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Abstract. Based on the regularized gap function introduced by Fukushima [5], we
present a modification of Newton’s method for solving the variational inequality problem
VI(X, F) by combining the trust region technique. Without the assumption that the
mapping F is strongly monotone on the set X , we prove that the proposed algorithm
converges globally to a solution of VI(X, F) if the Jacobian matrix \nabla F is positive definite
on X . Under some additional assumptions, we deduce that the rate of convergence is
quadratic.
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1. Introduction

We consider the variational inequality problem (denoted by VI(X, F)):
find an x^{*}\in X such that

\langle F(x^{*}), x-x^{*}\rangle\geq 0 , for all x\in X ,

where X\subseteq R^{n} is a nonempty closed convex set, F:R^{n}arrow R^{n} is a continu-
ous mapping and \langle\cdot, \cdot\rangle denotes the inner product in R^{n} . In the special case
where X=R_{+}^{n} , the variational inequality problem reduces to the nonlinear
complementarity problem.

The variational inequality problem has many applications in economics,
engineering and various equilibrium models. In the last several years, there
have been developed many numerical methods for solving the variational
inequality problem. We refer to [7] for a comprehensive review about the
early developments of such approaches. They are mainly divided into two
classes: one is to reformulate the variational inequality problem as a system
of equations and then to use methods and theory from the classical system
of equations, such as projection methods, the nonlinear Jacobi method,
SOR method, generalized gradient method, Newton’s method and quasi-
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Newton method, see, e.g., [7, 15] ; another is to reformulate the variational
inequality problem as a equivalent optimization problem and then to use
methods and theory from mathematical program, such as gap function,
regularized gap function and merit functions derived from NCP functions,
see, e.g., [3, 6, 9, 16, 19].

In recent years, reformulating the variational inequality problem as an
equivalent optimization problem has become a very important class of iter-
ative methods and has attracted much more attention since this approach
enjoys some definite advantages, for example, the latter problem may be
solved by descent algorithms which possess the global convergence prop-
erty. In general, there are two ways to derive the global convergence of an
algorithm: line search strategy and trust region technique. hust region
methods are an efficient class of iterative methods for solving optimization
problems and have been received much attention, see, e.g., [4, 12, 13, 14].
They are often said to be more reliable and robust than the corresponding
line search methods.

When F(x) is the gradient of a differentiate function \theta : R^{n} -arrow R,
VI(X, F) can be reformulated as the following equivalent optimization prob-
lem:

\min_{s.t.x\in X}\theta(x) .

It is well known that when the mapping F is differentiable, F satisfies the
above condition if and only if the Jacobian matrix \nabla F(x) is symmetric for
all x . However, this symmetry condition does not hold in many practical
equilibrium models.

For the general asymmetric variational inequality problem, Auslender
[2] reformulated VI(X, F) as the following equivalent optimization problem:

\min_{s.t.x\in X}g(x) ,

where

g(x):= \sup\{\langle F(x), x-y\rangle|y\in X\}

is called as gap function. This function was also introduced by Hearn
[8] for convex programming problems. Based on the above reformulation,
Marcotte [10] presented a descent algorithm for solving the monotone varia-
tional inequality problems. By using the gap function as the merit function,
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Marcotte and Dassault [11] proposed a globally convergent modification of
Newton’s method with exact line search. However, the gap function is in
general nondifferentiable and the set X has to be assumed compact to ensure
that the function g is well defined.

To overcome the above drawbacks, Fukushima [5] and Auchmuty [1],
almost at the same time, presented the regularized gap function f : R^{n}arrow R

defined by

f(x):= \max\{\langle F(x), x-y\rangle-\frac{1}{2}\langle x-y, G(x-y)\rangle|y\in X\} ,

where G is an nxn symmetric positive definite matrix. Compared with
the gap function, f is differentiate whenever so is the mapping F . And
VI(X, F) is equivalent to the following optimization problem:

\min_{s.t.x\in X}f(x) .

Furthermore, Fukushima [5] proposed a descent algorithm for solving the
variational inequality problem. Based on the use of the regularized gap
function as the merit function, Taji et al. [17] presented a modification of
Newton’s method with global convergence and quadratic rate of conver-
gence under mild assumptions. In particular, this method allows inexact
line search and does not rely upon the compactness assumption on the set
X . However, the mapping F has to be assumed strongly monotone so that
a wide variety of practical applications may be treated outside this frame-
work. Moreover, Wu et al. [18] presented an unified framework for descent
algorithms that solve the monotone variational inequality problem, which
includes, as special cases, some well known iterative methods and equivalent
optimization formulations. A descent method was developed for an equiva-
lent general optimization formulation and the global convergence was given.
Their method may not require the strong monotonicity of the mapping F
but still requires the compactness of the set X\tau

Motivated by the above points, in this paper we present a hybrid alg0-
rithm for solving the variational inequality problem based on the regularized
gap function introduced by Fukushima [5]. The proposed algorithm incor-
porates Newton’s method for the variational inequality problem with the
trust region technique. We prove that, when the Jacobian matrix \nabla F(x) is
positive definite for all x\in X instead of the assumption that F is strongly
monotone on X , the proposed algorithm is globally convergent to a solu-
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tion of VI(X, F) , and that the rate of convergence is quadratic under the
same assumptions as those in [17]. In this paper we does not assume the
compactness of the set X .

This paper is organized as follows. In the next section, we review the
several basic concepts and some important properties on the regularized
gap function f . In Section 3, we present a modified Newton method for
solving the variational inequality problem and prove that it is well defined.
In Section 4, we show that our algorithm is globally convergent, and, under
some additional assumptions, the rate of convergence is quadratic. Some
conclusive remarks are given in the last section.

2. Preliminaries

In this section, we recall several foundmental concepts and summarize
some properties of the regularized gap function f .

Definition 2.1 The mapping F:R^{n}arrow R^{n} is said to be
(i) monotone on X if

\langle F(x)-F(y), x-y\rangle\geq 0 for all x , y\in X ,

(ii) strictly monotone on X if

\langle F(x)-F(y), x-y\rangle>0 for all x , y\in X , x\neq y ,

(iii) strongly monotone with modulus \mu>0 on X if

\langle F(x)-F(y), x-y\rangle\geq\mu||x-y||^{2} for all x , y\in X ,

where || || denotes the Euclidean norm in R^{n} .

It is well known that, when the mapping F is differentiate, F is strictly
monotone on X if the Jacobian matrix \nabla F(x) is positive definite for all x\in

X , and F is strongly monotone on X if and only if \nabla F(x) satisfies

\langle x-y, \nabla F(x)(x-y)\rangle\geq\mu||x-y||^{2} for all x , y\in X .

It is obvious that any strongly monotone mapping is strictly monotone.

Definition 2.2 Let G be an n\cross n symmetric positive definite matrix.
The projection of a point x\in R^{n} onto the closed convex set X , denoted by



A modified Newton method for asymmetric VIP 619

Proj_{X,G}(x) , is defined as the unique solution of the problem:

\min_{s.t.y\in X}||y-x||_{G} ,

where || ||c denotes the G-norm in R^{n} , which is defined by ||x||c:=
\langle x, Gx\rangle^{1/2} .

By using the projection operator Proj_{X,G}(\cdot) , we can rewrite f(x) as

f(x)=- \langle F(x), H(x)-x\rangle-\frac{1}{2}\langle H(x)-x, G(H(x)-x)\rangle ,

where

H(x):=Proj_{X,G}(x-G^{-1}F(x)) .

The projection operator Projx,g(’) is nonexpansive, i.e.,

Projx,g (’) –Projx,g (’) 11 c\leq||x-y||_{G} for all x , y\in R^{n} .

Hence when the mapping F is continuous, so is the mapping H . Further-
more, f(x) possesses the following properties, see [5, 17] for details.

Lemma 2.1 x solves VI(X, F) if and only if x is a fifixed point of the
mapping H, i.e. , x=H(x) .

Lemma 2.2 f(x\grave{)}^{t}\geq 0 for all x\in X , and f(x)=0 if and only if x solves
VI(X, F) . Hence x solves VI(X, F) if and only if it solves the following
optimization problem with the minimum value equal to zero:

\min_{s.t.x\in X}f(x) . (1)

Lemma 2.3 If the mapping F is continuous, then the function f is also
continuous. Furthermore, if F is continuously differentia te , then f is also
continuously differentiable and its gradient is given by

\nabla f(x)=F(x)-[\nabla F(x)-G](H(x)-x) .

Lemma 2.2 indicates that solving VI(X, F) amounts to finding a global
optimal solution of problem (1). However, most of the existing optimization
algorithms are only able to find a stationary point of (1), which is not
necessary a global minimizer of (1). To ensure that every stationary point
of (1) is a solution of VI(X, F) , additional conditions are assumed. This is
done in the next lemma.
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Lemma 2.4 Assume that the mapping F is continuously differentiable
and its Jacobian matrix \nabla F(x) is positive defifinite for all x\in X ‘ If x\in X

is a stationary point of problem (1), i.e. ,

\langle\nabla f(x), y-x\rangle\geq 0 for all y\in X ,

then x solves VI(X, F) , and hence x is a global optimal solution of problem
(1).

Lemma 2.5 If the mapping F is continuously differentiable and its JacO-
bian matrix \nabla F(x) is positive defifinite for all x\in X . Then for each x\in X

the vector d:=H(x)-x satisfifies the descent condition

\langle\nabla f(x), d\rangle<0 ,

whenever d\neq 0 .

In Newton’s method for solving VI(X, F) , for some fixed x\in X ,
we have to solve a linearized variational inequality problem (denoted by
LVIP(x) ) : Find z\in X such that for all y\in X ,

\langle F(x)+\nabla F(x)^{T}(z-x), y-z\rangle\geq 0 .

The above problem does not always have a solution. But when \nabla F(x)

is positive definite, it has a unique solution z , which is denoted by Z(x) .
The linearized problem LVIP(x) is usually easier to solve than the original
problem VI(X, F) .

3. Algorithm

In this section, we first propose a modification of Newton’s method for
solving VI(X, F) based on the regularized gap function and the trust region
technique, and then we prove that the proposed algorithm is well defined.

Algorithm 3.1

Step 0. Choose an initial feasible point x^{0}\in X . constants \alpha , \beta , \sigma\in(0,1)
and M\geq 0 .

Set k:=0.

Step 1. If f(x^{k})=0 , stop.

Step 2. Find Z(x^{k})\in X that solves the subproblem LVIP(x^{k}) .
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Let d^{k}:=Z(x^{k})-x^{k} .

Step 3. If

f(x^{k}+d^{k})\leq\alpha f(x^{k}) , (2)

then set x^{k+1}:=x^{k}+d^{k} , k:=k+1 , go to Step 1; otherwise, set \triangle:=||d^{k}|| .

Step 4. Solve the trust region subproblem:

min Q_{k}(s)= \frac{1}{2}M||s||^{2}+\nabla f(x^{k})^{T}s ,
(3)

s.t . x^{k}+s\in X and ||s||\leq\triangle .

Let s(\triangle) be the solution of (3).

Step 5. If

f(x^{k}+s(\triangle))\leq f(x^{k})+\sigma\nabla f(x^{k})^{T}s(\triangle) , (4)

then set \triangle_{k}:=\triangle , s^{k}:=s(\triangle_{k}) , x^{k+1}:=x^{k}+s^{k} , k:=k+1 , go to Step 1;
otherwise, set \triangle:=\beta\triangle , go to Step 4.

In subproblem (3), instead of using the quadratic term \frac{1}{2}M||s||^{2} , we may
use the more general quadratic term \frac{1}{2}s^{T}B_{k}s , where the positive semidefinite
matrix B_{k} may be updated by some quasi-Newton formula. The conver-
gence results will remain valid as long as \{B_{k}\} is bounded.

The above algorithm also allows an inexact solution of the trust region
subproblem (3). In fact, we can replace Step 4 by the following step:

Step 4*. Choose a symmetric matrix B_{k}\in R^{n\cross n} and M_{k}\in[0, M] such
that ||B_{k}||\leq M_{k} .

Let \hat{s}(\triangle) be the solution of the problem:

min \hat{Q}_{k}(s):=\frac{1}{2}M_{k}||s||^{2}+\nabla f(x^{k})^{T}s ,

s.t . x^{k}+s\in X and ||s||\leq\triangle .

Compute s(\triangle) such that

\phi_{k}(s(\triangle))\leq\delta\hat{Q}_{k}(\hat{s}(\triangle)) ,
x^{k}+s(\triangle)\in X and ||s(\triangle)||\leq\triangle ,

where \phi_{k}(s):=\frac{1}{2}s^{T}B_{k}s+\nabla f(x^{k})^{T}s and \delta\in(0,1) is a given constant.
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It is not difficult to deduce that all results are still valid if Step 4 is
replaced by Step 4*. The above idea has also been used in recent literature
[4, 12, 13].

The next proposition shows that Algorithm 3.1 is well defined.

Proposition 3.1 Assume that the mapping F is continuously differen-
tiable and its Jacobian matrix \nabla F(x) is positive defifinite for all x\in X .
Then Algorithm 3.1 is well defifined; i.e. , x^{k+1} can be obtained either by
Step 3 or by repeating Step 4 and Step 5 a fifinite number of times whenever
f(x^{k})\neq 0 .

Proof. We only need to prove that Algorithm 3.1 can not cycle infinitely
between Step 4 and Step 5 if x^{k+1} is not obtained by Step 3.

In fact, by Lemma 2.2, f(x^{k})\neq 0 implies that x^{k} is not a solution
of VI(X, F) and hence it follows from Lemma 2.4 that x^{k} is not also a
stationary point of (1). So, there exists a feasible descent direction d\in

R^{n}\backslash \{0\} such that for some \lambda_{0}>0 ,

\nabla f(x^{k})^{T}d<0 and x^{k}+\lambda d\in X , \forall\lambda\in(0, \lambda_{0}) .

For \triangle>0 sufficiently small, \frac{\triangle}{||d||}<\lambda_{0} and

\nabla f(x^{k})^{T}s(\triangle)\leq Q_{k}(s(\triangle))\leq Q_{k}(\frac{\triangle}{||d||}d)

= \frac{M}{2}\triangle^{2}+\frac{\triangle}{||d||}\nabla f(x^{k})^{T}d ,

which shows

\lim_{\trianglearrow}\sup_{0}\frac{\nabla f(x^{k})^{T}s(\triangle)}{\triangle}\leq\frac{1}{||d||}\nabla f(_{X)d=2C_{1}}^{k\tau\triangle}<0 .

Thus, there exists \triangle->0 such that

\frac{\nabla f(x^{k})^{T}s(\triangle)}{\triangle}\leq c_{1}<0 , \forall\triangle\in(0, \triangle)- .

Set

\rho(\triangle)=\frac{f(x^{k}+s(\triangle))-f(x^{k})}{\nabla f(x^{k})^{T}s(\triangle)} .
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Then

| \rho(\triangle)-1|=|\frac{f(x^{k}+s(\triangle))-f(x^{k})-\nabla f(x^{k})^{T}s(\triangle)}{\nabla f(x^{k})^{T}s(\triangle)}|

= \frac{o(||s(\triangle)||)}{|\nabla f(x^{k})^{T}s(\triangle)|}\leq\frac{o(\triangle)}{|c_{1}|\triangle} ,

which implies

\lim_{\trianglearrow 0}\rho(\triangle)=1 .

This indicates that after a finite number of reduction of \triangle ,

\rho(\triangle)\geq\sigma ,

which implies that (4) holds. \square

4. Global and superlinear convergence

In this section, we shall prove that Algorithm 3.1 is globally convergent
to a solution of VI(X, F) if \nabla F is positive definite on X and that the rate
of convergence is quadratic if some additional assumptions hold.

First, from the proof of Proposition 2.2 in [17], we can deduce the
following result, which will play an important role in our global convergence
analysis.

Proposition 4.1 Assume that the mapping F is continuously differen-
tiable and its Jacobian matrix \nabla F(x) is positive defifinite for all x\in X .
Then x solves VI(X, F) if and only if x satisfifies x=Z(x) .

Note that we do not deduce that the mapping Z : Xarrow X is continuous,
but this does not affect the application of the above proposition. In fact, it
is not difficult to prove that if x^{k}arrow x^{*} and d^{k}:=Z(x^{k})-x^{k}arrow 0 , then x^{*}

solves VI(X, F) .
We are now in a position to prove the global convergence for the pr0-

posed algorithm.

Theorem 4.1 Assume that the mapping F is continuously differentiable
and its Jacobian matrix \nabla F(x) is positive defifinite for all x\in X . If the level
set L_{0}:=\{x\in X|f(x)\leq f(x^{0})\} is bounded, then the whole sequence \{x^{k}\}

generated by Algorithm 3.1 converges to the unique solution of VI(X, F) .

Proof It follows from the construction of Algorithm 3.1 that \{f(x^{k})\} is
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monotonously descent and bounded from below. Thus

\{f(x^{k+1})-f(x^{k})\}arrow 0 , as karrow\infty . (5)

The compactness of the level set L_{0} shows that the sequence \{x^{k}\} has
at least one accumulation point. Assume that x^{*} is an accumulation point
of \{x^{k}\} . Then there exists a subsequence \{x^{k}\}_{k\in K} such that

k \infty\lim_{\vec{k\in}K}x^{k}=x^{*}

Suppose that there exists infinitely many indices k\in K satisfying (2).
Without loss of generality, it can be assumed that

f(x^{k+1})\leq\alpha f(x^{k}) , \forall k\in K .

Then \lim_{karrow\infty}f(x^{k})=0 , which implies that x^{*} is a solution of VI(X, F) .
Suppose that there exists only finitely many indices k\in K satisfying

(2). It can be assumed that

f(x^{k+1})\leq f(x^{k})+\sigma\nabla f(x^{k})^{T}s^{k} . \forall k\in K . (6)

Set

\tilde{d}^{k}:=H(x^{k})-x^{k} . \tilde{d}^{*}:=H(x^{*})-x^{*}

and let

\inf_{k\in K}\triangle_{k}=\triangle*

Then

k \infty\lim_{\vec{k\in}K}\tilde{d}^{k}=\tilde{d}^{*}

and there exists K_{1}\subseteq K such that

k \infty\lim_{k\vec{\in}K_{1}}\triangle_{k}=\triangle*

Subsequencing if necessary, it can be assumed that for some d^{*} ,

k \vec{\in}K_{1}\lim_{k\infty}d^{k}=d^{*}

By Lemma 2.1 and Proposition 4.1, to prove that x^{*} is a solution of
VI(X, F) , we only need to show that \tilde{d}^{*}=0 or d^{*}=0 . Assume the contrary,
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then it follows from Lemma 2.2 and Lemma 2.5 that

f(x^{*})\neq 0 and \nabla f(x^{*})^{T}\tilde{d}^{*}<0 .

There are two possibilities and we shall get a contradiction in each case.

Case 1: \triangle*=0 . Then there exists \overline{k}\in K_{1} such that for all k\in K_{1} with
k\geq\overline{k} ,

\triangle_{k}<||d^{*}||/2 and ||d^{k}||\geq||d^{*}||/2 .

On the other hand, we obtain \triangle_{k} by reducing ||d^{k}|| . Thus, for all k\in

K_{1} with k\geq\overline{k} , there exists \triangle_{k}-:=\triangle_{k}/\beta such that

f(x^{k}+s(\triangle_{k}))->f(x^{k})+\sigma\nabla f(x^{k})^{\tau_{S(\triangle_{k})}^{-}} . (7)

Set

v^{k}:= \frac{||s(\triangle_{k})||-}{||\tilde{d}^{k}||}\tilde{d}^{k} .

Noting that

||v^{k}||=||s(\triangle_{k})||-\leq\triangle_{k}-arrow 0 , \tilde{d}^{k}arrow\tilde{d}^{*}\neq 0

and

x^{k} , x^{k}+\tilde{d}^{k}\in X .

Hence, for k\in K_{1} sufficiently large,

x^{k}+v^{k}\in X

and

\nabla f(_{X)(\triangle_{k})}^{k\tau_{S}-}\leq Q_{k}(s(\triangle_{k}))-\leq Q_{k}(v^{k})

= \frac{M}{2}||s(\triangle_{k})||^{2}+\frac{||s(\triangle_{k})||-}{||\tilde{d}^{k}||}\nabla f(x^{k})^{T}\tilde{d}^{k}-

So, we get

\lim_{k\in K}\sup_{1}\frac{\nabla f(x^{k})^{T}s(\triangle_{k})-}{||s(\triangle_{k})||-}\leq\frac{1}{||\tilde{d}^{*}||}\nabla f(x^{*})^{T}\tilde{d}^{*}=2c_{2}\triangle<0 ,
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which shows that for k\in K_{1} sufficiently large,

\frac{\nabla f(x^{k})^{T}s(\triangle_{k})-}{||s(\triangle_{k})||-}\leq c_{2}<0 .

Set

\rho_{k}:=\frac{f(x^{k}+s(\triangle_{k}))-f(x^{k})-}{\nabla f(x^{k})^{T}s(\triangle_{k})-} .

Then for k\in K_{1} sufficiently large,

| \rho_{k}-1|=|\frac{f(x^{k}+s(\triangle_{k}))-f(x^{k})-\nabla f(x^{k})^{T}s(\triangle_{k}--)}{\nabla f(x^{k})^{T}s(\triangle_{k})-}|

= \frac{o(||s(\triangle_{k})||)-}{|\nabla f(x^{k})^{T}s(\triangle_{k})|-}\leq\frac{o(||s(\triangle_{k})||)-}{|c_{2}|||s(\triangle_{k})||-} ,

which implies

k \vec{\in}K_{1}\lim_{k\infty}\rho_{k}=1

.

This contradicts (7).

Case 2: \triangle*>0 . Since \{s^{k}\}_{k\in K_{1}} are bounded, there exist K_{2}\subseteq K_{1} and
s^{*}\in R^{n} such that

k \vec{\in}K_{2}\lim_{k\infty}s^{k}=s^{*}

It is easy to prove that s^{*} is a solution of the problem

min Q(s)= \frac{1}{2}M||s||^{2}+\nabla f(x^{*})^{T}s ,
(8)

s.t . x^{*}+s\in X and ||s||\leq\triangle*

and hence Q(s^{*})\leq 0 .
On the other hand, it follows from (5) and (6) that

0 \leq\lim_{\infty} kk\vec{\in}K_{2}’\nabla f(x^{k})^{T_{S}k}\leq k \vec{\in}K_{2’}\lim_{k\infty}Q_{k}(s^{k})=Q(s^{*})
,

which implies

Q(s^{*})=0 .
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From (8), we can deduce that Q(s^{*})=0 if and only if x^{*} is a stationary
point of the problem (1), i.e.,

\nabla f(x^{*})^{T}(x-x^{*})\geq 0 , \forall x\in X .

This contradicts \nabla f(x^{*})^{T}\tilde{d}^{*}<0 .
The above analysis shows that any accumulation point of the sequence

\{x^{k}\} is a solution of VI(X, F) . Since VI(X, F) has at most a solution,
it follows that x^{*} is the unique solution of VI(X, F) and hence the whole
sequence \{x^{k}\} converges to x^{*} This completes the proof. \square

To obtain a rate of convergence result, we need to strengthen assump-
tions on the mapping F The following result comes from [17].

Lemma 4.1 Let x^{*} be a solution of VI(X, F) . If F is strongly monotone
with modulus \mu on X , then f satisfifies the inequality

f(x) \geq(\mu-\frac{1}{2}||G||)||x-x^{*}||^{2} for all x\in X .

In particular, if lhe matrix G is chosen sufficiently small to satisfy ||G||<

2\mu , then

lim f(x)=+\infty .
||x||\infty x\in X

Moreover, we need the following strict complementarity condition, see
[17].

Definition 4.1 Suppose that X is a polyhedral and that problem
VI(X, F) has a unique solution x^{*} Let T^{*} denote the minimal face of
X containing x^{*} Then we say that strict complementarity holds at x^{*} if
x\in X and \langle F(x^{*}), x-x^{*}\rangle=0 imply x\in T^{*}-

Applying Lemma 4.1 and similar to the proof of Theorem 5.1 in [17],
we can deduce the following rate of convergence result.

Theorem 4.2 Assume that the set X is polyhedral convex, F is contin-
uously differentia te and strongly monotone with modulus \mu on X, \nabla F is
Lipschitz continuous on a neighborhood N of the unique solution x^{*} of prob-
lem VI(X, F) and the strict complementarity condition holds at x^{*} . If the
matrix G is chosen sufficiently small to satisfy ||G||<2\mu and the level
set L_{0}:=\{x\in X|f(x)\leq f(x^{0})\} is bounded. Then the sequence \{x^{k}\}
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generated by Algorithm 3.1 converges quadratically to the solution x^{*}-

5. Concluding remarks

In this paper we developed a hybrid method for solving the variational
inequality problem. Based on the regularized gap function introduced by
Fukushima [5], our algorithm combines Newton’s method for the varia-
tional inequality problem and the trust region technique. Without the as-
sumption that the mapping F is strongly monotone on X , we establish the
global convergence of the proposed algorithm if \nabla F is positive definite on
X . Moreover, we get the quadratic rate of convergence if some additional
assumptions hold.
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