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Korovkin type approximation theorems on
the disk algebra
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Abstract. We investigate BKW-0perators on the disk algebra for the test functions
\{1, z, z^{2}\} having forms as T=(C_{\varphi}+C_{\psi})/2 , |\varphi|=|\psi|=1 on the unit circle. Our studies
have some relation to extremal problems on Hardy spaces.
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1. Introduction

In 1953, Korovkin [9, 10] proved a well known theorem as follows; if
\{T_{n}\}_{n} is a sequence of positive operators on C([0,1]) , the Banach space of
real valued continuous functions on [0, 1] , such that ||T_{n}x^{j}-x^{j}||_{\infty}arrow 0 for
j=0,1 , 2 as n -arrow\infty , then ||T_{n}f-f||_{\infty}arrow 0 for every f\in C([0,1]) as
n - \infty . Since then, there are many researches on this field from various
points of view, see the monograph by Altomare and Campiti [2], In [16],
Wulbert showed that in Korovkin’s theorem, the condition of positivity of
\{T_{n}\}_{n} is replaced by the condition that ||T_{n}||\leq 1 for every n , see also [1].

Let X be a separable complex Banach space and S be a subset of X .
In [14], Takahasi introduced a concept of BKW-0perators to generalize
Korovkin’s approximation theorem. A bounded linear operator T on X is
called a BKW-0perator for the test functions S if \{T_{n}\}_{n} is a sequence of
bounded linear operators on X satisfying

i) ||T_{n}||\leq||T|| for every n
and

ii) ||T_{n}h-Th||arrow 0 as narrow\infty for each h\in S ,
then it holds ||T_{n}f-Tf|| -0 for every f\in X as n - \infty . And in [15],
Takahasi gave a sufficient conditions on an operator on X to be a BKW-
operator. To state this, let \tilde{S} be the closed linear span of S in Xt We denote
by U_{S}=U_{S}(X) the set of \varphi\in X^{*} , the dual space of X , which satisfies that
||\varphi||=||\varphi|_{\overline{S}}||=1 and \varphi|_{\tilde{S}} has a unique Hahn-Banach extension to X . The
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set U_{S} is called the uniqueness set for the test functions S . Takahasi proved
that a bounded linear operator T on X with ||T||=1 is a BKW-0perator
if there exists a weak*-compact subset Y of the closed unit ball of X^{*} such
that ||f||= \sup\{|\varphi(f)|;\varphi\in Y\} for every f\in X and T^{*}\varphi\in U_{S} for every
\varphi\in Y

Let \Omega be a metrizable compact Hausdorff space and C(\Omega) be the Banach
space of complex valued continuous functions on \Omega with the supremum
norm. In [15], Takahasi showed that if 1\in S\subset C(\Omega) and T is a bounded
linear operator on C(\Omega) with ||T||=1 , then T is a BKW operator for
S if and only if T^{*}\delta_{\zeta}\in U_{S}(C(\Omega)) for every \zeta\in\Omega , where \delta_{\zeta} is a point
evaluation at \zeta . A closed subalgebra A of C(\Omega) is called a function algebra
if A contains constant functions and separates the points in \Omega , see [4]. We
denote by \partial A the Shilov boundary of A , the smallest closed subset of \Omega on
which every function in A attains the maximum modulus. Let S\subset A . By
the Hahn-Banach extension theorem and the Riesz representation theorem,
we may consider that U_{S}(A) is a set of Borel measures on \partial A with total
variation 1. In [6], the second author, Takagi and Watanabe showed the
following theorem.

Theorem A Suppose that 1\in S\subset A and T is a bounded linear operator
on A with ||T||=1 . Then T is a BKW-Operator for S if and only if
T^{*}\delta_{\zeta}\in U_{S}(A) for every \zeta\in\partial A .

A typical example of function algebras is the disk algebra A(\Gamma) . Let \Gamma

be the unit circle in the complex plane, and let A(\Gamma) be the space of complex
valued continuous functions on \Gamma which can be extended analytically in the
open unit disk D=\{|z|<1\} . Then A(\Gamma) is a closed subalgebra of C(\Gamma) .
It is known that \partial A(\Gamma)=\Gamma For \{z_{j}\}_{j=1}^{n}\subset D , let

b(z)= \lambda\prod_{j=1}^{n}\frac{-z_{j}^{-}}{|z_{j}|}\frac{z-z_{j}}{1-z_{j}^{-}z} , z\in\overline{D} ,

where \lambda is a constant with |\lambda|=1 . This type of functions b(z) are called
finite Blaschke products, and satisfy |b|=1 on \Gamma As a special case, a
constant function with absolute modulus 1 is also called a finite Blaschke
product. If f\in A(\Gamma) and |f|=1 on \Gamma , then f is a finite Blaschke product
(see [5]). For a function \varphi (may not continuous) on \Gamma with |\varphi|=1 on \Gamma_{J}.
we put C_{\varphi}f=f\circ\varphi for f\in A(\Gamma) . Then C_{\varphi} is a bounded linear operator
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on A(\Gamma) if and only if \varphi\in A(\Gamma) . In [6], it is proved that if T is a bounded
linear operator on A(\Gamma) with ||T||=1 , then T is a BKW-0perator for \{1, z\}

if and only if T=\psi C_{\varphi} , where \psi and \varphi are finite Blaschke products. In
[14], Takahasi proved that a\delta_{\zeta_{1}}+(1-a)\delta_{\zeta_{2}}\in U_{\{1,z,z^{2}\}}(A(\Gamma)) for \zeta_{1} , \zeta_{2}\in\Gamma ,
0\leq a\leq 1 , and

T=aC_{\varphi_{1}}+(1-a)C_{\varphi_{2}} , 0\leq a\leq 1 ,
\varphi_{1} and \varphi_{2} are finite Blaschke products

is a BKW operator on A(\Gamma) for \{1, z, z^{2}\} . In [6], it is pointed out that the
converse of the above assertion is not true. Let S_{n}=\{1, z, z^{2}, . , z^{n}\} . It
seems difficult to describe all BKW operator on A(\Gamma) for the test functions
S_{n} . See [7] for the polydisk and ball algebras.

In this paper, we study BKW operator on A(\Gamma) . In Section 2, we
determine measures \mu in U_{S_{n}}(A(\Gamma)) such that \mu\geq 0 . In Section 3, we
study BKW operator T on A(\Gamma) for \{1, z, z^{2}\} having a special form as
follows;

T=(C_{\varphi}+C_{\psi})/2 , |\varphi|=|\psi|=1 on \Gamma

We give a characterization of a BKW-0perator satisfying the above con-
dition.

2. Positive measures in U_{S_{n}}(A(\Gamma))

We denote by M(\Gamma) the set of bounded complex Borel measures on \Gamma

and by M_{+,1}(\Gamma) the set of \mu\in M(\Gamma) with \mu\geq 0 and ||\mu||=1 . Let T be
a bounded linear operator on A(\Gamma) with ||T||=1 and T1=1 . Then for
each \zeta\in\Gamma . we may consider that T^{*}\delta_{\zeta} is a bounded Borel measure on \Gamma

and T^{*}\delta_{\zeta}\in M_{+,1}(\Gamma) . In this section, we study when this operator T is a
BKW-0perator for the test functions S_{n}=\{1, Z_{ },\ldots , z^{n}\} , see Corollary 2.1.
By Theorem A, we need to describe the set U_{S_{n}}\cap M_{+,1}(\Gamma) . In [14], Takahasi
proved that

\{\sum_{j=1}^{n}a_{j}\delta_{\zeta_{j}} ; \zeta_{j}\in\Gamma , a_{j} \geq 0,\sum_{j=1}^{n}a_{j}=1\}\subset U_{S_{n}}\cap M_{+,1}(\Gamma) .

We shall prove that the both sets in the above coincide.

Theorem 2.1 U_{S_{n}}(A( \Gamma))\cap M_{+,1}(\Gamma)=\{\sum_{j=1}^{n}a_{j}\delta_{\zeta_{j}} ; \zeta_{j}\in\Gamma, a_{j}\geq 0,
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\sum_{j=1}^{n}a_{j}=1\} .

Proof. Let

\mu=\sum_{j=1}^{n}a_{j}\delta_{\zeta_{j}} , \zeta_{j}\in\Gamma , a_{j}\geq 0 , \sum_{j=1}^{n}a_{j}=1 ,

and \zeta_{i}\neq\zeta_{j} if i\neq j . (2.1)

In [14], Takahasi proved that \mu\in U_{S_{n}} . Here we give a simple proof. Let
\nu\in M(\Gamma) with ||\nu||=1 such that

\int_{\Gamma}z^{k}d\nu=\int_{\Gamma}z^{k}d\mu for k=0,1,2 , \ldots , n . (2.2)

Then \nu\in M_{+,1}(\Gamma) . To prove \mu\in U_{S_{n}} , it is sufficient to show \nu=\mu . Put

p(z)= \prod_{j=1}^{n}|z-\zeta_{j}|^{2} , z\in\Gamma (2.3)

Then we can write p(z) as

p(z)=( \sum_{j=0}^{n}\alpha_{j}z^{j})+(\sum_{j=0}^{n}\alpha_{j}z^{j}) , z\in\Gamma (2.4)

Since \mu and \nu are real measures, by (2.2) we have

\int_{\Gamma}\overline{z}^{j}d\nu=\int_{\Gamma}\overline{z}^{j}d\mu for j=0,1 , \ldots , n .

Hence by (2.4), \int_{\Gamma}p(z)d\nu=\int_{\Gamma}p(z)d\mu=0 . Since \nu is a probability measure,
by (2.3) \nu has a form as

lJ = \sum_{j=1}^{n}b_{j}\delta_{\zeta_{j}} , b_{j}\geq 0 and \sum_{j=1}^{n}b_{j}=1 .

By (2.1) and (2.2),

\sum_{j=1}^{n}(a_{j}-b_{j})\zeta_{j}^{k}=0 for k=1,2 , \ldots , n .
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Since points \{\zeta_{j}\}_{j=1}^{n} are distinct, we have

|\zeta_{1}^{n}(_{1}^{2}\zeta_{1}\ldots

.
(_{2}^{n}(_{2}^{2}\zeta_{2}\ldots.

.||

,

\cdot.\cdot\cdot\cdots\zeta_{n}^{n}.\zeta_{n}\zeta_{n}^{2}|\neq 0 .

Therefore we have a_{j}=b_{j} for j=1,2 , . , n . Thus we obtain \nu=\mu .
Next, we prove the converse inclusion. We use the same idea of the

proof of Theorem 1 in [8]. Let \mu\in U_{S_{n}}\cap M_{+,1}(\Gamma) . We shall prove that \mu

has a form in (2.1). Put

\rho(\sigma)=(\int_{\Gamma}zd\sigma, \int_{\Gamma}z^{2}d\sigma , . , \int_{\Gamma}z^{n}d\sigma) for \sigma\in M_{+,1}(\Gamma)

and

\Omega=\{\rho(\sigma);\sigma\in M_{+,1}(\Gamma)\} .

Then \rho is a continuous map from M_{+,1}(\Gamma) with the weak*-topology into
C^{n} . Since M_{+,1}(\Gamma) is a weak*-compact convex set, \Omega is a compact convex
subset of C^{n} .

Claim 1. int \Omega\neq\emptyset , where int \Omega denotes the interior of \Omega .

To prove this, suppose not. Then there exist complex numbers c_{j} , 1\leq

j\leq n , such that (c_{1}, c_{2}, . , c_{n})\neq(0,0, \ldots, 0) and

Re \sum_{j=1}^{n}c_{j}\int_{\Gamma}z^{j}d\sigma=0 for every \sigma\in M_{+,1}(\Gamma) .

This implies that

\int_{\Gamma}({\rm Re}\sum_{j=1}^{n}c_{j}z^{j})d\lambda=0 for every \lambda\in M(\Gamma) .

Since Re \sum_{j=1}^{n}c_{j}z^{j}\neq 0 on \Gamma , this is absurd.

Claim 2. \rho(\mu) is a boundary point of \Omega .

To prove this, suppose that \rho(\mu)\in int\Omega . We shall prove that

\rho(\mu)=\rho(\nu) for some \nu\in M_{+,1}(\Gamma) with \nu\neq\mu . (2.5)
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We note that M_{+,1}(\Gamma) coincides with the weak*-closed convex hull of { \delta_{\zeta} ; \zeta\in

\Gamma\} . Since \{\rho(\delta_{\zeta});\zeta\in\Gamma\} is a compact subset of C^{n} , its convex hull coincides
with its closed convex hull. Hence

\Omega=the convex hull of \{\rho(\delta_{\zeta});\zeta\in\Gamma\} ,

so that

\rho(\mu)=\rho(\sum_{j=1}^{k}c_{j}\delta_{\zeta_{j}}) for some \zeta_{j}\in\Gamma , c_{j}\geq 0 , and \sum_{j=1}^{k}c_{j}=1 .

(2.6)

Let L_{+,1}=\{\nu\in M_{+,1}(\Gamma);d\nu<<d\theta/2\pi\} . Then L_{+,1} is also a weak*-dense
convex subset of M_{+,1}(\Gamma) , so that \{\rho(\nu);\nu\in L_{+,1}\} is a dense convex subset
of \Omega . Since \Omega\subset C^{n} , we have that

int \Omega\subset\{\rho(\nu);\nu\in L_{+,1}\} .

Since \rho(\mu)\in int\Omega , there exists \nu\in L_{+,1} such that \rho(\mu)=\rho(\nu) . Hence by
(2.6),

\rho(\mu)=\rho(\sum_{j=1}^{k}c_{j}\delta_{\zeta_{j}})=\rho(\nu) , \sum_{j=1}^{k}c_{j}\delta_{\zeta_{j}}\neq\nu .

Thus we get (2.5).
Since \mu and lJ are distinct probability measures, we have \int_{\Gamma}fd\mu\neq

\int_{\Gamma}fd\nu for some f\in A(\Gamma) . This means that \mu\not\in U_{S_{n}} . This is a contradic-
tion, so we get Claim 2.

Claim 3. \mu=\sum_{j=1}^{n}a_{j}\delta_{\zeta_{j}} for (_{j}\in\Gamma., a_{j}\geq 0 and \sum_{j=1}^{n}a_{j}=1 .

By Claims 1 and 2, there exist complex numbers \{d_{j}\}_{j=0}^{n} such that

d_{j}\neq 0 for some j , 1\leq j\leq n , (2.7)

Re (d_{0}+ \sum_{j=1}^{n}d_{j}\int_{\Gamma}z^{j}d\mu)=0 , (2.6)

and

Re (d_{0}+ \sum_{j=1}^{n}d_{j}\int_{\Gamma}z^{j}d\sigma)\geq 0 for every \sigma\in M_{+,1}(\Gamma) . (2.9)
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By (2.9),

\int_{\Gamma} Re (d_{0}+ \sum_{j=1}^{n}d_{j}z^{j})d\sigma\geq 0 for every \sigma\in M_{+,1}(\Gamma) ,

so that we have

Re (d_{0}+ \sum_{j=1}^{n}d_{j}z^{j})\geq 0 on \Gamma (2.10)

Moreover by (2.7),

Re (d_{0}+ \sum_{j=1}^{n}d_{j}z^{j})\not\equiv 0 on \Gamma (2.11)

Putting z=e^{i\theta} , we can write as

Re (d_{0}+ \sum_{j=1}^{n}d_{j}z^{j})=\sum\{a_{k,l}\sin^{k}\theta\cos^{l}\theta;0\leq k+l\leq n, k, l\geq 0\}

for some real numbers \{a_{k,l}\}_{k,l} . Put

F( \theta)=\sum\{a_{k,l}\sin^{k}\theta\cos^{l}\theta;0\leq k+l\leq n, k, l\geq 0\} , 0\leq\theta<2\pi .

Then by (2.10) and (2.11), F(\theta)\geq 0 and F(\theta)\not\equiv 0,0\leq\theta<2\pi . By (2.8),
\int_{0}^{2\pi}F(\theta)d\mu(e^{i\theta})=0 . Hence to prove Claim 3, we need to prove that the
number of zeros of the function F(\theta) , 0\leq\theta<2\pi , is less than or equal to
n . Since F(\theta) is a 2\pi-periodic function, to prove this it is sufficient to show
that the number of distinct zeros of F’(\theta) , 0\leq\theta<2\pi . is less than or equal
to 2n+1 . Here we can write F’(\theta) as

F’( \theta)=\sum_{0<k+l\leq n}b_{k,l}\sin^{k}\theta\cos^{l}\theta
.

Put t= \tan\frac{\theta}{2} , \theta\neq\pi . Then sin \theta=2t/(1+t^{2}) and cos \theta=(1-t^{2})/(1+t^{2}) .
Hence the equation F’(\theta)=0 becomes

\sum_{0<k+l\leq n}b_{k,l}(\frac{2t}{1+t^{2}})^{k}(\frac{1-t^{2}}{1+t^{2}})^{l}=0 .

This equation has a number of distinct zeros up to 2n . Since \tan\frac{\theta}{2} is one
to one on [0, \pi]\cup(\pi, 2\pi) , the number of distinct zeros of F’(\theta) , 0\leq\theta<2\pi ,
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is less than or equal to 2n+1 . This completes the proof. \square

As an application of Theorems A and 2.1, we have the following.

Corollary 2.1 Let T be a bounded operator on A(\Gamma) such that ||T||=1

and T1=1 . Then T is a BKW operator for the test functions S_{n} if and
only if T has a following form;

(Tf)( \zeta)=\sum_{j=1}^{n}a_{j}(\zeta)(C_{\varphi_{j}}f)(\zeta) , for \zeta\in\Gamma and f\in A(\Gamma) ,

where |\varphi_{j}|=1 on \Gamma_{j}a_{j}(\zeta)\geq 0 for every j and \sum_{j=1}^{n}a_{j}(\zeta)=1 for \zeta\in\Gamma

For given functions \{\varphi_{j}(\zeta)\} and \{a_{j}(()\} on \Gamma satisfying that |\varphi_{j}|=1 on
\Gamma , a_{j}(\zeta)\geq 0 , and \sum_{j=1}^{n}a_{j}(\zeta)=1 for ( \in\Gamma , we can defined T as (Tf)(\zeta)=

\sum_{j=1}^{n}a_{j}(\zeta)(C_{\varphi_{j}}f)(\zeta) for \zeta\in\Gamma and f\in A(\Gamma) . Generally, Tf\not\in A(\Gamma) for
some f\in A(\Gamma) , so that T may not be a bounded linear operator on A(\Gamma) .
If Tf\in A(\Gamma) for f\in A(\Gamma) , then T is a bounded linear operator on A(\Gamma) .
Hence by Corollary 2.1, T becomes a BKW operator on A(\Gamma) for S_{n} . We
have a question when Tf\in A(\Gamma) for f\in A(\Gamma) . It seems difficult to answer.
In the next section, we study on this problem when n=2 .

3. BKW-operator for \{1, z, z^{2}\}

Let T be a BKW operator on A(\Gamma) for the test functions S_{2}=\{1, z, z^{2}\}

such that ||T||=1 and T1=1 . Then by Corollary 2.1, T has a form as

(Tf)(\zeta)=a(\zeta)(C_{\varphi}f)(\zeta)+b(\zeta)(C_{\psi}f)(\zeta) ,

for \zeta\in\Gamma and f\in A(\Gamma) , (3.1)

where

|\varphi(\zeta)|=|\psi(\zeta)|=1 , a(\zeta)+b(\zeta)=1 , a(\zeta) , b(\zeta)\geq 0

for every \zeta\in\Gamma (3.2)

We note that a , 6, \varphi , and \psi may not be continuous on \Gamma , see [6].
Suppose that a , b , \varphi , and \psi are functions on \Gamma satisfying (3.2), and

define T by (3.1). As mentioned in the end of the last section, we have a
question when Tf\in A(\Gamma) for every f\in A(\Gamma) .

We have another question. For a function h\in A(\Gamma) with ||h||_{\infty}\leq 1 ,
when there exists a BKW operator T on A(\Gamma) for the test functions S_{2}
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such that ||T||=1 , T1=1 , and Tz=h.
In this section, we study BKW-0perators T on A(\Gamma) for \{1, z, z^{2}\} hav-

ing a following form;

(\#) T=(C_{\varphi}+C_{\psi})/2 , |\varphi|=1 and |\psi|=1 on \Gamma

In this case, T1=1 and ||T||=1 .
The following lemma follows the definition of BKW-0per&tors.

Lemma 3.1 Let 1\in S\subset A(\Gamma) . Let T be a BKW operator on A(\Gamma) for S
with ||T||=1 . Let T_{1} be a bounded linear operator on A(\Gamma) with ||T_{1}||\leq 1 .
If Th=T_{1}h for h\in S , then T=T_{1} .

For a function h\in A(\Gamma) , h\neq 0 , we can define (h/\overline{h})(\zeta)=h(\zeta)/\overline{h(\zeta)}

for almost every \zeta\in\Gamma When h/\overline{h} can be extended continuously on \Gamma , we
consider that h/\overline{h} is an extended function.

Theorem 3.1 Let T be a bounded linear operator on A(\Gamma) with ||T||=1
and T1=1 . Put Tz=h and Tz^{2}=g . Then we have the following.

i) If h\neq 0 , then T is a BKW-Operator for \{1, z, z^{2}\} satisfying (\#) if
and only if h/\overline{h} is a finite Blaschke product and h/\overline{h}=2h^{2}-g . In
this case, we have

\varphi=h+\sqrt{g-h^{2}} and \psi=h-\sqrt{g-h^{2}} ,

where \sqrt{g-h^{2}} is one of root functions of g-h^{2} .
ii) If h=0, then T is a BKW-Operator for \{1, z, z^{2}\} satisfying (\#) if

and only if g is a finite Blaschke product. In this case, \varphi=\sqrt{g} and
\psi=-\sqrt{g} .

Proof. First, we note that h , g\in A , ||h||_{\infty}\leq 1 , and ||g||_{\infty}\leq 1 . Suppose
that T has a form (\#) . Then \varphi+\psi=2h and \varphi^{2}+\psi^{2}=2g . Since
(\varphi+\psi)^{2}=\varphi^{2}+\psi^{2}+2\varphi\psi ,

2h^{2}-g=\varphi\psi . (3.3)

Since h , g\in A , \varphi\psi\in A . Since |\varphi\psi|=1 on \Gamma , \varphi\psi is a finite Blaschke
product. When h\neq 0 , h/\overline{h}=(\varphi+\psi)/(\overline{\varphi}+\overline{\psi})=\varphi\psi=2h^{2}-g by (3.3).
When h=0, g=-\varphi\psi and g is a finite Blaschke product.

Next, we prove the converse. Suppose that h\neq 0 . Put

b=h/\overline{h}=2h^{2}-g . (3.4)
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Then by our assumption, b is a finite Blaschke product. Since

b=h^{2}/|h|^{2} . (3.5)

by (3.4) we have

g-h^{2}=h^{2}-b=(-b)(1-|h|^{2}) . (3.6)

Take one root function \sqrt{g-h^{2}} , and we put

\varphi=h+\sqrt{g-h^{2}} and \psi=h-\sqrt{g-h^{2}} . (3.7)

Then

(\varphi+\psi)/2=h\in A(\Gamma) and \varphi\psi=2h^{2}-g\in A(\Gamma) . (3.8)

By (3.6),

|h|^{2}+|\sqrt{g-h^{2}}|^{2}=1 . (3.9)

Let \zeta\in\Gamma If h(\zeta)=0 , then by (3.9) |(\sqrt{g-h^{2}})(()|=1 , so that |\varphi(\zeta)|=

|\psi(\zeta)|=1 . If h(\zeta)\neq 0 , then by (3.5) and (3.6)

(\sqrt{g-h^{2}})(\zeta)=ih(()\sqrt{1-|h(\zeta)|^{2}}/|h(\zeta)|

or (\sqrt{g-h^{2}})(()=-ih(\zeta)\sqrt{1-|h(\zeta)|^{2}}/|h(()| .

Therefore by (3.7), we have

| \varphi(\zeta)|=|h(\zeta)+(\sqrt{g-h^{2}})(()|=|h(\zeta)\pm\frac{ih(\zeta)}{|h(\zeta)|}\sqrt{1-|h(()|^{2}}|

=||h(\zeta)|\pm i\sqrt{1-|h(()|^{2}}|=1

and similarly |\psi(\zeta)|=1 for every \zeta\in\Gamma Hence

|\varphi|=|\psi|=1 on \Gamma (3.10)

Put

T_{0}f= \frac{1}{2}(C_{\varphi}+C_{\psi})f for f\in A(\Gamma) . (3.4)

Then by (3.7),

T_{0}1=1 , T_{0}z=h , and T_{0}z^{2}=g . (3.4)
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Since

\varphi^{n}+\psi^{n}=(\varphi^{n-1}+\psi^{n-1})(\varphi+\psi)-\varphi\psi(\varphi^{n-2}+\psi^{n-2}) ,

by (3.8) and by induction we have

T_{0}z^{n}\in A(\Gamma) for every non-negative integer n . (3.13)

Let f\in A . Then there exists a sequence of analytic polynomials \{p_{k}\}_{k} such
that ||f-p_{k}||_{\infty}arrow 0 as karrow\infty . Then by (3.10) and (3.11), ||T_{0}f-T_{0}p_{k}||_{\infty}arrow

0 as karrow\infty . By (3.13), T_{0}p_{k}\in A(\Gamma) , so that we have T_{0}f\in A(\Gamma) for every
f\in A(\Gamma) . As a consequence, T_{0} is a bounded linear operator on A(\Gamma) with
||T_{0}||=1 and T_{0}1=1 . By Corollary 2.1, T_{0} is a BKW operator on A(\Gamma)

for \{1, z, z^{2}\} . By (3.12), T_{0}z^{j}=Tz^{j} for j=0,1,2 . Hence by Lemma 3.1,
we have T=T_{0} .

Suppose that h=0 and g is a finite Blaschke product. Put

T_{1}f= \frac{1}{2}(C_{\sqrt{g}}+C_{-\sqrt{g}})f for f\in A .

Then T_{1}1=1 , T_{1}z^{2n-1}=0 , and T_{1}z^{2n}=g^{n} for n\geq 1 . In the same way as
above, we can prove that T_{1}=T and T is a BKW-0perator for \{1, z, z^{2}\} .

\square

Remark 3.1. Let h\in A such that h/\overline{h} is a finite Blaschke product. Then h
is a rational function and all such h are described in [3]. For finite Blaschke
products b_{1} and b_{2} , put h=b_{1}+b_{2} . Then h/\overline{h}=b_{1}b_{2} is a finite Blaschke
product. Sum of inner functions are studied in [11, 12, 13]. These functions
h are deeply concerned with extremal problems.

The converse of the proof of Theorem 3.1 proves the following actually.

Corollary 3.1 Suppose that h , g\in A(\Gamma) satisfy the following conditions;
i) ||h||_{\infty}\leq 1 and ||g||_{\infty}\leq 1 ,
ii) h/\overline{h} is a finite Blaschke product (or h=0),
iii) h/\overline{h}=2h^{2}-g (when h=0, g is a finite Blaschke product).
Then there exists a unique bounded linear operator T on A(\Gamma) such that
||T||=1 , T1=1 , Tz=h, and Tz^{2}=g . Moreover T is a BKW-Operator
on A(\Gamma) for \{1, z, z^{2}\} having a form (\#) .

Corollary 3.2 Let h\in A such that 0<||h||_{\infty}\leq 1 and h/\overline{h} is a ffi-
nite Blaschke product. Then there exists a BKW operator T on A(\Gamma) for
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\{1, z, z^{2}\} such that ||T||=1 , T1=1 and Tz=h . In such BKW-Operators
T , there is a unique operator satisfying (\#) .

Proof. Put g=2h^{2}-(h/\overline{h}) . Then g\in A(\Gamma) . Since 2h^{2}-(h/\overline{h})=

h^{2}(2|h|^{2}-1)/|h|^{2} , ||g||_{\infty}\leq 1 . By Corollary 3.1, we have the first part of our
assertion. Let T_{1} and T_{2} be BKW-0perators for \{1, z, z^{2}\} satisfying (\#)

such that ||T_{i}||=1 , T_{i}1=1 , and T_{i}z=h for j=1,2 . Then by Theorem 3.1,
T_{1}z^{2}=2h^{2}-h/\overline{h}=T_{2}z^{2} . Hence by Lemma 3.1, T_{1}=T_{2} . \square

In Corollary 3.2, a BKW operator T with ||T||=1 , T1=1 and Tz=h
is not unique generally.

Example 3.1. Let h=z/2 . Then h/\overline{h}=z^{2} . Then by Takahasi’s theorem
[14],

T=(C_{\varphi}+C_{\psi})/2 , \varphi=e^{\frac{\pi}{3}i}z , \psi=e^{-\frac{\pi}{3}i}z

is a BKW operator for \{1, z, z^{2}\} satisfying T1=1 , Tz=z/2 , and Tz^{2}=

-z^{2}/2 . Also

T_{0}=(C_{-z}+3C_{z})/4 .

isaBKWz^{2}
.

operator for
\{1, z, z^{2}\}

satisfying T_{0}1=1 , T_{0}z=z/2 , and T_{0}z^{2}=

By Theorem 3.1 ii), we have the following.

Corollary 3.3 There are uncountable many BKW-Operators T on A(\Gamma)

for \{1, z, z^{2}\} satisfying ||T||=1 , T1=1 , and Tz=0 .

Next, we study that for BKW-0perators T satisfying (\#) , when both
\varphi and \psi are continuous or analytic.

Corollary 3.4 Let h\in A(\Gamma) such that 0<||h||\leq 1 and h/\overline{h} is a finite
Blaschke product. Let T be a BKW-Operators on A(\Gamma) for \{1, z, z^{2}\} such
that Tz=h and T=(C_{\varphi}+C_{\psi})/2 , |\varphi|=|\psi|=1 on \Gamma . Then we have the
following.

i) If number of zeros of h/\overline{h} in D , counting multiplicities, is even or
h^{2}-h/\overline{h} vanishes at some points in \Gamma , then \varphi and \psi are continuous
on \Gamma

ii) If h^{2}-h/\overline{h}=f^{2} for some f\in A(\Gamma) , then \varphi and \psi are finite Blaschke
products.
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Proof. Put Tz^{2}=g . Then by Theorem 3.1, we have
2h^{2}-g=h/\overline{h} (3.14)

and

\varphi=h+\sqrt{g-h^{2}} and \psi=h-\sqrt{g-h^{2}} . (3.15)

By (3.14),

g-h^{2}=h^{2}-h/\overline{h}=(-h/\overline{h})(1-|h|^{2}) . (3.16)

We note that the usual root function \sqrt{1-|h|^{2}} is continuous on \Gamma

i) Suppose that number of zeros of h/\overline{h} in D is even. Then we can
take such as \sqrt{-h/\overline{h}} is continuous on \Gamma Hence by (3.15) and (3.16), \varphi and
\psi are continuous.

Suppose that h^{2}-h/\overline{h} vanishes at some points in \Gamma r Then 1 -|h|^{2}

vanishes at these points. Hence we can take \sqrt{g-h^{2}} such as

\sqrt{g-h^{2}}=\sqrt{-h(1-|h|^{2})/\overline{h}} is continuous on \Gamma

ii) Suppose that h^{2}-h/\overline{h}=f^{2} for some f\in A(\Gamma) . Then by (3.16),
we can take such as \sqrt{g-h^{2}}=f . Hence \varphi , \psi\in A(\Gamma) , so that both of these
functions are finite Blaschke products. \square

Remark 3.2. Let 0<r<1 . If T_{0} is a bounded linear operator on A(\Gamma)

such that

(\neq_{r}) T_{0}=rC_{\varphi}+(1-r)C_{\psi} , |\varphi|=|\psi|=1 on \Gamma ,

then by Takahasi’s theorem [14], T_{0} is a BKW operator for \{1, z, z^{2}\} and
T1=1 . For a bounded linear operator T on A(\Gamma) such that ||T||=1 and
T1=1 , put Tz=h and Tz^{2}=g . We do not known conditions on h and g
for which T has a form (\neq_{r}) .

Remark 3.3. Let T_{1} be a bounded linear operator on A(\Gamma) such that
(\#_{-}) T_{1}=(C_{\varphi}-C_{\psi})/2 , |\varphi|=|\psi|=1 on \Gamma

Then T_{1} may not be a BKW operator for \{1, z, z^{2}\} . For, let T_{2}=(C_{z}-
C_{-z})/2 and

Pf=( \int_{0}^{2\pi}f(e^{i\theta})e^{-i\theta}d\theta/2\pi)z for f\in A(\Gamma) .



116 G. Hirasawa, K. Izuchi and K. Kasuga

Then T_{2} and P are bounded linear operators on A(\Gamma) satisfying that T_{2}\neq

P, ||T_{2}||=||P||=1 , T_{2}1=P1=0 , T_{2}z=Pz=z , and T_{2}z^{2}=Pz^{2}=0 .
Then by Lemma 3.1, T_{2} is not a BKW-0perator for \{1, z, z^{2}\} .
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