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Abstract. We study fully discrete approximation of quasilinear parabolic systems. Pre-
senting a full discretization scheme based on the Galerkin and the Runge-Kutta methods,
we establish the stability and the error estimate of the scheme by means of the semigroup
method. First our results are stated for a chemotaxis-growth system arising in biology,
then those are generalized to quasilinear abstract parabolic evolution equations.
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1. Introduction

This paper is concerned with a numerical analysis for a quasilinear
diffusion system

(
—g—?; =alAu -V -{uVB(p)} +c(u) in £ x (0,00),
@—dququ—g in £2 x (0,00)

Ou 0Op
%_871_0 on 942 x (0, 00),
\u(w,O) = ’U,()(x), p(:r,O) - pO(m) in §2.

This system was presented by Mimura and Tsujikawa as a mathematical
model describing aggregating patterns induced by the effects of chemotaxis
and growth. u(z,t) and p(z,t) denote the population density of biological
individuals and the concentration of chemical substance, respectively, at a
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position z € £2 C R? and a time ¢ € [0, 00). n(z) denotes the outer normal
vector at a boundary point x € 9f2. a > 0 and d > 0 are diffusion rates
of u and p, respectively. f > 0 and g > 0 are production and degradation
rates of p, respectively. B(p) is a sensitivity function of u with respect to
p. Typical examples of B(p) include p, p?, logp, Ti—p and so on. c(u) is
a growth term of u such that ¢(0) = 0. In the case of no growth, that is
c(u) = 0, (CG) reduces to the Keller-Segel system which describes the
initiation of aggregating patterns of slime mold.

We shall consider a full discretization scheme based on the Galerkin and
the Runge-Kutta methods, employing the semigroups of linear operators.
Such a method called the semigroup method is known to be a powerful
technique ever in numerical analysis. The method was founded by several
mathematicians, including Fujita and Mizutani |[§], Baker, Bramble and
Thomée [1], Brenner and Thomée and Ushijima for autonomous
linear equations. Then that was developed by Suzuki [23], Sammon
and others for non autonomous linear equations. Afterward, Keeling
studied semilinear equations. As a matter of fact, (CG) can be handled
as a semilinear abstract equation of the form ‘fi—[{ + AU = F(U) if we take
the underlying space as H!(2)' x H¢({2), ¢ > 0. But in this setting the
approximating function space must be contained in H!(§2) x H2*¢(2) and
the Galerkin method of higher order must be needed. This is the reason
why we prefer a quasilinear abstract setting %[ti + A(U)U = F(U) in the
product Hilbert space L2(£2) x L2(2).

The variational method is also a very useful technique for the approx-
imation of nonlinear parabolic equations and systems, see Thomée ,
Lubich and Ostermann [13| and so on. Some results may be applicable to
(CG), but it seems very difficult to take the underlying space as L?(£2) x
L?(02).

Our precise assumptions are the followings:

() £ c R? is a bounded and convex polygonal domain;
(B) B(p) is a real-valued smooth function of p € (0, 00);
(C)

(

c(u) is a real-valued smooth function of u € [0, c0) such that ¢(0) = 0;
IF) wup(z) and po(x) are initial functions which satisfy
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Oou Op
2 1 _— = — =
ug, po € H*(£2) with 5 = Bn 0 on 012, 1)

uo(z) =0, po(x) > 6 on 2

with some constant §y > O.

Under these conditions we shall present a full discretization scheme for
(CG) and shall establish the stability in L?({2) and the error estimate in
H'*t¢(2), ¢ > 0. Those results have already been reported in the pro-
ceedings [18]. Since H!™¢(£2) C C(£2), such an error estimate is pointwise.
To prove the main results, we shall prepare some new results on the finite
element method in the fractional Sobolev space H!'*¢(£2). We shall also
use the results in the preceding paper in which the time discretization
for quasilinear abstract evolution equations was studied. Indeed, those re-
sults are applicable for each approximate equation in a finite dimensional
subspace.

Not only to (CG) our technique is of course applicable also to more
general parabolic systems. So it may be convenient to fix our results in
a general form by considering a quasilinear abstract evolution equation of
parabolic type. Such generalization was partly tried in also in some
simple cases.

The organization of the paper is as follows. Section 2 is devoted to
preparing all the necessary results in functional analysis and numerical anal-
ysis. Some of them, Propositions and 2.4 and so on, are newly verified.
In Section 3, the main results are proved but assuming various propositions
without their proofs. Section 4 is devoted to verifying all the propositions
used. By these the proofs of the main results are actually complete. In
Section 5, we consider a quasilinear abstract evolution equation in order to
fix our method in a general form.

Notations R (resp. C) denotes the set of all real (resp. complex) numbers,
and RT denotes the set of all positive real numbers. For 0 < § < 7, let Sp =
{z € C; |z| > 0, |argz| < 8} be a sectorial domain.

Let £2 be a domain in R%2. LP(£2), 1 < p < oo, denote the usual LP
spaces of complex-valued functions in 2. H*({2), s > 0, denote the usual
Sobolev spaces of complex-valued functions in 2. C(£2) denotes the space
of all complex-valued continuous functions on £2. By LP(£2) (resp. H*(£2))
we shall denote the product space of two LP({2) (resp. H°(2)) spaces of the

form [:].
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Let X be a Banach space or a Hilbert space, its norm is denoted by |||/ x.
(, ) x is the inner product of X when X is a Hilbert space. £(X,Y) denotes
the space of all bounded linear operators from X into another Banach space
Y which is equipped with the uniform operator norm; L(X,X) will be
abbreviated to £(X).

Let I be an interval in R. LP(I; X), 1 < p < oo, denotes the L? space
of measurable functions in I with values in a Banach space X. C(I;X),
C°(I;X),0< o <1,and C™(I; X),m = 1,2,3,..., denote respectively the
space of continuous functions, Holder continuous functions with exponent
o, and m-times continuously differentiable functions in I with values in X.

Throughout this paper we denote by C the generic constant determined
in each occurrence by the initial constants appearing in the assumptions.

In a case when C depends on some parameter, say ¢, it will be denoted by
Ce.

2. Preliminaries

In this section we shall list some known results and prepare some new
results on functional analysis and numerical analysis which will be used in
the subsequent sections.

2.1. Function spaces and functional analysis
Let £2 C R? be a bounded convex domain. It is known that any bounded
convex domain has a Lipschitz boundary 942 (see [8, Corollary 1.2.2.3]).

Sobolev norm For 0 < s < oo, let H*(2) be the Sobolev space. For
0 < e <1, the norm (or equivalent norm) of H'*¢(£2) is given by

O;v(x) — Ojv(y
uvnHHe—nvan ] e s )

02x802

Interpolation space Let 0 < so < s < 1 < 2, H5(£2) is the interpola-
tion space [H*(12), H*1(£2)]g between H*(£2) and H*1(£2), where s = (1 —
6)sg + Os1, with

I llis < Ol zsa - Ngon- (2.2)
See [27, Theorem 4.3.1/2].
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Embedding theorems When 0 < s < 1, H5(£2) C LP({2), where % =
%ﬁ, with

I llze < Csll - |l s (2.3)
When s = 1, H1(2) C LI(02) for any 1 < g < oo with

-2, 2
” : “Lq < Cq,p” ’ ”Hl ” ’ ”Lm (2-4)

where 1 <p < q < oco. When s> 1, H¥(2) C C(2) with

|- lle < Csll - |l ae- (2.5)

The embedding inequalities [2.3) and (2.5) are seen in [27, Theorem
4.6.1]. The inequality holds when £2 = R? is the free space, cf. [24,
Theorem 3.3]. Then in the present case, is verified with the aid of the
extension theorem of the functions in {2 to R? due to Stein [22, Chap. VI,
Theorem 5].

Domain of the fractional power Consider a sesquilinear form
ol (u,v) = ao/ Vu - Vudx + co/ wvdz, u,v € HY(),
Q 0

with some fized ag, cg > 0. Let Ag be the positive definite self-adjoint
operator in L?(£2) associated with this form. According to Grisvard [8,
Theorem 3.2.1.3], Ag is the Laplace operator —agA + co with the domain
D(Ap) = H4(N) = {u € H*(N); g—z =0 on 8Q}. Moreover, for 0 < 6 < 3,

D(A)) = H?®(0) with norm equivalence. (2.6)

This coincidence is well-known when {2 is sufficiently smooth, see [27,
Theorem 4.3.3]. But it seems to be no longer possible to apply the similar
proof to the present case, especially when % <0< %. So let us describe the
proof here.

Since D(AY) C H2%(N) for i = 0,1, we observe by interpolation that
D(A§) c H®(02) for every 0 < § < 1. On the other hand, let £ < 6 < 3
and let v € H*(02). For v € D(Ap),

(i Ao} =

00
/ )\o(u, Ao()\ + A())_2’U>L2 dA
o 0

: 00
_ Slg:“ a / M (Vu, VAT AL (A + Ag)~20) 2 dA
0
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sm O

= l/‘ M (i, ASTO(N + Ao) %0 2 d.,

Here, 4 is determined as follows. Since V is a bounded operator from
H?(0) to H*-1() = HZ71(2) and from H21-9(02) to H'=2(02), we
1
observe that |(Vu, VAS™ f)12] < Collul| gzl f]lz2 for all f € D(Ao 2).
In addition, there exists some @& € L?(£2) such that ag(Vu, VAS 1 f) 2 =

1

(G, )2 for all f € D(Ag_i) with the estimate ||@|| 2 < Cyllu||g26. Then,
with the aid of the formula

O

S 1-6
0| A2 10112 ,d)\ = L* (02
| X047 0+ A0 alfedh = ST lale, g€ 1),

it follows that

sin 07

00 1-6
[ N4 Ok A0) 47 (v Ag) 0
0

< Colla| 2 |v]| 2.

| <u? A8U>L2 | <

Hence, u € D(AY) and || Aful|z2 < Collul| go-

Moment inequality Let A be a densely defined closed linear operator in
a Banach space X, A is of positive type in the sense that p(A) D (—o0, 0]
with the estimate

_ M

Then, for 0 <a < fB<vy<1,

Q
Q

1A% x < C ,/3,7”14&“”;{ “ JA3 S, ueD(AY), (2.8)

><~z

where the constant Cy g~ ts determined by o, 3, v and M.
See [24, Chap. 2, Proposition 3.3].

Heinz-Kato type inequality Let A (resp. B) be a densely defined closed
linear operator acting in a Hilbert space X (resp. Y') of positive type in the
sense above. Assume that the purely imaginary power A% (resp. B%) is a
bounded operator on X (resp. Y') with the estimate:

IA%||cxy < Naewsl!l ¢ eR, (2.9)

1B vy < Npesld, teR. (2.10)
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Let T be a bounded operator from X toY and at the same time from D(A)
to D(B). Then, for every 0 < 8 < 1, T is a bounded operator from D(A?)
to D(B?) and its operator norm is estimated by

1Tl c(pcae), D))

< NgNgelatws)vo(i=6) HT”%(D(A),D(B))||T||1£Z§,y)- (2.11)

This inequality was first proved by Heinz when A and B are self-adjoint
operators, and was extended by Kato to maximal accretive operators, see
[24, Chap. 2, Theorems 3.3 and 3.4]. In the proof, it is equally essential that
A and B satisfy the conditions and respectively. Thus, (2.11)
can be shown by the same argument under the conditions and [2.10).

Let X be a Hilbert space and let A denote a densely defined closed
linear operator of positive type. When does A satisfy [2.9)? It is clear that,
if A is self-adjoint, then ||A%||zx) < 1, t € R. Similarly it is known that,
if A is maximal accretive, then ||A"||zx) < ezl t € R, see [24, Chap. 2,
Lemma 3.8]. More generally, several necessary and sufficient conditions for
are presented in Yagi [29]; in addition, some sufficient condition is
obtained.

Purely imaginary powers If D(A) = D(A*) = D with the norm equiv-
alence

D7 Au| < [|A"u] < D||Aull, uweD, (2.12)
then A satisfies with wa = m and some N4 depending only on D and
M in[2.7).

2.2. Implicit Runge-Kutta method
An s-stage Runge-Kutta scheme applied to the Cauchy problem of an
ordinary differential equation

dy
—:f(t7y7 OStST,
dt ) 2.13

y(0) = yo

with a stepsize h > 0 is written as
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Yor1 =Ya+h ) bif(ta +cih,Vay), n=0,1,...,N—1,
j=1
(2.14a)

Vai=Yo+hY aijf(tn+cjh,Vaj), i=1,2,....s,  (2.14b)
j=1

}/0 = Yo, (214C)

where ¢, = nh and ty < T. The approximate solution {Y,} is given

recursively by (2.14a) with {V;,;} given by solving (2.14b) at every time
step n. The parameters a;;, bj, c; are all real numbers. Using the matrix
notation

A= . , B = , C =

we can write (2.14) as

Yoy =Y, + heTBf ((t,Z + hC)e,V,), n=0,1,...,N—1,
Vo =eY, +hAf((tnZ + hC)e, V), (2.15)
Yo = o,

where 7 denotes the identity matrix, e = [1,...,1]T, V,, = Vais--o Vst
and f(7,W) = [f(r,W1),..., f(7s, Ws))T with T =[r,...,75]T and W =
[Wi,...,Ws]T. The scheme is said to be explicit if the matrix A is strictly
lower triangular, and implicit otherwise.

The Runge-Kutta scheme is said to have an order of accuracy p if Y; —
y(t1) = O(hP*1) as h — 0. For an algebraic characterization of the order,
see [4, Theorem 307B]. We note here only the simple identity

1
eTBC*le = o k=1...p. (2.16)
The quadrature order is defined as the maximal number g such that
1
ACFle = ECke, k=1,...,q. (2.17)

The scheme is said to be strongly A(6)-stable, 0 < 8§ < Z,if (T —z.A)™!
is holomorphic on some domain containing C \ S;_g and if the stability
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function 7(2) = 1+ 2T B(Z — 2.A) " le satisfies |r(z)| < 1, z € C\ Sy_g, with
the estimate |r(o0)| < 1 (see e.g. [12, 13, 20}).

In this paper, we always assume that
(RK1) the scheme is strongly A(6)-stable with some 0 < 8 < T;

(RK2) the scheme is of order p > 1 and of quadrature order ¢ with the
relation 1 < ¢ < max{p —1,1}.

2.3. Galerkin finite element method

Let £ be a convex polygonal domain in R? and {7¢}¢so a family of
triangulations to {2 with the size parameter { = max{d,; 0 € 7} > 0,
where o denotes a triangle appearing in 7¢ and d,; its diameter. It is always
assumed in this paper that

(G) {7¢}e>o isregular and satisfies the inverse assumption, more precisely,
there exists a positive number v independent of £ such that

VE < py <dy <1y < u—lg, o € T, (2.18)

where 7, and p, denote the radii of the circumcircle and the incircle
of o, respectively.
Let

Ce(2) = {v € C(2); v|, is linear in each o € 7¢} (2.19)

be the space of trial functions. We equip C¢(f2) with the usual L2-inner
product and consider it as a closed subspace of L?(§2). Let pe : L%(2) —
Ce(£2) be the L2-orthogonal projection and ¢ : C(£2) — C¢({2) the interpo-
lation operator. Let

D(Ag) = H%(N) = {u € H%(0); Ou =0 on 80},

on (2.20)

Aou = —agAu + cou,

with some fixed ag, co > 0. Then the Ritz projection Roe : H(2) — C¢(12)
with respect to Ag is defined by

o®(Rogu, 0) = o®(u,9), u€ H'(2), b € Ce(£2), (2.21)
where o0(-, -) is the sesquilinear form

o®(u,v) = ag(Vu, Vo) 2 + colu, v) 2, u,v € HY(N), (2.22)
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on H!(§2) associated with Ag. Since Ag is a positive definite self-adjoint
operator in LQ(Q), Ry satisfies also

a®(9, Rogu) = o®(9,u), we HY(N), € Ce(R). (2.23)
We shall show here some new results on m¢, ps and Ro¢ in Sobolev
spaces.
Proposition 2.1 For 0 < s < 3, C¢(2) C H*(£2) with the estimate
19l s < Co&* |10l 2, 0 € Ce(£2), (2.24)
Cs being independent of &.

Proof. When s = 1, the result is well-known (cf. [5, Theorem 3.2.6]); when
s = 0, it is trivial. Then, for 0 < s < 1, the result follows immediately from
(2.2). Therefore it suffices to consider the case s = 1+¢, 0 < ¢ < 5. In this
case we estimate directly the H1**-norm of 9 € C¢(£2). By (2.1),

,(z) - 0,5(0)1
ol = ||v||L2+Z ] e 029

Since 9,; = 0;|, is constant for each o € 7¢, it follows that

10;9(2) — 9;0(y)|?
//.QX.Q |:B - |2+25 dmdy
s = beal” | g

0,0 GTE

o'#o

dwdy

2

< E (19051 +|'UUJ| // iz — |2+25
O'XO'

0,0 E'rg

o' #o

dwdy
<4 Z [6o5” // [z — g2

el x(2\o) |Z —

It is then sufficient to verify

_ dzdy 2-2
/ /U o o= s < Corg?™%, (2.26)

where the constant C; is independent of 0. In fact, this together with [(2.18
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implies that

1913 14e < N01F2 +Ce DD gy Pre® 2
7 o

< Nolfe + Ce€7% ) D oo Plo| < Cet™>[ol[31,
3J o
where |o| denotes the area of o; and hence is proved.

Let us now show the estimate (2.26). Let B, denote the circumcirclar
domain of ¢ with radius r,, and U, the circular domain with the same
center as B, but with radius 2r,. Let [;, i = 1,2, 3, be the three lines in
R? obtained by prolonging the sides of o. Each I; partitions U, into two
subsets, so denote by S; the one disjoint with 0. Then we obviously see

that
/ / _ dzdy / / _dzdy
ox(@\o) 1T = Y2 = [ g, R2\U |z —y[2+2e

// dxdy
oXS; |$ - y|2+2€

For the first integral we have

dxdy
//Bax(Rz\U,,) |z — y|2+2e
_ /"” /°° /2” 2 rpdfdodpdr
oro {r?+ p? —2rpcos(p — O) H 1<

_2-2 rpdpdr
(2)2 6// ) 2+26§C

For the second integrals, we can assume, without loss of generality, that
o C [0,4r,] x [0,4r4], S; C [-4r,,0] X [0,47,] and 9o NAS; C {0} x [0, 4r,].
Then, changing variables (z3,y2) — (z,w) = (x2 — Y2, T2 + y2),

dxdy
//axs |z — y|2+28
3 / /47»0 /4“, /41»0 dzodypdzydy;
"o Jo Joo Joo Alm P A 2 -y e

0 rl 2 rl 2dzdw
cwr=[[{[] e
< W)™ | U S T — P £ ey f 4o
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|-1

(4r,)22¢ / / { /"“‘yl 4dg } da1dy,
o le -t (14 ¢2)1+e iw1—y1l1+2€

dz1dy:
< Cero™” / 1+§2 1+e // (1 +y1) 12

< CETU2——2€'

Hence we have verified [2.26). O
Proposition 2.2 For 0 <s < %,

I(1 = me)vllme < Cs€*|loll g2, v € HA(92), (2.27)
Cs being independent of €.

Proof. When s = 0 or 1, (2.27) is well-known (see e.g. [5, Theorem 3.2.1}).
Then, for 0 < s <1, (2.27) follows by interpolation again.
Let v € H?(2) and = mev. For s=1+¢, 0 <e < %, we see that

[[ Mo =nia) - Bt)- o,
2x82

|:L' _ y|2+2s

y // e

oETe
|0;0(x) — Ojv(z )|2
dzxdy.
/ /o-X(.Q\a) liﬂ— y|>+2e

The first integrals are estimated by

dzdy
Z // |9jv(z) — 9; 'v(y)|2|x Y22

0'€TE

N oz dedydw

If we change the variables (z,y,w) — (z,9,w) = ((1 — w)y + wz,y,w),
the domain of integration is given by {(z,y,w); 2,y € 0, w(z,y) < w < 1},
where w(z,y) = inf{w; y+wl(z—y)eo}> % Then,

oETe
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Z/ [ve, P 4y
- 1 — 2¢ |z — y|

<G |V(85v) 32(0)To> % < Celu]|%2627%.

For the second integrals, we utilize Holder’s inequality. Then,

2
// |0;0(x) — fg“;(@l drdy
ox(2\o) T —yl?t2
1

<{ -l ][ e

where 1 < ¢ < 2%, and%—}—%:l. Since

dy / dy T .. -2
— < ————— = —dist(z, 00) "%,
/.(2\0 |z = YP*2 T Jeyisdist(z,00) 1T — Y|2H2E T € (=, 00)

we see that

dy ! : —2eq
m dx < CE dlSt(.’IZ, 80’) dx
oLJNeo o
< CE/ / ’ n_zsqdndf = CE,qT‘GQ—qu.
Al

In order to estimate [|0;0 — 0;jv||2p(s), it is verified from the lemma below
and (2.18) that

100 — 8jvl|L2P(a)

-2 . » 11~
< Cp el ot 19 = ol ) + 70710 = 0l 1)}
1

1
<C {uvnm(a) (rellvll o)) +707 ™" rollvll s }
= Cpra” ”U||H2(a)-

Hence we have

|0;0(z) — 8jv(x)|?
2 // Iw —ypre W

OETE X(f2\o)

2 2_ -
< E CJU”“”“%{L’(G) Ted 2 < Ce€? 26”””%12’
o}
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which shows that holds for s = 1 +¢&. Thus we have proved Proposi-
tion 2.2. U

Lemma 2.1 For 1 <p < oo,

P

1-1 1 1
Ty 1-1 1 1
oty < Gof (2) 7 9l loll) + oo~ ol .
g
w € H(o), (2.28)
on each triangle o € ¢, Cp, being independent of o.

Proof of the lemma. Let & = {(21,22) €ER? 21 >0,20>0,21 +22 < 1}
be the reference triangle, and ¢, : & — o an affine mapping. Then we have
(cf. [5, Theorem 3.1.2})

C; Mol w0 dollLa(e) < Illzate) < Calol?lwo éolLaa),

19w @)llzaga) < Carolo| V0] Leco)
for 1 < g < 0o. Then (2.28) is readily verified by applying ona. O
Proposition 2.3 For 0 <s< %,

11 — pe)vllas < Cs€®*|lvllgz, v € HA(12), (2.29)
C, being independent of £. In addition, for 0 <r < 2,

I(1 = pe)vlle < CE vllam, v e H(2), (2.30)
C being independent of £ and 7.
Proof. When s = 0, it is easily seen from that

11 = pe)vll2z = (1 — pe)v, (1 — me)v) 2 < CEI(L = pe)vll 2ol 2
For 0 < s < 3, we verify from and that

11 = pe)vllas < (X = 7)ol + [[(me — pe)vllae
< Co? |0l 2 + C€ Il (mg — pe)vllzz < Co€™ [0l 2.

Thus we verify [(2.29).
When r = 0 or 2, is obvious. Then, for 0 < r < 2, it is a direct

consequence of (2.11); indeed, take T =1 — pg, A = Ag and B = 1, where
Ag is a self-adjoint operator in L?(£2) with the domain H?(£2). O
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Proposition 2.4 For 0 <s < —g—,
|1 = Rog)ll s < Co6>*l| Aovll 2, v € D(A), (2.31)

C, being independent of €. In addition, for % <r<2,

|1 = Rog)vllzz < Gr&llAfvllze, v e D(AY), (2.32)

C, also being independent of £. In particular, Ro¢ can be extended over
H™(2) for any r > 3.

Proof. When s = 0, since Ay is a positive definite self-adjoint operator in
L2(02), is well-known (see [5, Theorems 3.2.2 and 3.2.5]). Then, for

general 0 < s < 2, and yield that

1 = Rog)ollze < (L = me)ollszs + l|(me ~ Rog)ollae
< Co&*|lvll g2 + Cs€°||(me — Rog)v| 2
< Cs€2—s||A0v”L2'
In order to prove [2.32), we notice from (2.6) that H>™"(£2) C ’D(A(l)_%)
for —%— < r < 2. Therefore, if % < r < 2, it is observed by Aubin-Nitsche’s

trick, [(2.21), {(2.23) and that
0~ Rag)ul = a®((1 — Rog)v, 451 — Rog)o)
= 040((1 - Rgg)v, (1 - Rog)Aal(l - Rog)v)
= ao(v, (1 - Rog)Aal(l - Rog)’v)
r 1-I 3
= (Adv, 4y 7 (1= Rog) 45" (1 — Rog)v))

L2

r 1-Z _
< [|Agv| 2|49 2(1 — Roe)Ay ' (1 — Rog)vl| 2
< |Agv|lL2 - Cr€7||(1 — Rog)vl|p2, v € D(Ao).

Since D(Ap) is dense in D(Aé), 2.32) holds for § <r < 2. O

3. Error estimate

In this section, under (), (B), (C) and (IF), we shall establish the
stability and the order estimate of error of the fully discrete approximation
for the chemotaxis-growth system (CG).
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We begin with writing the system as an ordinary differential equation

i +AWU)U =FU), 0<t<T,
dt (3.1)
U(0) = Uy,

in a product L?-space. Let X = L2(£2) and Z = H!*¢(£2) be two product
spaces, where ¢ is an arbitrarily fixed number 0 < ¢ < 3. By (1.1) and

(2.5), the initial function Uy = [ZO] isin Z C {C(ﬁ)}z. Let
0

U
K= {U= ) € 210 ~Uolls = /I =l + = olfre <}

be an open ball in Z with the center Uy. From [2.5), there exists § > 0 such
that

u

Rep(z) > 6 on 2 for U= [p

|ex

if r is sufficiently small.

For each U = [ZJ € K, A(U) is a linear operator in X defined by

(D(AW)) = D = H, (%),

o~ o 3.2
< A0 = [Al A3(U)p:| G [ ] | (32)
\ Azp p

with

(D(A1) = D(4s) = HE(92),

D(43(V)) = H(92),

{ A1 = —aAt + ad, (3.3)
Azp = —dLp + dp,

[ 43(U)5 =~V - {Reub(Rep) V3},

Fi(U)

where b(p) = B'(p). F(U) = [FQ(U)

] is a function of U = {Z] € K defined
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(3.4)

Fi1(U) = au + c(u),
F(U) =dp+ fu-—gp.

By (1.1), Up is in D. Then (CG) is formulated as an abstract equation of
the form (3.1).

Furthermore, we can also write (3.1) in the weak form

%(U, ViLz + a(U; U, V) = (F(U), V)pe,
0<t<T,VeH(), (5
U(0) = Uyp.

Here a(U; -, -) is the sesquilinear form

a(U;U, V) = a(Vi, V) 2 + ali, §) 2
— (Reub(Rep)Vp, V)12 + d(Vp, Vi) 12 + d(p, i) L2,

Uz[“]eK, 5=["f], v:[t’

1
’ p N] e H (£2) (3.6)

on H!(£2) associated with A(U). It is readily verified that a(U; -, -) satisfies
that

(U; U, V)| < o' |0l [V, Ue€K, UVeH(R), (3.7)

o - aollU2, — a7t||al2,,,
Rea(U;U,U)Z{ oVl o Nl

aollUllE: — e 1813,

UekKk, U= m e H(2), (3.8)

|a(U; W1, Wa) — a(V; Wi, Wa)| < an[[U = V|ga+e [[Wi[m [[Wal[m
UV e H1+5(Q), Wi, Wy € ]I-]II(Q) (3.9)
with some positive constants ag and a;.

Remark 3.1 When {2 C R? is a bounded smooth domain, the existence
and uniqueness of local solutions to (3.1) was shown by [30]. For any non-
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negative initial data Uy € Z, (3.1) possesses a unique nonnegative local
solution such that

U € c'=9%([0, S]; Z)nc((0, S); D) N CH((0, S]; X),

where S > 0 depends on Up. If c(u) satisfies c(u) = —cou? + cju for
sufficiently large u with some constant ¢y > 0 and B(p) is defined and
smooth at p = 0, then (3.1) admits, for any nonnegative initial data Uy €
Z, a global solution on the interval [0, 00), see [19]. In the case where c(u) =
0 and B(p) = bp with b > 0, however, (3.1) is known to possess some local
solutions which blow up in a finite time and at the same time some global
solutions depending on initial data Uy, see [9, 15].

The Galerkin finite element discretization of (CG) is obtained as follows.
Assume the condition (G) in the preceding section. Let X¢ = {(35(_.(7)}2

clearly X¢ is a finite dimensional subspace of X = L?(f2). Let P = p¢ X
pe - L2(02) — X¢ be the L?-orthogonal projection. The finite element

approximation to (3.5) is then given by

d ~ ~ ~ o~ o~ ~ o~
_<U, V)]L2 + a(U; U, V) = (F(U)? V)Lz’

dt N
0<t<T, VeX, (310
U(0) = P:Up.
For each U € K, define a bounded linear operator A¢(U) on X¢ by
(AU, V2= (U; U, V), U,V e Xe. (3.11)
In matrix form A¢(U) is written as
A —Asz(U) u
A(U) = , U= , 3.12
eW=1, Ao , (3.12)

where bounded operators Aj¢, Ag¢ and Aze(U) on C¢(£2) are defined respec-
tively by
<A1£’&, ®>L2 = (l(V’ll, V’ﬁ)lﬁ + a(ﬁ, {}>L2) ’&, v E Cg (ﬁ),
<A2§pA7 ﬂ)Lz - d(Vﬁ, V[")Lz +d<)5a ﬂ>L2a P, 1 € 65(5)7 (313)
(A3e(U)p, 0) 2 = (Reub(Rep)V, Vi) 2,  p, € Ce(9).
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Therefore the approximate equation (3.10) can be written as

dU .
L A(DU = F:(U), 0<t<T,
o ¢(0) £(U) (3.14)

U(0) = P:Up

with F¢(U) = P.F(U) for U € K.
Next we consider the Runge-Kutta approximation to (3.14). For the
scheme assume the conditions (RK1-2) in the preceding section. Apply the

scheme with stepsize h > 0. Then the following fully discrete approximation
to (3.1)

ﬁn+1:ﬁn+h6TB{—A§ V )‘7 Fg(vn)}, n=0,1,...,N -1,
V,=elUp+hA{-A(V )V, + F
Uo = P:Uo

is obtained, where V, = [Vn,l, e, Vn,S]T, A (V)= diag[Ac(Vh), ..., Ae(Vs)]
and Fe¢(V) = [Fe(V1),..., Fe(Vi)]! for V = [V, .., Vi]T, and N is a posi-
tive integer such that N-h <T.

In the preceding paper [16], we have already handled the approximate
equation (3.15) in each fixed space X¢. Theorem 5.6 of indeed provides
the existence and uniqueness of solution to (3.15) as well as some estimate
on Ag(ﬁn)ﬁn. Applying those results, we first prove the stability theorem.

Theorem 3.1 Under (RK1-2) and (G) let hg > 0, & > 0 and S € (0, T]
be sufficiently small. Then, for any 0< h < hg and 0 < £ <&o, the equation
(3.15) possesses a unique solution U= [Uo, . UN, Vo, .. VN 1] on the
subinterval [0, S], where N < S/h. Moreover, L{ satisfies

max {10nllx + 1 4e0a)0nllx } < C,

n=0,1,...,N ~ L (316)
s s 0 <
o725, {17l + 14TVl ) <

C > 0 being independent of h and §.

Proof. In this section we shall describe only the trunk of the proof of the
theorem assuming all the branch Propositions B.1-3.10 below. The proof of
these propositions will be collected in the next section.

The following Propositions B.1-3.7 are verified.
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Proposition 3.1 For§ >0, X, C Z.

Proposition 3.2 There is a § > 0 such that P:Up € K for all 0 < € <
§o-

Proposition 3.3 Let & = 1££. The inequality I-llze < 15||A5(P§U0)&-||XE
holds uniformly in £, where Z; is the space X¢ equipped with the induced
norm of Z.

Proposition 3.4 The norms || Pllzx) and || Ae(PeUo)PeA(Uo) ™l 2ix)
are bounded uniformly in &.

Proposition 3.5 The resolvent sets p(A¢(U)), U € K, contain a sectorial
domain C\ Sp, 0 < ¢ < 5, and the resolvents satisfy

A

My

(A= A&(U))_lnﬁ(xg) < m,

AgS, UeK

with some constant M independent of €.
Proposition 3.6 A¢(-) satisfies the Lipschitz conditions
I{Ae(U) — Ae(V)}Ae(V) ik < LallU = Vliz, U,V €K,
14¢(U) " H{Ae(U) = Ae(V)}Hlcx) < LallU = Viz, UV ek
with some constant L4 independent of &.
Proposition 3.7 F¢(-) satisfies the Lipschitz condition
|Ee(U) - Fe(W)llx, < LellU=Vlz, UVek

with some constant Ly independent of €.

By [Proposition 3.1, X¢ can be equipped also with the induced norm
of Z, and the space is denoted by Z¢. Propositions B.2-3.7 then show that
one can apply Theorem 5.6 of . In fact, we see that the assumptions
(A4-5), (Sp), (F3) and (I3) in [16, Section 5] are satisfied, by substituting
X, Z, K, Aand f by X¢, Z¢, K¢, A¢ and Fg, respectively, where K¢ =
{U € X¢; ||U - P:Upllz <7} and # = — ||(1 — P:)Us|lz > 0. We must
notice that, since all constants in Propositions 8.1-3.7 are uniform in £, the
constant hg appearing in [16, Theorem 5.6] is independent of £. Therefore
we conclude that, if & is as in [Proposition 3.2, hg is as above, and S is
sufficiently small, then, for any 0 < h < hg and 0 < £ < &, (3.15) has a
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unique local solution i in the closed subset

’Cg,h(S) :{L? = [(70, .. .,ﬁN, ‘70, Ceey VN_1] - ZéV_H X (ZE)N'

Uo = PeUo, |Up — Unliz, <|(n—m)h|", 0<m <n <N,
IV —elnllze <h7, 0<n< N -1}

of the space Az 1(S) = Zévﬂ X (Zg)N, n being a fixed number 0 < n <1 —

&. U satisfies the estimate (3.16). Moreover, we have the representation
formula

-~

Un = ¢ 1 (U;n,0) Pl

n—1
+ 1Y Bep(Uin, £+ 1) T n(Ve) AFe(V ),
=0
n=0,1,...,N,
. (3.17)

Vo= Jep(Vin)eDe b (U;n, 0)Pely + hJ e o (Vo) AFe(V )

n—1
+h Y Jen(Va)ePew(lhn, £+ 1)b T (Vo) AF (V)

£=0
n=01...,N—1,

where
B¢ (U n,m)
'1, n=m,
.y {1 - heTBAg(Vn_l)Jg,h(‘Afn_l)e} (3.18)
| XX {1 — heTBAg(Vm)Jg,h(‘A/m)e}, n > m,

is the discrete evolution operator, and J E,h(‘?n) =(Z+ hAAg(‘/}n))‘l.
U

We are now in a position to establish the error estimate. For n =
0,1,...,N,set E, =U, — U(t,), where t, =n - h.

Theorem 3.2 Let U be a solution to (3.1) such that U € CP*([0, S];
L2(2)) N CI+1([0, S]; H2(2)) with ¢’ = min{q,p — 1}. Under (RK1-2) and
(G) let hg > 0, & > 0 and S € (0,T] be sufficiently small. Then, for any
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0 < h< hg and 0 < & < &y, the errors are estimated by

n:ﬁlﬁiN “Un — U(tn) ||+

<Cy [U—lfl—EHUHCU([O,S];H?)
+ hp||U(p+1)”C([O,S];L2) + hq,+1||U(q,+1)||C([O,S];IHI'Z)], (3.19)

where N < S/h. Here, 0 > 0 is any exponent and the constant Cy > 0
depends on ||U"||¢(0,s1;.2) and ||U|l¢(jo,s);m2) but is independent of h and &.

Proof. Write E,, = PcE,+(1—P¢)E,, it is clear that P:E, = ﬁn—PgU(tn)
and (1 — P¢)E, = —(1 — P¢)U(t,). The term (1 — P)U(t,) was already
estimated in [Proposition 2.3, so we have only to estimate the first term
FPE,.

The proof consists of five steps. In this proof, we shall use the following
notations: U, = Ul(ty), Vni = Ultn + cih), Vo = [Vats.., Vo), Un =
PUp, Vo= BV, U = [Us,...,Un,Vo,...,VNn_1], En = BeEy = Uy, —
ﬁn, and 1~)n = ‘7n - ‘7n.

Step 1. Representation formula for E‘n and 1~)n.

We introduce the errors e, and d,,, 0 < n < N — 1, defined by

Unt1 = Up+ heTB{—A(V,)V,+ F(V,)} + en,

(3.20)
Vo=eU,+hA{-A(V,)V,+ F(V,)} + d,.

Operating P, we observe that
(Upsr = Un + heTB{—Ag(Vn)Vn + Fg(i?n)} + heTBé, + Peen,

~

Vo= el + hA{ ~Ae(V)Vo + Fe(Vy) | + by + Pedn,  (321)
| U = P:U,

where
&n = Pg{—A(Vn)Vn + F(Vn)} _ {—Ag(ffn)f/n + Fg(f/n)}.
(3.22)
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Subtracting (3.21) from (3.15), we obtain that

f ~

Epni1 = By + he"B{~A¢(V) Do + Ge(Viu + D, Vi)

— heTBé, — Peen,
\ Dn = eE, + hA{—AE(f/n)f)n + G¢(V + D, fzn)} (3.23)
— hA&, — Prd,

where
Ge(V, W) = — {Ac(V) - Ac(W)} V + {Fe(V) - Fe(W) .
The second equality of (3.23) can then be written as
D, = Jep(Va)eEn + hJe n(Va)AGe (Vi + Dy, Vi)
- 80an) — 80, (3:24)
where
8 (n) = hJ e (V) Aen, (3.25)

8 (n) = Jen(Vn) Pedy. (3.26)

~

Moreover, utilizing the discrete evolution operator ®¢ (U; -, ‘), as in the
proof of MTheorem 3.1, we can represent E, by

n—1
En=h Z Be p(Usn, £+ 1)bT T n(V)AGe(Ve + De, Vo)
=0 (1) (2)
—€g p(n) e p(n), (3.27)
where
n—1 _ _
ea(n) =h>_ BepUn, £+ 1)bT Jeh(Ve) Ale, (3.28)
=0
n—1 _ _ B
E?I)z(n) = Z Pen(Usm, £+ 1){hbTJS,h(VE)AAE(VZ)Pgde — Pgee}.
(=0

(3.29)
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Step 2. Estimates of E, and D,, in terms of 6( g w(n), égzl(n), i=1,2.

If £ is sufficiently small, U(t) = PU(t) is in K¢ for every 0 < t < S.
The Holder continuity of U(-) is also verified from Propositions 8.3, 3.4 and
the assumption that U € C1([0, S]; X)NC([0, S]; D); indeed, with the aid of

28)

1U(t) - U(s $)|| z
< D||A¢(PeUo)*Pe(U (t) — A U(s))llx A
S CIP(U() = U(s))lx * 1 Ae(PeUo) Pe(U (t) — U (s)))|%
<Cylt—s|*% t,sel0,9)].

Here Cy > 0 depends on ||U’||¢(j0,5),x) and [|A(U )Ull¢(j0,s3;x)- This means
that the Holder conditions (4.16) and (4.17) in [16, Remark 4.1] hold for
the family {Ag(Uo) ., Ae(Uy), Ae(Vy),. Ae(Vy_1)}; consequently,
Je, W(Vn ) and &¢ h(U -) are defined as bounded operators in X and sat-
isfy the same estimates established in Lemma 4.1, Propositions 4.2, 4.3 and
4.7 of [16]. In addition, the following estimates hold:

1 4¢ (Uo) & T e u(V nllexg) < Cuh™, (3.30)
||A&(ﬁo)de,h(Vn)Ae(Uo)"&Hc(xg) < Cy, (3.31)
14¢ (TUo) 4@ (U, m+ 1)6T T (V1) lexs,xe)

< Cy((n—m)h)™%, (3.32)
1Be 1 (U5 m, M+ Db AA (Vi) Ten (Vi) llixe, x)

< Cy((n-m)h)™L. (3.33)

The first and the second estimates are given by [16, Lemma 4.1] if we notice
that

Ae(U0) 3T e h(Vn) Ae(Up) ™% = Jen(Uo)
+ hAg(Uo)* T e (V) A{Z — Ag(V ) A (T0) ™ }Ae (To) =4 T (D).

Applying [2.8), we verify [3.32) from [16, Propositions 4.2 and 4.7]. Finally
(3.33) is obtained by the dual argument of [16, Proposition 4.7] in view of
the second condition of [Proposition 3.6].
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Operating A¢(Up)* to (3.24) and using and (3.31), we observe
that

1Dnllze < D||Ag(Uo)*Dallx+ < CullAe(Uo)*Enllx
+ Cuh' ™% Dyl ze + Cu | A¢(Uo)*8ga(n) | xs
+ Cul| A (To)* 820 (m)l|x. (3.34)
Therefore, if h is sufficiently small, then
|1Dnlize < CullAe(Uo)®Enllx + Cull Ae (Uo)*8¢ 1 (n) 1 xs
+ Cu | 4¢(To)* 8 (n) 1 x-. (3.35)
This shows also that 1~)n is estimated by En as the solution of the equation

(3.24).
On the other hand, using (3.32), we observe from (3.27) that

1Eallz < DIl A¢(Uo)*Enlix

n—1
< Cyh Y ((n—0)h)~*|| Del|zs
£=0

+ CyllAe(To) () x + CullAe(To)ein(n)llx.  (3.36)

This together with yields a discrete integral inequality of Volterra
type

n—1

|Ae(To) Enllx < Cuhy_((n — £)h)™%||A¢(TUo)* Eellx
£=0
+ Cyl|A¢ (To) %) ()| x + Cull Ag(To) el (m) 1 x
n—1
+Cuh Y ((n— Oh){ | 4¢@0) 36O x5 + 14¢(T)*6E (D x+ |
=0
(3.37)

with respect to Ag(ﬁo)é‘ﬁn. Thus we obtain (by [16, Proposition A.1]) that

AT 77 \é 77 & (2
|4¢(00)* Bullx < Cur max {]|4c(T0) e (O)lx + |1 4¢(T0)*eh(O)1x |
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n—1

+Cuh Y ((n— 0 {1 4¢(T0)*5 0O xs + | 4e(To) 6 (0) 1+ }
=0

< Cu(ihn) + 4 n)),

where
Yer(n) = max || Ae(Uo) ) (0l

+,_max_ 1l A¢(To Uo)*880(0)llxs, i=1,2. (3.38)

Hence we conclude that
N . o .
|Eallz < DIl Ae(Uo)* Enllx < Cu(v{Rn) + 7). (3.39)

Step 3. Estimate of 'yé’l,z(n)

First let us estimate eé,)t(n) Inserting a term Ag(f/n)Ag(Vn)‘l
P:A(V,)V,, we write ¢, in (3.22) in the form

én=He(Vy) + Ag(V,)Le(V ),
where
He(V) = {A¢(PV)A(V) ™ I} RA(V)V
—{Fe(PV) - Fe(V)},
L(V)={P: — A(V)'P:A(V)}V = P {T - R¢(V)} V,
and R¢(V) = [Re(V1),..., Re(VQ)|T for V = [V, ..., V§|7,

Re(U) = A¢(U) ™' P A(U) 0)

(3.4
being the so-called Ritz projection defined on D(A(U)). Accordingly eé })L( )
in (3.28) is divided into eg,)l( ) = él;f) (n) + egz) (n) with

n—1
e (n) = by e (U, £+ 1)bT Je (Vo) AH (V)
=0

n—1

eg}?(n) =hY e n(U;n, £+ 16T T (V) AA(V ) Le(V).
=0
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Then, using [(3.32) and Propositions B.6, B.7, 8.4 and 2.3, we verify that

1Ae(Uo) 2t (m) 1 x

n—1
< ‘ R~ Ag(Uo)*®e n(Usn, €+ 1)bT T h(V ) A{Fe(Ve) — Fe(V)}
=0 X
n—1 - _ "
[ Aoy ea@in, e+ 0¥ T (74
£=0
x {Ae(V)Ae(V) T — T} P A(V )V,
X
n—1
<CyhYy ((n—=0h) Ve = Villzs {Lr + La| LAV )Vl xs }
=0

< Cull(1 = Pe)Ulleqo,s1,2) < Cu&® AU |le(po,s):x)-
On the other hand, it is seen that

n—1
eg;;) (n) =hY_ BenU;n, £+ 16T Ten(Ve)AA(V ) P{T — Re(V)}V
=0
n—1 _ B _
=hY Ben(Uin, £+ 1)bT T h(Vo) AA(V )
=0
X Pe[{T ~ Re(V)}Ve — e{1 ~ Re(U)} U]

+ {1 = B h(U; , 0)} Pe{1 = Re(Un) }Un,

here we used the equality

n—1
1-— @E,h(ﬁ; n, 0) = hZ@g,h(Zj; n, {+ 1)bTJ§,h(17@).AA§(‘7@)e.
£=0

Now we need the following three propositions, the proof of which will be
given in the next section.

Proposition 3.8 A(-) satisfies the Lipschitz condition
I{AU) = AV)YA(V) Higxy S LallU =Vliz, U, VeK

with some constant L 4.
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Proposition 3.9
14e)llcxy < Nag™, UekK
with some constant N4 independent of €.
Proposition 3.10 R¢(U) = A¢(U) 1P A(U) satisfies that
{1 = Re(U)}A(U) Y| cx) < MrE®, UE€K,
I{Re(U) = Re(V)}A(V) Mgy < Lr€PIU - Viz, UVeEK

with some constants M and Ly independent of £.

[IProposition 3.9 implies that
14¢ (To)*llc(xy < CE24.

Similarly, [Proposition 3.10| joined with [Proposition 3.4] implies that
||P§{1 - R{(Un)}Un”X < C§2||A(Un)Un“X-

Moreover,

|Pe[{1 — Re(V o)}V — e{1 — Re(Un)}Un] || &
<1 Pe{1 = Re(Un)}A(Un) " H{A(Ve) Ve — €A(Un)Un} | x
+ | Pe{1 — Re(Un) }A(V o) " HA(V)A(Un) ™ — I}A(V ) Vil xe
+ || Pe{Re(Ve) = TRe(Un)} Vel x

< Cg? [((n —O)R)? | AU)U lco(po,81:x)

+ (0= OB TN g o o AU leqo,s10)|

2 ([0,5];2)

Here, the fact U € Clz;e([(), S);Z) and A(U)U € C([0, S]; X) are verified
from U € CY([0, S]; X)NC°([0, S]; D), Z = H ™6 (2) = [X, D]L—%—_&; and Propo-
sition 3.8. Utilizing these estimates and [3.33), we readily verify that

N
1A (o)) (n) 1 x
n—1

< Cyh) &72%((n = Oh) 7 ((n = OR)IIAU)Ulleo(q0,53:)
£=0

+ Cut 22| A(Up)Unl|x < Cuo™ 2 2%| A(U)U]|co(p0,51:):
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where o € (0, %] is an arbitrary exponent. Therefore, since & = %ﬁ, we
conclude that

I A¢(To)*eh(n)llx < Cuo™ €| AUV leo jo,51x):

The term éél,)l(n) is also estimated in the same way as for e(l)(n). In-

&,h
deed, it is divided into 835 (n) = 805 (n) + 607 (n) with

50 (n) = hI (Vo) AH(V,),
b - -
88D (n) = RIe (V1) AAg(V ) Le (V).
Then the two terms are estimated by
14¢(T0)28¢.2 (n) | x+ < Cuh! 4|1 = Pe)Uleqo,s1:2)
< Cyh! =% 24| AU)U e po, 5150,
and by
7 \a g(1b —24
| A¢(To)*8%5) (m)l|x+ < Cue2 || AUV lleqpo,1:x)»
respectively. Hence,

|1 4¢(T0)286L2 () 1 x+ < Cue™ I AW)Ulleqo.spix)
We have thus proved that

() < Cuo €Y AUV llgo 51 (3.41)

Step 4. Estimate of 'ygg(n)

We have from (3.29)

n—1
e (n) =Ry Ben(Usn, £+ 16T Je h(Vo) AA (V) Ped,
£=0
n—1
— Z r(00)" ¢! Prey
=0
n—2 n-—1 _ _
— Z Z @g,h(u; n, ¢ + l)bTJE,h(Vg/)eT(OO)EI_e_lPgeg.
£=0 £/=0+1
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Thus we verify from (3.32) and [Proposition 3.4 that

| A¢(To) el (m) 1 x
n—1

< Cyh) ((n—€+1)h)™%|| Ag(Ve) Pede| x-
=0
—1

+ [r(00)[™~7{| A¢(Uo)* Peeellx
£=0

n—1
+Cyh ) ((n—1)h Z r(00)[“ =471 || Peee/llx

£=0
< Cy max [| A(Uo)de|x= + CU max || A(Uo)eel|x + Cu max|le/hl|x,

since |r(0o)| < 1. In the same way the norm of 6?,)1(17,) defined by is
estimated by

|1 4¢(To)28E) ()l x+ < Cull Ae(TUo) Pednl|x» < Cul| A(Uo)dnlx-

So it is enough to estimate e, and d,. But it is already known (cf. [16,
(3.16) and (3.17)}) that e, and d,, are represented by

h —t)e
en = / (——(h D e 1, 41
0 q!

_ h(h=t)*!
(¢—1)!

— g (h—t)P (p+1)
_ /0 ( U+ )
h(h — £)P~

~ (p—1)!

h -1

(h=8)7 g1 R(h—1)? ) (g+1)

d, = ettt -~ L AC? |V t,I +tC)e)dt
/0 ( q! (g—1)! ( )e)

el BCIV D ((t,T + tC)e)) dt

eTBCPV P ((t,T + tC)e)) dt

respectively. As a consequence,
len/hllx < CRPINUP ) lco0,51:x)s
|A(Uo)enllx, |A(Uo)dnl xs < Chq,+1IIA(UO)U(q,+1)”C([O,S];X)-



Discrete approzimation for quasilinear parabolic systems 415

Therefore we obtain the estimate
2
78 m) < Cub?|[UTHDe0,51:x)
+ Cuh? | AU) UV (0,51.3)- (3.42)
Step 5. Completion of the proof.

From [(3.39), [(3.41) and |(3.42) we have
1B,z < Cuo 65| A(U)U |lco(o,51:5) + CubPIU PV e(o,51:x)
+ Cuhe AT o5

Since ||E,||z < | Enllz + /(1 - P)U(t,)|lz, the desired estimate (3.19) then
follows from [Proposition 2.3, O

Remark 3.2 When c(u) = 0, it is easily seen that, the function u of
the solution U = [Z] to (3.1) has the conservation law of L'-norm, that
is, fQ u(t)dr = |, oUodr for all 0 <t < S. Accordingly, also 4, where

U, = [HJ"], has the same law. Indeed, from the first equation of (3.15) we

Pn
see that

S
Gni1 = tn +h Y bj{—A1gbn; + Ase(Onj, finyj)iin,j + Fig(Onjs fing)} -
=1

Then, since c(u) = 0, (3.13) and (3.4) imply that
/ ﬁn+1d$ — / ﬁndiB = <’11n+1 — ﬂn, 1>L2
Q Q

=R b;j{a(Vn;, V1) 12 — (Ren,b(Re fin,j) Viin,j, V1) 2}
j=1

— 0,
therefore [, indz = [, dodx for all n.

Remark 3.3 From the estimate (3.19) provides automatically the
pointwise error estimate. Since the positivity of solution to (3.1) is known
(cf. [30, Theorem 2.1]), this shows that also the approximate solution in,
pr, can be positive if £ and h are sufficiently small.
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Remark 3.4 The backward Euler scheme, that is a Runge-Kutta scheme
satisfying (RK1-2) with s = p = ¢ = 1 and ¢’ = 0, is seen to have the
conservation law of positivity; in fact this can be proved by the truncation
method as in [30, Theorem 2.1].

Remark 3.5 The order of convergence in spatial discretization is 2(1 —
&) =1 —e. In view of Propositions and 2.4], this exponent is optimal.

Remark 3.6 The constant S in Theorems and [3.2, which gives the
interval of existence of the solution U, to (3.15), is determined by the initial
data and constants appearing in Propositions B.1-3.7 and conditions (G)
and (RK1). To study the prolongation of U,, beyond the time S, we have
to establish some a priori estimates for (7".

4. Proofs of propositions

This section is devoted to describing the proof of all the propositions
announced in the preceding section.

First we note that Propositions B.1 and are direct consequences of
Propositions 2.1, 2.3 and the assumption that Uy € H2(£2).

Proof of [Proposition 3.7. The Lipschitz condition on F¢(-) is verified di-
rectly from

\F(U)—-F(V)|lx <LF|lU~-V|z, UVEK.
Since c¢(u) is locally Lipschitz and satisfies
1
lle(u) — c(v)|| 2 = ‘ / (1 — w)u + wv)dw (u — v)
0

< Cllu — vl gi+te,

L2

this condition is obvious from (3.4). O

Proof of |Proposition 3.8. The Lipschitz condition on A(-) is also verified
by a direct calculation in view of D(A(U)) C H?(£2), see [30, p.245]. O

Proof of [Proposition 3.5. Let A € C\R" and U = [Z] € K. Since Ay

and Ag¢ are positive definite self-adjoint operators on Cg(_ﬁ), it is easily
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observed that A — A¢(U) has a bounded inverse on X¢

(A= A1)t (A — Ae) M Az (U) (A — Age) ™!
0 ()\ — AQE)—I

For a 0 < ¢ < 7 fixed arbitrarily, it holds that

(A=A (U)™ =

(A - Al&)—1||[;(c€(ﬁ)) + (A - A2£)_1||£(c£('§)) <
On the other hand, we verify that
143¢(U) Az Nl ey < ©
uniformly in U and £. In fact, using Ry = A2_§1P§A2, it is seen that
(Ase(U)AZ f,9) 2 = (Reud(Re p)V{ Ry — 1} 45 f, Vi) 2
+ (V- {Reub(Rep)VA;'f},7),,
By (2.3), (2.5), (2.24) and (2.31),
|(A3¢(U) A3 £,9) 12| < CEl| Reub(Re p)llcl| 1l c2119]] s
+ {IV(Reub(Rep))l| 2.V A7 fIl 2

+ || Reub(Rep)[lcl VA fll }Ilﬁlle
< C||Reub(Rep)|| greel| fllz2l10ll 2, £, € Ce(12).

Hence [Proposition 3.5 is proved. O

Proof of [Proposition 3.6, Let F = [ﬁ = [g] € X¢. We see that
({4¢(U) — AV} A(V) T F F)
= —({A3¢(U) = Aze(V)} A3 9, ') 1
= —({Reub(Rep) — Revb(Rep)} VR A543, V')
Arguing in the same way as above, we verify that
[({Ae(U) — Ag(V)}Ae(V) I F, ),
< C||Reub(Rep) — Revb(Re p)| gr+el|gl 2]l fl| 2
< CIU = Vg | Fllp el F |2
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Similarly,

(Ae(U){Ae(U) — Ae(V)}E, ) |
= (3, {Ase(U)* — Ase(V) YA ') s
< C||Reub(Rep) — Revb(Re )| gr+<ll§ll 2|l 2
< CNU = Vllpse | Fll2| F L2
These complete the proof. O
Proof of [Proposition 3.9. It is easily verified by that
(AU, W)r2 = aU; V, W) < OV [l | W
<CE VI WiLe, VW e X

(cf. [7, Proposition 3.1]). O

By [Proposition 3.5 proved above, A¢(U) is an operator of positive type;
therefore, the fractional powers of A¢(U) are defined. With the aid of
it is seen from [Proposition 3.9 that

1 Ae(U)lcx,) < Co€™, 0<6<1, (4.1)

Cy being independent of U € K and £. This has already been used in the
proof of [['heorem 3.2.

Before proving other propositions, we shall prepare two lemmas.

Lemma 4.1 A(U), U € K, is of positive type and satisfies

_ My
— 1 < — A< 4.2
I~ A@) e < g, A<0 (4.2

with some constant M4 independent of U. A(U) and its adjoint A(U)*
have the same domain

D(A(U)) = D(A(U)) = HE (£2) (4.3)
with norm equivalence which is uniform in U. Therefore,

1AW llex) < pae™, teR, (4.4)
with some constant pu4 > 0 independent of U. Finally, for 0 < 6 < %,

D(A(U)’) = D(A(U)**) = H*(%2) (4.5)
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with norm equivalence which is uniform in U.

Proof of the lemma. Let A <0 and U € K. It is easily seen that

(/\ — Al)_l —()\ - Al)—1A3(U)()\ — A2)_1
0 (A= Ag)~!

Then the estimate is verified in the same way as in [30, p.249|, and
hence A(U) is of positive type.
For each U € K, A(U)* is given by

(A= AW) =

(D(A(U)) = D = B} (%) x H(12),

< - [ Ayl _ la (4.6)
AU)U = U= |.

\ —As(U)* @ + Agp F;

Therefore we easily see that
A AU Mgy, AU AU) Hlexy <C Ue K. (47)

Hence is verified. As mentioned in Section 2, (4.7) implies gener-

A

ally. On the other hand, let B = [ 0 ] be a self-adjoint operator in X

0 A
with the domain D(B) = H%(£2). Then, by virtue of the Heinz-Kato type
inequality (2.11) (with 7" = identity), it follows that D(A(U )%) = D(B?) for
0 < 6 < 1. But, from (2.6), D(B?) = H*(£2) for 0 < § < 2. Hence is
proved. O

Lemma 4.2 For 0 <s< %,

(1 — Re(U))Vme < Cs&¥°A(U)V I,  V € D(AD)),  (4.8)
C, being independent of U € K and £. In addition, for % <r<2,

1(1 = Re(U))V 2 < Co€TAU)2 V|2, V € D(AU)?),  (4.9)
C, also being independent of U € K and §.

Proof of the lemma. First we notice from [Proposition 2.3 that the projec-

tion P; = [%g 1?] satisfies
3

3
(1= Pe)V]ms < Cs€2_s|IV||Hz, VeH?(),0<s< 2" (4.10)
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R¢(U) introduced by is written in the form

_ | Rugv + {~RieAT A3(U) + A7 Ase(U) Rog}

Re(U)V
¢(U) R

v
1

where R;¢ are the Ritz projections with respect to A;, i = 1,2. Moreover
R¢(U) satisfies

UeK, V= [ } € D(A(D)),

a(U; Re(U)V, F) = a(U;V,F), V eD(AWU)), Fe Xe. (4.11)
Then, it is verified in view of (3.8), and (4.10) that

11 = Re(U))VIgn — a5 ?ll(1 — Roe) |2
< ag'Rea(U; (1 — Re(U))V, (1 — Re(U))V)
= ag  Rea(U; (1 - Re(U))V, (1 - P)A(U)TA(U)YV)
< CE((1 = Re(U)) Vi [|AU) V|2

We have also from that

11 = Rag)pllz < (1~ Rog)pllarr - C&[| Azps] 12
< CE(1 = Re(U))V|m | AU) V|12
Therefore (4.8) is proved for s = 1. For s = 0, we use Aubin-Nitsche’s
trick [5, Theorem 3.2.5]. Indeed, in view of and (4.11),
I(1 = Re(U))VIIE
= a(U; (1 - Re(U))V, A(U)* (1 = Re(U))V)
= a(U; (1= Re(U))V, (1 - Re(U))A(U)* 11 ~ Re(U))V)
< (1 = Re(U))V I (1 = Re(U))AU)* (1 = Re(U)) V) fem
< CEIIAUVlL2ll(1 = Re(U))V 2.

Now we can prove (4.8) for general 0 < s < 3. Indeed, from [2.24) and
(4.10),

11— Re(@)V e < (1= PV s + [[(P — Re(U)V [
< G|Vl + Cot[|(Pe — Re(U))V .2
< GE AUVl
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In order to prove (4.9) we use the Ritz projection Rg(U ) =
Ae(U)*~1P:A(U)* with respect to the adjoint operator A(U)*. Clearly,

a(U; F,R(U)V) = o(U; F, V), V e D(A(U)*), F € Xe.

By the same argument as above, fig(U ) is shown to satisfy (4.8) for 0 < s <
3 Let 3 <r<2andV € D(A(U)). Then, in view of and (4.8),

(1 = Re(U))VI[IE

o(U; (1= Re(U))V, A(U)* 7} (1 = Re(U))V)

o(U; (1= Re(U))V, (1= Re(U))A(U)* 7} (1 = Re(U))V)

o(U; V, (1= Re(U))A(U)* 1 (1 — Re(U))V)

(AU)3V, AUY 75 (1 - ReU)AU) (1 = R(U)V)
<A@V L2 | AU)* 75 (1 = Re(U))AU)* (1 = Re(U))V |2
< |AU)EV |z - Cr€T[|(1 — Re(U))V 2.

Since D(A(U)) is dense in D(A(U)?), (4.9) is proved for 1 5 <71 <2 O

Proof of [Proposttion 3.10. The first estimate is nothing more than (4.9)
with 7 = 2. The second one is proved as follows (cf. [23] [23]). Let U, V € K,
W € D(A(U)) and F = (Re(U) — Re(V))W. Then

~

IF (122 = ((1 = Re(V))W, F)p2 — (1 — Re(U))W, F)pe,

and
(1= Re(V))W, F)p2 = o(V; (1 - Re(V))W, A(V)* ' F)
= a(V; (1= Re(V))W, (1 - Re(U)A(V)*~1F),
(1= Re(U))W, F)L2 = o(U; (1 - Re(U))W, A(U)*~'F)
= a(U; (1 - Re(U)W, (1 - Re(U))A(U)*~'F)
= a(U; (1 — Re(V))W, (1 — Re(U))A(U)* 1 F)
Therefore,

IFIE: = a(V: (1= R(V)W, (1= BU)}{A(V) ™ - AU)*}F)
+{alVi, ) = a(Us-, )} (1= Be(V)W, (1~ Be(U) AW) ' F).
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Using (3.9) and [Proposition 3.8, we conclude that
1FIIZ2 < CEU = Vlgnse | AV)W |2l FlLe,

and hence the desired estimate is obtained. O

Proof of [Propostition 3.4. 1t is clear that |P:V L2z < |V, V € L2(02);
hence, || P¢||z(x) < 1. By definition,

|Ag(U)Re(U) V]2 < CIlA(U)V |2, V € D(A(D)).
Then, from [4.1), and (4.8),
[Ae(U) PV |2 < [|A¢(U) Re(U) V|2 + || Ae(U)(Pe — Re(U)) V|2

< C AUV 2 + CE2[(Ps — Re(U))V .2
< ClAUV e,V € DIA)).

Moreover, we can verify that, for 0 < 6 <1,
14¢(U)° PeVllL2 < Co AU) V2, V € D(AW)), (4.12)
and, for % <6<1,
| 4¢(U)’ Re(U)V 2 < Coll AUV [z, V € DIAU)),  (4.13)
Cp being independent of £ and U € K. Indeed, we easily see that
1A¢(U) Ae(U)* "l cixe)s 14e(U)* Ae(U) M leexg < C (4.14)

uniformly in § and U, since ||A3¢(U )A2_£1||C€(§) and ||A3§(U)*A1_£1||C£(-§) are
bounded uniformly in £ and U. Then, as mentioned in Section 2,

1Ae(U) lle(xe) < ae™, teR, UekK (4.15)

with some constant fi4 > 0 independent of £ and U. Therefore, in view of
and (4.15), we can apply (2.11) with T = P, A = A(U) and B =
A¢(U) to verify for 0 < 6 < 1. From [4.1), (4.9) and it is seen

that, for 1 < 6 <1,

1A¢(U)°Re(U)V |l < (| Ae(U)° PeV L2 + (| 4¢(U)° (P = Re(U))V 2
< GollA(U)?V |ln2 + Co > ||(Ps — Re(U))V |2
< GollA(U)V |2, V€ D(AU)Y),

so that we prove (4.13). O
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Proof of [Proposition 3.3. By [4.5), || - llz < C||A(U)? - ||x uniformly in
U € K. Therefore the assertion of proposition is an immediate consequence
of the following lemma. O

Lemma 4.3 For 0 <6< %,
Cy AU Fllp2 < | Ae(U)? FllLz < Coll AU Flly2,  F € Xe,
(4.16)
Cy being independent of € and U € K.

Proof of the lemma. The second inequality has already been proved by

(4.12). On the other hand,
(A(U)PF, V)2 = o(U; F, Rg(U)A(U)**1V)
= (Ae(U)’F, A¢(U)" T Re(U)A(U)* 7 V)L
< | Ae(U)PF L2l Ae(U)* P Re(U)AU)* 71V [l
< Col| Ag(U) FlleallV e, V € LE(R).
Here we used the dual estimate
|1 4¢(U)*  Re(U)V Iz < Col AU)**V 2, V € D(AWU)™),
for i < 0 < 1, of (4.13) which is verified by an analogous argument. Hence
(4.16) is verified. O
5. Full discretization for quasilinear abstract evolution equations

Let us consider the Cauchy problem of a quasilinear equation

- %g-th(U)U:F(U), 0<t<T,
U(0) = Uy

in a Banach space X. Here, A(U) are densely defined, closed linear opera-
tors acting in X defined for all U € K = {U € Z; |U = Upllz < r}, 7 >0,
Z being another Banach space continuously embedded in X. F(U) is a
function from K to X. Uy € Z is an initial value. U = U(t) is the unknown
function.

We make the following assumptions:
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(Aul) p(A(U)), U € K, contain C\ S, 0 < ¢ < 7, and the resolvents
satisfy

A= AW) Hlgx) < AgS, UeK

My
PI+1
with some constant M4.
(Au2) The domains D(A(U)) = D are constant, and A(-) satisfies

I{AWU) = AV)IAWV) Hiexy S LallU = Viz, U VeK

with some constant L 4.
(Fu) F(-) satisfies

IFU) - F(V)lx <LpllU~-V]z, UVekK

with some constant Lg.

(Sp) For some 0 < o < 1, D(A(Up)*) C Z and || - ||z < D||A(Ug)® - ||x
with some constant D.

(In) Uy is in D(A(Uy)).

Under the assumptions (Ay1-2), (Fy), (Sp) and (In), the equation (E)
possesses a unique local solution

U € ([0, S]; Z)nc*([o, S]; X)ncC([o,S]; D), 0<S<T,

where 7 is any exponent such that 0 < n < 1 — a, see .

Let {X¢}es0 be a family of finite dimensional subspaces of X such that
X¢ C Z. Denote by Z; the space X¢ equipped with the induced norm of
Z. For £ >0, P : X — X¢ is a projection operator; and, as £ — 0, Pe—1
strongly on X. Let A¢(U), U € K, be an approximate operator of A(U)
such that A¢(U) is a bounded linear operator on X¢. Then the approximate
equation in X is given by

dﬁ AN A~ o~
- t<T
U(0) = P:Uj,

where F¢(U) = P.F(U), U € K.
On (E¢) we assume the following conditions:
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(Apel) p(Ae(U)), U € K, contain C\ Sp, 0 < ¢ < 5, and the resolvents
satisfy

_ My -
|(A = Ae(U)) 1”c(xg) < P ANgSs UeK

with some constant M4 independent of €.
(Ape2) Ag(-) satisfies

1{Ae(U) — Ae(V)}Ae(V) Mlexe < LalU = Viz, UV €K,
IAe(U) HA(U) = Ac(V)Hlgxy < LalU-Viz, UVeK

with some constant L 4 independent of £.

(Apye3) The norms of A¢(U) are estimated by
14e ()l cixe) < NaQg', UeK

with some constant N4 independent of £, where Q¢ denotes a function
of { such that Q¢ — 0 as { — 0.
(Aygd) The operators Re(U) = A¢(U) 1P A(U), U € K, satisfy

{1 = Re(U)}A(U) Yl gx) < MrQe, U €K,
I{Re(U) = Re(V)}A(V) lex) S LrQelU = Vliz, UV eEK

with some constants M r and L r independent of €.

(Ing) There exists §o > 0 such that PUp is in K for all 0 < £ < &.

(Spel) The norms || Ptz x) and ||A¢(PeUo)PeA(Uo) ™! ||z (x) are bounded
uniformly in €.

(Sp§2)h For some & € [, 1), ||-||z, < D||A¢(P¢Up)2 || x¢ with some constant
D independent of £.

Utilizing an s-stage Runge-Kutta scheme (A, B,C) with the stepsize
h > 0, we obtain the fully discrete approximation of (E)

f -~

Unir = U + heTB{—AE(‘A/n)f/n +F (Vo)

n=20,
(E¢,n) Q . S .
Vo= el + hA{~Ac(V) Vo + Fe(Va) ),

| Up = PeUs,
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~ ~ —~

where Vi, = Voi,..., VuslT, Ae(V) = diag[A¢(V1),. .., A¢(Vs)] and
Fe(V) = [Fe(V1), ..., Fg(Vy)]T for V = [V,...,V,]T, and N is a positive
integer such that Nh < T.

(A, B,C) is assumed to satisfy (RK1-2) in Section 2 with § > .

Our first result is the existence and uniqueness of solution to (E¢ ) and
the stability of the approximate solution.

Theorem 5.1 Assume (Ayel-2), (Ing), (Spel-2), (Fy) and (RK1) with
6 > @. Let hg >0,& > 0 and S € (0,T] be sufficiently small. Then,
for any 0 < h< ho and 0 < € < &o, (E¢n) possesses a unique solution
U= [UO,.. ,Un,Vo,...,VN_1] on the subinterval [0, 5], where N < S/h.
Moreover, U satisfies

max {||allx, + 1 4¢(0n)allx | < C.

nzoil),
. Vo llvs b <
nzoggm_l{nvnnxg + 14V Vil } <€,

C > 0 being independent of h and €.

Proof. We remember that the proof of [Theorem 3.1 was carried out
straightforward under Propositions B.1-3.7. This fact naturally shows us
that all the conditions announced in those propositions can imply the same

assertion as in ['heorem 3.1. ]

We next verify the error estimate.

Theorem 5.2  Assume (Ayl-2), (Fy), (Sp), (In), (Ayel—4), (Ing),
(Spel-2) and (RK1-2) with 0 > ¢. Let U be a solution to (E) such that
U e cPtL([0,S); X) N CT+1([0, S]; D) with ¢’ = min{q,p — 1}. Let hg > 0,
& > 0 and S € (0,T] be sufficiently small. Then, for any 0 < h < hg and
0 < & < &, the errors are estimated by

pomax | (|[Un = Ultn)| 2

< Cu[I(1 = P)Ulleqoszy + 0 QU lle= o s1m)
+ P UP e 0,515 + AT U@ ”C([O,S];D)],

where N < S/h. Here, 0 > 0 is any ezxponent and the constant Cy > 0
depends on ||U’||c(o0,s1:x) and ||Ullc(po,s);p) but is independent of h and §.
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Proof. Similarly to the proof of [Theorem 5.1, we notice the fact that The-
orem 3.2 was proved straightforward from Propositions 3.1-3.10. O
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