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Nonsingular vector fields in G'(M?3) satisfy Axiom A
and no cycle: a new proof of Liao’s theorem

Hiroyoshi TOYOSHIBA
(Received November 2, 1998; Revised April 26, 1999)

Abstract. In 1992, Hayashi [4] proved that diffeomorphisms in F!(M) satisfy Axiom A.
However, there exists a vector field which does not satisfy Axiom A in G!(M?3) [3]. So, we
consider the following problem: Does X € G1(M) without singularity satisfy Axiom A?
In 1981, Liao [7] solved this problem for the case of dim M = 3, making use of, the so
called, ‘obstruction set’ technique. But we are not familiar with the ‘obstruction set’
very much. So we try to prove the same theorem by a different method based on Mané’s
Ergodic Closing Lemma.
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1. Introduction

Let M™ be a n-dimensional compact smooth manifold without bound-
ary and let X1 (M™) be the set of C! vector fields on M™ with the C! topol-
ogy. We denote by X; (t € R) the C! flow on M™ generated by X € X1(M™).
Q(X) is the nonwandering set of X. A set A C M™ is said to be hyperbolic
set of X € X1 (M™) if it is compact, X;-invariant for all ¢ € R and there is
a continuous splitting TM™ |A = E° @ E°* @ E* (E%(z) =R - X(z),z € A),
invariant under D;X; such that there exist K > 0, 0 < X\ < 1, satisfying

(D X1) | B3Il < KX
and
[(D2X_¢) | E¥]| < KN

for all t > 0, x € A.

When Q(X) is hyperbolic and the periodic points are dense in (X)), we
say that X satisfies Axiom A. Let G!(M™) denote the set of X € X1(M™)
which has a neighborhood U such that if Y € U, then all periodic orbits
and singularities of Y are hyperbolic. Hayashi proved that f € F1(M™)
satisfies Axiom A in where F!(M") is the diffeomorphism version of
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G'(M™). However, for G1(M™), there exists a vector field in G1(S%) which
does not satisfy Axiom A ([3]). Thus, it is quite natural for us to consider the
following problem: Does X € G!(M™) without singularity satisfy Axiom A?
In 1981, Liao 7] solved this problem affirmatively for dim M = 3, making
use of, the so called, ‘obstruction set’ technique. Here we will prove the
same proposition by a different method based on Mané’s Ergodic Closing
Lemma.

Main Theorem If a vector field X is in G1(M3) and has no singularities,
then X satisfies Aziom A and no cycle condition.

Now, we attempt to give an outline of the proof without giving precise
definitions. It is known that for X € G'(M™), the number of attracting
and repelling periodic orbits is finite (Pliss [15]). L™(X) denotes the set of
a-limit points of X. L™ (X)' = L~(X) - {attracting and repelling periodic
orbits} and L= (X)’ is the closure of L7 (X)'. So attracting and repelling
periodic orbits are isolated, L= (X)'N (attracting and repelling periodic or-
bits) = (). For any p € L (X', there exist a sequence {t,}, t, > 0 (t, — oo
as n — 00) and € M3 such that

p= lim X_,; ().
n—oo
Among the points {X_;,(z)}, we can find a pair (X, (), X—4,,(x)) which
are arbitrarily close to each other and can be closed by Pugh’s Closing
Lemma. Therefore we have a sequence {Y™} of C! vector fields such that
{Y™} converges to X and each Y™ has a periodic orbit P, which is obtained
by closing two points in {X_;_(z)}.

In §2, we prove that for sufficiently large n, P, is a saddle type hy-
perbolic periodic orbit. Let {a,} be a sequence such that a, € P, and
lim, . an = p. Making use of this fact, we can show that L—(X)’ has
a dominated splitting. In §3, using Ergodic Closing Lemma we prove
that this dominated splitting over L=(X)’ is hyperbolic. Thus, we have
L=(X) = per(X) by theorem 3.1 in [12]. Hence, L~ () may be decomposed

into a finite union of basic sets as

L_(X):AlU---UAk.

In §4, we prove that L=(X) has no cycles, then by theorem 4.1 in [12], we
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obtain

L= (X) = per(X) = Q(X).

Therefore X satisfies Axiom A and no cycle condition.

2. Dominated-Splitting

Let N* be the normal bundle to X over M3. Each z € M3, the fiber
N, is a subspace of T, M3 with codimension one that is perpendicular to
X(z). For any u € N, let PX(u) be the orthogonal projection of Dy X;(u)
onto N, (). Then

PX :N* — N*

is a C° flow, which is linear on fibers. Let Uy be a neighborhood of X in
G'(M3) such that any Y € Uy has no singularities.

Theorem 2.1 Let X belong to G'(M?3) and have no singularities. Then

- there exist two numbers 0 < X < 1, T > 0 such that there is a continuous

PX -invariant splitting G* ® G* (a dominated splitting) on L=(X)' which

satisfies the following conditions:

(a) G*(z) = E*(z), G¥*(z) = E*(z) if = € per(X) (E*®E" is a hyperbolic
splitting),

(b) [P |G*(2)]] - [|PX ] G*(Xy(x))]| < €M for any t > T,

(¢) If T is the period of x € per(X), m is any positive integer, and 0 =
to < t1 < --- < tg = m7 is any partition of the time interval [0, mT]
with tH—l — ti Z T, then

k-1
1 X s
E Z;log ”PtH-l—ti |E (th(x))H < _)"

k-1

1 u
> log||PX,, iy | E¥(Xu,,, ()] < =
1=0

mT “

Proof.  For any q € L™(X)', there exist a sequence t, (t, > 0, t, — oo
as n — oo0) and z € M3 such that

lim X_; (x) =q.

n—oo

We may choose a pair of points in the sequence {X_; (z)} and close the
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pair by Pugh’s Closing Lemma. That is, there exist a vector field Y, C?
close to X, and a periodic orbit P of Y through some point of {X_;_(z)}.
From this, we may obtain sequences {Y"}, { P,} such that

lim Y" =X

n—0o0

and each Y™ has a periodic orbit P, through some point of {X_; (z)}. Let
a, be a point in P, such that

lim a, = q.
n—0oo

We obtain the next lemma.

Lemma 2.2 In {P,} there is only a finite number of attracting and re-
pelling periodic orbits.

Proof.  Suppose {P,} has an infinite number of attracting periodic orbits,
for the other case follows similarly by applying the same method to X_;
instead of X;. We may assume that all the P, are attracting periodic orbits
of Y™. Since each P, is compact, a subsequence of {P,}, denoted also by
{P,}, converges to some X;-invariant closed subset F' in L—(X)" with re-
spect to Hausdorff metric. We take an individual measure p,, corresponding
to a point a,, and we may assume that the sequence {u,} converges with
weak-star topology to a probability measure y on M. Each p, is invariant
under Y*. And p is a measure supported on F. Let ¢, : M> > R (n > 1)
be a sequence of real-valued continuous functions on M3 such that
lim ¢n(a) = ¢(a) uniformly on M?3.

n—oo

Then we have

lim (pn(a)dUn = /

p(a)dp. (1)
n—0o0 Jar3 M3

Because

[ entardnn~ [ ola)in
< l /M3 on(a)dpn — /M3 p(a)dpn

+ | /M3 p(a)dpn — /MS 90(a)dul
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and ¢n(a) — ¢(a) implies

1 /MB en(a)dpn — /M3 p(a)dpn

while pu, — p implies

| [ et@inm- [ w(a)du‘ ~0

Moreover, since each p, is Y;*-invariant, u is X;-invariant. In fact, by (1)
above, for any t € R,

/ o(Xe(a))dp
M3

< [ lon(@ — plaldus =0

Remark

tim ([ oK@~ [ on47 @i ) =0

In fact, since lim, 0 Y™ = X, d(X¢(a), Y*(a)) is very small for sufficiently
large n (for any a € M3 and a fixed t). On the other hand, as ¢, is
uniformly continuous on M3

on(Xi(a)) — on(Y*(a))| <e

for any a € M3 and sufficiently large n.
As p, is an individual measure corresponding to ay

t
/ on(@)dpin = lim = | n(¥Y7(an))ds. 2)
M3 t—oo b Jo
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Here we have the following lemma from Liao [6].

Lemma 2.3 (Theorem 2.1 in Liao [6]). Let X be in GY(M™). Then there
exist a C! neighborhood U of X in GL(M™) and two Zwmbers 0 < A=

AMU) < 1and T = T(U) > 0 such that for any Y € U and any periodic
point p of Y, the following two estimates hold:

a) ||PYIE*(p)l|-[|PL | E*(Ye(p))I| < €7 for any t > T,

b) If 7 is the period of p, m is any positive integer, and if 0 = tg <
t1 < --- <ty = m7 is any partition of the interval [0, m7) witht;41—t; > T,
then

1 k—1

— zglog 1P, e, | B° (Ya(0))]] < =,
1=

k-1
1 Y
mr ;log HP_(tH-l_ti) | E* (Yeir )] < =X

Assuming this lemma, we have a neighborhood U of X in Uy and A\ > 0,
T > 0 satisfying above theorem. Since Y™ converges to X, we may assume
that Y™ is in U for all n. For each n, let T, be the period of P, of Y™,
the periodic orbit with which we have been dealing. Since Y™ — X and we
may assume that q is not a periodic point of X, we have

lim T, = 4o0.
n—oo
Now let,
. 1 "
{r(a) = TflogllPT (a)ll],
1
ér(a) = flogllp%((a)ll-

Then limy,_,00 £7(a) = ér(a) uniformly on M3 for the number T = T(U) >
0. From b), for sufficiently large n,

T — nyn 1 n n
T {Z&T(Y(kq)T(an)) + T log ”P’I}';—mnT( mnT(an))“} <-A
™ k=1

where m,, is the greatest integer with 7,, — m, T > T which certainly exists |
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for sufficiently large n. For sufficiently large n, we have

Thus

Therefore

1 Im,T
] VAT

1 Imn—1 o(k+1)T
T k§_j/kT (Y7 (an))ds

Imnp—1

/ - 2_: LY (Y(an)))ds < —%
Thus from (2)
ERa)dn < =
Thus, from (1) we have

A
/{T Ydu = hm §T( Ydpn < —5 < 0.

Now we need a lemma from Liao @ to proceed.

T <& A
Z&?‘(Y(T]:_;[)T( )) < —5 fOI' all = € Pn

o1

Lemma 2.4 (Liao [6], Lemma 3.2). Let F be a closed subset of M™, in-
variant under X;. Assume that for a certain T € (0,00), there is a proba-

bility measure p on F', invariant under X; such that:

/{T )dp <0 or /f a)dy > 0

(%)

Then, F' contains a periodic orbit of X attracting or repelling corresponding

to the first inequality or the second of (x).

Using this lemma, we obtain attracting periodic orbit in F' but this is
a contradiction because attracting periodic orbit is isolated from L—(X)’.
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Thus we have completed the proof of Lemma 2.2. O

For any q € L™ (X)', we can take sequences {Y"}, {P,}, {an}, such
that
lim Y"=X, lima,=q (ap€ Py,)
n—o0

n—oo

and each P, is a hyperbolic saddle. By we may assume that for
any P,

1P/ (an) | B®(an)l| - [|1PX (Y (an)) | E“(Y (an))l| S €72, t 2 T.

And for any t € R, the sequences E*(Y;*(ay)), E“(Y;"(ay)) converge to
subspaces of Ny, which we define as G°(X;(q)) and G*(X;(q)) respec-
tively. Hence we attach to every ¢ € L~ (X)' two subspaces G*(X¢(q)) and
G"(X¢(q)) with the following properties:

dim Gy + dim Gy = 2, (3)
(P (q))GS = X(q O =S u forany t€R, (4)
1B GRll - [IP2 | Gyl S €™M, ¢ 2T (5)

and if z € per(X), then G*(z) = E*(z), G*(z) = E*(z). Moreover, as in
p. 526 of Maié [8],
G*(r) ® G¥(x) = N, forany z € L™ (X). (6)

By Proposition 1.3 of Mané [10], we can extend this splitting to L—(X)’.
Properties (3)—(6) imply that the subspaces G*(x) and G*(x) depend con-
tinuously on z € L=(X)". O

3. Hyperbolicity of L—(X)’

In §2 we obtained dominated splitting N* | L—(X) = G* & G*. Now
we show that this splitting is hyperbolic. By compactness of L= (X)/, it is
easy to see that if

lim inf || P, (a) | G*(a)l| = 0 (7)

n—0Q

and

liminf ||PX (a) | G*(a)|| = 0

n—oo
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hold for all @ € L—(X Y, then the splitting N* | L—(X)' = G* ® G* is hyper-
bolic. We shall prove only the first one, because the second one follows if
we apply the same method to X_; instead of X;. If (7) does not hold for all
a € L=(X)', we can find z € L= (X)' and a sequence j, — oo such that

.1 s
lim — log |(Py;,(2)) | G*(2)|| > 0

n-—00 jn

where m is the smallest integer satisfying m > T (T is given in [Theorem 2.1]).
Without loss of generality we may suppose that the sequence {j,} is such

that there exists an X,,-invariant probability measure g on L~(X)’ such
that

jn—1
[ dn= tim = 3 (K@)

L—(X)I n—oo j,n i—0
for every continuous ¢ : M3 — R. Setting

p(a) = log[|(Py; (a)) | G*(a)

we have

Jn—1

1
dp = lim — ) log||(Ppx (Xmi(x)) | G*(Xmi(z
[yt = Jim 55 1ol (B o) |6 i)

> lim —log |(P, () | G°(@)]] > 0. (8)

On the other hand, by Birkhoff’s theorem

/__ pdp
L=(X)

n—1
=/'( lim = }jmgnPX<mx>nG% Xmil@))lldp.  (9)

Xy n—en
Now we need the following lemma.
Lemma 3.1 (Ergodic Closing Lemma, Lemma VIIL.6 in Hayashi [5]).
u(E(X) U Sing(X)) =

for every X1-invariant probability measure u on the borel sets of M™, where
Sing(X) denotes the set of singularities of X.
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We define $(X) as the set of points z € M3 such that for every neigh-
borhood U(X) and every € > 0, there exist Y € U(X) y € per(Y), Tp > 0
and to,t; € R with to < 1 such that Y7,(y) =y, X =Y on M3 — B.(X, z)
(Be(X,z) = {y € M3 :d(X¢(z),y) < ¢ for some t € R}), {Xs(z) :to <t <
t1} C {Yi(y) : t > 0}, (t1 — to)/To > 1 — ¢ and d(Yi(y), Xi(z)) < € for all
0 <t < Tp. Note that X(X) is X;-invariant. From the above
and (8), (9), there exists p € £(X) N L~ (X)' such that

n—1

lim ~ Zlog 1P (Xmi(p)) | G° (Ximi (P))]| 2 0. (10)

n—oo N

Now take —A < —)\p < 0, ng > such that

n—1
=S 108 12X (Xns(0)) | & Kmi)] | = ~22m (11)
1=0

where n > ng. Observe that the point p is not periodic because if it were,
it should be hyperbolic with E*(p) = G*(p) and then would contradict
the first inequality of (b) of Lemma 2.3. Since p € (X) N L~ (X)’, we can
find Y arbitrarily near X and p € per(Y') such that X =Y on M3 - B.(X, p)
with sufficiently small € > 0 and such that the distance between X;(p) and
Y:(p) is small for all 0 < t < Tp, where Ty denotes the minimum Y-period of
p. Since p is not X;-periodic, the period Ty goes to oo when Y approaches
X. Using the same technique as that in p. 349 of Wen , we may take Y
arbitrarily close to Y and a periodic point p of Y with period Tp. That is,
N* restricted to the Y-orbit p has an P} -invariant splitting G* @ G* such
that

1PY, (Y1) () | G (Fns 41y D))
= |PX . (Xpn(541) () | G (Xomgg ey )]
1PY (Y (0)) | G5 (¥ ()
= |PX (Xinj(p)) | G*(Xmj (D))
for all 0 < j < [Tp/m] —
1P 1y i jmimy) (V10 (B)) | G*(V, (B)) ]
= “PZ((To—m[To/mH-m)(XTO(p)) | Gu(XTo(p))”,
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and

1P, ity i Vot i (B)) | G2 (Vo 2y g (P))
= ”PI)“g—m[To/m]—}-m(Xm[To/m]—m(p)) | G* ( m[To/m]—m(p))H

Then we have

n _T0<YTO<—>> G In@) (k= [To/m] - 1)
< H(uﬁ’ Vot (P)) | G* (V- (B)) |

% 1 BY (Fn-1y=mi () | G* (Fonge1) -miP))

k—1 !
X (H ”P% m(k—1) —mz( )) ‘G ( m(k—1) —'rm( ))H)
1=0

x ||P"’(T0_mk)<YTO () | G*(Yz, ()|
< e e o |PY o (Vi (9)) | G (Y (8))-

Note that we used to induced the last inequality above. If Tj is very
large, then k can be also large so that:

ok 2m p o Awre o
e x e 2™ X ||PY gy iy (Y1 (0)) | G* (Y1 (B))] < 1.

Thus, G* C E* (where E* & E* is hyperbolic splitting of orbit p for Y).
Therefore dim E* > dim G* = 1. That is, dim E% < 1. If dim E® = 1, then
G* = E*, G* = E*. By b) and above,we have,

k-1
=2 > T IPY (Vi (5)) | E* (Vi (9))
1=0

—HIIPX mi(P)) | G*(Xmi(p))|l  (from [T1})

> e_%ka.
This is a contradiction. Thus, dim E®* = 0 whenever we create Y C!-close
to Y. Therefore, we obtain a sequence {Y™}, Y™ — X such that Y™ has
a periodic orbit with index 0 and which converges to some closed set in
L=(X)'. Then as in the argument of Lemma 2.2, L~(X)’ has a periodic
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orbit with index 0, contradicting the definition of L=(X)’. Thus, we can
conclude that G* is contracting and that L=(X)’ is a hyperbolic set for X.

4. Proof of Main Theorem

In §3 we proved that if X is in G1(M?3) and has no singularities, then
L= (X) is hyperbolic. In this section we show that X satisfies Axiom A.

Theorem 4.1 (Theorem 3.1 in Newhouse [12]). If L—(X) is hyperbolic,
then L=(X) = per(X).

Proof.  The same method as in Theorem 3.1 of [12]. O

Therefore, we can conclude that L=(X) = per(X) and L—(X) is a
hyperbolic set for X. Now, L=(X) is decomposable to finite union of basic
sets.

L—(X)=A1UA2-°-UAk.

A basic set means an isolated, transitive hyperbolic set. If L=(X) has no
cycles, we obtain the next theorem from [12].

Theorem 4.2 (Theorem 4.1 in [12]). If L—(X) is hyperbolic and X has
no cycles, then L=(X) = per(X) = Q(X).

Proof.  In this theorem if L=(X) is hyperbolic and X has no c-cycle, then
the conditions are the same as in [Theorem 4.1 in . But by Proposition
3.10 in [12], we have that no cycle implies no c-cycle. Therefore, we may
apply the [Theorem 4.1 in [12]. And as the proof of Theorem 4.1 in
depends on a filtration theorem to basic sets which have no c-cycle, we can

apply the proof of [Theorem 4.1 in to flows. O

By this theorem, it suffices to prove that L—(X) has no cycles, to con-
clude that X satisfies Axiom A and no cycle condition.

Theorem 4.3 If X isin G}(M3) and has no singularities, then L= (X) =
A U---UAg has no cycles.

Proof.  Suppose that there is a cycle A;,, ..., A;, of basic sets with A;, #
Ay, (0<j<k<s). Let bj (j=1,...,s) be points of M3 such that

bjGWu(Aij)ﬂWs(Ain), jJ=1,...,8—1
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and
bs € WU(A@S) N WS(AZI)

Then at least one of them is not transversal intersection. We obtain next
lemma which is the flow version of Lemma I1.9 in . For the next lemma,
we shall need the concept of angle between subspaces of the Euclidean
space. If E1, Ey are subspaces of R? such that F; @ E; = R? we define the
angle a(Ey, E7) as a(Ey, E2) = ||L||7!, where L : E{f — E, is the linear
map such that Fs = {v+ Lv|v € Ei}; in particular, a(Ej, E{) = +o00.

Lemma 4.4 If X isin G1(M™) then there exist o > 0, neighborhood U’
of X and T' > 0 such that if Y € U' and P is a periodic orbit of Y with
period Ty (> T') then o(E*(p), E*(p)) > o’ (p € P, E*(p), E*(p) C N*).

Now we assume that only b; is not transversal intersection. Then we
perturb X at b; and obtain Y Cl-close to X such that b; is transversal
intersection and vi,v, € N*(b;) are tangent to W*(A;,), W¥(A;,) respec-
tively such that o(Vi,V2) < o/, where V; and V;, are subspaces in N*(b;)
spanned by v;, ve respectively. Then we can find a periodic point p arbi-
trarily close to by whose period T}, is sufficiently large. Since p is very close
to b1, W3(p) and W¥(p) are C! close to W*(A;,), W*(A;,) respectively at
bi. So, a(E*(p), E*(p)) < . But this contradicts Lemma 4.4. We have
completed the proof of [Theorem 4.3. O
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