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Nonsingular vector fields in \mathcal{G}^{1}(M^{3}) satisfy Axiom A
and no cycle: a new proof of Liao’s theorem

Hiroyoshi TOYOSHIBA
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Abstract. In 1992, Hayashi [4] proved that diffeomorphisms in F^{1}(M) satisfy Axiom A.
However, there exists a vector field which does not satisfy Axiom A in \mathcal{G}^{1}(M^{3})[3] . So, we
consider the following problem: Does X\in \mathcal{G}^{1}(M) without singularity satisfy Axiom A?

In 1981, Liao [7] solved this problem for the case of dim M=3, making use of, the so
called, ‘obstruction set’ technique. But we are not familiar with the ‘obstruction set’
very much. So we try to prove the same theorem by a different method based on Mane’s
Ergodic Closing Lemma.
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1. Introduction

Let M^{n} be a n-dimensional compact smooth manifold without bound-
ary and let \mathcal{X}^{1}(M^{n}) be the set of C^{1} vector fields on M^{n} with the C^{1} topol-
ogy. We denote by X_{t}(t\in \mathbb{R}) the C^{1} flow on M^{n} generated by X\in \mathcal{X}^{1}(M^{n}) .
\Omega(X) is the nonwandering set of X\tau A set \Lambda\subset M^{n} is said to be hyperbolic
set of X\in \mathcal{X}^{1}(M^{n}) if it is compact, X_{t}-invariant for all t\in \mathbb{R} and there is
a continuous splitting TM^{n}|\Lambda=E^{0}\oplus E^{s}\oplus E^{u}(E^{0}(x)=\mathbb{R}\cdot X(x), x\in\Lambda) ,
invariant under D_{x}X_{t} such that there exist K>0,0<\lambda<1 , satisfying

||(D_{x}X_{t})|E_{x}^{s}||\leq K\lambda^{t}

and

||(D_{x}X_{-t})|E_{x}^{u}||\leq K\lambda^{t}

for all t \geq 0 , x\in\Lambda .
When \Omega(X) is hyperbolic and the periodic points are dense in \Omega(X) , we

say that X satisfies Axiom A. Let \mathcal{G}^{1}(M^{n}) denote the set of X\in \mathcal{X}^{1}(M^{n})

which has a neighborhood \mathcal{U} such that if Y\in \mathcal{U} , then all periodic orbits
and singularities of Y are hyperbolic. Hayashi proved that f\in \mathcal{F}^{1}(M^{n})

satisfies Axiom A in [4] where \mathcal{F}^{1}(M^{n}) is the diffeomorphism version of
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\mathcal{G}^{1}(M^{n}) . However, for \mathcal{G}^{1}(M^{n}) , there exists a vector field in \mathcal{G}^{1}(S^{3}) which
does not satisfy Axiom A ([3]). Thus, it is quite natural for us to consider the
following problem: Does X\in \mathcal{G}^{1}(M^{n}) without singularity satisfy Axiom A?
In 1981, Liao [7] solved this problem affirmatively for dim M=3, making
use of, the so called, ‘obstruction set’ technique. Here we will prove the
same proposition by a different method based on Mane’s Ergodic Closing
Lemma.

Main Theorem If a vectorfield X is in \mathcal{G}^{1}(M^{3}) and has no singularities,
then X satisfies Axiom A and no cycle condition.

Now, we attempt to give an outline of the proof without giving precise
definitions. It is known that for X\in \mathcal{G}^{1}(M^{n}) , the number of attracting
and repelling periodic orbits is finite (Pliss [15]). L^{-}(X) denotes the set of
\alpha-limit points of X. L^{-}(X)’=L^{-}(X)- {attracting and repelling periodic
orbits} and \overline{L^{-}(X)’} is the closure of L^{-}(X)’ . So attracting and repelling
periodic orbits are isolated, \overline{L^{-}(X)’}\cap(attracting and repelling periodic or-
bits)= \emptyset . For any p\in L^{-}(X)’ , there exist a sequence \{t_{n}\} , t_{n}\geq 0(t_{n}arrow\infty

as narrow\infty ) and x\in M^{3} such that

p= \lim_{narrow\infty}X_{-t_{n}}(x) .

Among the points \{X_{-t_{n}}(x)\} , we can find a pair (X_{-t_{n_{1}}}(x), X_{-t_{n_{2}}}(x)) which
are arbitrarily close to each other and can be closed by Pugh’s Closing
Lemma. Therefore we have a sequence \{Y^{n}\} of C^{1} vector fields such that
\{Y^{n}\} converges to X and each Y^{n} has a periodic orbit P_{n} which is obtained
by closing two points in \{X_{-t_{n}}(x)\} .

In \S 2, we prove that for sufficiently large n , P_{n} is a saddle type hy-
perbolic periodic orbit. Let \{a_{n}\} be a sequence such that a_{n}\in P_{n} and
\lim_{narrow\infty}a_{n}=p . Making use of this fact, we can show that \overline{L^{-}(X)’} has
a dominated splitting. In \S 3, using Ergodic Closing Lemma we prove
that this dominated splitting over \overline{L^{-}(X)’} is hyperbolic. Thus, we have
\overline{L^{-}(X)}=\overline{per(X)} by theorem 3.1 in [12]. Hence, \overline{L^{-}(x)} may be decomposed
into a finite union of basic sets as

\overline{L^{-}(X)}=\Lambda_{1}\cup
\cdot . \cup\Lambda_{k} .

In \S 4, we prove that \overline{L^{-}(X)} has no cycles, then by theorem 4.1 in [12], we
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obtain

\overline{L^{-}(X)}=\overline{per(X)}=\Omega(X) .

Therefore X satisfies Axiom A and no cycle condition.

2. Dominated-Splitting

Let N^{*} be the normal bundle to X over M^{3} . Each x\in M^{3} , the fiber
N_{x} is a subspace of T_{x}M^{3} with codimension one that is perpendicular to
X(x) . For any u\in N_{x} , let P_{t}^{X}(u) be the orthogonal projection of D_{x}X_{t}(u)

onto N_{X_{t}(x)} . Then

P_{t}^{X} : N^{*}arrow N^{*}

is a C^{0} flow, which is linear on fibers. Let \mathcal{U}_{0} be a neighborhood of X in
\mathcal{G}^{1}(M^{3}) such that any Y\in \mathcal{U}_{0} has no singularities.

Theorem 2.1 Let X belong to \mathcal{G}^{1}(M^{3}) and have no singularities. Then
there exist two numbers 0<\lambda<1 , T>0 such that there is a continuous
P_{t}^{X} -invariant splitting G^{s}\oplus G^{u} (a dominated splitting) on \overline{L^{-}(X)’} which
satisfies the following conditions:
(a) G^{s}(x)=E^{s}(x) , G^{u}(x)=E^{u}(x) if x\in per(X)(E^{s}\oplus E^{u} is a hyperbolic

splitting),
(b) ||P_{t}^{X}|G^{s}(x)|| ||P_{-t}^{X}|G^{u}(X_{t}(x))||\leq e^{-2\lambda t} for any t\geq T ,
(c) If \tau is the period of x\in per(X) , m is any positive integer, and 0=

t_{0}<t_{1}< <t_{k}=m\tau is any partition of the time interval [0, m\tau]

with t_{i+1}-t_{i}\geq T , then

\frac{1}{m\tau}\sum_{i=0}^{k-1} log ||P_{t_{i+1}-t_{i}}^{X}|E^{s}(X_{t_{i}}(x))||\leq-\lambda ,

\frac{1}{m\tau}\sum_{i=0}^{k-1}\log||P_{-(t_{i+1}-t_{i})}^{X}|E^{u}(X_{t_{i+1}}(x))||\leq-\lambda .

Proo/. For any q\in L^{-}(X)’ , there exist a sequence t_{n}(t_{n}\geq 0, t_{n} - \infty

as narrow\infty ) and x\in M^{3} such that

\lim_{narrow\infty}X_{-t_{n}}(x)=q .

We may choose a pair of points in the sequence \{X_{-t_{n}}(x)\} and close the
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pair by Pugh’s Closing Lemma. That is, there exist a vector field Y., C^{1}

close to X , and a periodic orbit P of Y through some point of \{X_{-t_{n}}(x)\} .
From this, we may obtain sequences \{Y^{n}\} , \{P_{n}\} such that

\lim_{narrow\infty}Y^{n}=X

and each Y^{n} has a periodic orbit P_{n} through some point of \{X_{-t_{n}}(x)\} . Let
a_{n} be a point in P_{n} such that

\lim_{narrow\infty}a_{n}=q .

We obtain the next lemma.

Lemma 2.2 In \{P_{n}\} there is only a finite number of attracting and re-
pelling periodic orbits.

Proof Suppose \{P_{n}\} has an infinite number of attracting periodic orbits,
for the other case follows similarly by applying the same method to X_{-t}

instead of X_{t} . We may assume that all the P_{n} are attracting periodic orbits
of Y^{n} . Since each P_{n} is compact, a subsequence of \{P_{n}\} , denoted also by
\{P_{n}\} , converges to some X_{t}-invariant closed subset F in \overline{L^{-}(X)’} with re-
spect to Hausdorff metric. We take an individual measure \mu_{n} corresponding
to a point a_{n} , and we may assume that the sequence \{\mu_{n}\} converges with
weak-star topology to a probability measure \mu on M . Each \mu_{n} is invariant
under Y_{t}^{n} . And \mu is a measure supported on F . Let \varphi_{n} : M^{3}arrow IR (n\geq 1)

be a sequence of real-valued continuous functions on M^{3} such that

\lim_{narrow\infty}\varphi_{n}(a)=\varphi(a) uniformly on M^{3}

Then we have

\lim_{narrow\infty}\int_{M^{3}}\varphi_{n}(a)d\mu_{n}=\int_{M^{3}}\varphi(a)d\mu . (1)

Because

| \int_{M^{3}}\varphi_{n}(a)d\mu_{n}-\int_{M^{3}}\varphi(a)d\mu|

\leq|\int_{M^{3}}\varphi_{n}(a)d\mu_{n}-\int_{M^{3}}\varphi(a)d\mu_{n}|+|\int_{M^{3}}\varphi(a)d\mu_{n}-\int_{M^{3}}\varphi(a)d\mu|
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and \varphi_{n}(a)arrow\varphi(a) implies

| \int_{M^{3}}\varphi_{n}(a)d\mu_{n}-\int_{M^{3}}\varphi(a)d\mu_{n}|\leq\int_{M^{3}}|\varphi_{n}(a)-\varphi(a)|d\mu_{n}arrow 0

while \mu_{n}arrow\mu implies

| \int_{M^{3}}\varphi(a)d\mu_{n}-\int_{M^{3}}\varphi(a)d\mu|arrow 0 .

Moreover, since each \mu_{n} is Y_{t}^{n}-invariant, \mu is X_{t}-invariant. In fact, by (1)
above, for any t\in \mathbb{R} ,

\int_{M^{3}}\varphi(X_{t}(a))d\mu

= \lim_{narrow\infty}\int_{M^{3}}\varphi_{n}(X_{t}(a))d\mu_{n}-\lim_{narrow\infty}\int_{M^{3}}\varphi_{n}(Y_{t}^{n}(a))d\mu_{n}

+ \lim_{narrow\infty}\int_{M^{3}}\varphi_{n}(Y_{t}^{n}(a))d\mu_{n}

= \lim_{narrow\infty}(\int_{M^{3}}\varphi_{n}(X_{t}(a))d\mu_{n}-\int_{M^{3}}\varphi_{n}(Y_{t}^{n}(a))d\mu_{n})

+ \lim_{narrow\infty}\int_{M^{3}}\varphi_{n}(Y_{t}^{n}(a))d\mu_{n}

= \lim_{narrow\infty}\int_{M^{3}}\varphi_{n}(Y_{t}^{n}(a))d\mu_{n}=\lim_{narrow\infty}\int_{M^{3}}\varphi_{n}(a)d\mu_{n}=\int_{M^{3}}\varphi(a)d\mu .

Remark

\lim_{narrow\infty}(\int_{M^{3}}\varphi_{n}(X_{t}(a))d\mu_{n}-\int_{M^{3}}\varphi_{n}(Y_{t}^{n}(a))d\mu_{n})=0 .

In fact, since \lim_{narrow\infty}Y^{n}=X , d(X_{t}(a), Y_{t}^{n}(a)) is very small for sufficiently
large n (for any a\in M^{3} and a fixed t). On the other hand, as \varphi_{n} is
uniformly continuous on M^{3}

|\varphi_{n}(X_{t}(a))-\varphi_{n}(Y_{t}^{n}(a))|<\epsilon

for any a\in M^{3} and sufficiently large n .
As \mu_{n} is an individual measure corresponding to a_{n}

\int_{M^{3}}\varphi_{n}(a)d\mu_{n}=\lim_{tarrow\infty}\frac{1}{t}\int_{0}^{t}\varphi_{n}(Y_{s}^{n}(a_{n}))ds . (2)
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Here we have the following lemma from Liao [6].

Lemma 2.3 (Theorem 2.1 in Liao [6]). Let X be in \mathcal{G}^{1}(M^{n}) . Then there
exist a C^{1} neighborhood \tilde{\mathcal{U}} of X in \mathcal{G}^{1}(M^{n}) and two numbers 0<\lambda=
\lambda(\tilde{\mathcal{U}})<1 and T=T(\tilde{\mathcal{U}})>0 such that for any Y\in\tilde{\mathcal{U}} and any periodic
point p of Y. the following two estimates hold:

a) ||P_{t}^{Y}|E^{s}(p)|| ||P_{-t}^{Y}|E^{u}(Y_{t}(p))||\leq e^{-2\lambda t} for any t\geq T ,,

b) If \tau is the period of p, m is any positive integer, and if 0=t_{0}<
t_{1}< <t_{k}=m\tau is any partition of the interval [0, m\tau] with t_{i+1}-t_{i}\geq T ,
then

\frac{1}{m\tau}\sum_{i=0}^{k-1} log ||P_{t_{i+1}-t_{i}}^{Y}|E^{s}(Y_{t_{i}}(p))||<-\lambda ,

\frac{1}{m\tau}\sum_{i=0}^{k-1} log ||P_{-(t_{i+1}-t_{i})}^{Y}|E^{u}(Y_{t_{i+1}}(p))||<-\lambda .

Assuming this lemma, we have a neighborhood \mathcal{U} of X in \mathcal{U}_{0} and \lambda>0 ,
T>0 satisfying above theorem. Since Y^{n} converges to X , we may assume
that Y^{n} is in \mathcal{U} for all n . For each n , let T_{n} be the period of P_{n} of Y^{n} ,
the periodic orbit with which we have been dealing. Since Y^{n}arrow X and we
may assume that q is not a periodic point of X , we have

\lim_{narrow\infty}T_{n}=+\infty .

Now let

\xi_{T}^{n}(a)=\frac{1}{T}\log||P_{T}^{Y^{n}}(a)|| ,

\xi_{T}(a)=\frac{1}{T} log ||P_{T}^{X}(a)|| .

Then \lim_{narrow\infty}\xi_{T}^{n}(a)=\xi\tau(a) uniformly on M^{3} for the number T=T(\mathcal{U})>

0 . From Lemma 2.3 b), for sufficiently large n ,

\frac{T}{T_{n}}\{\sum_{k=1}^{m_{n}}\xi_{T}^{n}(Y_{(k-1)T}^{n}(a_{n}))+\frac{1}{T} log ||P_{T_{n}-m_{n}T}^{Y^{n}}(Y_{m_{n}T}^{n}(a_{n}))||\}\leq-\lambda

where m_{n} is the greatest integer with T_{n}-m_{n}T\geq T which certainly exists
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for sufficiently large n . For sufficiently large n , we have

\frac{T}{m_{n}T}\sum_{k=1}^{m_{n}}\xi_{T}^{n}(Y_{(k-1)T}^{n}(x))<-\frac{\lambda}{2} for all x\in P_{n} .

Thus

\frac{1}{lm_{n}}(\sum_{k=1}^{lm_{n}}\xi_{T}^{n}(Y_{(k-1)T}^{n}(a_{n})))<-\frac{\lambda}{2} l=1,2\ldots

Therefore

\frac{1}{lm_{n}T}\int_{0}^{lm_{n}T}\xi_{T}^{n}(Y_{s}^{n}(a_{n}))ds

= \frac{1}{lm_{n}T}\sum_{k=0}^{lm_{n}-1}\int_{kT}^{(k+1)T}\xi_{T}^{n}(Y_{s}^{n}(a_{n}))ds

= \frac{1}{T}\int_{0}^{T}\frac{1}{lm_{n}}\sum_{k=0}^{lm_{n}-1}\xi_{T}^{n}(Y_{kT}^{n}(Y_{s}^{n}(a_{n})))ds<-\frac{\lambda}{2} l=1,2 , \ldots

Thus from (2)

\int_{P_{n}}\xi_{T}^{n}(a)d\mu_{n}<-\frac{\lambda}{2} .

Thus, from (1) we have

\int_{F}\xi_{T}(a)d\mu=\lim_{narrow\infty}\int_{P_{n}}\xi_{T}^{n}(a)d\mu_{n}\leq-\frac{\lambda}{2}<0 .

Now we need a lemma from Liao [6] to proceed.

Lemma 2.4 (Liao [6], Lemma 3.2). Let F be a closed subset of M^{n} , in-
variant under X_{t} . Assume that for a certain \tilde{T}\in(0, \infty) , there is a proba-
bility measure \mu on F, invariant under X_{t} such that:

\int_{F}\xi_{\tilde{T}}(a)d\mu<0 or \int_{F}\xi_{-\tilde{T}}(a)d\mu>0 (*)

Then, F contains a periodic orbit of X attracting or repelling corresponding
to the first inequality or the second of (*) .

Using this lemma, we obtain attracting periodic orbit in F but this is
a contradiction because attracting periodic orbit is isolated from \overline{L^{-}(X)’} .
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Thus we have completed the proof of Lemma 2.2. \square

For any q\in L^{-}(X)’ , we can take sequences \{Y^{n}\} , \{P_{n}\} , \{a_{n}\} , such
that

\lim_{narrow\infty}Y^{n}=X , \lim_{narrow\infty}a_{n}=q
(a_{n}\in P_{n})

and each P_{n} is a hyperbolic saddle. By Lemma 2.3 we may assume that for
any P_{n}

||P_{t}^{Y^{n}}(a_{n})|E^{s}(a_{n})|| ||P_{-t}^{Y^{n}}(Y_{t}^{n}(a_{n}))|E^{u}(Y_{t}^{n}(a_{n}))||\leq e^{-2\lambda t} , t\geq T

And for any t\in \mathbb{R} , the sequences E^{s}(Y_{t}^{n}(a_{n})) , E^{u}(Y_{t}^{n}(a_{n})) converge to
subspaces of N_{X_{t}(q)} which we define as G^{s}(X_{t}(q)) and G^{u}(X_{t}(q)) respec-
tively. Hence we attach to every q\in L^{-}(X)’ two subspaces G^{s}(X_{t}(q)) and
G^{u}(X_{t}(q)) with the following properties:

dim G_{q}^{s}+\dim G_{q}^{u}=2 , (3)

(P_{t}^{X}(q))G_{x}^{\sigma}=G_{X_{t}(q)}^{\sigma}\sigma=s , u for any t\in \mathbb{R} , (4)

||P_{t}^{X}|G_{x}^{s}|| ||P_{-t}^{X}|G_{X_{t}(x)}^{u}||\leq e^{-2\lambda t} , t\geq T (5)

and if x\in per(X) , then G^{s}(x)=E^{s}(x) , G^{u}(x)=E^{u}(x) . Moreover, as in
p. 526 of Ma\tilde{n}\acute{e}[8] ,

G^{s}(x)\oplus G^{u}(x)=N_{x} for any x\in L^{-}(X)’ (6)

By Proposition 1.3 of Ma\tilde{n}\acute{e}[10] , we can extend this splitting to \overline{L^{-}(X)’} .
Properties (3)-(6) imply that the subspaces G^{s}(x) and G^{u}(x) depend con-
tinuously on x\in\overline{L^{-}(X)’} . \square

3. Hyperbolicity of \overline{L^{-}(X)’}

In \S 2 we obtained dominated splitting N^{*}|\overline{L^{-}(X)’}=G^{s}\oplus G^{u} . Now
we show that this splitting is hyperbolic. By compactness of \overline{L^{-}(X)’} , it is
easy to see that if

\lim_{narrow}\inf_{\infty}||P_{n}^{X}(a)|G^{s}(a)||=0 (7)

and

\lim_{narrow}\inf_{\infty}||P_{-n}^{X}(a)|G^{u}(a)||=0
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hold for all a\in\overline{L^{-}(X)’} , then the splitting N^{*}|\overline{L^{-}(X)’}=G^{s}\oplus G^{u} is hyper-
bolic. We shall prove only the first one, because the second one follows if
we apply the same method to X_{-t} instead of X_{t} . If (7) does not hold for all
a\in\overline{L^{-}(X)’} . we can find x\in\overline{L^{-}(X)’} and a sequence j_{n}arrow+\infty such that

lim .\underline{1} log ||(P_{mj_{n}}^{X}(x))|G^{s}(x)||\geq 0

narrow\infty g_{n}

where m is the smallest integer satisfying m\geq T (T is given in Theorem 2.1).
Without loss of generality we may suppose that the sequence \{j_{n}\} is such
that there exists an X_{m}-invariant probability measure \mu on \overline{L^{-}(X)’} such
that

\int_{\overline{L^{-}(X)’}}\varphi d\mu=\lim_{narrow\infty}\frac{1}{j_{n}}\sum_{i=0}^{j_{n}-1}\varphi(X_{mi}(x))

for every continuous \varphi : M^{3}arrow \mathbb{R} . Setting

\varphi(a)=\log||(P_{m}^{X}(a))|G^{s}(a)||

we have

\int_{\overline{L^{-}(X)}},
\varphi d\mu=\lim_{narrow\infty}\frac{1}{j_{n}}\sum_{i=0}^{j_{n}-1}\log||(P_{m}^{X}(X_{mi}(x))|G^{s}(X_{mi}(x))||

\geq\lim_{narrow\infty}\frac{1}{j_{n}}\log||(P_{mj_{n}}^{X}(x))|G^{s}(x)||\geq 0 . (8)

On the other hand, by Birkhoff theorem

\int_{\overline{L^{-}(X)’}}\varphi d\mu

= \int_{\overline{L^{-}(X)’}}\lim_{narrow\infty}\frac{1}{n}\sum_{i=0}^{n-1} log ||(P_{m}^{X}(X_{mi}(a))|G^{s}(X_{mi}(a))||d\mu. (9)

Now we need the following lemma.

Lemma 3.1 (Ergodic Closing Lemma, Lemma VII.6 in Hayashi [5]).

\mu(\Sigma(X)\cup Sing(X))=1

for every X_{1} -invariant probability measure \mu on the borel sets of M^{n} , where
Sing(X) denotes the set of singularities of X
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We define \Sigma(X) as the set of points x\in M^{3} such that for every neigh-
borhood \mathcal{U}(X) and every \epsilon>0 , there exist Y\in \mathcal{U}(X)y\in per(Y) , T_{0}>0

and t_{0} , t_{1}\in \mathbb{R} with t_{0}<t_{1} such that Y_{T_{0}}(y)=y , X=Y on M^{3}-B_{\in}(X, x)

(B_{\epsilon}(X, x)= {y\in M^{3} : d(X_{t}(x), y)\leq\epsilon for some t\in \mathbb{R} } ) , {X_{t}(x) : t_{0}\leq t\leq

t_{1}\}\subset\{Y_{t}(y) : t\geq 0\} , (t_{1}-t_{0})/T_{0}>1-\epsilon and d(Y_{t}(y), X_{t}(x))\leq\epsilon for all
0\leq t\leq T_{0} . Note that \Sigma(X) is X_{1} -invariant. From the above Lemma 3.1
and (8), (9), there exists p\in\Sigma(X)\cap\overline{L^{-}(X)’} such that

\lim_{narrow\infty}\frac{1}{n}\sum_{i=0}^{n-1} log ||P_{m}^{X}(X_{mi}(p))|G^{s}(X_{mi}(p))||\geq 0 . (10)

Now take -\lambda<-\lambda_{0}<0 , n_{0}>such that

\frac{1}{n}\sum_{i=0}^{n-1}\log||P_{m}^{X}(X_{mi}(p))|G^{s}(X_{mi}(p))||\geq-\frac{\lambda_{0}}{2}m (11)

where n\geq n_{0} . Observe that the point p is not periodic because if it were,
it should be hyperbolic with E^{s}(p)=G^{s}(p) and then (11) would contradict
the first inequality of (b) of Lemma 2.3. Since p\in\Sigma(X)\cap\overline{L^{-}(X)’} , we can
find Y arbitrarily near X and \overline{p}\in per(Y) such that X=Y on M^{3}-B_{\epsilon}(X,p)

with sufficiently small \epsilon>0 and such that the distance between X_{t}(p) and
Y_{t}(\overline{p}) is small for all 0\leq t\leq T_{0} , where T_{0} denotes the minimum Y period of

\overline{p} . Since p is not X_{t}-periodic, the period T_{0} goes to \infty when Y approaches
X . Using the same technique as that in p. 349 of Wen [17], we may take \overline{Y}

arbitrarily close to Y and a periodic point \overline{p} of \overline{Y} with period T_{0} . That is,
N^{*} restricted to the \overline{Y}-0rbit \overline{p} has an P_{t}^{\overline{Y}}-invariant splitting \overline{G}^{s}\oplus\overline{G}^{u} such
that

||P_{-m}^{\overline{Y}}(\overline{Y}_{m(j+1)}(\overline{p}))|\overline{G}^{u}(\overline{Y}_{m(j+1)}(\overline{p}))||

=||P_{-m}^{X}(X_{m(j+1)}(p))|G^{u}(X_{m(j+1)}(p))|| ,

||P_{m}^{\overline{Y}}(\overline{Y}_{mj}(\overline{p}))|\overline{G}^{s}(\overline{Y}_{mj}(\overline{p}))||

=||P_{m}^{X}(X_{mj}(p))|G^{s}(X_{mj}(p))||

for all 0\leq j\leq[T_{0}/m]-2 ,

||P_{-(T_{0}-m[T_{0}/m]+m)}^{\overline{Y}}(\overline{Y}_{T_{0}}(\overline{p}))|\overline{G}^{u}(\overline{Y}_{T_{0}}(\overline{p}))||

=||P_{-(T_{0}-m[T_{0}/m]+m)}^{X}(X_{T_{0}}(p))|G^{u}(X_{T_{0}}(p))|| ,
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and

||P_{T_{0}-m[\tau_{0/m]+m}}^{\overline{Y}}(\overline{Y}_{m[\tau_{0/m]-m}}(\overline{p}))|\overline{G}^{s}(\overline{Y}_{m[T_{0}/m]-m}(\overline{p}))||

=||P_{T_{0}-m[T_{0}/m]+m}^{X}(X_{m[T_{0}/m]-m}(p))|G^{s}(X_{m[T_{0}/m]-m}(p))|| .

Then we have

||P_{-T_{0}}^{\overline{Y}}(\overline{Y}_{T_{0}}(\overline{p}))|\overline{G}^{u}(\overline{Y}_{T_{0}}(\overline{p}))|| (k=[T_{0}/m]-1)

\leq\prod(||P_{-m}^{\overline{Y}}(\overline{Y}_{mk-mi}(\overline{p}))|\overline{G}^{u}(\overline{Y}_{mk-mi}(\overline{p}))||k-1

i=0

\cross||P_{m}^{\overline{Y}}(\overline{Y}_{m(k-1)-mi}(\overline{p}))|\overline{G}^{s}(\overline{Y}_{m(k-1)-mi}(\overline{p}))||)

\cross(\prod_{i=0}^{k-1}||P_{m}^{X}(X_{m(k-1)-mi}(p))|G^{s}(X_{m(k-1)-mi}(p))||)-1

\cross||P_{-(T_{0}-mk)}^{\overline{Y}}(\overline{Y}_{T_{0}}(\overline{p}))|\overline{G}^{u}(\overline{Y}_{T_{0}}(\overline{p}))||

\leq e^{-2\lambda mk}\cross e^{\Delta_{mk}}\lambda 2\cross||P_{-(T_{0}-mk)}^{\overline{Y}}(\overline{Y}_{T_{0}}(\overline{p}))|\overline{G}^{u}(\overline{Y}_{T_{0}}(\overline{p}))|| .

Note that we used (11) to induced the last inequality above. If T_{0} is very
large, then k can be also large so that:

e^{-2\lambda mk}\cross e^{\frac{\lambda_{0}}{2}mk}\cross||P_{-(T_{0}-mk)}^{\overline{Y}}(\overline{Y}_{T_{0}}(\overline{p}))|\overline{G}^{u}(\overline{Y}_{T_{0}}(\overline{p}))||<1 .

Thus, \overline{G}^{u}\subset E^{u} (where E^{s}\oplus E^{u} is hyperbolic splitting of orbit \overline{p} for \overline{Y} ).
Therefore dim E^{u}\geq\dim\overline{G}^{u}=1 . That is, dim E^{s}\leq 1 . If dim E^{s}=1 , then
\overline{G}^{u}=E^{u},\overline{G}^{s}=E^{s} . By Lemma 2.3 b) and (11) above,we have,

e^{-\frac{\lambda}{2}mk}> \prod_{i=0}^{k-1}||P_{m}^{\overline{Y}}(\overline{Y}_{mi}(\overline{p}))|E^{s}(\overline{Y}_{mi}(\overline{p}))||

= \prod_{i=0}^{k-1}||P_{m}^{X}(X_{mi}(p))|G^{s}(X_{mi}(p))|| (from (11))

>e^{-_{2}^{\underline{\lambda}}n_{mk}}

.

This is a contradiction. Thus, dim E^{s}=0 whenever we create \overline{Y}C^{1} -close
to Y Therefore, we obtain a sequence \{\overline{Y}^{n}\},\overline{Y}^{n} -arrow X such that \overline{Y}^{n} has
a periodic orbit with index 0 and which converges to some closed set in
\overline{L^{-}(X)’} . Then as in the argument of Lemma 2.2, \overline{L^{-}(X)’} has a periodic
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orbit with index 0, contradicting the definition of \overline{L^{-}(X)’} . Thus, we can
conclude that G^{s} is contracting and that \overline{L^{-}(X)’} is a hyperbolic set for X .

4. Proof of Main Theorem

In \S 3 we proved that if X is in \mathcal{G}^{1}(M^{3}) and has no singularities, then
\overline{L^{-}(X)} is hyperbolic. In this section we show that X satisfies Axiom A.

Theorem 4.1 (Theorem 3.1 in Newhouse [12]). If \overline{L^{-}(X)} is hyperbolic,
then \overline{L^{-}(X)}=\overline{per(X)} .

Proof. The same method as in Theorem 3.1 of [12]. \square

Therefore, we can conclude that \overline{L^{-}(X)}=\overline{per(X)} and \overline{L^{-}(X)} is a
hyperbolic set for X . Now, \overline{L^{-}(X)} is decomposable to finite union of basic
sets.

\overline{L^{-}(X)}=\Lambda_{1}\cup\Lambda_{2}\cdots\cup\Lambda_{k} .

A basic set means an isolated, transitive hyperbolic set. If \overline{L^{-}(X)} has no
cycles, we obtain the next theorem from [12].

Theorem 4.2 (Theorem 4.1 in [12]). If \overline{L^{-}(X)} is hyperbolic and X has
no cycles, then \overline{L^{-}(X)}=\overline{per(X)}=\Omega(X) .

Proof. In this theorem if \overline{L^{-}(X)} is hyperbolic and X has no c-cycle, then
the conditions are the same as in Theorem 4.1 in [12]. But by Proposition
3.10 in [12], we have that no cycle implies no c-cycle. Therefore, we may
apply the Theorem 4.1 in [12]. And as the proof of Theorem 4.1 in [12]
depends on a filtration theorem to basic sets which have no c-cycle, we can
apply the proof of Theorem 4.1 in [12] to flows. \square

By this theorem, it suffices to prove that \overline{L^{-}(X)} has no cycles, to con-
clude that X satisfies Axiom A and no cycle condition.

Theorem 4.3 If X is in \mathcal{G}^{1}(M^{3}) and has no singularities, then \overline{L^{-}(X)}=

\Lambda_{1}\cup\cdots\cup\Lambda_{k} has no cycles.

Proof. Suppose that there is a cycle \Lambda_{i_{1}} , \ldots , \Lambda_{i_{s}} of basic sets with \Lambda_{i_{j}}\neq

\Lambda_{i_{k}}(0\leq j<k\leq s) . Let b_{j}(j=1, . . ’ s) be points of M^{3} such that

b_{j}\in W^{u}(\Lambda_{i_{j}})\cap W^{s}(\Lambda_{i_{j+1}}) , j=1 , \ldots , s-1
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and

b_{s}\in W^{u}(\Lambda_{i_{s}})\cap W^{s}(\Lambda_{i_{1}}) .

Then at least one of them is not transversal intersection. We obtain next
lemma which is the flow version of Lemma II.9 in [8]. For the next lemma
we shall need the concept of angle between subspaces of the Euclidean
space. If E_{1} , E_{2} are subspaces of \mathbb{R}^{2} such that E_{1}\oplus E_{2}=\mathbb{R}^{2} we define the
angle \alpha(E_{1}, E_{2}) as \alpha(E_{1}, E_{2})=||L||^{-1} , where L : E_{1}^{\perp}arrow E_{1} is the linear
map such that E_{2}=\{v+Lv|v\in E_{1}^{\perp}\} ; in particular, \alpha(E_{1}, E_{1}^{\perp})=+\infty .

Lemma 4.4 If X is in \mathcal{G}^{1}(M^{n}) them there exist \alpha’>0 , neighborhood \mathcal{U}’

of X and T’>0 such that if Y\in \mathcal{U}’ and P is a periodic orbit of Y with
period T_{Y}(>T’) them \alpha(E^{s}(p), E^{u}(p))>\alpha’(p\in P, E^{s}(p), E^{u}(p)\subset N^{*}) .

Now we assume that only b_{1} is not transversal intersection. Then we
perturb X at b_{1} and obtain YC^{1} -close to X such that b_{1} is transversal
intersection and v_{1} , v_{2}\in N^{*}(b_{1}) are tangent to W^{s}(\Lambda_{i_{2}}) , W^{u}(\Lambda_{i_{1}}) respec-
tively such that \alpha(V_{1}, V_{2})<\alpha’ , where V_{1} and V_{2} are subspaces in N^{*}(b_{1})

spanned by v_{1} , v_{2} respectively. Then we can find a periodic point p arbi-
trarily close to b_{1} whose period T_{p} is sufficiently large. Since p is very close
to b_{1} , W^{s}(p) and W^{u}(p) are C^{1} close to W^{s}(\Lambda_{i_{2}}) , W^{u}(\Lambda_{i_{1}}) respectively at
b_{1} . So, \alpha(E^{s}(p), E^{u}(p))<\alpha’ . But this contradicts Lemma 4.4. We have
completed the proof of Theorem 4.3. \square
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