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Strongly orthogonal subsets in root systems
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Abstract. We classify maximal strongly orthogonal subsets (=MSOS ’s) in irreducible
root systems under the action of Weyl groups, including non-reduced cases. We show that
among irreducible root systems, B_{n}(n=even) , C_{n}(n\geq 2) , F_{4} and BC_{n}(n\geq 1) admit
several inequivalent MSOS’s. As an application of this result, we give a classification of
MSOS ’s associated with Riemannian symmetric pairs.
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Introduction

In our paper [1], in order to solve a geometric problem concerning the
existence of local isometric imbeddings of compact irreducible Riemannian
symmetric spaces G/K, we constructed subsets \Gamma of root systems \Delta having
the following properties:

(C.I) \theta\alpha=-\alpha for all \alpha\in\Gamma . where \theta means the involution of \Delta

induced from the symmetry of G/K .
(C.2) If \alpha , \beta\in\Gamma , \alpha\neq\beta , then \alpha\pm\beta\not\in\Delta\cup\{0\} .
(C.3) It holds \#\Gamma=s(G/K) , where s(G/K)=rank(G/K)- rank(G)+

rank(K).

Using these subsets \Gamma satisfying the above conditions, we determined
the maximum of the rank of the curvature transformation of G/K, and gave
some estimates on the dimension of the Euclidean space into which G/K
can be locally isometrically immersed.

In [2] we introduced a new geometric quantity p(G/K) naturally as-
sociated with G/K, by which we improved the estimates given in [1], For
example, by calculating the value p(G/K) for G/K=Sp(n) , we proved that
the canonical imbedding of the symplectic group Sp(n) into R^{4n^{2}} gives the
least dimensional isometric imbedding even in the local standpoint (see [3]).
It is desirable to determine the value p(G/K) for all Riemannian symmetric
spaces, though it is a considerably difficult algebraic problem.

1991 Mathematics Subject Classification : 17B20,53C35,53B25 .



108 Y. Agaoka and E. Kaneda

In this paper, as a preliminary step to calculate the value p(G/K) ,
we will investigate more closely those subsets having the property (C.2) in
irreducible root systems.

Let \Delta be an irreducible (reduced or non-reduced) root system. A sub-
set \Gamma of \Delta is called a strongly orthogonal subset (=SOS) if it satisfies the
property (C.2) stated above. Historically, SOS’s were first considered by
Harish-Chandra [8] in order to define the Cayley transformations. Later
they were used in many places concerning geometric, or representation the-
oretic problem (cf. Bourbaki [7], Helgason [9], Kaneyuki [10], Knapp [11],
Takeuchi [13], Wolf and Kor\’anyi [14], etc.). However, there remain several
fundamental problems on SOS’s. Among other things, the classification of
maximal SOS’s (=MSOS’ s) in an abstract root system \Delta under the action
of the Weyl group W(\Delta) is the most important one.

In this paper, we will classify MSOS’s for all irreducible (reduced or non-
reduced) root systems \Delta . On the basis of the classification of MSOS’s, we
can give a natural lower bound ofp(G/K) for each G/K in a systematic way,
which is conjectured to be the actual value of p(G/K) for many symmetric
spaces (see the forthcoming paper [5]).

The result of our classification is roughly summarized in the following
Table 1 (for details, see Theorem 3.1, 4.1 and 5.1. Explicit forms of MSOS’s
are given in \S 3, \S 4 and \S 5):

Table 1. Number of equivalence classes

Root system \Delta Number of equivalence classes
A_{n} 1
B_{n} (n=odd)

(n=even)
C_{n}

D_{n} (n\geq 2)

E_{n} (n=6,7,8)
F_{4}

1
2

[n/2]+1
1
1
2

G_{2} 1
BC_{n} n+1
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From this result, we know that the number of equivalence classes is not
in general equal to one. But if \Delta consists of roots of the same length, then
MSOS’s in \Delta are essentially uniquely determined. Actually, MSOS’s in \Delta

are uniquely characterized by the cardinal number of short roots contained
in \Gamma in case \Delta is reduced.

We now return to the case of Riemannian symmetric spaces G/K . Let
\Delta be an irreducible reduced root system and let \theta be the involution of \Delta

induced from the symmetry of G/K A subset \Gamma of \Delta is called a \theta-SOS if it
satisfies the properties (C.I) and (C.2). In the last section of this paper, we
will classify maximal \theta-SOS’s ( =\theta-MSOS’s) by applying the result of our
classification of MSOS’s.

As to the classification of \theta-MSOS’s, we have to refer to the result of
Sugiura [12]. In the process to classify Cartan subalgebras of real simple Lie
algebras, Sugiura has substantially classified all \theta-SOS’s (and accordingly,
\theta-MSOS’s) for each irreducible symmetric pair (G, K) . Sugiura carried out
the classification of \theta-SOS’s by one-by-0ne examinations of root systems for
all Riemannian symmetric pairs (G, K) , where all root systems were directly
written down in terms of orthonormal bases.

Our method of classification is quite simple. Let \Sigma be the restricted
root system associated with the symmetric pair (G, K) and let \Sigma_{odd} be the
subset consisting of all restricted roots having an odd multiplicity. Then,
\Sigma_{odd} itself forms a reduced root system and just coincides with the subset of
\Delta consisting of all roots which satisfy the condition (C. I ). Accordingly, the
classification of \theta MSOS’s in \Delta can be simply reduced to the classification
of MSOS’s in \Sigma_{odd} .

To classify \theta-MSOS’s, we divide Riemannian symmetric spaces into
three essentially different classes according as the type of \Sigma_{odd} (see the
proof of Theorem 6.2). As a result, we know that \theta MSOS’s in \Delta satisfying
(C.3) are essentially unique; a small \theta-MSOS \Gamma satisfying \#\Gamma<s(G/K)

can exist if and only if G/K is one of the following Riemannian symmetric
spaces:

BI : SO(p+q)/SO(p)xSO(q) (p>q\geq 2, p=odd, q=even) ,

CI : Sp(n)/U(n) (n\geq 2) ,

FI : F_{4}/Sp(3)\cdot SU(2) ,

and the numbers of equivalence classes for the above spaces are 2, [n/2]+1
and 2, respectively (see Theorem 6.2).
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We now briefly explain the contents of this paper. In \S 1, we review the
fundamental properties on root systems. We mainly concern the lengths of
roots in irreducible root systems \Delta . In \S 2, after defining the notion of SOS’s
in root systems, we prepare tools which are useful in the classification of
MSOS’s in \Delta . \S 3, \S 4 and \S 5 are devoted to the classification of MSOS’s in
irreducible reduced and non-reduced root systems.

Finally, in \S 6, on the basis of the results in the previous sections, we
give the complete classification of \theta-MSOS’s.

1. Fundamental properties of root systems

In this section, we recall the notions of root systems, Weyl groups and
so on and show some properties of root systems needed in the later sections.

Definition 1.1 Let V be a finite dimensional vector space over R and let
( . ) be an inner product of V A finite subset \Delta of V is called a root system
if it satisfies the following (R. I ), (R.2) and (R.3):

(R. 1) 0\not\in\Delta .
(R.2) For any \alpha , \beta\in\Delta , A_{\beta,\alpha}=2(\beta, \alpha)/(\alpha, \alpha)\in Z .
(R.3) For any \alpha , \beta\in\Delta , \beta-A_{\beta,\alpha}\alpha\in\Delta .

If a root system \Delta satisfies the following (R.4), then it is said to be
reduced; otherwise, it is said to be non-reduced.

(R.4) 2\alpha\not\in\Delta for each \alpha\in\Delta .

Each element of a root system \Delta is called a root; the dimension of the
subspace R\Delta spanned by all roots is called the rank of \Delta , which is denoted
by rank(\Delta ).

Definition 1.2 Let \Delta be a root system in V For each root \alpha\in\Delta , we
define an orthogonal transformation S_{\alpha} of V by

S_{\alpha}v=v- \frac{2(v,\alpha)}{(\alpha,\alpha)}\alpha , v\in V.

S_{\alpha} is called the reflection of V with respect to \alpha . The group generated by
all reflections S_{\alpha}(\alpha\in\Delta) is called the Weyl group of \Delta , which is denoted
by W(\Delta) .

By (R.3), we know that each reflection S_{\alpha}(\alpha\in\Delta) preserves \Delta , i.e.,
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S_{\alpha}\Delta=\Delta .

Definition 1.3 Let \Delta (resp. \Delta’ ) be a root system in a vector space V
(resp. V’ ). We say that \Delta and \Delta’ are isomorphic if there exists a homothetic
linear isomorphism \varphi of R\Delta onto R\Delta’ such that \varphi\Delta=\Delta’ . If \Delta and \Delta’

are isomorphic, we write symbolically \Delta\cong\Delta’ .

We note that if two root systems \Delta and \Delta’ are isomorphic, then the
Weyl groups W(\Delta) and W(\Delta’) are also isomorphic.

We summarize well-known properties of root systems in the following

Proposition 1.1 Let \Delta be a root system and let \alpha , \beta\in\Delta . Then:
(1) It holds A_{\alpha,\beta}A_{\beta,\alpha}\leq 4 , where the equality holds if and only if \alpha

and \beta are parallel.
(2) If \alpha and \beta are parallel, then it holds \beta=\pm 1/2\alpha , \pm\alpha or \pm 2\alpha .

In case \Delta is reduced, it holds \beta=\alpha or -\alpha .
(3) There are two non-negative integers p and q satisfying

A_{\beta,\alpha}=p-q ;
(\beta+Z\alpha)\cap(\Delta\cup\{0\})=\{\beta+k\alpha\in\Delta|-p\leq k\leq q, k\in Z\} .

In particular, \beta-\alpha\in\Delta\cup\{0\} if A_{\beta,\alpha}>0 and \beta+\alpha\in\Delta\cup\{0\} if A_{\beta,\alpha}<0 .

For the proof, see Bourbaki [7]. The set \{\beta+k\alpha|-p\leq k\leq q, k\in Z\}

is called the \alpha-series of roots containing \beta .

Definition 1.4 Let \Delta be a root system. A subset \Delta’ of \Delta is called a
subsystem of \Delta if it satisfies the following (S.I) and (S.2):

(S.I) If \alpha\in\Delta’ , then -\alpha\in\Delta’ .
(S.I) If \alpha , \beta\in\Delta’ and \alpha+\beta\in\Delta , then \alpha+\beta\in\Delta’

We now make an assertion about a subsystem of a root system.

Proposition 1.2 Let \Delta be a root system and let \Delta’ be a subsystem of \Delta .
Then:

(1) \Delta’ is a root system. If \Delta is reduced, then \Delta’ is also reduced.
(2) A subset \Delta’ of \Delta’ is a subsystem of \Delta’ if and only if \Delta’ is a

subsystem of \Delta .

Proof. To show the assertion (1), it suffices to prove that \Delta’ satisfies (R.3).
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Let \alpha , \beta\in\Delta’- In case \alpha and \beta are parallel, we have

\beta-A_{\beta,\alpha}\alpha=S_{\alpha}\beta=-\beta\in\Delta’

Thus, in the following, we may assume that \alpha and \beta are not parallel. If
A_{\beta,\alpha}=0 , then there are nothing to be proved. If A_{\beta,\alpha}>0 , then

\beta , \beta-\alpha , \ldots , \beta-A_{\beta,\alpha}\alpha

form a series of roots in \Delta . Since -\alpha\in\Delta’ and since \beta+(-\alpha)=\beta-\alpha\in\Delta ,
we have \beta-\alpha\in\Delta’ . Applying similar arguments to the above series of roots
successively, we arrive at the conclusion \beta-A_{\beta,\alpha}\alpha\in\Delta’ . Similarly, in the
case A_{\beta,\alpha}<0 , we can also prove (R.3).

The assertion (2) is clear from the definition. \square

Let \Delta’ be a subsystem of \Delta . We denote by W’ the subgroup of W(\Delta)

generated by all reflections S_{\alpha}(\alpha\in\Delta’) . As is easily seen, W’ preserves \Delta’ ,
i.e., w\Delta’=\Delta’ for w\in W’ . In a natural manner W’ can be identified with
the Weyl group W(\Delta’) . Under this identification, we may consider W(\Delta’)

as a subgroup of W(\Delta) .

Definition 1.5 Let \Delta be a root system and let \alpha , \beta\in\Delta . If \alpha\pm\beta\not\in\Delta\cup

\{0\} holds, we say that \alpha and \beta are strongly orthogonal and write \alpha\perp\beta .

We note that if \alpha\perp\beta , then \alpha\perp\beta , i.e., (\alpha, \beta)=0 (see Proposi-
tion 1.1 (3) ) . On the contrary, \alpha\perp\beta does not necessarily imply \alpha\perp\beta (see
Proposition 2.2 in the next section). If \alpha and \beta are not strongly orthogonal
and \alpha\perp\beta , then it holds \alpha\pm\beta\in\Delta (see Proposition 1.1).

Let \Delta be a root system, and let A and B be subsets of \Delta . We write
A\perp B (resp. A\perp B), if it holds \alpha\perp\beta (resp. \alpha\perp\beta ) for any \alpha\in A ,
\beta\in B .

Definition 1.6 A root system \Delta is said to be orthogonally decomposable
if there are subsets \Delta_{i}(1\leq i\leq n, n\geq 2) of \Delta satisfying

(D. 1) \Delta_{i}\neq\emptyset(1\leq i\leq n) .
(D.2) \Delta=\bigcup_{i=1}^{n}\Delta_{i} .
(D.3) \Delta_{i}\perp\Delta_{j}(i\neq j) .

Then the disjoint union \Delta=\bigcup_{i=1}^{n}\Delta_{i} is called an orthogonal decomposition
of \Delta . If \Delta is not orthogonally decomposable, then \Delta is said to be irreducible.
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The following proposition is easy to prove.

Proposition 1.3 Let \Delta be orthogonally decomposable, and let \Delta=

\bigcup_{i=1}^{n}\Delta_{i} be an orthogonal decomposition of \Delta . Then:
(1) Each \Delta_{i} forms a subsystem of \Delta and \Delta_{i}\perp\Delta_{j}(i\neq j) .
(2) The Weyl group W(\Delta) is decomposed into a direct product of

W(\Delta_{i})(1\leq i\leq n) , i.e. , W( \Delta)=\prod_{i=1}^{n}W(\Delta_{i}) . Each W(\Delta_{i}) acts triv-
ially on the set \Delta_{j}(j\neq i) .

By successive orthogonal decompositions, we can represent any root
system by a disjoint union of irreducible root systems.

Let \Delta be a root system. We define a subset \Delta^{\neq} of \Delta by

\Delta^{\#}=\{\alpha\in\Delta|2\alpha\not\in\Delta\} .

It is easily seen that \Delta^{\neq}=\Delta if \Delta is reduced. The following proposition
asserts that in case \Delta is non-reduced the subset \Delta^{\neq} forms a subsystem of
\Delta and that it substantially inherits the properties of \Delta .

Proposition 1.4 Under the above notation, it holds
(1) \Delta^{\neq} forms a reduced subsystem of \Delta .
(2) rank(\Delta^{\neq})=rank(\Delta);W(\Delta^{\neq})=W(\Delta) .
(3) \Delta^{\neq}is irreducible if and only if \Delta is irreducible.

Proof We first prove that if a root \alpha is not contained in \Delta^{\neq} , then 2\alpha\in

\Delta^{\neq} . In fact, by the definition of \Delta^{\neq} , we have 2\alpha\in\Delta ; on the other hand,
by Proposition 1.1 (3), we have 2(2\alpha)=4\alpha\not\in\Delta . This implies 2\alpha\in\Delta\#

By this fact we can easily see R\Delta^{\neq}=R\Delta ; hence we have rank(\Delta^{\neq})=

rank(\Delta ). Since S_{2\alpha}=S_{\alpha} , we also have W(\Delta\#)=W(\Delta) . Hence we obtain
the assertion (2). Similarly, the assertion (3) follows from the above fact.

Finally, we show (1). As is easily seen, \Delta\# satisfies (S. I ). Let \alpha , \beta\in

\Delta^{\neq} satisfy \alpha+\beta\in\Delta . We suppose \alpha+\beta\not\in\Delta^{\neq} , i.e. , 2 (\alpha+\beta)\in\Delta . Since
(\alpha+\beta, \alpha+\beta)=(\alpha+\beta, \alpha)+(\alpha+\beta, \beta)>0 , we may assume (\alpha+\beta, \alpha)>

0 . Then we have A_{\alpha+\beta,\alpha}\geq 1 ; and hence A_{2(\alpha+\beta),\alpha}\geq 2 . Therefore by
Proposition 1.1 (3), we have 2(\alpha+\beta)-2\alpha=2\beta\in\Delta , contradicting the
assumption \beta\in\Delta\# . Consequently, we have \alpha+\beta\in\Delta^{\neq} This proves that
\Delta^{\neq} satisfies (S.2). \square

As is known, irreducible (reduced or non-reduced) root systems are
completely classified. Due to the classification, we have
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Proposition 1.5 An irreducible root system is isomorphic to one of the
following:

(I) Classical type: A_{n}(n\geq 1) , B_{n}(n\geq 2) , C_{n}(n\geq 3) , D_{n}(n\geq 4) ,
BC_{n}(n\geq 1) .

(II) Exceptional type: E_{6} , E7, E_{8} , F_{4} , G_{2} .
All the root systems listed above are reduced except BC_{n}(n\geq 1) .

BC_{n}(n\geq 1) is non-reduced and BC_{n}^{\neq}=C_{n} .

We now refer to the several facts concerning the lengths of roots con-
tained in an irreducible root system.

Proposition 1.6 Let \Delta be an irreducible root system. Then:
(1) \Delta contains at most three sorts of roots of different lengths. If \Delta

actually contains roots of different lengths, then \Delta is isomorphic to one of
the root systems in Table 2 and the ratio between different lengths is also
given in Table 2.

(2) Assume that \alpha and \beta\in\Delta are of the same length, i.e. , ||\alpha||=||\beta|| .
Then there exists an element w\in W(\Delta) such that \beta=w\alpha .

Table 2. Ratio of the lengths of roots

\Delta Ratio

B_{n}(n\geq 2) , C_{n}(n\geq 3) , F_{4} 1 : \sqrt{2}

G_{2} 1 : \sqrt{3}

BC_{1} 1 : 2
BC_{n}(n\geq 2) 1 : \sqrt{2} : 2

Definition 1.7 Let \Delta be an irreducible root system. A root \alpha\in\Delta is
called a long root if it has a maximum length among the roots in \Delta ; and is
called a short root if it is not a long root. The subset consisting of all long
(resp. short) roots in \Delta is denoted by \Delta_{long} (resp. \Delta_{short} ).

Proposition 1.7 Let \Delta be an irreducible root system containing roots of
different lengths, i.e. , \Delta_{short}\neq\emptyset . Then:

(1) \Delta=\Delta_{long}\cup\Delta_{short} , \Delta_{long}\cap\Delta_{short}=\emptyset .
(2) The Weyl group W(\Delta) preserves \Delta_{long} and \Delta_{short} , i.e. , it holds

w\Delta_{long}=\Delta_{long} , w\Delta_{short}=\Delta_{short} , w\in W(\Delta) .
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(3) \Delta_{long} forms a subsystem of \Delta . On the other hand, \Delta_{short} does not
satisfy (S.2) and hence \Delta_{short} is not a subsystem of \Delta .

Proof. The assertions (1) and (2) are clear. We prove (3). First note that
both \Delta_{long} and \Delta_{short} satisfy (S.2) Let \alpha , \beta\in\Delta_{long} satisfy \alpha+\beta\in\Delta . We
note that since \alpha+\beta\neq 0 , and since \Delta_{long}\subset\Delta^{\neq}., \alpha and \beta are not parallel.
Therefore, by Proposition 1.1 (1) and (R.2), we have

A_{\alpha,\beta}A_{\beta,\alpha}\leq 3 .

On the other hand, since \alpha and \beta are of the same length, we have A_{\alpha,\beta}=

A_{\beta,\alpha} . This together with the above inequality shows |A_{\alpha,\beta}|\leq 1 . Hence, we
have

(\alpha+\beta, \alpha+\beta)=(\alpha, \alpha)+(1+A_{\alpha,\beta})(\beta, \beta)\geq(\alpha, \alpha) .

This implies \alpha+\beta\in\Delta_{long} , proving that \Delta_{long} satisfies (S.2).
Finally, we suppose that \Delta_{short} satisfies (S.2). Then, \Delta_{short} forms a

subsystem of \Delta . We now show that \Delta_{short}\perp\Delta_{long} . Let \alpha\in\Delta_{short} , \beta\in

\Delta_{long} . Since \alpha and \beta are not of the same length, we have \alpha\pm\beta\neq 0 . Now
suppose \alpha+\beta\in\Delta . Then by (1) it holds either \alpha+\beta\in\Delta_{long} or \Delta_{short} .
However, it is impossible because both \Delta_{long} and \Delta_{short} are subsystems of
\Delta . Similarly, if we assume \alpha-\beta\in\Delta , we also arrive at a contradiction.
Therefore, we have \alpha\pm\beta\not\in\Delta\cup\{0\} and hence \Delta_{short}\perp\Delta_{long} . This
contradicts the assumption \Delta is irreducible. \square

By Proposition 1.7, we obtain an interesting fact on the root systems
containing roots of different lengths:

Proposition 1.8 Let \Delta be an irreducible root system with \Delta_{short}\neq\emptyset .
Then for each long root \gamma\in\Delta_{long} there are two short roots \alpha , \beta such that
\gamma=\alpha+\beta .

Proof. Since \Delta_{short} does not satisfy (S.2), we know that there are two
short roots \alpha_{0} , \beta_{0}\in\Delta_{short} such that the sum \gamma_{0}=\alpha_{0}+\beta_{0} belongs to
\Delta_{long} . Since ||\gamma||=||\gamma_{0}|| , there exists an element w\in W(\Delta) such that
\gamma=w\gamma_{0} (see Proposition 1.6 (2)). Setting \alpha=w\alpha_{0} and \beta=w\beta_{0} , we have
\alpha , \beta\in\Delta_{short} and \gamma=\alpha+\beta . \square
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2. Strongly orthogonal subsets in root systems

We first begin with the definition of SOS’s and MSOS’s.

Definition 2.1 Let \Delta be a root system. A subset \Gamma of \Delta is called a
strongly orthogonal subset (=SOS) , if \alpha\perp\beta holds for any \alpha , \beta\in\Gamma ,
\alpha\neq\beta . A strongly orthogonal subset \Gamma is called a maximal strongly orlhog-
onal subset (=MSOS) , if it is not a proper subset of any other strongly
orthogonal subset in \Delta .

As is easily seen, if \Gamma is a SOS (resp. MSOS) in \Delta , then the set w\Gamma=

\{w\gamma|\gamma\in\Gamma\} is also a SOS (resp. MSOS) in \Delta for each w\in W(\Delta) . Since
a SOS is composed of mutually orthogonal roots, the cardinal number of \Gamma

cannot exceed the rank of \Delta , i.e., \#\Gamma\leq rank(\Delta) .

Definition 2.2 Let \Delta be a root system and let \Gamma , \Gamma’ be two SOS’s in \Delta .
Then \Gamma and \Gamma’ are said to be equivalent, if there is an element w\in W(\Delta)

such that \Gamma’=w\Gamma ; equivalent SOS’s are symbolically expressed as \Gamma\sim\Gamma’

We now classify all MSOS’s in a given root system \Delta under the equiva-
lence\sim stated above. For this purpose we utilize an induction on the rank
of root systems.

Let us first consider the case where \Delta is orthogonally decomposable.
Then we easily have

Proposition 2.1 Let \Delta be a root system and let \Delta=\bigcup_{i=1}^{n}\Delta_{i} be an
orthogonal decomposition of \Delta . Then:

(1) Let \Gamma be a subset of \Delta . Then \Gamma is a SOS (resp. MSOS) in \Delta if
and only if each \Gamma\cap\Delta_{i}(1\leq i\leq n) is a SOS (resp. MSOS) in \Delta_{i} .

(2) Let \Gamma, \Gamma’ be two SOS ’s in \Delta . Then \Gamma\sim\Gamma’ in \Delta if and only if
\Gamma\cap\Delta_{i}\sim\Gamma’\cap\Delta_{i} in \Delta_{i} holds for each i(1\leq i\leq n) .

Thus, if \Delta is orthogonally decomposable, each MSOS in \Delta is repre-
sented by a union of MSOS’s in root systems of lower rank. Therefore,
applying the inductive assumption to lower rank root systems, we may ac-
complish the classification of MSOS’s in \Delta . The substantial problem left
to us is to classify the equivalence classes of MSOS’s for all irreducible root
systems \Delta .

For this purpose, we prepare some basic and useful tools that enable us
to reduce the classification of MSOS’s in irreducible \Delta to that of MSOS’s
in root systems of lower rank.
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Let \Delta be a root system. For each \alpha\in\Delta we define two subsets \langle\alpha\rangle^{\perp}

and \langle\alpha\rangle^{\perp} by

\langle\alpha\rangle^{\perp}=\{\beta\in\Delta|\beta\perp\alpha\} ,
\langle\alpha\rangle^{\perp}=\{\beta\in\Delta|\beta\perp\alpha\} .

Then we have

Proposition 2.2 Let \Delta be an irreducible root system and let \alpha\in\Delta .
Then:

(1) For each w\in W(\Delta) , it holds \langle w\alpha\rangle^{\perp}=w\langle\alpha\rangle^{\perp} . \langle w\alpha\rangle^{\perp}=w\langle\alpha\rangle^{\perp} .
(2) It holds \langle\alpha\rangle^{\perp}\subset\langle\alpha\rangle^{\perp} . If \langle\alpha\rangle^{\perp}\neq\langle\alpha\rangle^{\perp} , then \alpha\in\Delta_{short} and

\Delta contains a root whose length equals \sqrt{2}||\alpha|| . Accordingly, \langle\alpha\rangle^{\perp}=\langle\alpha\rangle^{\perp}

holds either if \alpha is a long root or if \Delta does not contain a root whose length
is \sqrt{2}||\alpha|| .

(3) Both \langle\alpha\rangle^{\perp}and \langle\alpha\rangle^{\perp}form subsystems of \Delta .

Proof. The assertion (1) is obvious. The first assertion of (2) is also clear
from the definition. Let \beta\in\langle\alpha\rangle^{\perp}\backslash \langle\alpha\rangle^{\perp} . Then we have \beta\pm\alpha\in\Delta and
||\beta\pm\alpha||^{2}=||\beta||^{2}+||\alpha||^{2} . This equality holds when and only when ||\alpha||=||\beta||

and ||\alpha\pm\beta||=\sqrt{2}||\alpha|| (see Proposition 1.6 (1)). This completes the proof
of (2).

Finally, we prove the assertion (3). It is easy to see that \langle\alpha\rangle^{\perp} is a
subsystem of \Delta . Now we prove that \langle\alpha\rangle^{\perp} also forms a subsystem of \Delta . Let
\beta , \gamma\in\langle\alpha\rangle^{\perp} satisfy \beta+\gamma\in\Delta . We want to show \beta+\gamma\in\langle\alpha\rangle^{\perp} . To prove
this we suppose the contrary, i.e., \beta+\gamma\not\in\langle\alpha\rangle^{\perp} . Then we have \alpha\pm(\beta+

\gamma)\in\Delta . Since (\beta+\gamma, \beta+\gamma)>0 , we may assume that (\beta+\gamma, \beta)>0 . Since
(\alpha, \beta)=0 , we have (\pm\alpha+\beta+\gamma, \beta)>0 . Hence by Proposition 1.1, we have

(\pm\alpha+\beta+\gamma)-\beta=\pm\alpha+\gamma\in\Delta\cup\{0\} .

However, it is impossible because \gamma\in\langle\alpha\rangle^{\perp} . Thus we have \beta+\gamma\in\langle\alpha\rangle^{\perp} ,
proving that \langle\alpha\rangle^{\perp} satisfies (S.2). Since \langle\alpha\rangle^{\perp} clearly satisfies (S. I ), we
obtain the proposition. \square

Proposition 2.3 Let \Delta be an irreducible root system. Then:
(1) Let \Gamma be a subset of \Delta and let \alpha be an element of \Gamma satisfying

\Gamma\backslash \{\alpha\}\subset\langle\alpha\rangle^{\perp} . Then \Gamma is a SOS (resp. MSOS) in \Delta if and only if \Gamma\backslash \{\alpha\}

is a SOS (resp. MSOS) in \langle\alpha\rangle^{\perp} .
(2) Let \Gamma and \Gamma’ be two SOS ’s in \Delta containing a root \alpha\in\Delta in



118 Y. Agaoka and E. Kaneda

common, i.e. , \alpha\in\Gamma\cap\Gamma’ Then \Gamma\sim\Gamma’ in \Delta if \Gamma\backslash \{\alpha\}\sim\Gamma’\backslash \{\alpha\} in
\langle\alpha\rangle^{\perp} .

Proof. We prove (1). Since \langle\alpha\rangle^{\perp} is a subsystem of \Delta , it is easy to see that
\Gamma is a SOS in \Delta if and only if \Gamma\backslash \{\alpha\} is a SOS in \langle\alpha\rangle^{\perp} . It is obvious that
\Gamma\backslash \{\alpha\} is a MSOS in \langle\alpha\rangle^{\perp} if \Gamma is a MSOS in \Delta . Conversely, it can be
easily checked that \Gamma is a MSOS in \Delta if \Gamma\backslash \{\alpha\} is a MSOS in \langle\alpha\rangle^{\perp} . Thus
we obtain the assertion (1).

The assertion (2) is clear. \square

Proposition 2.3 gives a fundamental tool in classifying MSOS’s in \Delta by
induction on the rank of root systems.

We next prove

Proposition 2.4 Let \Delta be an irreducible reduced root system.
(1) Assume that \Delta_{short}=\emptyset . Then \Delta has a unique equivalence class

of MSOS ’s.
(2) Assume that \Delta_{short}\neq\emptyset . Then \Delta_{long} contains at most one equiv-

alence class of MSOS’s in \Delta . A MSOS \Gamma in \Delta_{long} is a MSOS in \Delta if and
only if \Gamma^{\perp}=\emptyset , where \Gamma^{\perp} denotes the set of all roots \alpha\in\Delta such that
\alpha\perp\Gamma

Proof. We prove the assertion (1) by induction on the rank of \Delta . First
suppose that rank(\Delta ) =1 . Since \Delta\cong A_{1} , it follows that \Delta=\{\pm\alpha\} ,
where \alpha is a root in \Delta . Then it is obvious that the set \{\alpha\} is a MSOS
in \Delta and that any MSOS in \Delta is equivalent to \{\alpha\} . This implies that \Delta

has a unique equivalence class of MSOS’s. Now assume that (1) is true
for any irreducible reduced root system \Delta’ with rank(\Delta ’) < rank(\Delta ) and
\Delta_{short}’=\emptyset . Let us take an arbitrary element \alpha in \Delta . Let \langle\alpha\rangle^{\perp}=\bigcup_{i=1}^{n}\Delta_{i}

be the orthogonal decomposition of the subsystem \langle\alpha\rangle^{\perp} such that each
factor \Delta_{i} is an irreducible root system. Then, it is easily shown that each
\Delta_{i} satisfies rank(\Delta_{i})<rank(\Delta) and (\Delta_{i})_{short}=\emptyset . By our assumption and
by Proposition 2.1, we know that \langle\alpha\rangle^{\perp} has a unique equivalence class of
MSOS’s.

We now show that \Delta has a unique equivalence class of MSOS’s. Let
\Gamma and \Gamma’ be two MSOS’s in \Delta . Replacing \Gamma and \Gamma’ by equivalent ones
if necessary, we may assume \Gamma and \Gamma’ contain a root \alpha in common, i.e.,
\Gamma\cap\Gamma’\ni\alpha , because any roots in \Delta are of the same length. Since both
\Gamma\backslash \{\alpha\} and \Gamma’\backslash \{\alpha\} are MSOS’s in \langle\alpha\rangle^{\perp} , we have \Gamma\backslash \{\alpha\}\sim\Gamma’\backslash \{\alpha\} .
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Therefore by Proposition 2.3 (2) we have \Gamma\sim\Gamma’ . This completes the proof
of (1).

We next show (2). As shown in (1), \Delta_{long} has a unique equivalence class
of MSOS’s in \Delta_{long} . Consequently, \Delta_{long} contains at most one equivalence
class of MSOS’s in \Delta . Let \Gamma be a MSOS in \Delta_{long} . Suppose that \Gamma^{\perp}\neq\emptyset

and take an arbitrary element \alpha\in\Gamma^{\perp} . Since \langle\gamma\rangle^{\perp}=\langle\gamma\rangle^{\perp} for a long root
\gamma\in\Gamma (see Proposition 2.2), we have \alpha\in\langle\gamma\rangle^{\perp} . This proves that the set
\Gamma\cup\{\alpha\} is a SOS in \Delta . Therefore, \Gamma is not a MSOS in \Delta .

The converse part can be shown in the same way. \square

By Proposition 2.4, we have

Theorem 2.5 Let \Delta be an irreducible reduced root system isomorphic to
one of the following root systems: A_{n}(n\geq 1) , D_{n}(n\geq 3) , E_{6} , E7, E_{8} and
G_{2} . Then \Delta has a unique equivalence class of MSOS’s.

Proof. Assume that \Delta is isomorphic to one of A_{n} , D_{n} , E_{6} , E7 and E_{8} .
Then \Delta has a unique equivalence class of MSOS’s, because \Delta_{short}=\emptyset .

Now we suppose the case \Delta=G_{2} . Let \alpha , \beta\in\Delta(\alpha\neq\beta) . By Proposi-
tion 2.2 we know that \alpha\perp\beta if and only if \alpha\perp\beta . Since rank(G_{2})=2 , each
orthogonal pair of roots \{\alpha, \beta\} forms a MSOS in G_{2} . In view of the figure
of roots in G_{2} , we can easily get all the orthogonal pairs of roots in G_{2} (see
[7] ) . We also know that all the orthogonal pairs of roots are equivalent to
each other under the action of the Weyl group W(\Delta) . This proves that G_{2}

has a unique equivalence class of MSOS’s.
This completes the proof of the theorem. \square

Finally, we consider the case where \Delta is non-reduced.

Proposition 2.6 Assume that \Delta=BC_{n} . Then any MSOS in \Delta\#=C_{n}

forms a MSOS in \Delta .

Proof. Let \Gamma be a MSOS in \Delta^{\neq} . Suppose that \Gamma is not a MSOS in \Delta , i.e.,
there is a MSOS \Gamma’ in \Delta such that \Gamma\subsetarrow\Gamma’ . Then by our assumption we
have an element \gamma\in\Gamma’ such that \gamma\not\in\Delta^{\neq} , i.e., 2\gamma\in\Delta . Let \alpha\in\Gamma Then
we have \alpha\pm\gamma\not\in\Delta\cup\{0\} , because \Gamma’ is a SOS in \Delta . Considering the \gamma-series
of roots containing \alpha , we also have \alpha\pm 2\gamma\not\in\Delta\cup\{0\} . Since 2\gamma\in\Delta^{\neq}.

, the
set \Gamma\cup\{2\gamma\} forms a SOS in \Delta^{\neq} . This contradicts our assumption that \Gamma

is a MSOS in \Delta\# . \square

In the following \S 3\sim \S 5 we classify the equivalence classes of MSOS’s in
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each irreducible root system and list the representatives for all equivalence
classes.

3. Classification of MSOS’s in classical root systems I: Reduced
Case

In this section we classify MSOS’s in classical reduced root systems.
Let \{\lambda_{i}|i\in N\} be a countable set. For each positive integer n we

denote by V_{n} the n-dimensional real vector space generated by \lambda_{1} , ., \lambda_{n} .
For convenience we set V_{0}=\{0\} . Then we have the ascending chain of real
vector spaces

\{0\}=V_{0}\subset V_{1}\subset \subset V_{n}\subset

We define an inner product (, ) of V_{n}(n\geq 1) by

(\lambda_{i}, \lambda_{j})=\delta_{i,j} (1\leq i, j\leq n) ,

where we mean by \delta Kronecker’s delta.
Let n be a positive integer. We define a subset A_{n}\subset V_{n+1} and three

subsets B_{n} , C_{n} , D_{n}\subset V_{n} by

A_{n}=\{\pm(\lambda_{i}-\lambda_{j})(1\leq i<j\leq n+1)\} ,
B_{n}=\{\pm\lambda_{i}(1\leq i\leq n), \pm\lambda_{i}\pm\lambda_{j}(1\leq i<j\leq n)\} ,
C_{n}=\{\pm 2\lambda_{i}(1\leq i\leq n), \pm\lambda_{i}\pm\lambda_{j}(1\leq i<j\leq n)\} ,

D_{n}=\{\pm\lambda_{i}\pm\lambda_{j}(1\leq i<j\leq n)\} .

As is well-known, the subsets A_{n}(n\geq 1) , B_{n}(n\geq 1) , C_{n}(n\geq 1) and
D_{n}(n\geq 2) form reduced root systems of rank n (Note that D_{1}=\emptyset ); and
they are isomorphic to the root systems of complex classical Lie algebras
\epsilon \mathfrak{l}(n+1, C) , 0(2n+1, C) , \epsilon \mathfrak{p}(n, C) and o(2n, C) , respectively. It is also
known that A_{n}(n\geq 1) , B_{n}(n\geq 1) , C_{n}(n\geq 1) and D_{n}(n\geq 3) are
irreducible; D_{2} is orthogonally decomposable (see the later discussion).

In the following, we classify all MSOS’s in A_{n}(n\geq 1) , B_{n}(n\geq 1) ,
C_{n}(n\geq 1) and D_{n}(n\geq 2) under the actions of Weyl groups. For the Weyl
groups W(Xn)(X_{n}=A_{n}\sim Dn) , see [2]. We note that, as shown in \S 2,
there is a unique equivalence class of MSOS’s either X_{n}=A_{n} or D_{n} .

Let X_{n}=A_{n}\sim D_{n} . We define the subsets \Gamma(X_{n})^{s}\subset X_{n} by setting:

\Gamma(A_{n})^{0}=\{\lambda_{2i-1}-\lambda_{2i}(1\leq i\leq[(n+1)/2])\} ,
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\Gamma(B_{n})^{0}=\{\lambda_{2i-1}\pm\lambda_{2i}(1\leq i\leq[n/2])\} ,
\Gamma(B_{n})^{1}=\{\lambda_{2i-1}\pm\lambda_{2i}(1\leq i\leq[(n-1)/2]), \lambda_{n}\} ,
\Gamma(C_{n})^{s}=\{\lambda_{2i-1}-\lambda_{2i}(1\leq i\leq s), 2\lambda_{j}(2s+1\leq j\leq n)\}

(0\leq s\leq[n/2]) ,
\Gamma(D_{n})^{0}=\{\lambda_{2i-1}\pm\lambda_{2i}(1\leq i\leq[n/2])\} .

Under these notations we state the main result of this section:

Theorem 3.1 Let n be a positive integer and X_{n}=A_{n}\sim D_{n} .
(1) Each subset \Gamma(X_{n})^{s} defined above forms a SOS in X_{n} . Moreover,

except the set \Gamma(B_{n})^{0}(n=odd) , \Gamma(X_{n})^{s} is a MSOS in X_{n} . Note that if
n=odd , then it holds \Gamma(B_{n})^{0}\subseteq\Gamma(B_{n})^{1} . The cardinal number \#\Gamma(X_{n})^{s}

of \Gamma(X_{n})^{s} is given in Table 3.
(2) Let \Gamma be a MSOS in X_{n} . Then, under the action of the Weyl

group W(X_{n}) , \Gamma is equivalent to one of \Gamma(X_{n})^{s} .
(3) If s\neq s’ , then two SOS ’s \Gamma(X_{n})^{s} and \Gamma(X_{n})^{s’} are not equivalent,

i.e. , \Gamma(X_{n})^{s}\oint\Gamma(X_{n})^{s’}

Table 3. Cardinal number of \Gamma(X_{n})^{s}

\Gamma(X_{n})^{s} \#\Gamma(X_{n})^{s}

\Gamma(A_{n})^{0} [(n+1)/2]
\Gamma(B_{n})^{s} (s=0,1) 2 [(n-s)/2]+s
\Gamma(C_{n})^{s} (0\leq s\leq[n/2]) n-s
\Gamma(D_{n})^{0} 2 [n/2]

Table 4. Number of equivalence classes (Classical case)

X_{n} Number of equivalence classes

A_{n} 1
B_{n} (n=odd)

(n=even)
C_{n}

D_{n} (n\geq 2)

1
2

[n/2]+1
1
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Accordingly, the number of equivalence classes of MSOS’s in X_{n} can be
summarized in Table 4.

Proof First we note that the superscript s of \Gamma(X_{n})^{s} indicates the cardinal
number of short roots in \Gamma(X_{n})^{s} . Since each element of W(\Delta) preserves
the lengths of roots, we obtain the assertion (3).

We prove the assertions (1) and (2) by induction on the integer n . First
consider the low rank cases: A_{1} , B_{1} , C_{1} and D_{2} . Since A_{1}=\{\pm(\lambda_{1}-\lambda_{2})\} ,
B_{1}=\{\pm\lambda_{1}\} and C_{1}=\{\pm 2\lambda_{1}\} , any non-trivial SOS’s in A_{1} , B_{1} and C_{1}

are equivalent to \{\lambda_{1}-\lambda_{2}\}(=\Gamma(A_{1})^{0}) , \{\lambda_{1}\}(=\Gamma(B_{1})^{1}) , and \{2\lambda_{1}\}(=

\Gamma(C_{1})^{0}) , respectively.
Next, consider the case D_{2} . Set D_{2}^{+}=\{\pm(\lambda_{1}+\lambda_{2})\} and D_{2}^{-}=\{\pm(\lambda_{1}-

\lambda_{2})\} . Then we know that both D_{2}^{+} and D_{2}^{-} are subsystems of D_{2} . Moreover,
D_{2} is orthogonally decomposed into the union D_{2}^{+}\cup D_{2}^{-} Since (D_{2})^{\pm}\cong A_{1} ,
\{\lambda_{1}+\lambda_{2}\}\cup\{\lambda_{1}-\lambda_{2}\}(=\Gamma(D_{2})^{0}) is a MSOS in D_{2} (see Proposition 2.1)
and any MSOS in D_{2} is equivalent to \Gamma(D_{2})^{0} . Thus we have completed the
proof for the low rank cases.

We now assume n\geq 2 and assume that the assertions (1) and (2) are
true for X_{n’}(n’\leq n-1, X=A\sim C) and D_{n’}(n’\leq n) . Under these
assumptions, we prove that both (1) and (2) are true for A_{n} , B_{n} , C_{n} and
D_{n+1} . To this end, we prepare

Lemma 3.2 Let X_{n}=A_{n}\sim D_{n} . Then:
(1) If (X_{n})_{short}\neq\emptyset , then it holds either X_{n}=B_{n}(n\geq 2) or X_{n}=

C_{n}(n\geq 2) and

(B_{n})_{long}=\{\pm\lambda_{i}\pm\lambda_{j}(1\leq i<j\leq n)\}=D_{n} ,

(B_{n})_{short}=\{\pm\lambda_{i}(1\leq i\leq n)\} ,

(C_{n})_{long}=\{\pm 2\lambda_{i}(1\leq i\leq n)\}\cong C_{1}\cup\cdot\cdot\cup C_{1} (n-times),

(C_{n})_{short}=\{\pm\lambda_{i}\pm\lambda_{j}(1\leq i<j\leq n)\}=D_{n} .

(2) For the root \alpha\in X_{n} listed below, the set \langle\alpha\rangle^{\perp}is given in Table 5
(For convenience, in Table 5, we consider A_{0}=B_{0}=C_{0}=D_{0}=\emptyset ).

Proof The assertion (1) is clear. We prove (2). By simple elementary
calculations, we can determine the set \langle\alpha\rangle^{\perp} for \alpha listed above. If \alpha is a long
root in X_{n} , we have \langle\alpha\rangle^{\perp}=\langle\alpha\rangle^{\perp} (see Proposition 2.2). In case \alpha is a short
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Table 5. The set \langle\alpha\rangle^{\perp}

X_{n} \alpha
\langle\alpha\rangle^{\perp}

A_{n} \lambda_{n}-\lambda_{n+1} A_{n-2}

B_{n} \lambda_{n-1}-\lambda_{n} B_{n-2}\cup\{\pm(\lambda_{n-1}+\lambda_{n})\}

\lambda_{n} D_{n-1}

C_{n} \lambda_{n-1}-\lambda_{n} C_{n-2}

2\lambda_{n} C_{n-1}

D_{n} \lambda_{n-1}-\lambda_{n} D_{n-2}\cup\{\pm(\lambda_{n-1}+\lambda_{n})\}

root, removing any short roots \beta such that \beta\pm\alpha\in X_{n} from \langle\alpha\rangle^{\perp} , we can
obtain the set \langle\alpha\rangle^{\perp} . \square

Now we return to the induction. We consider the individual cases
A_{n}\sim D_{n} .

(a) Case of A_{n} : By the inductive assumption, Proposition 2.3 and
Lemma 3.2, we know that \Gamma(A_{n-2})^{0}\cup\{\lambda_{n}-\lambda_{n+1}\} is a MSOS in A_{n} . Since
A_{n} has a unique equivalence class of MSOS’s and since

\Gamma(A_{n-2})^{0}\cup\{\lambda_{n}-\lambda_{n+1}\}\sim\Gamma(A_{n})^{0} ,

any MSOS in A_{n} is equivalent to \Gamma(A_{n})^{0} .

(b) Case of B_{n} : As shown in Proposition 2.4, (B_{n})_{long}=D_{n} contains
at most one equivalence class of MSOS’s in B_{n} . Moreover, by the inductive
assumption, we know that there is a unique equivalence class of MSOS’s in
D_{n} and \Gamma(D_{n})^{0}(=\Gamma(B_{n})^{0}) gives a representative of this class. We can
easily verify that (\Gamma(B_{n})^{0})^{\perp}=\emptyset in B_{n} if n=even but (\Gamma(B_{n})^{0})^{\perp}\neq\emptyset in
B_{n} if n=odd . Therefore, \Gamma(B_{n})^{0} is a MSOS in B_{n}(n=even) , however,
\Gamma(B_{n})^{0} is not a MSOS in B_{n}(n=odd) . Similarly, since \langle\lambda_{n}\rangle^{A}=D_{n-1} ,
\Gamma(D_{n-1})^{0}\cup\{\lambda_{n}\}(=\Gamma(B_{n})^{1}) is a MSOS in B_{n} (see Proposition 2.3).

We now show that any MSOS in B_{n} is equivalent to one of \Gamma(B_{n})^{s}(s=

0,1) . Let \Gamma be a MSOS in B_{n} . If \Gamma\subset(B_{n})_{long}=D_{n} , we have easily \Gamma\sim

\Gamma(D_{n})^{0}=\Gamma(B_{n})^{0} . Suppose that \alpha\in\Gamma\cap(B_{n})_{short} . Then take an element
w\in W(B_{n}) such that w\alpha=\lambda_{n} . Since w\Gamma\backslash \{\lambda_{n}\} is a MSOS in \langle\lambda_{n}\rangle^{\perp}=

D_{n-1} , it follows from Proposition 2.3 that
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\Gamma\sim w\Gamma\sim\Gamma(D_{n-1})^{0}\cup\{\lambda_{n}\}=\Gamma(B_{n})^{1} .

This proves (1) and (2) are true for B_{n} .

(c) Case of C_{n} : Since (C_{n})_{long} is orthogonally decomposed into a
union of n copies of C_{1} , there is a unique equivalence class of MSOS’s
in (C_{n})_{long} whose representative is given by \Gamma(C_{n})^{0} . Since (\Gamma(C_{n})^{0})^{\perp}=\emptyset ,
\Gamma(C_{n})^{0} is a MSOS in C_{n} .

Now consider the short root \lambda_{n-1}-\lambda_{n} . Since \langle\lambda_{n-1}-\lambda_{n}\rangle^{\perp}=C_{n-2} ,
there are l+[(n– 2) /2] equivalence classes of MSOS’s in \langle\lambda_{n-1}-\lambda_{n}\rangle^{\perp} .
Representatives of these classes are given by \Gamma(C_{n-2})^{s}(0\leq s\leq[(n-2)/2]) .
Consequently, by Proposition 2.3 we know that \Gamma(C_{n-2})^{s}\cup\{\lambda_{n-1}-\lambda_{n}\}(0\leq

s\leq[(n-2)/2]) are MSOS’s in C_{n} . Under the action of W(C_{n}) we can easily
show that

\Gamma(C_{n-2})^{s}\cup\{\lambda_{n-1}-\lambda_{n}\}\sim\Gamma(C_{n})^{s+1} .

Hence \Gamma(C_{n})^{s+1}(0\leq s\leq[(n-2)/2]) are also MSOS’s in C_{n} .
Let \Gamma be a MSOS in C_{n} . We show that \Gamma is equivalent to one of

\Gamma(C_{n})^{s}(0\leq s\leq[n/2]) . As we have already seen, \Gamma\sim\Gamma(C_{n})^{0} if \Gamma\subset

(C_{n})_{long} . We now assume that \Gamma contains at least one short root \alpha\in C_{n} .
Then we take an element w\in W(C_{n}) such that w\alpha=\lambda_{n-1}-\lambda_{n} . Since
w\Gamma\backslash \{\lambda_{n-1}-\lambda_{n}\} is a MSOS in \langle\lambda_{n-1}-\lambda_{n}\rangle^{\perp}=C_{n-2} , there is an integer
s(0\leq s\leq[(n-2)/2]) such that w\Gamma\backslash \{\lambda_{n-1}-\lambda_{n}\}\sim\Gamma(C_{n-2})^{s} . Hence we
have

\Gamma\sim w\Gamma\sim\Gamma(C_{n-2})^{s}\cup\{\lambda_{n-1}-\lambda_{n}\}\sim\Gamma(C_{n})^{s+1}-

This proves (1) and (2) are true for C_{n} .

(d) Case of D_{n+1} : By the inductive assumption, Proposition 2.1 and
Lemma 3.2, \Gamma(D_{n-1})^{0}\cup\{\lambda_{n}+\lambda_{n+1}\} is a MSOS in \langle\lambda_{n}-\lambda_{n+1}\rangle^{\perp} . Therefore
by Proposition 2.3, it follows that \Gamma(D_{n-1})^{0}\cup\{\lambda_{n}\pm\lambda_{n+1}\} is a MSOS in
D_{n+1} . Since D_{n+1} has a unique equivalence class of MSOS’s and since

\Gamma(D_{n-1})^{0}\cup\{\lambda_{n}\pm\lambda_{n+1}\}\sim\Gamma(D_{n+1})^{0} ,

any MSOS in D_{n+1} is equivalent to \Gamma(D_{n+1})^{0} .

By the above considerations, we know that the assertions (1) and (2)
are also true for A_{n} , B_{n} , C_{n} and D_{n+1} . This completes the proof of the
theorem. \square
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4. Classification of MSOS’s in classical root systems II: Case of
BC_{n}

In this section we classify MSOS’s in BC_{n}(n\geq 1) . The root system
BC_{n} is given as a subset of V_{n} in the following form (see [7]):

BC_{n}=\{\pm\lambda_{i}(1\leq i\leq n) , \pm 2\lambda_{i}(1\leq i\leq n) ,
\pm\lambda_{i}\pm\lambda_{j}(1\leq i<j\leq n)\} .

Let (r, s) be a pair of integers such that r=0 or 1, 0\leq s\leq[(n-r)/2] .
We define a subset \Gamma(BC_{n})^{r,s} of BC_{n} by setting

\Gamma(BC_{n})^{0,s}=\{\lambda_{2i-1}-\lambda_{2i}(1\leq i\leq s), 2\lambda_{j}(2s+1\leq j\leq n)\} ,
\Gamma(BC_{n})^{1,s}=\{\lambda_{2i-1}-\lambda_{2i}(1\leq i\leq s), 2\lambda_{j}(2s+1\leq j\leq n-1), \lambda_{n}\} .

Then we have

Theorem 4.1 Let n be a positive integer. Then it holds
(1) The subsets \Gamma(BC_{n})^{r,s} defined above are MSOS’s in BC_{n} . The

cardinal number \#\Gamma(BC_{n})^{r,s} is equal to n-s .
(2) Let \Gamma be a MSOS in BC_{n} . Then, under the action of the Weyl

group W(BC_{n}) , \Gamma is equivalent to one of \Gamma(BC_{n})^{r,s}(r=0 or 1, 0\leq s\leq

[(n-r)/2]) .
(3) If (r, s)\neq(r’, s’) , then \Gamma(BC_{n})^{r,s}\oint\Gamma(BC_{n})^{r’,s’} Accordingly,

the number of equivalence classes of MSOS’s in BC_{n} is equal to n+1 .

Proof. By Theorem 3.1, we know that BC_{n}^{\neq}=C_{n} has [n/2]+1 equiv-
alence classes of MSOS’s and that \Gamma(C_{n})^{s}(0\leq s\leq[n/2]) are the repre-
sentatives for these classes. Therefore, by Proposition 2.6 we know that
\Gamma(BC_{n})^{0,s}=\Gamma(C_{n})^{s}(0\leq s\leq[n/2]) are MSOS’s in BC_{n} . Moreover any
MSOS contained in C_{n} is equivalent to one of \Gamma(BC_{n})^{0,s}(0\leq s\leq[n/2]) .

Next we consider the MSOS’s in BC_{n} not contained in BC_{n}^{\neq} We first
prove

Lemma 4.2 \langle\lambda_{n}\rangle^{\perp}=C_{n-1} .

Proof. As is easily seen, we have \langle\lambda_{n}\rangle^{\perp}=BC_{n-1} . Since \pm 2\lambda_{i}\pm\lambda_{n}\not\in

BC_{n}(i<n) and \pm\lambda_{i}\pm\lambda_{j}\pm\lambda_{n}\not\in BC_{n}(i<j<n) but \pm\lambda_{i}\pm\lambda_{n}\in

BC_{n}(i<n) , we have the lemma. \square

Since \Gamma(C_{n-1})^{s}(0\leq s\leq[(n-1)/2]) are MSOS’s in \langle\lambda_{n}\rangle^{\perp}=C_{n-1} , it
follows that \Gamma(BC_{n})^{1,s}=\Gamma(C_{n-1})^{s}\cup\{\lambda_{n}\} are MSOS’s in BC_{n} .
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Let \Gamma be a MSOS in BC_{n} such that \Gamma\not\subset BC_{n}^{\#} Let \alpha\in\Gamma\backslash BC_{n}^{\neq}

Take an element w\in W(BC_{n}) such that w\alpha=\lambda_{n} . Then w\Gamma\backslash \{\lambda_{n}\} is
a MSOS in C_{n-1} and hence it is equivalent to one of \Gamma(C_{n-1})^{s}(0\leq s\leq

[(n-1)/2]) in C_{n-1^{\tau}} Therefore, we have \Gamma\sim\Gamma(C_{n-1})^{s}\cup\{\lambda_{n}\}=\Gamma(BC_{n})^{1,s}

(0\leq s\leq[(n-1)/2]) . This completes the proof of (1) and (2).
It is easily seen that the superscript r (resp. s ) in \Gamma(BC_{n})^{r,s} denotes the

number of roots of length 1 (resp. \sqrt{2}) contained in \Gamma(BC_{n})^{r,s} . Therefore,
the assertion (3) is obvious. This completes the proof of Theorem 4.1. \square

5. Classification of MSOS’s in exceptional root systems

Exceptional root systems E_{6} , E7, E_{8}(\subset V_{8}) , F_{4}(\subset V_{4}) and G_{2}(\subset V_{3})

are given in the following forms (see [7]):

E_{6}=\{\pm\lambda_{i}\pm\lambda_{j}(1\leq i<j\leq 5) ,

\pm\frac{1}{2} ( \sum_{i=1}^{5} (-1)^{e_{i}}\lambda_{i}-\lambda_{6}-\lambda_{7}+\lambda_{8}) ( e_{i}=0 or 1, \sum_{i=1}^{5}e_{i}=even ) \} ,

E_{7}=\{\pm\lambda_{i}\pm\lambda_{j}(1\leq i<j\leq 6) , \pm(\lambda_{7}-\lambda_{8}) ,

\pm\frac{1}{2} ( \sum_{i=1}^{6} (-1)^{e_{i}}\lambda_{i}+\lambda_{7}-\lambda_{8}) ( e_{i}=0 or 1, \sum_{i=1}^{6}e_{i}=odd ) \} ,

E_{8}=\{\pm\lambda_{i}\pm\lambda_{j}(1\leq i<j\leq 8) ,

\frac{1}{2}\sum_{i=1}^{8} (-1)^{e_{i}}\lambda_{i} ( e_{i}=0 or 1, \sum_{i=1}^{8}e_{i}=even ) \} ,

F_{4}=\{\pm\lambda_{i}(1\leq i\leq 4) , \pm\lambda_{i}\pm\lambda_{j}(1\leq i<j\leq 4) ,

1/2 (\pm\lambda_{1}\pm\lambda_{2}\pm\lambda_{3}\pm\lambda_{4})\} ,

G_{2}=\{\pm(\lambda_{i}-\lambda_{j})(1\leq i<j\leq 3) , \pm(2\lambda_{1}-\lambda_{2}-\lambda_{3}) ,

\pm(2\lambda_{2}-\lambda_{1}-\lambda_{3}) , \pm(2\lambda_{3}-\lambda_{1}-\lambda_{2})\} .

For the later discussion, we slightly deform E_{6} as follows. Set \gamma=1/2 .
(\lambda_{1}+ +\lambda_{5}-\lambda_{6}+\lambda_{7}-\lambda_{8})-\cdot Since \gamma is a root in E7 and since E_{6} is a
subsystem of E7, the set E_{6}=S_{\gamma}E_{6} also forms a subsystem of E7, where
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S_{\gamma} denotes the reflection of E7 with respect to \gamma . The subsystem \overline{E_{6}} is
explicitly written by

\overline{E_{6}}=\{\pm(\lambda_{i}-\lambda_{j})(1\leq i<j\leq 6) , \pm(\lambda_{7}-\lambda_{8}) ,

\pm\frac{1}{2} ( \sum_{i=1}^{5} (-1)^{e_{i}}\lambda_{i}-\lambda_{6}) \pm\frac{1}{2}(\lambda_{7}-\lambda_{8}) ( e_{i}=0 or 1, \sum_{i=1}^{5}e_{i}=2 ) \} .

In the following discussion, we mean by E_{6} the set \overline{E_{6}} described above.
Let us define subsets \Gamma(E_{n})^{0}\subset E_{n}(n=6,7,8) , \Gamma(F_{4})^{s}\subset F_{4}(s=0,1)

and \Gamma(G_{2})^{1}\subset G_{2} by

\Gamma(E_{6})^{0}=\{\lambda_{1}-\lambda_{2}, \lambda_{3}-\lambda_{4}, \lambda_{5}-\lambda_{6}, \lambda_{7}-\lambda_{8}\} ,
\Gamma(E_{7})^{0}=\{\lambda_{2i-1}\pm\lambda_{2i}(1\leq i\leq 3), \lambda_{7}-\lambda_{8}\} ,
\Gamma(E_{8})^{0}=\{\lambda_{2i-1}\pm\lambda_{2i}(1\leq i\leq 4)\} ,
\Gamma(F_{4})^{0}=\{\lambda_{1}\pm\lambda_{2}, \lambda_{3}\pm\lambda_{4}\} ,
\Gamma(F_{4})^{1}=\{\lambda_{1}\pm\lambda_{2}, \lambda_{4}\} ,
\Gamma(G_{2})^{1}=\{\lambda_{1}-\lambda_{2}, \lambda_{1}+\lambda_{2}-2\lambda_{3}\} .

Then we have

Theorem 5.1 Let \Delta=E_{6} , E7, E_{8} , F_{4} or G_{2} . Then il holds
(1) \Gamma(\Delta)^{s} is a MSOS in \Delta ; the cardinal number \#\Gamma(\Delta)^{s} is given in

Table 6.

Table 6. Cardinal number of \Gamma(\Delta)^{s}

\Gamma(\Delta)^{s} \#\Gamma(\Delta)^{s}

\Gamma(E_{6})^{0} 4
\Gamma(E_{n})^{0}(n=7,8) n
\Gamma(F_{4})^{0} 4
\Gamma(F_{4})^{1} 3
\Gamma(G_{2})^{1} 2

(2) \Gamma(F_{4})^{0}\oint\Gamma(F_{4})^{1} .
(3) Any MSOS in \Delta is equivalent to one of \Gamma(\Delta)^{s} under the action

of the Weyl group W(\Delta) . Accordingly, the number of equivalence classes of
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MSOS’s in \Delta is equal to 2 if \Delta=F_{4} and is equal to 1 if \Delta\neq F_{4} .

Proof We consider the individual cases E_{n}(n=6,7,8) , F_{4} and G_{2} .

(e) Case of E_{n}(n=6,7,8) : Let us denote by \alpha_{0} the root in \Delta given
by

\alpha_{0}=\{

\lambda_{7}-\lambda_{8} \Delta=E_{6} , E_{7}

\lambda_{7}+\lambda_{8} \Delta=E_{8} .

Since \langle\alpha_{0}\rangle^{\perp}=\langle\alpha_{0}\rangle^{\perp} (see Proposition 2.2), we easily have

Lemma 5.2 It holds

\langle\alpha_{0}\rangle^{\perp}=\{

A_{5} \Delta=E_{6}

D_{6} \Delta=E_{7}

E7 \Delta=E_{8} .

As shown in \S 2, each E_{n}(n=6,7,8) has a unique equivalence class
of MSOS’s. Since \Gamma(E_{6})^{0}=\Gamma(A_{5})^{0}\cup\{\alpha_{0}\} , \Gamma(E_{7})^{0}=\Gamma(D_{6})^{0}\cup\{\alpha_{0}\} and
\Gamma(E_{8})^{0}=\Gamma(E_{7})^{0}\cup\{\alpha_{0}\} , it follows from Proposition 2.3 that \Gamma(E_{n})^{0}(n=

6,7,8) is a MSOS in E_{n} . Thus, any MSOS \Gamma in E_{n} is equivalent to \Gamma(E_{n})^{0} .

(f) Case of F_{4} : We first note that \Gamma(F_{4})^{0}\oint\Gamma(F_{4})^{1} . In fact it holds
\#\Gamma(F_{4})^{0}\neq\#\Gamma(F_{4})^{1} . We also note the following

Lemma 5.3 (1) (F_{4})_{long}=D_{4} .

(2) (F_{4})_{short}=\{\pm\lambda_{i}(1\leq i\leq 4), 1/2 (\pm\lambda_{1}\pm\lambda_{2}\pm\lambda_{3}\pm\lambda_{4})\} .

As shown in \S 2 and \S 3, (F_{4})_{long}=D_{4} has a unique equivalence class
of MSOS’s and the set \Gamma(D_{4})^{0} represents this class. Moreover, since
(\Gamma(D_{4})^{0})^{\perp}=\emptyset and since \Gamma(F_{4})^{0}=\Gamma(D_{4})^{0} , \Gamma(F_{4})^{0} is a MSOS in F_{4} .
Thus, any MSOS \Gamma contained in (F_{4})_{long} is equivalent to \Gamma(F_{4})^{0} .

We now consider MSOS’s containing at least one short root. We prove

Lemma 5.4 \langle\lambda_{4}\rangle^{\perp}=D_{3} .

Proof We can easily show that

\langle\lambda_{4}\rangle^{\perp}=\{\pm\lambda_{i}(1\leq i\leq 3), \pm\lambda_{i}\pm\lambda_{j}(1\leq i<j\leq 3)\} .

Since \pm\lambda_{i}\pm\lambda_{j}\pm\lambda_{4}\not\in F_{4}(1\leq i<j\leq 3) but \pm\lambda_{i}\pm\lambda_{4}\in F_{4}(1\leq i\leq 3) ,
we have the lemma. \square
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As shown in \S 2 and \S 3, D_{3} has a unique equivalence class of MSOS’s
and the set \Gamma(D_{3})^{0} represents this class. Therefore, we know that \Gamma(F_{4})^{1}=

\Gamma(D_{3})^{0}\cup\{\lambda_{4}\} is a MSOS in F_{4} .
We now show that any MSOS \Gamma containing at least one short root is

equivalent to \Gamma(F_{4})^{1} . Replacing \Gamma by an equivalent MSOS if necessary, we
may assume that \lambda_{4}\in\Gamma By the above discussion, we have \Gamma\backslash \{\lambda_{4}\}\sim

\Gamma(D_{3})^{0} . Therefore, we have \Gamma\sim\Gamma(F_{4})^{1} .

(g) Case of G_{2} : As shown in \S 2, G_{2} has a unique equivalence class of
MSOS’s and any MSOS in G_{2} is composed of a couple of one short root \alpha

and one long root \beta satisfying \alpha\perp\beta . It is easy to see that the set \Gamma(G_{2})^{1}

satisfies this condition.

By the above discussions in (e), (/) and (g), we have completed the
proof of Theorem 5.1. \square

6. \theta-MSOS’s associated with compact irreducible Riemannian
symmetric spaces

In this section, applying the result obtained in the previous sections,
we determine the equivalence classes of MSOS’s associated with compact
irreducible Riemannian symmetric spaces. Our aim is to prove Theorem 6.2
below, essentially first proved by Sugiura [12], which is also a generalizaiton
of Proposition 2.2 in [1].

Let G/K be a compact irreducible Riemannian symmetric space. Let
\mathfrak{g} (resp. t) be the Lie algebra of G (resp. K). We define an inner product
(, ) of \mathfrak{g} by setting

(X, Y)=-B(X, Y) X, Y\in \mathfrak{g} ,

where B implies the Killing form of \mathfrak{g} . Let \theta be the involutive automorphism
of \mathfrak{g} induced from the involution of G/K. As is well-known, \theta preserves ( . ) ,
i.e.,

(\theta X, \theta Y)= (X, Y) X, Y\in \mathfrak{g} .

We denote by

\mathfrak{g}=f+\mathfrak{m} (orthogonal direct sum)

the canonical decomposition of g induced by \theta . Let us take a maximal



130 Y. Agaoka and E. Kaneda

abelian subspace a in \mathfrak{m} ; we also take a Cartan subalgebra t of g such that
t\supset a . Then, setting b =t\cap f , we have

t=a+b (orthogonal direct sum).

Let \Delta(\subset t) be the set of non-zero roots of \mathfrak{g} with respect to t. Since G

is semi-simple, \Delta forms a reduced root system. Moreover, \Delta is irreducible
in case G is simple. In case G is not simple, G is decomposed into a direct
product of two copies of compact simple Lie group M and G/K\cong M ; hence
\Delta is orthogonally decomposed into a union of two copies of an irreducible
reduced root system of M .

Definition 6.1 Let G/K be a compact irreducible Riemannian symmetric
space. A SOS \Gamma in \Delta is called a \theta- SOS associated with G/K if \Gamma\subset a , i.e.,
\theta\alpha=-\alpha for any \alpha\in\Gamma A \theta SOS \Gamma is called a \theta-MSOS if it is not a
proper subset of any other \theta-SOS. We say that two \theta-SOS’s \Gamma and \Gamma’ are
\theta-equivalent if there is an element w\in W(\Delta) satisfying \theta w=w \theta and
\Gamma’=w\Gamma

In [1], we have proved the following

Proposition 6.1 Let G/K be a compact irreducible Riemannian symmet-
ric space. Set s(G/K)=rank(G/K)-rank(G)+rank(K) . Then there exists
a \theta -MSOS \Gamma associated with G/K such that \#\Gamma=s(G/K) .

As we have pointed out, the \theta-MSOS given in the above proposition is
maximum in number (see Proposition 2.3 in [1]). However, we left some
questions on \theta-MSOS’s; for example, whether \theta-MSOS’s are essentially
unique or not; whether there is a \theta-MSOS \Gamma with \#\Gamma<s(G/K) or not. In
this section we answer these questions in the following form.

Theorem 6.2 Let G/K be a compact irreducible Riemannian symmetric
space such that s(G/K)\neq 0 . Then:

(1) There is one and only one \theta -equivalence class \{\Gamma\} of \theta -MSOS’s
such that \#\Gamma=s(G/K) .

(2) A small \theta -MSOS \Gamma satisfying \#\Gamma<s(G/K) can exist if and only

if G/K is one of the following Riemannian symmetric spaces:

BI(p>q\geq 2, p=odd, q=even) , CI (n\geq 2) and FI .

(3) If G/K=BI(p>q\geq 2, p=odd, q=even) (resp. CI (n\geq

2) , resp. FI), then the number of \theta -equivalence classes of \theta-MSOS’s assO-
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dated with G/K is equal to 2 (resp. [n/2]+1 , resp. 2).

The symmetric spaces G/K with s(G/K)=0 are listed in the proof of
Theorem 6.2 below (Case (1)). The representatives of \theta-equivalence classes
are given in Table 7 at the end of this paper.

The result stated in Theorem 6.2 can be also obtained by the result of
Sugiura [12].

Set \Delta_{a}=\Delta\cap a . Then \Delta_{a} forms a subsystem of \Delta and a \theta-SOS (resp.
\theta-MSOS) is nothing but a SOS (resp. MSOS) in \Delta_{a} . In the following, to
prove Theorem 6.2, we state the relation between \Delta_{a} and the restricted root
system associated with G/K .

Let \lambda\in t . By \lambda_{a} we mean the a-component of \lambda with respect to the
orthogonal decomposition t =a+b . We define a subset \Sigma of a by

\Sigma=\{\alpha_{a}|\alpha\in\Delta\backslash b\} .

It is known that \Sigma forms an irreducible (possibly non-reduced) root system
(see Helgason [9]). \Sigma is called the restricted root system associated with
G/K and each element of \Sigma is called a restricted root. Let \psi\in\Sigma . We
define the multiplicity m(\psi) of \psi by

m(\psi)=\#\{\alpha\in\Delta|\alpha_{a}=\psi\} .

Then the following properties are known (see Araki [6], [1]).

Lemma 6.3 Let \psi\in\Sigma . Then:
(1) \psi\in\Delta if and only if m(\psi) is odd.
(2) If 2\psi\in\Sigma , then 2\psi\in\Delta .
(3) Let \psi’\in\Sigma satisfy ||\psi’||=||\psi|| . Then m(\psi’)=m(\psi) .
(4) Assume that 2\psi\not\in\Delta . Then for each \alpha\in\Delta such that \alpha_{a}=\psi ,

\alpha\neq\psi it holds ||\alpha||=\sqrt{2}||\psi|| .

Set

\Sigma_{odd}=\{\psi\in\Sigma|m(\psi)=odd\} .

Then we have

Proposition 6.4 (1) \Delta_{a}=\Sigma_{odd}\subset\Sigma^{\#}

\Sigma\#\wedge(2)
Assume that \Sigma_{odd}\neq\emptyset . Then it holds either \Sigma_{odd}=(\Sigma^{\#})_{long} or
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Proof. By Lemma 6.3 (1), it is obvious that \Sigma_{odd}=\Delta_{a} . Let \psi\in\Sigma_{odd} sat-
isfy 2\psi\in\Sigma . Then both \psi and 2\psi are contained in \Delta (see Lemma 6.3 (1),
(2) ) . However, it is impossible because \Delta is a reduced root system. There-
fore, we have 2\psi\not\in\Sigma , which implies \psi\in\Sigma^{\#} .

We now assume that \Sigma_{odd}\neq\emptyset . By Lemma 6.3 (3) we know that if
\Sigma_{odd} contains at least one short (resp. long) root of \Sigma^{\#} . then it holds
\Sigma_{odd}\supset(\Sigma^{\#})_{short} (resp. \Sigma_{odd}\supset(\Sigma^{\#})_{long} ). Consequently, we have \Sigma_{odd}=

(\Sigma^{\#})_{short} , (\Sigma^{\#})_{long} or \Sigma^{\#}-

Now let us prove that if \Sigma_{odd}\supset(\Sigma^{\#})_{short} , then it holds \Sigma_{odd}\supset

(\Sigma^{\#})_{long} and hence \Sigma_{odd}=\Sigma\# . By Proposition 1.8, we know that each el-
ement \gamma\in(\Sigma^{\#})_{long} is written as a sum of two short roots \alpha , \beta\in(\Sigma^{\#})_{short} .
Suppose that \gamma\not\in\Sigma_{odd} . Under our assumption we have \alpha , \beta\in\Sigma_{odd} and
hence \alpha , \beta\in\Delta . On the other hand, since \gamma\not\in\Sigma_{odd} , we have \alpha+\beta=\gamma\not\in

\Delta\cup\{0\} . Consequently, we have (\alpha, \beta)\geq 0 . Take an element \delta\in\Delta such
that \delta_{a}=\gamma . Then it can be easily seen that ||\delta||>||\gamma||\geq\sqrt{2}||\alpha|| . Put
\epsilon=\delta-\beta . Since (\delta, \beta)=(\gamma, \beta)=(\alpha+\beta, \beta)>0 , we have \epsilon\in\Delta\cup\{0\} and
\epsilon_{a}=\alpha . Hence, by Lemma 6.3 (1), we have ||\epsilon||=\sqrt{2}||\alpha|| . Thus, under the
assumption \gamma\not\in\Sigma_{odd} we can conclude that \Delta contains three roots \alpha , \delta , \epsilon of
different lengths. This contradicts the fact that \Delta is a reduced root system.
Therefore, we have the assertion (2). \square

The following proposition enables us to reduce the classification of \theta
-

MSOS’s in \Delta to the classification of MSOS’s in \Sigma_{odd} .

Proposition 6.5 (1) Let \Gamma be a subset of \Delta_{a} . Then \Gamma is a \theta- SOS (resp.
\theta -MSOS) if and only if it is a SOS (resp. MSOS) in \Sigma_{odd} .

(2) Let \Gamma and \Gamma’ be two \theta- SOS ’s in \Delta . Then \Gamma and \Gamma’ are \theta
-

equivalent if \Gamma\sim\Gamma’ in \Sigma_{odd} .
(3) If \Sigma_{odd} has a unique equivalence class of MSOS’s, then \Delta has a

unique \theta equivalence class of \theta -MSOS’s.

Proof. By Proposition 6.4, the assertion (1) is almost tatutological. Let
\alpha be an element of \Sigma_{odd} . Then we have \alpha\in\Delta_{a} and hence S_{\alpha}\in W(\Delta) .
Moreover, we have \theta\cdot S_{\alpha}=S_{\alpha}\cdot\theta . Consequently, each element w of the Weyl
group W(\Sigma_{odd}) can be considered as an element of W(\Delta) and satisfies \theta

w=w \theta . Therefore, if \Gamma and \Gamma’ are equivalent in \Sigma_{odd} then they are
\theta-equivalent.

The last statement is clear from (1) and (2). \square
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Proof of Theorem 6.2. Let \Pi=\{\gamma_{1}, , ’ \gamma_{n}\}(n=rank(\Sigma^{\#})) be a set of
simple roots of \Sigma\# with respect to a lexicographic order in \Sigma\# (For the set
\Pi and the value of m(\gamma_{i}) , see Table 1 in Appendix of [1] ) . Then we have
the following three cases:

(1) m(\gamma_{i}) is even for any \gamma_{i}\in\Pi .
(2) m(\gamma_{i}) is odd for any \gamma_{i}\in\Pi .
(3) Otherwise.

Case (1): By Proposition 6.4, we have \Delta_{a}=\Sigma_{odd}=\emptyset . Consequently,
there are no non-trivial \theta-SOS’s in \Delta . In viewing Table 1 in [1], we know
that this case occurs when G/K is a compact simple Lie group M or G/K
is one of the Riemannian symmetric spaces of type AII , DII and EIV We
note that these Riemannian symmetric spaces just correspond to the class
satisfying s(G/K)=0 .

Case (2): In this case we have \Delta_{a}=\Sigma_{odd}=\Sigma^{\#} Since \Sigma^{\#} is an irre-
ducible reduced root system, there is a unique equivalence class of MSOS’s
in \Sigma^{\#} if \Sigma^{\#}\neq B_{n}(n=even) , C_{n}(n\geq 2) nor F_{4} (see Theorem 3.1 and
5.1). Therefore, there is a unique \theta equivalence class of \theta MSOS’s in \Delta (see
Proposition 6.5). In viewing the table, we know that this case occurs when
G/K is one of AI , AIII (q=1) , BI(p=even, q=odd) , BII , CI (n=1) ,
CII(q=1) , DI(p=q) , DII (n=2,3) , EI , EV, EVIII, FII and G .

Next, consider the case where \Sigma\#=B_{n}(n=even) , C_{n}(n\geq 2) or F_{4} .
By the results in \S 3 and \S 5, the number of the equivalence classes of MSOS ’s
in \Sigma^{\#}=B_{n}(n=even) (resp. C_{n}(n\geq 2) , resp. F_{4} ) is 2 (resp. [n/2]+1 ,
resp. 2). Let \Gamma , \Gamma’ be two MSOS’s in \Sigma^{\#} such that \Gamma\oint\Gamma’ . Then \Gamma and
\Gamma’ are not \theta-equivalent, because their cardinal numbers are not the same
(see Theorem 3.1 and 5.1). By the same reason, we can conclude that there
is a unique \theta equivalence class \{\Gamma\} of \theta-MSOS’s satisfying \#\Gamma=s(G/K) .

Viewing Table 1 in [1], we know that \Sigma\#=B_{n}(n=even) , C_{n}(n\geq 2)

or F_{4} occurs when G/K is one of the following symmetric spaces: BI(p>
q\geq 2 , p=odd , q=even) , CI (n\geq 2) and FI .

Case (3): In this case \Sigma^{\#} actually contains roots of different lengths and
\Delta_{a}=\Sigma_{odd}=(\Sigma^{\#})_{long} . Viewing Table 1 in [1], we know that \Sigma^{\#}=B_{n} , C_{n}

or F_{4} for these G/K and that (\Sigma^{\#})_{long} has a unique equivalence class of
MSOS’s (see Lemma 3.2 and 5.3). Therefore, there is a unique \theta equivalence
class of \theta MSOS’s in \Delta . This case occurs when G/K is one of AIII (q\geq 2) ,
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CII(q\geq 2) , DI(p\geq q+2) , DIII (n\geq 4) , EII , EIII, EVI , EVII and
EIX .

We summarize the data for each G/K in Table 7. In each G/K it holds
\#\Gamma\leq s(G/K) ; the inequality \#\Gamma<s(G/K) holds if and only if G/K is
one of BI(p>q\geq 2, p=odd, q=even) , CI (n\geq 2) and FI .

By these discussions, we complete the proof of Theorem 6.2. \square
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Table 7. Classification of \theta-MSOS’s for compact irreducible Riemannian
symmetric spaces G/K
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