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A geometric proof of the fluctuation-dissipation theorem
for the KM_{2O}-Langevin equation
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Abstract. We give a short proof, based on the geometry of inner product spaces,
of the fluctuation-dissipation theorem that asserts applicability of the Whittle-Wiggins-
Robinson algorithm in the context of the KM_{2O}-Langevin equations also in degenerate
and non-stationary cases.
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1. Introduction

For several decades the Levinson-Durbin algorithm ([7], [2]) and its
higher dimensional version the Whittle-Wiggins-Robinson algorithm ([29],
[28] ) have played a major role in signal processing. The history of the closely
related Schur algorithm goes back even further and, in fact, its origins
can be found in the realm of pure mathematics in a paper by J. Schur
on complex analytic functions published in two installments in [25] and
[26]. Multidimensional (or multichannel) version of Schur’s algorithm was
introduced nearly half a century later in [24]. From the countless papers
on these algorithms we have chosen a few most relevant to this note: [1],
[3]-[6] , [27], [30].

On the other hand, in time series analysis, the KM_{2O}-Langevin equa-
tion constitutes the key element around which Yasunori Okabe and the
mathematicians working with him have built their approach to the subject
(see [8]-[23] ). The Whittle-Wiggins-Robinson algorithm applies in calcula-
tion of the coefficients of the KM_{2O}-Langevin equation. It has been shown
in [9] that the method works also with degenerate and non-stationary time
series. The purpose of this paper is to derive in terms of elementary geome-
try of inner product spaces an alternative proof of the fluctuation-dissipation
theorem which asserts the applicability of the Whittle-Wiggins-Robinson
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algorithm in the context of the KM_{2O}-Langevin equation under the same
assumptions as in [9]. The geometric approach offers additional insight into
the properties of the KM_{2O}-Langevin equation.

2. Multichannel orthogonal projections

In what follows H will denote a real Hilbert space. If d is a positive inte-
ger, then the symbol H^{d} will stand for the Cartesian power of H of order d .
Elements of H^{d} will be treated as column arrays. If x_{j}= (x_{1j}, ., x_{dj})^{T}\in

H^{d} for j=1 , \ldots , m , then by Span(x_{1}, \ldots , x_{m}) we will denote the subspace
of H generated by the vectors \{x_{ij}; i=1, ., d, j=1, ., m\} . The ele-
ments of H^{d} can be multiplied from the left by d\cross d-matrices according to
the following formula:

Cx=(_{j}\sum_{=1}^{d}c_{1j}x_{j} , ., \sum_{j=1}^{d}c_{dj}x_{j})^{T}\in H^{d} ,

x= (x_{1} , .,_{x_{d})^{T}\in H^{d}} , C=(c_{ij})\in R^{d\cross d}\wedge

Therefore,

y\in(Span(_{X_{1}} , .,_{x_{m}))^{d}}

if and only if there exist matrices C_{1} , . ., C_{m}\in R^{d\cross d} such that

y=\sum_{k=1}^{m}C_{k}x_{k} .

If in addition we assume that all the vectors x_{ij} are linearly independent,
then the matrices C_{1} , . , C_{m} are uniquely determined.

If S is a closed subspace of H , then by Proj_{S} : Harrow S we will denote
the orthogonal projection of H onto S . We will use the same symbol Proj s
to denote componentwise orthogonal projection of H^{d} onto S^{d} :

Proj s(x)=(Projs(x_{1}) , ., Proj s(x_{d}))^{T} ,

x= (x_{1}, . , x_{d})^{T}\in H^{d} .

It will be convenient to extend the inner product to a matrix-valued bilinear
mapping on H^{d}\cross H^{d} by the formula
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\langle x, y\rangle=\{\begin{array}{llllll}\langle x_{1},y_{1}\rangle \langle x_{1}, y_{2}\rangle \langle x_{1}, y_{d}\rangle\langle x_{2},y_{1}\rangle \langle x_{2},y_{2}\rangle \langle x_{2}, y_{d}\rangle\vdots \vdots \ddots \vdots \langle x_{d},y_{1}\rangle \langle x_{d},y_{2}\rangle \langle x_{d},y_{d}\rangle \end{array}\}
\in R^{d\cross d} ,

where x= (x_{1}, . . , x_{d})^{T}\in H^{d} and y=(y_{1}, \ldots, y_{d})^{T}\in H^{d} . It is clear that
\langle x, y\rangle=\langle y, x\rangle^{T} Moreover (x, y\rangle=0 if and only if x_{i} is orthogonal to y_{j}

for all possible choices of i and j . We will use the following notation:

x^{\perp}=Span(x)^{\perp}\subset H for x\in H^{d} .

Note that

A\langle x, y\rangle B=\langle Ax, B^{T}y\rangle , A , B\in R^{d\cross d} .

The above notation allows us to characterize orthogonal projections as fol-
lows.

The Multichannel Projection Formula Let x_{j}= (x_{1j}, . ., x_{dj})^{T}\in

H^{d} for j=1 , \ldots , m , and let

S=Span(x_{1}, ., x_{m}) .

Suppose that y= (y_{1}, . , y_{d})^{T}\in H^{d} and C_{1} , ., C_{m} are reaZ d\cross d matrices
Then

Proj s( y)=\sum_{k=1}^{m}C_{k}x_{k} (1)

if and only if

\{\begin{array}{llll}\langle x_{1},x_{1}\rangle \langle x_{1},x_{2}\rangle \langle x_{1},x_{m}\rangle\langle x_{2},x_{1}\rangle \langle x_{2},x_{2}\rangle \langle x_{2},x_{m}\rangle\vdots \vdots \ddots \vdots\langle x_{m},x_{1}\rangle \langle x_{m},x_{2}\rangle \langle x_{m},x_{m}\rangle\end{array}\}\{\begin{array}{l}C_{1}^{T}C_{2}^{T}\vdots C_{m}^{T}\end{array}\}=\{\begin{array}{l}\langle x_{1},y\rangle\langle x_{2},y\rangle\vdots\langle x_{m},y\rangle\end{array}\} (2)

If, additionally, we assume that the vectors \{x_{ij} ; i=1, . . , d, j=1, . , m\}

are linearly independent, then the choice of y determines uniquely the ma-
trices C_{1} , \ldots , C_{m} .
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Proof. The equation (2) can be re-written as follows:

\langle x_{j} , y-\sum_{k=1}^{m}C_{k}x_{k}\rangle=0 for j=1 , ., m .

But this means precisely the same as (1). To see that the second statement
is true, note that the leftmost matrix in (2) is in fact the Gram matrix for
the vectors

x_{11} , . , x_{d1} , x_{12} , ., x_{d2} , \ldots , x_{1m} , ., x_{dm}

and hence it is non-singular under the assumption of linear independence.
\square

Corollary 1 If x , y\in H^{d} and C is a real d\cross d -matrix, then

C\langle x, x\rangle=\langle y, x\rangle\Leftrightarrow Proj s_{pan(x)}(y)=Cx . (3)

In particular, if the components of the d-tuple x are linearly independent,
then

Proj Span(x) (y)=\langle y, x\rangle\langle x, x\rangle^{-1}x .

Our main geometric tool will be the following elementary property of
orthogonal projections.

The Update Property Let S be a closed subspace of the Hilbert space
H and let x , y\in H^{d} . Define

\hat{x}=Proj_{S^{\perp}}(x) and \hat{y}=Proj_{S^{\perp}}(y)

and

S_{y}=S+Span(y) .

Let \pi denote an arbitrary d\cross d -matrix. The following conditions are equiv-
alent:
(UP1) \pi\langle\hat{y},\hat{y}\rangle=\langle\hat{x},\hat{y}\rangle ;

(UP2) Proj s_{y}(x)=[Proj_{S}(x)-\pi Proj_{S}(y)]+\pi y ;

(UP3) Proj s_{y}(x)-\pi y\in S^{d} ;

(UP4) Proj S_{y}^{\perp}(x)=\hat{x}-\pi\hat{y} .
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Proof. The implications (UP2)\Rightarrow(UP4)\Rightarrow(UP1) and (UP2)\Rightarrow(UP3)

are obvious. Corollary 1 applied to \hat{y},\hat{x} and \pi , yields the implication
(UP1)\Rightarrow(UP2) .

Finally, we have (UP3)\Rightarrow(UP2) because if (UP3) is assumed, then

Proj s_{y}(x)-\pi y=Proj_{S}(Proj_{S_{y}}(x)-\pi y)

=Projs(x)-\pi Proj_{S}(y) .

\square

3. The KM_{2O}-Langevin equations

Let X be a finite sequence of elements of H^{d} identified with the function

X : \{N_{-}, . ’ N_{+}\}arrow H^{d} ,

where N_{-} , N_{+}\in Z and N_{+}-N_{-}\geq 2 . For any two integers p , q such that
N_{-}\leq p\leq q\leq N_{+} we define

M_{p}^{q}=Span(X(p), X(p+1) , ., X(q-1) , X(q)) .

Given m\in\{N_{-}, ., N_{+}\} define

\nu_{+}(m, 0)=X(m) ,

\nu_{+}(m, n)=Proj_{(M_{m}^{m+n-1})^{\perp}}(X(m+n)) ,

if m\neq N_{+} and n=1 , ., N_{+}-m ;
\nu_{-}(m, 0)=X(m) ,

\nu_{-}(m, n)=Proj_{(M_{m-n+1}^{m})^{\perp}}(X(m-n)) ,

if m\neq N_{-} and n=1 , ., m-N_{-} .

It is to be noted that

M_{m}^{m+n}=Span(\nu_{+}(m, 0) , \nu_{+}(m, 1) , \ldots , \nu_{+}(m, n)) ,

n=0, ., N_{+}-m

and

\langle\nu_{+}(m, l), \nu_{+}(m, n)\rangle=0 , 0\leq l\neq n\leq N_{+}-m .

In other words, under the additional assumption that the vectors

\{X_{i}(j) ; i=1, ., d, j=N_{-}, . ., N_{+}\} (4)
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are linearly independent, where X(j)=(X_{1}(j), . , X_{d}(j))^{T} , one can view
the vectors

\{\nu_{+}(m, 0), \nu_{+}(m, 1), ., \nu_{+}(m, N_{+}-m)\}

as a result of the block Gram-Schmidt orthogonalization of the vectors

\{X(m), X(m+1), ., X(N_{+})\} .

Similarly,

M_{m-n}^{m}=Span(\nu_{-}(m, 0) , \nu_{-}(m, 1) , . , \nu_{-}(m, n)) ,

n=0, \ldots , m-N_{-}

and

\langle\nu_{-}(m, l), \nu_{-}(m, n)\rangle=0 , 0\leq l\neq n\leq m-N_{-} .

In other words, the assumption of linear independence implies that the
vectors

{ \nu_{-}(m, 0) ,\nu_{-}(m, 1) , .,\nu_{-}(m , m-N-)}

result from the block Gram-Schmidt orthogonalization of the vectors

\{X(m), X(m-1), . , X(N-)\} .

If n=1 , \ldots , N_{+}-m , then there exists a system of matrices

\{\gamma_{+}(m, n, k) ; k=0, \ldots , n-1\}\subset R^{d\cross d}

such that

Proj_{M_{m}^{m+n-1}}(X(m+n))=-\sum_{k=0}^{n-1}\gamma_{+}(m, n, k)X(m+k) .

Similarly, if n=1 , \ldots , m - N-, then there exist matrices

\{\gamma_{-}(m, n, k) ; k=0, . , n-1\}\subset R^{d\cross d}

such that

Proj_{M_{m-n+1}^{m}}(X(m-n))=-\sum_{k=0}^{n-1}\gamma_{-}(m, n, k)X(m-k) .
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Note that if we assume that the vectors (4) are linearly independent,
then the matrices \gamma\pm(m, n, k) are uniquely determined.

It is convenient to introduce the function

R : \{N_{-}. , N_{+}\}\cross\{N_{-} , . . . , N_{+}\}arrow R^{d\cross d}

given by the formula

R(m, n)=\langle X(m), X(n)\rangle

for all m , n\in\{N_{-}, \ldots, N_{+}\} . We will say that X is weakly stationaw^{1} if
there exists a function

r : \{N_{-}-N_{+}, \ldots, N_{+}-N_{-}\}arrow R^{d\cross d}

such that for all m, n\in\{N_{-}, ., N_{+}\}

R(m, n)=r(m-n) .

Observe that if both linear independence of (4) and weak stationarity of X
are assumed, then the coefficients \gamma_{\pm}(m, n, k) do not depend on the choice
of m .

In the general case, we can write the equations

X(m \pm n)=-\sum_{k=0}^{n-1}\gamma_{\pm}(m, n, k)X(m\pm k)+\nu_{\pm}(m, n) , (5)

where N_{-}\leq m\leq N_{+}-n in the “plus” case and N_{-}+n\leq m\leq N_{+} in
the “minus” case. In the case when m=0 and N_{-}=-N_{+} , these are
called in the Japanese literature the KM_{2}O-Langevin equations, whereas
the vectors \nu_{+}(0, n) (resp. \nu_{-}(0, n)) are referred to as the forward (resp.
backward) KM_{2}O-Langevin fluctuation flows (see [8]-[23] ).

It is useful to define

V_{\pm}(m, n)=\langle\nu_{\pm}(m, n), \nu\pm(m, n)\rangle ,

for n=0,1 , \ldots,
\pm(N_{\pm}-m) . Observe that

V_{\pm}(m, O)=R(m, m) (6)

lThis definition is consistent with its probabilistic counterpart: if \Omega is the event space
with a probability measure P, then as H we take the orthogonal complement of the
constant function 1 in the space of square integrable random variables L^{2}(\Omega, P) . All
random variables in H have expected value 0.



622 M. Klimek, E. Karlsson, M. Matsuura and Y. Okabe

and

V_{\pm}(m, n)=\langle\nu_{\pm}(m, n), X(m\pm n)\rangle=R(m\pm n, m\pm n)

+ \sum_{k=0}^{n-1}\gamma_{\pm}(m, n, k)R(m\pm k, m\pm n) (7)

for n=1 , ., \pm(N_{\pm}-m) . In particular, if X is weakly stationary, then
V_{\pm}(m, n) is independent of m .

Theorem 1 For any choice of \gamma\pm(m, n, k)\in R^{d\cross d} , where N_{-}+n\leq

m\leq N_{+}-n , for which the KM_{2}O-Langevin equations (5) are satisfied the
following relationships hold:

\delta_{\pm}(m, 1)V_{\mp}(m, O)=-R(m\pm 1, m) , (8)

V_{\pm}(m, n)=(I-\delta_{\pm}(m, n)\delta_{\mp}(m\pm n, n))V_{\pm}(m\pm 1, n-1) , (9)

\delta_{\pm}(m, n)V_{\mp}(m\pm n\mp 1, n-1)

=-R(m \pm n, m)-\sum_{k=0}^{n-2}\gamma\pm(m\pm 1, n-1, k)R(m\pm k\pm 1, m)

(10)

for all admissible values of m and n, where

\delta_{\pm}(m, n)=\gamma\pm(m, n, 0) .

Furthermore, there exist matrix coefficients \gamma\pm(m, n, k)\in R^{d\cross d} such that
the KM_{2}O-Langevin equation (5) is satisfied and

\gamma\pm(m, n, k)=\gamma\pm(m\pm 1, n-1, k-1)

+\delta_{\pm}(m, n)\gamma_{\mp} (m\pm n\mp 1, n-1 , n-k–l). (11)

Proof. Formula (8) follows directly from (5) and the definition of \nu\pm\cdot Now
we will check the “plus” case of (9) and (10). The “minus” case is similar.

Because (5) is fulfilled, we have

Proj M_{m}^{m+n-1}(X(m+n))+\delta_{+}(m, n)X(m)

=- \sum_{k=1}^{n-1}\gamma_{+}(m, n, k)X(m+k)\in(M_{m+1}^{m+n-1})^{d}
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Therefore (UP3) holds with

\{\begin{array}{l}S=M_{m+1}^{m+n-1},x=X(m+n),y=X(m),\pi=-\delta_{+}(m,n).\end{array} (12)

Similarly,

Proj M_{m+1}^{m+n}(X(m))+\delta_{-}(m+n, n)X(m+n)

=- \sum_{k=1}^{n-1}\gamma_{-}(m+n, n, k)X(m+n-k)\in(M_{m+1}^{m+n-1})^{d}

and hence (UP3) holds also with

\{\begin{array}{l}S=M_{m+1}^{m+n-1},x=X(m),y=X(m+n),\pi=-\delta_{-}(m+n,n).\end{array} (13)

We can check (9) as follows:

V_{+}(m, n)

=\langle\nu_{+}(m, n), X(m+n)\rangle

=\langle\nu_{+}(m+1, n-1)+\delta_{+}(m, n)\nu_{-}(m+n-1, n-1), X(m+n)\rangle ,

because of (UP4),
=\langle\nu_{+}(m+1, n-1), X(m+n)\rangle

+\delta_{+}(m, n)\langle\nu_{-}(m+n-1, n-1), X(m+n)\rangle

=\langle\nu_{+}(m+1, n-1), \nu_{+}(m+1, n-1)\rangle

+\delta_{+}(m, n)\langle\nu_{-}(m+n-1, n-1), \nu_{+}(m+1, n-1)\rangle ,

(since X(m+n)-\nu_{+}(m+1, n-1)\in(M_{m+1}^{m+n-1})^{d} ,

=V_{+}(m+1, n-1)-\delta_{+}(m, n)\delta_{-}(m+n, n)V_{+}(m+1, n-1) ,

because of (UP1) combined with (13).
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Similarly

\langle\nu_{+}(m+1, n-1), \nu_{-}(m+n-1, n-1)\rangle

=\langle\nu_{+}(m+1, n-1), X(m)\rangle

=\langle X((m+1)+(n-1))

+ \sum_{k=0}^{n-2}\gamma_{+}(m+1, n-1, k)X(m+k+1) , X(m)\rangle

=R(m+n, m)+ \sum_{k=0}^{n-2}\gamma_{+}(m+1, n-1, k)R(m+k+1, m) ,

which –in view of (UP1) used with (12) – gives (10).
Now we move to the second statement of the theorem. Reading the for-

mula (UP2) in terms of X(m) , X(m+1) , . ., X(m+n-1) in the “plus” case,
and in terms of X(m-n+1) , X(m-n+2) , . , X(m) in the ” minus” case ,
we can rewrite it in the following equivalent form:

- \sum_{k=1}^{n-1}\gamma\pm(m, n, k)X(m\pm k)-\delta_{\pm}(m, n)X(m)

=[- \sum_{k=0}^{n-2}\gamma\pm(m\pm 1, n-1, k)X(m\pm k\pm 1)

- \delta_{\pm}(m, n)\sum_{k=0}^{n-2}\gamma_{\mp}(m\pm n\mp 1, n-1, k)X(m\pm n\mp k\mp 1)]

-\delta_{\pm}(m, n)X(m) .

Hence, we can construct the coefficients by recursion with respect to n . We
start with \delta_{\pm}(m, 1) . If \gamma_{\pm}(m, n-1, k) are known, we can find a suitable
\delta_{\pm}(m, n) because of Corollary 1. Then the above formula allows us to define
\gamma\pm(m, n, k) with k>0 . \square

Corollary 2 Under the above assumptions

\nu_{\pm}(m, n)=\nu_{\pm}(m\pm 1, n-1)+\delta_{\pm}(m, n)\nu_{\mp}(m\pm n\mp 1, n-1)

for all admissible m and n .

The next statement is the converse of Theorem 1.
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Theorem 2 If the matrices \gamma\pm(m, n, k)\in R^{d\cross d} are chosen so that they
satisfy (8), (10) and (11), then the KM_{2}O-Langevin equations (5) hold true.

Proof We can use induction with respect to n. The case when n=1 ,
follows directly from (8), (6) and Corollary 1. Suppose now that n is such
that (5) is satisfied with \gamma\pm(m, n-1, k) . Then

\langle\nu_{+}(m+1, n-1), \nu_{-}(m+n-1, n-1)\rangle

=\langle\nu_{+}(m+1, n-1), X(m)\rangle

=R(m+n, m)+ \sum_{k=0}^{n-2}\gamma_{+}(m+1, n-1, k)R(m+k+1, m) ,

because of the induction hypothesis,

=-\delta_{+}(m, n)V_{-}(m+n-1, n-1) , because of (8) and (10).

Consequently (UP1) holds with

S=M_{m+1}^{m+n-1} ,

x=X(m+n) ,

y=X(m) ,
\pi=-\delta_{+}(m, n) .

Therefore, in view of (UP2) and (11), the equation (5) is satisfied with
\gamma+(m, n, k) . Similarly, \gamma_{-}(m, n, k) satisfy (5). \square
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