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Strong almost convergence and almost
\mbox{\boldmath $\lambda$}-statistical convergence
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Abstract. The purpose of this paper is to define almost \lambda-statistical convergence by
using the notion of (V, \lambda)-summability to generalize the concept of statistical convergence.
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1. Introduction

Let s be the set of all real or complex sequences and let l_{\infty} , c and
c_{0} denote the Banach spaces of bounded, convergent and null sequences
x=(x_{k}) , respectively normed as usual by ||x||= \sup_{k}|x_{k}| . Let D be the
shift operator on s , that is D((x_{k}))=(x_{k+1}) . It may be recalled that
Banach limit L (Banach [1]) is a linear functional on l_{\infty} such that
(i) L(x)\geq 0 if x_{k}\geq 0 , k\geq 0 ,
(ii) L(Dx)=L(x) for all x\in l_{\infty}

(iii) L(e)=1 where e=(1,1,1, . .) .
A sequence x\in l_{\infty} is said to be almost convergent (Lorentz [13]) if all

Banach limits of x coincide. Let \hat{c} and \hat{c}_{0} denote the sets of all sequences
which are almost convergent and almost convergent to zero. Lorentz [13]
proved that,

\hat{c}=\{x : \lim_{n}\frac{1}{n}\sum_{k=1}^{n}x_{k+m} exists uniformly in m\}

Several authors including Lorentz [13], Duran [4] and King [10] have
studied almost convergent sequences.

A sequence x=(x_{k}) is said to be summable (C, 1) if and only if

\lim_{n}\frac{1}{n}\sum_{k=1}^{n}x_{k} exists
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A sequence x=(x_{k}) is said to be strongly (Ces\’aro) summable if

\lim_{n}\frac{1}{n}\sum_{k=1}^{n}|x_{k}-L|=0

Spaces of strongly Ces\’aro summable sequences were discussed by Kut-
tner [11] and some others and this concept was generalised by Maddox [14].

Just as convergence give rise to strongly convergence, it was quite nat-
ural to expect that almost convergence must give rise to a new type of
convergence, namely strong almost convergence and this concept was intr0-
duced and discussed by Maddox [14]. If [\hat{c}] denotes the set of all strongly
almost convergent sequences, then Maddox defined,

[\hat{c}]=\{ x=(x_{k}) : for some L , \lim_{n}\frac{1}{n}\sum_{k=1}^{n}|x_{k+m}-L|=0 ,

uniformly in m\}

Let \lambda=(\lambda_{k}) be a non-decreasing sequence of positive numbers tending
to \infty and \lambda_{n+1}\leq\lambda_{n}+1 , \lambda_{1}=1 .

Generalized de la Valee Pousin mean is defined by

t_{n}(x)= \frac{1}{\lambda_{n}}\sum_{k\in I_{n}}x_{k} ,

where I_{n}=[n-\lambda_{n}+1, n]

A sequence x=(x_{k}) is said to be (V, \lambda) -summable to a number L[12]
if t_{n}(x) – L as n - \infty .

If \lambda_{n}=n , then (V, \lambda)-summability is reduced to (C, 1) summability.
We write,

[\hat{V}, \lambda]=\{ x=(x_{k}) : for some L , \lim_{n}\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}|x_{k+m}-L|=0 ,

uniformly in m\}

for the set of sequences x=(x_{k}) which is strongly almost (V, \lambda) summable
to L , i.e. , x_{k}arrow L[\hat{V}, \lambda] .

The idea of statistical convergence was introduced by Fast [6]. Over the
years and under different names, statistical convergence has been discussed
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in number theory [5], and trigonometric series [19] and summability theory
[3].

A sequence x=(x_{k}) is said to be statistically convergent to the number
L if for every \epsilon>0 ,

\lim_{n}\frac{1}{n}|\{k\leq n _{:} _{|x_{k}-L|}\geq\epsilon\}|=0 .

where the vertical bars indicate the number of elements in the enclosed sets.
In this case we write s- lim x=L or x_{k}arrow L(s) and s denotes the set of
all statistically convergent sequences.

This paper extends the definition of the statistical convergence to the
concepts of almost statistical convergence and almost \lambda-statistical conver-
gence and finds its relation with [\hat{V}, \lambda] and \hat{s} .

We have

Definition 1 A sequence x=(x_{k}) is said to be almost statistically con-
vergent to the number L if for every \epsilon>0

\lim_{n}\frac{1}{n}|\{k\leq n : |x_{k+m}-L|\geq\epsilon\}|=0 , uniformly in m

In this case we write \hat{s}- lim x=L or x_{k}arrow L(\hat{s}) and \hat{s} denotes the set
of all almost statistically convergent sequences.

Before giving so\overline{m}e promised inclusion relations we will give a new
definition.

Definition 2 A sequence x=(x_{k}) is said to be almost \lambda statistically
convergent to the number L if for every \epsilon>0

\lim\underline{1}|\{k\in I_{n} : |x_{k+m}-L|\geq\epsilon\}|=0 , uniformly in m .
n\lambda_{n}

In this case we write \hat{s}_{\lambda}- lim x=L or x_{k} – L(\hat{s}_{\lambda}) and

\hat{s}_{\lambda}= {x : for some L,\hat{s}_{\lambda}- lim x=L }

If \lambda_{n}=n , then \hat{s}_{\lambda} is same as \hat{s} .

2. In this section we give some inclusion relations between \hat{s}_{\lambda} and [\hat{V}, \lambda]

and [\hat{c}] .

Theorem 1 If a sequence is almost strongly summable to L , then it is
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almost statistically convergent to L .

The proof of Theorem 1 uses ideas similar to those used in proving
Theorem 1 of Connor [2].

We have

Theorem 2 Let \lambda=(\lambda_{n}) be same as in the above, then

(i) x_{k}arrow L[\hat{V}, \lambda]\Rightarrow x_{k}arrow L(\hat{s}_{\lambda}) .

and the inclusion [\hat{V}, \lambda]\subseteq(\hat{s}_{\lambda}) is proper.

(ii) If x\in l_{\infty} and x_{k}arrow L(\hat{s}_{\lambda}) , then x_{k}arrow L[\hat{V}, \lambda] and hence x_{k}arrow

L[\hat{c}] provided x=(x_{k}) is not eventually constant,

(iii) \hat{s}_{\lambda}\cap l_{\infty}=[\hat{V}, \lambda]\cap l_{\infty} ,

Proof. Let \epsilon>0 and x_{k} –
L[\hat{V}, \lambda] . Since

\sum_{k\in I_{n}}|x_{k+m}-L|\geq|x_{k+m}-L|\geq\in\sum_{k\in I_{n}}|x_{k+m}-L|

\geq\epsilon|\{k\in I_{n} : |x_{k+m}-L|\geq\epsilon\}|t

Therefore x_{k}arrow L[\hat{V}, \lambda]\Rightarrow x_{k} – L(\hat{s}_{\lambda}) .
It is easy to see that the inclusion [\hat{V}, \lambda]\subseteq(\hat{s}_{\lambda}) is proper.
(ii) Suppose that x_{k}arrow L(\hat{s}_{\lambda}) and x\in l_{\infty} , say |x_{k+m}-L|\leq M for all

k and m . Given \epsilon>0 , we have

\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}|x_{k+m}-L|

= \frac{1}{\lambda_{n}}|x_{k+m}-L|\geq\in\sum_{k\in I_{n}}|x_{k+m}-L|+\frac{1}{\lambda_{n}}|x_{k+m}-L|<\epsilon\sum_{k\in I_{n}}|x_{k+m}-L|

\leq\frac{M}{\lambda_{n}}|\{k\in I_{n} ^{:} |x_{k+m}-L|\geq\epsilon\}|+\epsilon ,

which implies that x_{k}arrow L[\hat{V}, \lambda] .
Further, we have

n-\lambda_{n}

\frac{1}{n}\sum_{k=1}^{n}|x_{k+m}-L|=\frac{1}{n}\sum_{k=1}|x_{k+m}-L|+\frac{1}{n}\sum_{k\in I_{n}}|x_{k+m}-L



Strong almost convergence and almost \lambda -statistical convergence 535

n-\lambda_{n}

\leq\frac{1}{\lambda_{n}}\sum_{k=1}|x_{k+m}-L|+\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}|x_{k+m}-L

\leq\frac{2}{\lambda_{n}}\sum_{k\in I_{n}}|x_{k+m}-L| .

Hence x_{k} – L[\hat{c}] , since x_{k}arrow L[\hat{V}, \lambda] .
(iii) This immediately follows from (i) and (ii). \square

3. It is easy to see that \hat{s}_{\lambda}\subseteq\hat{s} for all \lambda , since \lambda_{n}/n is bounded by 1.
Now we have

Theorem 3 \hat{s}\subseteq\hat{s}_{\lambda} if and only if

lim \inf\underline{\lambda_{n}}>0

(1)n n

Proof. For given \epsilon>0 we get,

\{k\leq n : |x_{k+m}-L|\geq\epsilon\}\supset\{k\in I_{n} : |x_{k+m}-L|\geq\epsilon\} .

Hence,

\frac{1}{n}|\{k\leq n _{:} |x_{k+m}-L|\geq\epsilon\}|\geq\frac{1}{n}|\{k\in I_{n} _{:} |x_{k+m}-L|\geq\epsilon\}| ,

\geq\frac{\lambda_{n}}{n}\frac{1}{\lambda_{n}}|\{k\in I_{n} _{:} |x_{k+m}-L|\geq\epsilon\}| .

Taking limit as narrow\infty and using (1), we have

x_{k}arrow L(\hat{s})\Rightarrow x_{k}arrow L(\hat{s}_{\lambda}) .

Conversely, suppose that lim \inf_{n}\frac{\lambda_{n}}{n}=0 .
As in [7] we can choose a subsequence (n(j))_{j} such that \frac{\lambda_{n(j)}}{n(j)}<\frac{1}{j} .
Define a sequence x=(x_{i}) as follows:

x_{i}=\{
1 if i\in I_{n(j)} , j=1,2 ,

0 otherwise.

Then x\in[\hat{c}] and hence Theorem 1, x\in\hat{s} . But on the other hand x\not\in[\hat{V}, \lambda]

and Theorem 2 (ii) implies that x\not\in\hat{s}_{\lambda} . Hence (1) is necessary \square
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