3}|=(q+1)(q^{k-1}-1) . Suppose q=2^{\alpha} ( \alpha is even), then 3||T_{2}|., 3||T_{3}| .
Suppose q=2^{\alpha} ( \alpha is odd) and k=2^{n} , then 3||T_{2}| , 3||T_{3}|1 Suppose q=2 ,
k=2^{n}+1 , then 3||T_{1}| , 3||T_{3}| . Thus \pi(G)=\pi(C_{J})\cup\pi_{2} , diam(\Gamma_{S}(G))\leq 3 .

Suppose that G is A_{2}(2^{n}) , n\geq 3 . Then \pi(C_{I})=2(q-1)/(3, q-1) .
There are tori of order (q-1)^{2}/(3, q-1) , (q^{2}-1)/(3, q-1) and (q^{2}+q+
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1)/(3, q-1) in G . It follows that r\sim s for any r\in\pi(q-1/(3, q-1)) ,
s\in\pi_{1} . Thus diam(\Gamma_{S}(G))\leq 3 . \square

Proof of Theorem 1. If G is not simple group, then diam(\Gamma_{S}(G))=1 or
2 from Lemma 3.1. We may assume that G is isomorphic to one of the
following simple groups:

(1) an alternating group A_{n} with n\geq 5 ,
(2) one of the 26 sporadic simple groups,
(3) a simple group of Lie type.

Thus we have proved that diam(\Gamma_{S}(G))\leq 4 for a non-abelian simple group
G . This completes the proof of Theorem 1. \square

Proof of Corollary. If G is a non-abelian simple group, then diam(\Gamma_{S}(G))

\geq 2 from Proposition 2(3) . Thus this is trivial from Theorem 1. \square

4. Proof of Theorem 2

We can assume that G is a simple group by Lemma 3.1 and G is not
an alternating group by Lemma 3.2. The diameter of any sporadic simple
group is 2 or 3, except for M_{23} . If G is M_{23} , then d_{S}(2,p)\leq 3 for any
p\in\pi(G) by \Gamma_{S}(M_{23}) .

Proof of Theorem 2. We can assume that G is a simple group of Lie type.
Actually, we have also proved that d_{S}(2,p)\leq 3 for p\in\pi(G) in Lemmas
3.4, 3.5, 3.6 and 3.7. The proof of Theorem 2 is complete. \square
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