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Korovkin type approximation theorems on
the disk algebra
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Abstract. We investigate BKW-operators on the disk algebra for the test functions
{1, 2,22} having forms as T = (C,, +Cy)/2, |¢| = |¥| = 1 on the unit circle. Our studies
have some relation to extremal problems on Hardy spaces.
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1. Introduction

In 1953, Korovkin [9, 10] proved a well known theorem as follows; if
{T.}n is a sequence of positive operators on C([0, 1]), the Banach space of
real valued continuous functions on [0, 1], such that ||T,,27 — 27||,c — O for
J =0,1,2 a8 n — oo, then |[T,f — fllc — 0 for every f € C([0,1]) as
n — 00. Since then, there are many researches on this field from various
points of view, see the monograph by Altomare and Campiti [2]. In [16],
Waulbert showed that in Korovkin’s theorem, the condition of positivity of
{Tn}n is replaced by the condition that ||T,|| < 1 for every n, see also [1].

Let X be a separable complex Banach space and S be a subset of X.
In , Takahasi introduced a concept of BKW-operators to generalize
Korovkin’s approximation theorem. A bounded linear operator T on X is
called a BKW-operator for the test functions S if {T},}, is a sequence of
bounded linear operators on X satisfying

) |T=|l < ||IT|| for every n
and

ii) ||Toh —Th|| — 0 asn — oo for each h € S,
then it holds ||T,,f — Tf|| — O for every f € X as n — oco. And in [15],
Takahasi gave a sufficient conditions on an operator on X to be a BKW-
operator. To state this, let S be the closed linear span of S in X. We denote
by Us = Ug(X) the set of ¢ € X*, the dual space of X, which satisfies that
lell = llelgll = 1 and ¢|5 has a unique Hahn-Banach extension to X. The
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set Ug is called the uniqueness set for the test functions S. Takahasi proved
that a bounded linear operator T' on X with ||T'|| = 1 is a BKW-operator
if there exists a weak*-compact subset Y of the closed unit ball of X* such
that ||f|| = sup{|e(f)|;¢ € Y} for every f € X and T*p € Ug for every
peyY.

Let €2 be a metrizable compact Hausdorff space and C(€2) be the Banach
space of complex valued continuous functions on 2 with the supremum
norm. In [15], Takahasi showed that if 1 € S C C(2) and T is a bounded
linear operator on C(f2) with ||T|| = 1, then T is a BKW-operator for
S if and only if T*6; € Ug(C(?)) for every ( € Q, where §; is a point
evaluation at (. A closed subalgebra A of C(2) is called a function algebra
if A contains constant functions and separates the points in €, see [4]. We
denote by 0A the Shilov boundary of A, the smallest closed subset of 2 on
which every function in A attains the maximum modulus. Let S C A. By
the Hahn-Banach extension theorem and the Riesz representation theorem,
we may consider that Ugs(A) is a set of Borel measures on A with total
variation 1. In |@|, the second author, Takagi and Watanabe showed the
following theorem.

Theorem A Suppose that 1 € S C A and T is a bounded linear operator
on A with |T|| = 1. Then T is a BKW-operator for S if and only if
T*6; € Us(A) for every ¢ € OA.

A typical example of function algebras is the disk algebra A(T"). Let T
be the unit circle in the complex plane, and let A(T") be the space of complex
valued continuous functions on I' which can be extended analytically in the
open unit disk D = {|z| < 1}. Then A(T) is a closed subalgebra of C(T).
It is known that 9A(T) =T For {2;}7_; C D, let

=)\ — D
H|z]|1_z3 ces

where ) is a constant with |A\| = 1. This type of functions b(z) are called
finite Blaschke products, and satisfy || = 1 on I'. As a special case, a
constant function with absolute modulus 1 is also called a finite Blaschke
product. If f € A(T') and |f| =1 on I, then f is a finite Blaschke product
(see [5]). For a function ¢ (may not continuous) on T’ with |p| = 1 on T,
we put C,f = foy for f € A(T'). Then C, is a bounded linear operator



Korovkin type approzimation theorems 105

on A(T) if and only if ¢ € A(T'). In [6], it is proved that if T is a bounded
linear operator on A(I') with ||T'|| = 1, then T is a BKW-operator for {1, z}
if and only if T" = 9C,, where ¢ and ¢ are finite Blaschke products. In
[14], Takahasi proved that ade, + (1 — a)d, € Uy, .23 (A(T)) for (1, €T,
0<a<l,and

T =aCy +(1—-a)Cy,, 0<a<l,
1 and g are finite Blaschke products

is a BKW-operator on A(T') for {1, z,2%}. In [6], it is pointed out that the
converse of the above assertion is not true. Let S, = {1,z,22,...,2"}. It
seems difficult to describe all BKW-operators on A(I") for the test functions
Sn. See [7] for the polydisk and ball algebras.

In this paper, we study BKW-operators on A(T"). In Section 2, we
determine measures p in Ug_ (A(T)) such that g4 > 0. In Section 3, we
study BKW-operators T on A(T) for {1, z,2?} having a special form as
follows;

T=(Cp+Cy)/2 lol=I6|=1 on T.

We give a characterization of a BKW-operator satisfying the above con-
dition.

2. Positive measures in Ug, (A(T"))

We denote by M(I') the set of bounded complex Borel measures on T
and by M4 1(T") the set of p € M(T') with > 0 and ||u|| = 1. Let T be
a bounded linear operator on A(I') with ||T'|| = 1 and 71 = 1. Then for
each ¢ € I', we may consider that T4, is a bounded Borel measure on I
and T*6; € M, 1(I'). In this section, we study when this operator T is a
BKW -operator for the test functions S, = {1, 2, ..., 2"}, see [Corollary 2.1.
By Theorem A, we need to describe the set Ug, "M 1 (T'). In [14], Takahasi
proved that

n n
{Zajcscj; GET,a;20,) aj= 1} C Us, N M, (D).

j=1 j=1
We shall prove that the both sets in the above coincide.
Theorem 2.1 Us, (A(T)) N My1(T) = {37 a0,;¢ € T, a5 > 0,
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j=105 =1}
Proof.  Let
n n
/J.'—‘Zajécj, CjEF, ajZO, Zaj=1,
Jj=1

j=1
and Cz 75 Cj if ’L7é j (2.1)

In [14], Takahasi proved that u € Ug,. Here we give a simple proof. Let
v € M(T') with ||v|| = 1 such that

/zkdz/:/zkd,u for k=0,1,2,...,n. (2.2)
r r

Then v € My ;(T'). To prove p € Ug,,, it is sufficient to show v = pu. Put
n
p(z) =[[lz—¢l? z€T. (2.3)
j=1

Then we can write p(z) as

p(z) = (éajzj) - (Z:;ajzj), z€eT, (2.4)

Since p and v are real measures, by (2.2) we have

/Ejdu:/fjdu for j=0,1,...,n.
r r

Hence by [2.4), [ p(2)dv = [ p(z)dp = 0. Since v is a probability measure,
by v has a form as

n n
V:ij(SCj’ bj 20 and ij:L
J=1 Jj=1

By (2.1) and (2.2),

n

Z(aj —bj)C]’-c =0 for k=1,2,...,n.
J=1
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Since points {(;}7_; are distinct, we have

Cl <2 Cn
2 2 2
1 2 n 7& 0.
q ¢ Cn
Therefore we have a; = b; for j = 1,2,...,n. Thus we obtain v = p.

Next, we prove the converse inclusion. We use the same idea of the

proof of Theorem 1 in [8]. Let u € Us, N M4 1(I"). We shall prove that p
has a form in (2.1). Put

( / zdo, / Zdo, .. / "da) for o € My 1(T)

Q= {p(0);0 € My (D)},

Then p is a continuous map from My ;(I') with the weak*-topology into

C". Since M, 1(T") is a weak*-compact convex set, ) is a compact convex
subset of C™.

and

Claim 1. intQ # (), where int Q denotes the interior of €.

To prove this, suppose not. Then there exist complex numbers ¢;,1 <
J < n, such that (ci1,c2,...,¢,) # (0,0,...,0) and

Rech/sza——O for every o € M, 1(T).
7j=1

This implies that
/ (Reicjzj)d)\ =0 forevery Ae M(T).
r =
Since Re )", cjz/ # 0 on T, this is absurd.
Claim 2. p(u) is a boundary point of €.
To prove this, suppose that p(u) € int Q. We shall prove that

p(p) = p(v) for some v € My 1(T) with v # p. (2.5)



108 G. Hirasawa, K. Izuchi and K. Kasuga

We note that M ;(T') coincides with the weak*-closed convex hull of {d¢; ¢ €
I'}. Since {p(d¢); ¢ € '} is a compact subset of C", its convex hull coincides
with its closed convex hull. Hence

Q2 = the convex hull of {p(é;);¢ € T'},

so that
k k

p(p) = p<ch(5<j) for some (; €T', ¢; >0, and ch =1.

Jj=1 j=1
(2.6)

Let Ly ={v e My 1(T');dv <« df/2n}. Then L, ; is also a weak*-dense
convex subset of M 1(I'), so that {p(v);v € L4} is a dense convex subset
of Q. Since Q2 C C™, we have that

intQ C {p(v);ve Ly}
Since p(u) € int 2, there exists v € L4 ; such that p(u) = p(v). Hence by
(2.6),

k

p(p) = P(é%‘%) =p(v), > ¢, #v.

j=1
Thus we get (2.5).
Since p and v are distinct probability measures, we have [.. fdu #

Jp fdv for some f € A(T'). This means that u ¢ Us,. This is a contradic-
tion, so we get Claim 2.

Claim 3. p =37 ajéc, for G €T, a; > 0and } 7 a; =1.

By Claims 1 and 2, there exist complex numbers {d;}”_, such that

d; #0 for some j,1<j<mn, (2.7)
Re (do + Zdj / Zjdu> =0, (2.8)
j=t T

and

(oS

zjda) >0 forevery o€ My (T). (2.9)
j=t 1
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By (2.9),

/Re <d0 + Zdjzj>da >0 forevery o€ M, (T),
T .
71=1

so that we have

Re<d0+2djzj> >0 on T. (2.10)
j=1

Moreover by (2.7),

Re(do—l—zn:djzj> Z0 on T. (2.11)

j=1

0

Putting z = €'Y, we can write as

n
Re(do + ZdeJ) = Z{ak,l sin®@cos!0; 0 < k+1<n, k1> 0}
j=1

for some real numbers {ax;}x;. Put
F6) = Z{ak,lsinkOCoslﬂ;O <k+1<nk >0}, 0<6<2m.

Then by (2.10) and (2.11), F(6) > 0 and F(f) £ 0, 0 < 0 < 27. By (2.8),
f027r F(8)du(e®) = 0. Hence to prove Claim 3, we need to prove that the
number of zeros of the function F(f), 0 < 6 < 2, is less than or equal to
n. Since F'(0) is a 2m-periodic function, to prove this it is sufficient to show
that the number of distinct zeros of F' (6), 0 < 6 < 2r, is less than or equal
to 2n + 1. Here we can write F’(6) as

/

F (6) = Z by sin® 6 cos' 9.
O0<k+I<n

Put t = tan g, 0 # 7. Then sin6 = 2t/(1+ t?) and cos§ = (1 —t2)/(1 +t2).
Hence the equation F' (f) = 0 becomes

2t \Fr/1—¢2\!
E bi. 1 t —F ] =0
"\ 1+ ¢t2 1+ ¢2

0<k+i<n

This equation has a number of distinct zeros up to 2n. Since tan% is one
to one on [0, 7] U (m, 27), the number of distinct zeros of F'(6), 0 < 6 < 2,
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is less than or equal to 2n + 1. This completes the proof. |
As an application of Theorems A and 2.1, we have the following.

Corollary 2.1 Let T be a bounded operator on A(I') such that |T| =1
and T1 = 1. Then T is a BKW -operator for the test functions S, if and
only if T has a following form;

(T =Y a;(Q)(Cp, /), for €T and fe AI),

j=1
where |@;] =1 on T, a;(¢) > 0 for every j and 3°%_, a;(¢) =1 for ( € T.

For given functions {¢;(¢)} and {a;(¢)} on I satisfying that |¢;| = 1 on
I, a;j(¢) > 0,and )%, a;(¢) =1 for ( € T', we can defined T as (T'f)(¢) =
> 5=15(0)(Cp; £)(C) for ¢ € T and f € A(T). Generally, Tf ¢ A(T') for
some f € A(T"), so that 7' may not be a bounded linear operator on A(T').
If Tf e A(T) for f € A(I"), then T is a bounded linear operator on A(T").
Hence by [Corollary 2.1, T becomes a BKW-operator on A(T") for S,,. We
have a question when T'f € A(T’) for f € A(T"). It seems difficult to answer.
In the next section, we study on this problem when n = 2.

3. BKW.-operators for {1, z, 2%}

Let T be a BKW-operator on A(T) for the test functions Sp = {1, z, 22}
such that ||T'|| =1 and T1 = 1. Then by [Corollary 2.1, T has a form as

(TF)(Q) = a(O)(Cpf)(C) + b(O(Cyf)(C),
for (eT'" and fe A(), (3.1)

where

(O] = (=1, alQ)+b() =1, a(¢),b(¢) 20
for every ¢ €T. (3.2)

We note that a, b, ¢, and ¥ may not be continuous on I, see @

Suppose that a, b, ¢, and ¢ are functions on I' satisfying (3.2), and
define T by (3.1). As mentioned in the end of the last section, we have a
question when T'f € A(T') for every f € A(T).

We have another question. For a function h € A(T') with ||h|lec < 1,
when there exists a BKW-operator T' on A(I") for the test functions S;
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such that |T||=1,T1 =1, and Tz = h.
In this section, we study BKW-operators T on A(T) for {1, z, 22} hav-
ing a following form;

(#) T=(Co+Cy)/2, |lp|=1 and || =1 on T.

In this case, T1 =1 and ||T|| = 1.
The following lemma follows the definition of BKW -operators.

Lemma 3.1 Let 1€ S C A(T). Let T be a BKW -operator on A(T) for S
with ||T|| = 1. Let T1 be a bounded linear operator on A(T') with ||Ty| < 1.
If Th=T\h forhe S, then T = Tj.

For a function h € A(T'), h # 0, we can define (h/h)(¢) = h(¢)/h(()
for almost every ¢ € I'. When h/h can be extended continuously on I', we
consider that h/h is an extended function.

Theorem 3.1 Let T be a bounded linear operator on A(T') with |T|| = 1
and T1 =1. Put Tz = h and T2z% = g. Then we have the following.
i) If h # 0, then T is a BKW -operator for {1, 2,22} satisfying (#) if
and only if h/h is a finite Blaschke product and h/h = 2h? —g. In
this case, we have

p=h+\Vg—h? and ¢Y=h-/g— k2

where \/g — h? is one of root functions of g — h2.

ii) If h =0, then T is a BKW -operator for {1, 2,22} satisfying (#) if
and only if g is a finite Blaschke product. In this case, v = /g and
V=V

Proof.  First, we note that h,g € A, ||hllc < 1, and ||g|lcc < 1. Suppose

that T' has a form (#). Then ¢ + ¢ = 2h and ¢? 4+ ¢y2 = 2g. Since

(o + )% = + 9 + 209,

2h% — g = . (3.3)

Since h,g € A, ¢ € A. Since |p)] = 1 on T, ¢t is a finite Blaschke
product. When h # 0, h/h = (¢ + 1) /(% + %) = pp = 2h% — g by (3.3).
When h =0, g = —py and g is a finite Blaschke product.

Next, we prove the converse. Suppose that h # 0. Put

b=h/h=2hr%—g. (3.4)
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Then by our assumption, b is a finite Blaschke product. Since
b=h*/|hf, (3.5)
by (3.4) we have

g—h®2=h%—b=(=b)(1 - |hP). (3.6)
Take one root function m , and we put

¢ =h++g—h? and W=h—+/g—h2 (3.7)
Then

(p+1)/2=he AT) and @y =2h*—gc A(D). (3.8)
By [3.6),

2 + ]mf -1 (3.9)

Let ¢ € . If h(¢) = 0, then by |(v/g — h?)(¢)] = 1, so that |¢(¢)| =
[¥(¢)| = 1. If h(¢) # 0, then by and

(Vg —h2)(¢) = ih(¢)v/1 = [R(Q)[*/]R(C)]
or (v/g—h2)(¢) = —ih(¢)v/1 = [R()]2/|M(C)

Therefore by (3.7), we have

01 = [0) + (Va=T) ©)] = |1(6) £ 1o VIZTHQT

= |In(Q) £ ivT=TR(OP| =1

and similarly |¢({)| = 1 for every ¢ € I'. Hence

lpl=|¥|=1 on T. (3.10)
Put

Tof_l( Co+Cy)f for feA(). (3.11)
Then by (3.7),

Tol=1, Toz=h, and Tpz’=g. (3.12)
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Since

"+ = (" P D@+ 1Y) — ("2 + 2,

by (3.8) and by induction we have
Toz" € A(I") for every non-negative integer n. (3.13)

Let f € A. Then there exists a sequence of analytic polynomials {p }« such
that || f —pk|lcc — 0 as k — oco. Then by (3.10) and (3.11), || To f ~Topk||co —
0 as kK — oo. By (3.13), Topx € A(T"), so that we have Tof € A(T") for every
f € A(T'). As a consequence, Ty is a bounded linear operator on A(T) with
|To|| = 1 and Tyl = 1. By [Corollary 2.1, Tp is a BKW-operator on A(T)
for {1, z,2%}. By (3.12), Toz? = T2 for j = 0,1,2. Hence by Lemma 3.1,
we have T = Tj.
Suppose that h = 0 and g is a finite Blaschke product. Put

1
Tlf:§(C\/§+C_\/§)f for f € A.

Then T11 =1, T12?" ! =0, and T} 22" = g" for n > 1. In the same way as
above, we can prove that Ty = T and T is a BKW-operator for {1, z, 22}.
O

Remark 3.1. Let h € A such that h/h is a finite Blaschke product. Then h
is a rational function and all such h are described in . For finite Blaschke
products b; and by, put h = b; + by. Then h/ﬁ = b1by is a finite Blaschke
product. Sum of inner functions are studied in [11, 12, 13]. These functions
h are deeply concerned with extremal problems.

The converse of the proof of [Cheorem 3.1 proves the following actually.

Corollary 3.1 Suppose that h,g € A(T') satisfy the following conditions;
) fhlleo < 1 and o < 1,

ii) h/h is a finite Blaschke product (or h = 0),

iii) h/h=2h%—g (when h =0, g is a finite Blaschke product).

Then there exists a unique bounded linear operator T on A(T') such that

IT||=1,T1 =1, Tz = h, and Tz?> = g. Moreover T is a BKW -operator

on A(T') for {1, z, 2%} having a form (#).

Corollary 3.2 Let h € A such that 0 < ||h|lc < 1 and h/h is a fi-
nite Blaschke product. Then there exists a BKW -operator T on A(T) for
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{1, 2,22} such that |T|| =1, T1 =1 and Tz = h. In such BKW -operators
T, there is a unique operator satisfying (#).

Proof.  Put g = 2h% — (h/h). Then g € A(T). Since 2h% — (h/h) =
h2(2|h|?2 =1)/|h]?, |lglleo < 1. By [Corollary 3.1, we have the first part of our
assertion. Let Ty and Tp be BKW-operators for {1,z, 2%} satisfying (#)
such that |T;|| = 1, T;1 = 1, and T;z = h for j = 1,2. Then by [Theorem 3.1,
T122 - 2h2 - h/.}_L = TQZQ. Hence by , T1 = T2. O

In [Corollary 3.2, a BKW-operator T with |T|| =1,T1=1and Tz =h
is not unique generally.

Ezample 3.1. Let h = z/2. Then h/h = z2. Then by Takahasi’s theorem
14],

wly

T=(Co+Cy)/2, p=e3'2 Y=e 5%

is a BKW-operator for {1, z, 22} satisfying T1 = 1, Tz = 2/2, and Tz? =
~22/2. Also

To = (C_z + 3Cz)/4

is a BKW-operator for {1, z, 2%} satisfying Tol = 1, Toz = 2/2, and Tp2? =

22,

By [Theorem 3.1 ii), we have the following.

Corollary 3.3 There are uncountable many BKW -operators T on A(T")
for {1, z,2%} satisfying |T|| =1, T1 =1, and Tz = 0.

Next, we study that for BKW-operators T satisfying (#), when both
¢ and v are continuous or analytic.

Corollary 3.4 Let h € A(T') such that 0 < ||h|| < 1 and h/h is a finite
Blaschke product. Let T be a BKW -operators on A(T) for {1,z,2%} such
that Tz = h and T = (Cy, + Cy)/2, || = |¥| =1 on T'. Then we have the
following.

i) If number of zeros of h/ﬁ in D, counting multiplicities, is even or
h% — h/h vanishes at some points in T, then ¢ and v are continuous
onI.

ii) If h2—h/h = f? for some f € A(T), then ¢ and ¢ are finite Blaschke
products.
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Proof. Put Tz? = g. Then by Theorem 3.1, we have

2h* —g="h/h (3.14)
and

¢o=h+g—h? and ¢ =h—+/g—-h2 (3.15)
By (3.14),

g—h®=h*—h/h=(-h/R)(1 - |h?). (3.16)

We note that the usual root function /1 — |h|? is continuous on T.
i) Suppose that number of zeros of h/h in D is even. Then we can

take such as /—h/h is continuous on I'. Hence by (3.15) and (3.16),  and
1 are continuous.

Suppose that h? — h/h vanishes at some points in . Then 1 — |h|?
vanishes at these points. Hence we can take \/g — h? such as

Vg—h?= \/—h(l — |h|?)/h is continuous on T.

ii) Suppose that h> — h/h = f? for some f € A(T'). Then by (3.16),
we can take such as /g — h? = f. Hence p,9 € A(T'), so that both of these
functions are finite Blaschke products. 0J

Remark 3.2. Let 0 < r < 1. If Ty is a bounded linear operator on A(T")
such that

(#:) To=7rCo+(1-7)Cy, |pl=[¢|=1 on T,

then by Takahasi’s theorem , Ty is a BKW-operator for {1, z, z2} and
Tl = 1. For a bounded linear operator T on A(T") such that |T|| = 1 and

T1 =1, put Tz = h and T2% = g. We do not known conditions on h and g
for which T has a form (#,).

Remark 3.3. Let T1 be a bounded linear operator on A(T") such that
(#-) Ti=(Cpo—Cy)/2, |p|=|¥|=1 on T.
Then T; may not be a BKW-operator for {1, z,22}. For, let T, = (C, —

C_.)/2 and
sz(
0

” f(eig)e_i0d9/27r> z for fe A(D).
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Then T, and P are bounded linear operators on A(I') satisfying that Tp #
= 0.

P, |T3|| = |P| =1, T21 = P1 = 0,T2z = Pz = 2, and Thz? = P2?
Then by Lemma 3.1, T3 is not a BKW-operator for {1, z, 22}
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