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Pseudo-eigenvalues of W-operators
on Hilbert modular forms
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Abstract. In this paper, we study pseud0-eigenvalues of W-0perators on Hilbert mod-
ular forms. In particular, we show that they are roots of unity under a certain condition.
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1. Introduction

Let F be a totally real number field. For a positive integer k , an integral
ideal \mathfrak{R} of F and a (Hecke) character \psi , we consider the space S_{k}^{0}(\mathfrak{R}, \psi) of
new forms of weight k , level \mathfrak{R} and character \psi (see \S 2 for the definition).
We have operators \eta_{\mathfrak{p}} (W-0perator) on S_{k}^{0}(\mathfrak{R}, \psi) for each prime \mathfrak{p} dividing
\mathfrak{R} (see \S 2 for the definition and details). For a primitive form f of S_{k}^{0}(\mathfrak{R}, \psi) ,
we can write f|\eta_{P}=cg with the corresponding primitive form g and call
c=c_{\mathfrak{p}} the pseud0-eigenvalue of \eta_{\mathfrak{p}} associated to f . In the case that the
\mathfrak{p}-th Fourier coefficient of f does not vanish, the pseud0-eigenvalue of \eta_{\mathfrak{p}}

associated to f is expressed by the \mathfrak{p}-th Fourier coefficient of f and the local
Gauss sum (Corollary 2.7). In the case that the \mathfrak{p}-th Fourier coefficient of
f vanishes, we have the following theorem in the simplest case.

Theorem 1.1 Let \mathfrak{p} be a prime ideal of F, f a primitive form of S_{k}^{0}(\mathfrak{p}^{e}, \psi)

and \mathfrak{p}^{n} the conductor of \psi . If 3n\leq e , the pseudO-eigenvalue A associated
to f satisfies A^{2\alpha}=(\psi^{\alpha})^{*}(\mathfrak{p}^{e}) , where \alpha is the order of \psi_{\mathfrak{p}} as the character
of (0_{F}/\mathfrak{p}^{n})^{\cross} and (\psi^{\alpha})^{*} the ideal character associated with \psi^{\alpha} . Moreover if
\psi is of finite order, the pseudO-eigenvalue is a root of unity.

In the next section, we will introduce necessary notations for adelic
Hilbert modular forms. In \S 3, we study twisted forms, since primitive forms
whose Fourier coefficients of level parts vanish may be twisted forms. In the
last section, we prove above theorem in more general case (Theorem 4.3).
We note that we consider a unitary Hecke character (possibly of infinite
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order) in this paper.

2. Space of Hilbert modular forms

Let F be a totally real algebraic number field, F_{A} the ring of adeles
of F, and F_{A}^{\cross} the group of ideles of F. For \alpha\in F , we write \alpha>>0 if
\alpha is totally positive and \alpha<<0 if \alpha is totally negative. We denote by a
(resp. h) the set of all archimedean (resp. nonarchimedean) primes of F .
We write F_{a} (resp. F_{h} ) for the archimedean (resp. nonarchimedean) factors
of F_{A} . For the prime ideal of F which corresponds to \mathfrak{p}\in h , we also use
the same symbol \mathfrak{p} . We denote by F_{v} the v-completion of F, and by x_{v} the
v-component of x\in F_{A} for v\in a\cup h . For an ideal a of F and \mathfrak{p}\in h , we
denote by a_{P} the topological closure of a in F_{\mathfrak{p}} . We denote by 0_{F} and D_{F}

the maximal order of F and the different of F over Q , and by 0_{\mathfrak{p}} and v_{\mathfrak{p}}

(oF)_{\mathfrak{p}} and (v_{F})_{\mathfrak{p}} . For every a\in F_{A}^{\cross} , we denote by ao_{F} the fractional ideal
of F associated with a . For an ideal a of F and \mathfrak{p}\in h , we denote by ord_{P}(a)

the order of a at \mathfrak{p} . For a\in F_{A}^{\cross} , we put ord_{\mathfrak{p}}(a)=ord_{\mathfrak{p}}(ao_{F}) . We denote
by \pi_{\mathfrak{p}} a prime element of F_{\mathfrak{p}} .

By a Hecke character \psi of F, we understand a continuous homomor-
phism of F_{A}^{\cross} into \{z\in C||z|=1\} which is trivial on F^{\cross} . For \psi we denote
by \psi_{v} , \psi_{a} , and \psi_{h} its restrictions to F_{v}^{\cross} , F_{a}^{\cross} and F_{h}^{\cross} , respectively. Given \psi ,
there exists a unique integral ideal f with the following property: \psi_{v}(x)=1

if v\in h , x\in 0_{v}^{\cross} , and x-1\in f_{v} ; if f’ is another integral ideal with this
property, then f’\subset f . The ideal f is called the conductor of \psi . Let c be an
integral ideal such that c\subset f . Given a fractional ideal a prime to c , we take
an element \alpha of F_{h}^{\cross} so that \alpha_{v}0_{v}=a_{v} for every v\in h and \alpha_{v}=1 for every
v|c . We then put \psi^{(c)}(a)=\psi_{h}(\alpha) . This is well-defined. We put \psi^{(c)}(a)=0

if a is not prime to c . We call \psi^{(c)} the ideal character mod c associated with
\psi . If c=f, we denote \psi^{(c)} by \psi^{*} .

We put G=GL_{2}(F) and G_{v}=GL_{2}(F_{v}) for every v\in a\cup h . Let G_{A}

be the adelization of G , and G_{a} (resp. G_{h} ) its archimedean (resp. nonar-
chimedean) factors. For v\in a\cup h and an element x\in G_{A} , we denote by
x_{v} its v-component and also by x_{a} its a-component. For any set X , we
write X^{a} for set of all indexed elements (x_{v})_{v\in a} with x_{v}\in X . For each
v\in a , we take a corresponding injection \tau_{v} of F into R and denote also
by \tau_{v} the isomorphism of F_{v} to R. We put G_{+}=\{x\in G|\det(x)>>0\} ,
F_{a+}= { x\in F_{a}|x_{v}^{\tau_{v}}>0 for all v\in a}, G_{a+}=\{x\in G_{a}|\det(x)\in F_{a+}\}
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and G_{A+}=\{x\in G_{A}|x_{a}\in G_{a+}\} . Then we have G_{+}\subset G_{A+} by the
diagonal embedding of G to G_{A} . For x\in G_{A} , we put x^{\iota}=\det(x)x^{-1} and
x^{-\iota}=(x^{\iota})^{-1} .

We define the space S_{k} of ‘classical’ Hilbert cusp forms. Let H be the
complex upper half plane. For

\alpha=(\alpha_{v})_{v\in a}=( (\begin{array}{ll}a_{v} b_{v}c_{v} d_{v}\end{array}) )_{v\in a}\in G_{a+} ,

z=(z_{v})_{v\in a}\in H^{a}’. k=(k_{v})_{v\in a}\in Z^{a} ,

and a C-valued function f on H^{a} , we put

\alpha(z)=((a_{v}^{\tau_{v}}z_{v}+b_{v}^{\tau_{v}})/(c_{v}^{\tau_{v}}z_{v}+d_{v}^{\tau_{v}}))_{v\in a} ,

J_{k}( \alpha, z)=\prod_{v\in a}((\det(\alpha_{v})^{\tau_{v}})^{-k_{v}/2}(c_{v}^{\tau_{v}}z_{v}+d_{v}^{\tau_{v}})^{k_{v}}) ,

(f||_{k}\alpha)(z)=J_{k}(\alpha, z)^{-1}f(\alpha(z))

and denote by S_{k} the space of all holomorphic functions f on H^{a} satisfying
the following conditions:
(A1) there exists a positive integer N such that f||_{k}\gamma=f for all \gamma\in

SL_{2}(0_{F})\cap(1_{2}+NM_{2}(0_{F})) ,

(A2) f has a Fourier expansion

(f||_{k} \alpha)(z)=\sum_{\xi}c_{\alpha}(\xi)e_{F}(\xi z)
,

with c_{\alpha}(\xi) \in C for every \alpha \in G_{+} , where \xi runs over all
totally positive elements of a lattice L_{\alpha} in F_{J}. and e_{F}(\xi z) =

exp (2 \pi\sqrt{-1}\sum_{v\in a}\xi_{v}^{\tau_{v}}z_{v}) .

We now define the space of (adelic) Hilbert cusp forms. We take an

element \delta of F_{A}^{\cross} such that \delta 0_{F}=v_{F} and \delta_{a}=1_{a} and put u=(\begin{array}{ll}1 00 \delta\end{array}) . For

an element \gamma\in G_{A} and a C-valued function f on G_{A} , we put

(f|\gamma)(x)=f(x(u\gamma u^{-1})^{\iota}) .

We have f|\gamma_{1}|\gamma_{2}=f|\gamma_{1}\gamma_{2} for any \gamma_{1} , \gamma_{2}\in G_{A} . Let c be an integral ideal,
k\in Z^{a} and \psi a Hecke character whose conductor divides c . We denote by
S_{k}(c, \psi) the space of all C-valued functions f on G_{A} satisfying the following
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conditions:
(B1) f(\alpha x)=f(x) for \alpha\in G and x\in G_{a} ;

(B2) f| (\begin{array}{ll}s 00 s\end{array})=\psi(s)f for s\in F_{A}^{\cross};

(B3) f|w=\psi_{Y}(w)f for w\in\Gamma_{h}(c) ;

(B4) for every x\in G_{A} with x_{a}=1_{a} , there is an element g_{x} of S_{k} such
that f|y(x)=\det(y)^{im}g_{x}||ky^{\iota}(i) for all y\in G_{a+} .

Here \Gamma_{h}(c)=\prod_{v\in h}\Gamma_{v}(c) and

\Gamma_{v}(c)=\{ (\begin{array}{ll}a bc d\end{array})\in GL_{2}(0_{v})|c\in c_{v}\} ; for w=(\begin{array}{ll}a bc d\end{array}) \in\Gamma_{h} ,

we put

\psi_{Y}(w)=\psi_{c}(a_{c})=\prod_{\mathfrak{p}|c}\psi_{\mathfrak{p}}(a_{\mathfrak{p}})
; i=(\sqrt{-1}, \ldots, \sqrt{-1})\in H^{a} ; m\in R^{a}

is determined by \psi_{a}(s)=s^{2im} for s\in F_{a+} . We understand s^{l}= \prod_{v\in a}(s_{v}^{\tau_{v}})^{l_{v}}

for s\in F_{a+} and l\in C^{a} .
We call elements of S_{k}(c, \psi) (adelic) Hilbert cusp forms of weight k ,

level c and character \psi . We note that the space S_{k}(c, \psi) is independent of
the choice of \delta and coincides with that of [5] and [6]. We have

\psi(s)=\psi_{c}(s_{c})sgn(s_{a})^{k}|s_{a}|^{2im} for
s \in F_{a}^{\cross}\cross\prod_{v\in h}0_{v}^{\cross}-

So we see S_{k}(c, \psi)=\{0\} unless \psi_{v}(-1)=(-1)^{k_{v}} for all v\in a . Moreover it
is well known that S_{k}=\{0\} unless k_{v}>0 for all v\in a (cf. [5]).

Let f be an element of S_{k}(c, \psi) and put k_{0}= \max_{v\in a}\{k_{v}\} . f has the
expansion

f( (\begin{array}{ll}y x0 1\end{array}) )

= \sum_{0\ll\zeta\in F}C(\zeta yo_{F}, f)N(\zeta yo_{F})^{-k_{0}/2}(\zeta y_{a})^{(k/2)+im}e_{F}(\zeta iy_{a})e_{A}(\zeta x)
,

where y\in F_{A}^{\cross} , y_{a}\in F_{a+} and x\in F_{A} and e_{A} is the character of the additive
group F_{A}/F such that eA(\# a)=eF(xa) . (If \zeta yo_{F} is not integral, then
C(\zeta yo_{F}, f)=0.)
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Now for an ideal q we put

f|B_{f1}=N(q)^{-k_{0}/2}f| (\begin{array}{ll}1 00 q^{-1}\end{array}) , (2.1)

where q is an element of F_{A}^{\cross} such that qo_{F}=q and q_{a}=1_{a} . Then f|B_{q}\in

S_{k}(cq, \psi) and C(m, f|B_{q})=C(mq^{-1}, f) . This is independent of a choice of
q .

We define a Hecke operator T_{c}’(\mathfrak{n}) as that of [5]. We have

C( m, f|T_{\mathfrak{r}}’(\mathfrak{n}))=\sum_{m+\mathfrak{n}\subset a}\psi^{(c)}(a)N(a)^{k_{0}-1}C(m\mathfrak{n}a^{-2}, f)
.

Under our notation, we have for a prime ideal \mathfrak{p} ,

f|T_{c}’(\mathfrak{p})=\{\begin{array}{l}N(\mathfrak{p})^{(k_{0}/2)-1}\{\sum_{l\in o_{\mathfrak{p}}/\mathfrak{p}o_{\mathfrak{p}}}f|( )_{\mathfrak{p}}+f|( )_{\mathfrak{p}}\}N(\mathfrak{p})^{(k_{0}/2)-1}\sum_{l\in o_{\mathfrak{p}}/\mathfrak{p}o_{\mathfrak{p}}}f|( )_{\mathfrak{p}}\end{array}
if\mathfrak{p}\int cif\mathfrak{p}|c.

’

(2.2)

We denote by S_{k}^{1}(c, \psi) the subspace of S_{k}(c, \psi) generated by the set
\bigcup_{a}\bigcup_{b}\{f|B_{b}|f\in S_{k}(a, \psi)\} . Here a runs over all integral ideals such that
q|a , a|c and a\neq c;b runs over all divisors of ca^{-1} ; q is the conductor of \psi .
Furthermore, we denote by S_{k}^{0}(c, \psi) the orthogonal complement of S_{k}^{1}(c, \psi)

in S_{k}(c, \psi) with respect to the (Petersson) inner product, (cf. [5], p. 651.)
We call an element f\in S_{k}^{0}(c, \psi) a primitive form if f is a common

eigenfunction of all T_{c}’(\mathfrak{n})((\mathfrak{n}, c)=1) and C(0_{F}, f)=1 . We know that
a primitive form is a common eigenfunction of all Hecke operators (and
adjoint Hecke operators) and

f|T_{c}’(\mathfrak{n})=C(\mathfrak{n}, f)f .

Definition 2.1 Let \chi be a Hecke character of the conductor q . We fix
v\in F_{\mathfrak{p}} such that v(q0p)_{\mathfrak{p}}=0_{\mathfrak{p}} . For a prime ideal \mathfrak{p} dividing q , we put

\mathfrak{g}_{\mathfrak{p}}(\chi)=\sum_{b\in(0_{\mathfrak{p}}/qo_{\mathfrak{p}})^{\cross}}\chi_{\mathfrak{p}}(vb)^{-1}e_{\mathfrak{p}}(vb)^{-1}

,
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where e_{\mathfrak{p}} is the \mathfrak{p}-component of e_{A} . For a prime ideal \mathfrak{p} not dividing q , we
put \mathfrak{g}_{\mathfrak{p}}(\chi)=1 . We call \mathfrak{g}_{\mathfrak{p}}(\chi) the local Gauss sum. (cf. [7], (A6.3.6).)

We note that \mathfrak{g}_{\mathfrak{p}}(\chi) is independent of a choice of v . We have

\mathfrak{g}(\chi)=\chi^{*}(\prod_{\mathfrak{p}lq}\mathfrak{p}^{e(\mathfrak{p})})\prod_{\mathfrak{p}1q}\mathfrak{g}_{P}(\chi) ,

where 0_{F}= \prod_{\mathfrak{p}}\mathfrak{p}^{e(\mathfrak{p})} . Here \mathfrak{g}(\chi) is the (global) Gauss sum which is defined
by [6], (9.31).

Let f be an element of S_{k}(c, \psi) and \chi a Hecke character of the conductor
q . For each prime ideal \mathfrak{p} dividing q , we fix u_{\mathfrak{p}}\in F_{\mathfrak{p}} such that u_{\mathfrak{p}}(q0_{F})_{\mathfrak{p}}=0_{\mathfrak{p}}

and put

( f|R_{\chi})(x)=\frac{\chi(\det(x))}{\prod_{\mathfrak{p}1q}\mathfrak{g}_{\mathfrak{p}}(\overline{\chi})}\sum_{(v_{\mathfrak{p}})}(\prod_{\mathfrak{p}1q}\chi_{\mathfrak{p}}(u_{\mathfrak{p}}v_{\mathfrak{p}}))(f|\prod_{\mathfrak{p}1q}
(\begin{array}{ll}1 u_{\mathfrak{p}}v_{P}\delta_{\mathfrak{p}}0 1\end{array})) (x) ,

where (v_{\mathfrak{p}}) runs over \prod_{\mathfrak{p}1q}(0_{\mathfrak{p}}/qo_{\mathfrak{p}})^{\cross} .
We note that f|R_{\chi} is independent of a choice of (u_{\mathfrak{p}}) and

( f|R_{\chi})(x)=\frac{\chi(\det(x))}{\mathfrak{g}(\overline{\chi})}\sum_{v\in q^{-1}n_{F}^{-1}/v_{F}^{-1}}\chi^{*}(vq\mathfrak{D}_{F})\overline{\chi_{a}}(v)(-f|
(\begin{array}{ll}1 v\delta 0 1\end{array})h)(x) ,

where the subscript h indicates the projection to the nonarchimedean part,
(cf. [5], p. 664 and [6], p. 354.)

Lemma 2.2 Let f be an element of S_{k}(c, \psi) and \chi a Hecke character of
the conducter q and b the conducter of \psi\chi . Suppose that a is the least
common multiple of c , qb and q\prod_{\mathfrak{p}1q}\mathfrak{p} . Then f|R_{\chi} belongs to S_{k}(a, \psi\chi^{2})

and C(m, f|R_{\chi})=\chi^{*}(m)C(m, f) /or any integral ideal m . Moreover, for an
integral ideal m such that (m, q)=1 , the following diagram is commutative:

S_{k}(c, \psi)
\underline{\chi^{*}(m)T_{\acute{c}}(m)}

S_{k}(c, \psi)

R_{\chi}\downarrow \downarrow R_{\chi} (2.3)

S_{k}(c, \psi\chi^{2})
arrow T_{\acute{C}}(m)

S_{k}(c, \psi\chi^{2}) .

Proof It is known that the assertion holds if a is the least common multiple
of c , q^{2} and qc_{0} . Here c_{0} is the conductor of \psi . (cf. [6], Proposition 9.7.)
We may assume q=\mathfrak{p}^{j} . We have to show that (f|R_{\chi})|w=(\psi\chi^{2})_{\mathfrak{p}}(a)f|R_{\chi}
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for w=(\begin{array}{ll}a bc d\end{array}) \in\Gamma_{\mathfrak{p}}(a) . Put u=(\pi_{\mathfrak{p}}^{j}\delta_{\mathfrak{p}})^{-1} . First suppose \det(w)=1 . For

each v\in(0_{\mathfrak{p}}/(\pi_{\mathfrak{p}}^{j}))^{\cross} , we take \epsilon_{v}\in 0_{\mathfrak{p}}^{\cross} such that d\equiv\epsilon_{v}(a+cuv\delta_{\mathfrak{p}}) mod (\pi_{\mathfrak{p}}^{j}) .
Then v\mapsto\epsilon_{v}v gives a bijection of (0_{\mathfrak{p}}/(\pi_{\mathfrak{p}}^{j}))^{\cross} and

(\begin{array}{ll}1 uv\delta_{\mathfrak{p}}0 1\end{array})(\begin{array}{ll}a bc d\end{array})(\begin{array}{ll}1 u\epsilon_{v}v\delta_{\mathfrak{p}}0 1\end{array})

=(^{a+cuv\delta_{\mathfrak{p}}}c b+v\pi_{\mathfrak{p}}^{-j}(d-\epsilon_{v}(a+cuv\delta_{\mathfrak{p}}))d-cu\epsilon_{v}v\delta_{\mathfrak{p}})

is in \Gamma_{\mathfrak{p}}(c) . Hence

(f|R_{\chi}|w)(x)

= \frac{\chi(\det(x))}{\mathfrak{g}_{\mathfrak{p}}(\overline{\chi})}\sum_{v\in(0_{\mathfrak{p}}/(\pi_{\mathfrak{p}}^{J}))^{\cross}}\chi_{\mathfrak{p}}(uv)(f|

(\begin{array}{ll}1 uv\delta_{\mathfrak{p}}0 1\end{array}) |w)(x)

= \frac{\chi(\det(x))}{\mathfrak{g}_{\mathfrak{p}}(\overline{\chi})}\sum_{v\in(0\mathfrak{p}/(\pi_{\mathfrak{p}}^{J}))^{\cross}}\chi_{\mathfrak{p}}(uv)(\psi_{\mathfrak{p}}(a+cuv\delta_{\mathfrak{p}})f|

(\begin{array}{ll}1 u\epsilon_{v}v\delta_{P}0 1\end{array}) )(x) .

So, we obtain (f|R_{\chi})|w(x)=(\psi\chi^{2})_{\mathfrak{p}}(a)f|R_{\chi}(x) since

\chi_{\mathfrak{p}}(\epsilon_{v})^{-1}\psi_{\mathfrak{p}}(a+cuv\delta_{\mathfrak{p}})=\chi_{\mathfrak{p}}(\epsilon_{v}(a+cuv\delta_{\mathfrak{p}}))^{-1}(\chi\psi)_{\mathfrak{p}}(a+cuv\delta_{\mathfrak{p}})

=\chi_{\mathfrak{p}}(d)^{-1}(\chi\psi)_{\mathfrak{p}}(a)=(\psi\chi^{2})_{\mathfrak{p}}(a) .

Next we suppose w=(\begin{array}{ll}1 00 d\end{array}) \in\Gamma_{\mathfrak{p}}(a) .

(f|R_{\chi}|w)(x)

= \frac{\chi(\det(x)d)}{\mathfrak{g}_{\mathfrak{p}}(\overline{\chi})}\sum_{v\in(0_{\mathfrak{p}}/(\pi_{\mathfrak{p}}^{J}))^{\cross}}\chi_{\mathfrak{p}}(uv)(f|

(\begin{array}{ll}1 uv\delta_{\mathfrak{p}}0 1\end{array}) |w)(x)

= \frac{\chi(\det(x)d)}{\mathfrak{g}_{\mathfrak{p}}(\overline{\chi})}\sum_{v\in(0_{\mathfrak{p}}/(\pi_{\mathfrak{p}}^{j}))^{\cross}}\chi_{\mathfrak{p}}(uv)(f|

(\begin{array}{ll}1 00 d\end{array})(\begin{array}{ll}1 udv\delta_{\mathfrak{p}}0 1\end{array}) )(x)

= \frac{\chi(\det(x))}{\mathfrak{g}_{P}(\overline{\chi})}\sum_{v\in(0\mathfrak{p}/(\pi_{\mathfrak{p}}^{J}))^{\cross}}\chi_{\mathfrak{p}}(udv)(f|

(\begin{array}{ll}1 udv\delta_{\mathfrak{p}}0 1\end{array}) )(x)

=f|R_{\chi}(x) .
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Therefore we obtain our lemma. \square

Let f be an element of S_{k}(c, \psi) . For an ideal q((q, c/q)=1) , take
a Hecke character \chi such that the conductor divides q and \chi_{q}=\psi_{q} on
(0_{F}/q)^{\cross} . Then we put

(f|\eta_{q,\chi}^{(c)})(x)=\overline{\chi}(\det(x))(f|b(q))(x) ,

where

b(q)_{v}=\{ (\begin{array}{ll}1 00 1\end{array})(\begin{array}{lll}0 -l\pi_{\mathfrak{p}}^{ord_{\mathfrak{p}}} B 0\end{array})

,

’

otherwiseifv=\mathfrak{p},\mathfrak{p}

.

|q , \pi_{\mathfrak{p}} is a prime element of \mathfrak{p} ,

We note that f|\eta_{q,\chi}^{(c)} is independent of a choice of \pi_{\mathfrak{p}} . However it may
depend on \delta . So, we sometimes use an operator W_{q,\chi}^{(c)} putting f|W_{q,\chi}^{(c)}=

\chi(\delta_{q})f|\eta_{q,\chi}^{(c)} . To simplify notations, if we write W_{a,\chi}^{(c)} , we understand that a|c

and W_{a,\chi}^{(c)}=W_{q,\chi}^{(c)} with q=\prod_{\mathfrak{p}|a}\mathfrak{p}^{ord_{\mathfrak{p}}c} and a suitable Hecke character \chi .
Moreover we omit (c) depending on the context.

Remark 2.3 Let \chi be a Hecke character of the conductor 0_{F} . Then

(f|\eta_{0_{F},\chi}^{(c)})(x)=(f|R_{\overline{\chi}})(x)=\overline{\chi}(\det(x))f(x) .

Lemma 2.4 Let q be an integral ideal such that q|c and (q, cq^{-1})=1 . For
an integral ideal m such that (m, q)=1 , we have the following diagram:

S_{k}(c, \psi)
\underline{\overline{\chi}^{*}(m)T_{\acute{c}}(m)}

S_{k}(c, \psi)

\eta_{q,\chi}^{(c)}\downarrow \downarrow\eta_{q,\chi}^{(c)} (2.4)

S_{k}(c, \psi\overline{\chi}^{2})

arrow T_{\acute{c}}(m)
S_{k}(c, \psi\overline{\chi}^{2}) .

This is easily verified. We can prove the following property by a similar
argument as in the proof of [3], Theorem 4.6.16.

Proposition 2.5 Let f be an element of S_{k}(c, \psi) .
(1) f|\eta_{q,\chi}^{(c)}|\eta_{q}^{(c},\frac{)}{\chi}=\psi_{f1}(-1)(\psi\overline{\chi})^{*}(q)f .

(2) f|\eta_{l1,X1}^{(c)}|\eta_{B2,X2}^{(c)}=(\overline{\chi_{1}})^{*}(q_{2})f|\eta_{q_{1}q2,X1X2}^{(c)} if (q_{1}, q_{2})=1 .
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(3) By \eta_{q,\chi}^{(c)} , we have the isomorphisms:

S_{k}^{0}(c, \psi)\simeq S_{k}^{0}(c, \psi-l) , S_{k}^{1}(c, \psi)\simeq S_{k}^{1}(c, \psi-t) .

(4) Let f be a primitive fo7m of S_{k}^{0}(c, \psi) and put f|\eta_{q,\chi}^{(c)}=Ag with
C(0_{F}, g)=1 . Then g is a primitive fom of S_{k}^{0}(c, \psi\overline{\chi}^{2}) and

C(\mathfrak{p}, g)=\{\begin{array}{l}\overline{\chi}^{*}(\mathfrak{p})C(\mathfrak{p},f) if\mathfrak{p}\int q,(\psi\overline{\chi})^{*}(\mathfrak{p})\overline{C(\mathfrak{p},f)} if\mathfrak{p}|q.\end{array} (2.5)

Theorem 2.6 Let f be a primitive form of S_{k}^{0}(c, \psi) , and c_{0} the conductor
of \psi . For a prime ideal \mathfrak{p} dividing c , we have
(1) If ord_{\mathfrak{p}}(c)=ord_{\mathfrak{p}}(c_{0}) , then |C(\mathfrak{p}, f)|=N(\mathfrak{p})^{(k_{0}-1)/2} .
(2) If ord_{\mathfrak{p}}(c)=1 and ord_{\mathfrak{p}}(c_{0})=0 , then C(\mathfrak{p}, f)^{2}=\psi^{*}(\mathfrak{p})N(\mathfrak{p})^{k_{0}-2} .
(3) Otherwise, namely, if ordp(c)\geq 2 and ord_{\mathfrak{p}}(c)\neq ord_{\mathfrak{p}}(c_{0}) , then

C(\mathfrak{p}, f)=0 .

Proof Suppose that ord_{\mathfrak{p}}(c)=1 and ord_{\mathfrak{p}}(c_{0})=0 and \chi is a trivial char-
acter. We see f|\eta_{\mathfrak{p},\chi}^{(c)}=f|b(\mathfrak{p}) . Putting g=f|T_{c}’(\mathfrak{p})+N(\mathfrak{p})^{(k_{0}/2)-1}f|b(\mathfrak{p}) ,
one can see g\in S_{k}(c\mathfrak{p}^{-1}, \psi) . Since f is a primitive form, we can write
g=C(\mathfrak{p}, f)f+N(\mathfrak{p})^{(k_{0}/2)-1}Af . It foiiows that g=0 and C(\mathfrak{p}, f)+

N(\mathfrak{p})^{(k_{0}/2)-1}A=0 . We obtain the result since A^{2}=\psi^{*}(\mathfrak{p}) by the pre-
vious proposition. For other cases, we can also prove by a similar argument
as in the proof of [3], Theorem 4.6.17. \square

In the case that \psi is of finite order, similar results are given in [1] and
[2]. We can obtain the following corollary by a similar argument as in the
proof of [3], Corollary 4.6.18.

Corollary 2.7 Under the same notation and assumptions of above, we
have
(1) If ord_{\mathfrak{p}}(c)=ord_{\mathfrak{p}}(co) , then f|W_{\mathfrak{p},\chi}=Ag where

A=\chi_{\mathfrak{p}}(-1)(\psi\overline{\chi})^{*}(\mathfrak{p}^{e})N(\mathfrak{p}^{e})^{(k_{0}-2)/2}\mathfrak{g}_{\mathfrak{p}}(\chi)C(\mathfrak{p}, f)^{-e} ,

with a p rimitive form g of S_{k}^{0}(c, \psi\overline{\chi}^{2}) and e=ordp(c) .
(2) If ordp(c)=1 and ord_{\mathfrak{p}}(c_{0})=0 , then f|W_{\mathfrak{p},1}=Af where

A=-N(\mathfrak{p})^{1-k_{0}/2}C(\mathfrak{p}, f) .

We note that f|W_{\mathfrak{p},1}=Af implies C(\mathfrak{p}, f)=\psi^{*}(\mathfrak{p})\overline{C(\mathfrak{p},f)} by PropO-
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sition 2.5. We conclude this section by stating kinds of multiplicity one
theorem. They are proved by similar arguments as in the proof of [3],
Corollary 4.6.20 and Corollary 4.6.22. See also [4].

Theorem 2.8 Let f be a nonzero element of S_{k}(c, \psi) . If f|T_{c}’(\mathfrak{n})=C(\mathfrak{n})f

for all integral ideal \mathfrak{n} prime to c , then there uniquely exist a divisor a of
c and a primitive form g\in S_{k}^{0}(a, \psi) such that g|T_{a}’(\mathfrak{n})=C(\mathfrak{n})g for all \mathfrak{n}

prime to c . Moreover f\in\langle g|B_{q}|qa|c\rangle .

Theorem 2.9 Let f be an element of S_{k}(c, \psi) with C(0_{F}, f)=1 , and put
f|\eta_{c,\psi}^{(c)}=c\cdot g , C(0_{F}, g)=1 . Then f is a primitive fom of S_{k}^{0}(c, \psi) if and

only if L(s;f) and L(s;f|\eta_{c,\psi}^{(c)}) have the following Euler products:

L(s; f)=\prod_{\mathfrak{p}}(1-C(\mathfrak{p}, f)N(\mathfrak{p})^{-s}+\psi^{(c)}(\mathfrak{p})N(\mathfrak{p})^{k_{0}-1-2s})^{-1}
,

L(s; f|\eta_{c,\psi}^{(c)})=c\prod_{\mathfrak{p}}(1-C(\mathfrak{p}, g)N(\mathfrak{p})^{-s}+\overline{\psi}^{(c)}(\mathfrak{p})N(\mathfrak{p})^{k_{0}-1-2s})^{-1}
,

where \mathfrak{p}mns over all prime ideals of F .

Here L(s; f_{1})=\sum_{\mathfrak{n}}C(\mathfrak{n}, f_{1})N(\mathfrak{n})^{-s} for a form f_{1} .

3. The twisted newform

Let f be a primitive form of S_{k}^{0}(c, \psi) . We know that a twisted form
f|R_{\chi} belongs to S_{k}(a, \psi\chi^{2}) where a is an integral ideal as in Lemma 2.2. In
this section, we consider whether it is primitive or not.

Theorem 3.1 Let \chi be a Hecke character of the conductor 0_{F} and fa
primitive form of S_{k}^{0}(c, \psi) . Then f|R_{\chi} is a primitive form of S_{k}^{0}(c, \psi\chi^{2}) .

Proof Put g=f|R_{\chi} . Since

g(x)=\chi(\det(x))f(x) , g|\eta_{c,\psi\chi^{2}}^{(c)}=\chi^{*}(c)f|\eta_{c,\psi}^{(c)}|R_{\chi} .

It follows from Theorem 2.9 that g is primitive. \square

Theorem 3.2 Let \chi be a Hecke character of the conductor \mathfrak{p}^{\alpha} , f a pr\dot{v}m-

itive form of S_{k}^{0}(c, \psi) and c_{0} (resp. b) the conductor of \psi (resp. \psi\chi ) . Sup-
pose e=ord_{\mathfrak{p}}(c)=ord_{\mathfrak{p}}(c_{0}) and put t=ord_{\mathfrak{p}}(b) . If t=0 except for \alpha=0 ,
then f|R_{\chi}=A^{-1}\{(f|W_{\mathfrak{p},\overline{\chi}})-(f|W_{\mathfrak{p},\overline{\chi}}|T(p)|B_{\mathfrak{p}})\} with A as in Corollary 2.7.
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If t\neq 0 , then f|R_{\chi} is a primitive form of S_{k}^{0}(a, \psi\chi^{2}) , where a=c\mathfrak{p}^{t+\alpha-e}

{which is the same level as in Lemma 2.2). Moreover if \alpha\geq e , then

f|R_{\chi}|W_{\mathfrak{p},\varphi}

=( \overline{\varphi}\chi)_{\mathfrak{p}}(-1)(\psi\chi^{2}\overline{\varphi})^{*}(\mathfrak{p}^{t})\frac{\mathfrak{g}_{\mathfrak{p}}(\varphi\overline{\chi})}{\mathfrak{g}_{\mathfrak{p}}(\overline{\chi})} \frac{C(\mathfrak{p}^{\alpha-t},f)}{N(\mathfrak{p}^{\alpha-t})^{(k_{0}/2)-1}}f|R_{\overline{\varphi}\chi} , (3.1)

and if \alpha<e , then

f|R_{\chi}|W_{\mathfrak{p},\varphi}

=( \overline{\varphi}\chi)_{\mathfrak{p}}(-1)(\psi\chi^{2}\overline{\varphi})^{*}(\mathfrak{p}^{e})\frac{\mathfrak{g}_{\mathfrak{p}}(\varphi\overline{\chi})}{\mathfrak{g}_{\mathfrak{p}}(\overline{\chi})} \frac{\overline{C(\mathfrak{p}^{e-\alpha},f)}}{N(\mathfrak{p}^{e-\alpha})^{k_{0}/2}}f|R_{\overline{\varphi}\chi} . (3.2)

Proof. The first assersion is proved by Lemma 2.2, Proposition 2.5 and
Corollary 2.7. We shall prove (3.1). We fix a complete set A (resp. B , C)
of representatives of (0_{\mathfrak{p}}/(\pi_{\mathfrak{p}}^{\alpha}))^{\cross} (resp. (0_{\mathfrak{p}}/(\pi_{\mathfrak{p}}^{t}))^{\cross} , 0_{\mathfrak{p}}/(\pi_{\mathfrak{p}}^{\alpha-t}) ). For each v\in

A, take (v’, m)\in B\cross C such that l+(v’ +m\pi_{P}^{t} ) v\equiv 0 mod (\pi_{\mathfrak{p}}^{\alpha}) . Then
v\mapsto(v’, m) gives a bijection of A onto B\cross C . Putting u=(\pi_{\mathfrak{p}}^{\alpha}\delta_{\mathfrak{p}})^{-1} and
u’=(\pi_{\mathfrak{p}}^{t}\delta_{\mathfrak{p}})^{-1} , we have

(\begin{array}{ll}1 uv\delta_{\mathfrak{p}}0 1\end{array})(\begin{array}{ll}0 -1\pi_{\mathfrak{p}}^{t+\alpha} 0\end{array}) \{ (\begin{array}{ll}\pi_{\mathfrak{p}}^{t} 00 \pi_{\mathfrak{p}}^{t}\end{array})(\begin{array}{ll}1 m0 \pi_{\mathfrak{p}}^{\alpha-t}\end{array})(\begin{array}{ll}1 u’v’\delta_{\mathfrak{p}}0 1\end{array}) \}^{-1}

=(\begin{array}{ll}v -\{1+(v’+m\pi_{\mathfrak{p}}^{t})v\}/\pi_{\mathfrak{p}}^{\alpha}\pi_{\mathfrak{p}}^{\alpha} -(v’+m\pi_{\mathfrak{p}}^{t})\end{array}) .

which is in \Gamma_{\mathfrak{p}}(c) . Therefore

f|R_{\chi}|W_{\mathfrak{p},\varphi}(x)

= \varphi(\delta_{P})\overline{\varphi}(\det(x))\frac{\chi(\det(x)\pi_{\mathfrak{p}}^{t+\alpha})}{\mathfrak{g}_{\mathfrak{p}}(\overline{\chi})}

\cross\sum_{v\in A}\chi_{\mathfrak{p}}(uv)(f| (\begin{array}{ll}1 uv\delta_{\mathfrak{p}}0 1\end{array})(\begin{array}{ll}0 -1\pi_{\mathfrak{p}}^{t+\alpha} 0\end{array}) )(x)

= \varphi(\delta_{\mathfrak{p}})\overline{\varphi}(\det(x))\frac{\chi(\det(x)\pi_{\mathfrak{p}}^{t+\alpha})}{\mathfrak{g}_{\mathfrak{p}}(\overline{\chi})}

\cross\sum_{v\in A}\chi_{\mathfrak{p}}(uv)(\psi_{\mathfrak{p}}(v\pi_{\mathfrak{p}}^{t})f|
(\begin{array}{ll}1 m0 \pi_{\mathfrak{p}}^{\alpha-t}\end{array})(\begin{array}{ll}1 u’v’\delta_{p}0 1\end{array}) )(x)
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= \frac{\overline\varphi\chi(\det(x))}{\mathfrak{g}_{\mathfrak{p}}(\overline{\chi})}

\cross\sum_{v\in A}\varphi(\delta_{\mathfrak{p}})\chi(\pi_{\mathfrak{p}}^{t+\alpha})\chi_{\mathfrak{p}}(uv)\psi_{\mathfrak{p}}(v)\psi(\pi_{\mathfrak{p}}^{t})(f|
(\begin{array}{ll}1 m0 \pi_{\theta}^{\alpha-t}\end{array})(\begin{array}{ll}1 u^{/}v’\delta_{\mathfrak{p}}0 1\end{array}) )(x) .

Here we have

\varphi(\delta_{\mathfrak{p}})\chi(\pi_{\mathfrak{p}}^{t+\alpha})\chi_{\mathfrak{p}}(uv)\psi_{\mathfrak{p}}(v)\psi(\pi_{\mathfrak{p}}^{t})(\varphi\overline{\chi})_{\mathfrak{p}}(u’v’)

=(\psi\chi^{2}\overline{\varphi})^{*}(\mathfrak{p}^{t})(\varphi\overline{\chi})_{\mathfrak{p}}(u’v’\pi_{\mathfrak{p}}^{t}\delta_{\mathfrak{p}})(\chi\psi)_{\mathfrak{p}}(uv\pi_{\mathfrak{p}}^{\alpha}\delta_{P})

=(\psi\chi^{2}\overline{\varphi})^{*}(\mathfrak{p}^{t})(\varphi\overline{\chi})_{\mathfrak{p}}(v’)(\chi\psi)_{\mathfrak{p}}(v)

=(\psi\chi^{2}\overline{\varphi})^{*}(\mathfrak{p}^{t})(\varphi\overline{\chi})_{\mathfrak{p}}(v’)\overline{(\chi\psi)}_{\mathfrak{p}}(-(v’+m\pi_{\mathfrak{p}}^{t}))

=(\psi\chi^{2}\overline{\varphi})^{*}(\mathfrak{p}^{t})(\varphi\overline{\chi})_{\mathfrak{p}}(v’)\overline{(\chi\psi)}_{\mathfrak{p}}(-v’)

=(\psi\chi^{2}\overline{\varphi})^{*}(\mathfrak{p}^{t})(\varphi\overline{\chi})_{\mathfrak{p}}(-1)(\overline{\psi\chi^{2}}\varphi)_{\mathfrak{p}}(-v’)

=(\psi\chi^{2}\overline{\varphi})^{*}(\mathfrak{p}^{t})(\varphi\overline{\chi})_{\mathfrak{p}}(-1)

and

\sum_{m\in C}f|

(\begin{array}{ll}1 m0 \pi_{\mathfrak{p}}^{\alpha-t}\end{array})=\frac{1}{N(\mathfrak{p}^{\alpha-t})^{(k_{0}/2)-1}}f|T_{c}’(\mathfrak{p}^{\alpha-t})

= \frac{C(\mathfrak{p}^{\alpha-t},f)}{N(\mathfrak{p}^{\alpha-t})^{(k_{0}/2)-1}}f .

So, we obtain (3.1). It follows from Proposition 2.5 and Theorem 2.9
that f|R_{\chi} is a primitive form of S_{k}^{0}(a, \psi\chi^{2}) since f|R_{\overline{\varphi}\chi}|W_{c\mathfrak{p}^{-e},\psi\chi^{2}\overline{\varphi}}=C

f|W_{c\mathfrak{p}^{-e},\psi\chi^{2}\overline{\varphi}}|R_{\overline{\varphi}\chi} for some constant C. For another case, we can prove by
a similar argument. \square

Since the proof of (3.1) works even if ord_{\mathfrak{p}}(c)>ord_{\mathfrak{p}}(c_{0}) , we have also

Theorem 3.3 Let \chi be a Hecke character of the conductor \mathfrak{p}^{\alpha} , f a prim-
itive form of S_{k}^{0}(c, \psi) and c_{0} the conductor of \psi . Suppose e=ordp(c)>
ord_{\mathfrak{p}}(c_{0}) . If \alpha\geq e , then f|R_{\chi} is a primitive form of S_{k}^{0}(a, \psi\chi^{2}) , where
a=c\mathfrak{p}^{2\alpha-e} . Moreover

f|R_{\chi}|W_{\mathfrak{p},\varphi}=(\overline{\varphi}\chi)_{P}(-1)(\psi\chi^{2}\overline{\varphi})^{*}(\mathfrak{p}^{\alpha})\frac{\mathfrak{g}_{\mathfrak{p}}(\varphi\overline{\chi})}{\mathfrak{g}_{P}(\overline{\chi})}f|R_{\overline{\varphi}\chi} . (3.3)

Theorem 3.4 Let \chi be a Hecke character of the conductor \mathfrak{p}^{\alpha} , f a p_{7}\dot{\nu}m-

itive form of S_{k}^{0}(c, \psi) and c_{0} (resp. b) the conductor of \psi (resp. \psi\chi ) . Sup-
pose e=ord_{\mathfrak{p}}(c)>ord_{\mathfrak{p}}(c_{0}) and put t=ord_{\mathfrak{p}}(b) . If e\geq 2 , t+\alpha<e , f|R_{\chi}
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is a primitive form of S_{k}^{0}(c, \psi\chi^{2}) .

Proof. Our assumption implies that f|R_{\chi}\in S_{k}(c, \psi\chi^{2}) by Lemma 2.2 and
C(\mathfrak{p}, f)=0 by Theorem 2.6. If t=0, by Lemma 2.2 and Proposition 2.5,
we can write f|\eta_{\mathfrak{p}^{e},\overline{\chi}}^{(c)}=Af|R_{\chi} and f|R_{\chi} is primitive. Now we suppose t\neq

0 . If f|R_{\chi} is not primitive, by Theorem 2.8, we can write f|R_{\chi}=g_{1}+

g_{2}|B_{\mathfrak{p}} with g_{1} , g_{2}\in S_{k}(c\mathfrak{p}^{-1}, \psi\chi^{2}) . Thus f|R_{\chi}|R_{\overline{\chi}}=g_{1}|R_{\overline{\chi}} . However f=
f|R_{\chi}|R_{\overline{\chi}} and g_{1}|R_{\overline{\chi}}\in S_{k}(c\mathfrak{p}^{-1}, \psi) by Lemma 2.2 and our assumption. This
is contradiction. \square

4. Proof of main theorem

Let f be a primitive form of S_{k}^{0}(c, \psi) and c_{0} the conductor of \psi . We
fix a prime ideal \mathfrak{p} of F and put e=ord_{\mathfrak{p}}(c) and n=ord_{\mathfrak{p}}(c_{0}) . We fix a
Hecke character \varphi such that the conductor divide \mathfrak{p}^{e} (or \mathfrak{p}^{n} ) and \varphi_{\mathfrak{p}}=\psi_{\mathfrak{p}}

on (0_{F}/\mathfrak{p}^{e})^{\cross} (or (0_{F}/\mathfrak{p}^{n})^{\cross} ). We assume e\geq 2 , e>n .
We say that a Hecke character \chi satisfies the condition (V) if \chi satisfies

that t+\alpha<e where \mathfrak{p}^{\alpha} (resp. \mathfrak{p}^{t} ) is the conductor of \chi (resp. \varphi\chi). For such
\chi , we put

f|V_{\chi}=f|R_{\chi}|\eta_{\mathfrak{p}^{e},\varphi\chi^{2}}^{(c)}|R_{\varphi\chi} .

This is well-defined and f|V_{\chi}=A_{\chi}f for some constant A_{\chi} by Theorem 3.4,
Lemma 2.2 and Proposition 2.5. Especially for A_{id} , we have f|\eta_{\mathfrak{p}^{e},\varphi}^{(c)}=

A_{id}f|R_{\overline{\varphi}}. We note that Corollary 2.7 tells nothing about A_{id} .

Lemma 4.1 Under the above notation, let \chi_{1} (resp. \chi_{2} ) be a Hecke char-
acter of the conductor \mathfrak{p}^{i} (resp. \mathfrak{p}^{j} ) and p^{l} the conductor of \chi_{1}\chi_{2}\varphi . If e-
i-l \geq\max\{i, l, n\} , then we have

f|V_{\chi_{1}}|V_{X2}=f|V_{id}|V_{X1X2} .

Proof. For u=i , \max\{i, n\} , \max\{i, l, n\} , \max\{i, l\} , \max\{l, n\} , and l , \mathfrak{p}^{u}

is divisible by the conductor of \chi_{1} , \chi_{1}\varphi , \chi_{2} , \chi_{2}\varphi , \chi_{1}\chi_{2} , and \chi_{1}\chi_{2}\varphi re-
spectively. Therefore \chi_{1} , \chi_{2} and \chi_{1}\chi_{2} satisfy the condition (V). We shall
show

f|R_{X1}|\eta_{\mathfrak{p}^{e},\varphi\chi_{1}^{2}}^{(c)}|R_{\varphi\chi 1X2}|\eta_{\mathfrak{p}^{e},\varphi\chi_{2}^{2}}^{(c)}=f|\eta_{\mathfrak{p}^{e},\varphi}^{(c)}|R_{\varphi\chi 1X2}|\eta_{\mathfrak{p}^{e},\varphi(x1x_{2})^{2}}^{(c)}|R_{X1} .

We put u=(\pi_{\mathfrak{p}}^{l}\delta_{\mathfrak{p}})^{-1} and u’=(\pi_{\mathfrak{p}}^{i}\delta_{\mathfrak{p}})^{-1} and fix a complete set A (resp. A’ )
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of all representatives of (0_{\mathfrak{p}}/(\pi_{\mathfrak{p}}^{l}))^{\cross} (resp. (0_{\mathfrak{p}}/(\pi_{\mathfrak{p}}^{i}))^{\cross} ). We have

f|R_{X1}|\eta_{\mathfrak{p}^{e},\varphi\chi_{1}^{2}}^{(c)}|R_{\varphi\chi 1X2}|\eta_{\mathfrak{p}^{e},\varphi\chi_{2}^{2}}^{(c)}(x)

= \frac{\overline{\varphi\chi_{2}}(\det(x))\chi_{1}\chi_{2}(\pi_{\mathfrak{p}}^{e})}{\mathfrak{g}_{\mathfrak{p}}(\overline{\varphi\chi_{1}\chi_{2}})\mathfrak{g}_{\mathfrak{p}}(\overline{\chi_{1}})}

\cross

v’ \in A\sum_{v\in A},,(\varphi\chi_{1}\chi_{2})_{\mathfrak{p}}(uv)(\chi_{1})_{\mathfrak{p}}(u’v’)(f|a’(v’)b(\mathfrak{p}^{e})a(v)b(\mathfrak{p}^{e}))(x)

and

f|\eta_{\mathfrak{p}^{e},\varphi}^{(c)}|R_{\varphi\chi 1X2}|\eta_{\mathfrak{p}^{e},\varphi(\chi_{1}\chi_{2})^{2}}^{(c)}|R_{X1}(x)

= \frac{\overline{\varphi\chi_{2}}(\det(x))\chi_{1}\chi_{2}(\pi_{\mathfrak{p}}^{e})}{\mathfrak{g}_{\mathfrak{p}}(\overline{\varphi\chi_{1}\chi_{2}})\mathfrak{g}_{\mathfrak{p}}(\overline{\chi_{1}})}

\cross

v’ \in A\sum_{v\in A},,(\varphi\chi_{1}\chi_{2})_{\mathfrak{p}}(uv)(\chi_{1})_{\mathfrak{p}}(u’v’)(f|b(\mathfrak{p}^{e})a(v)b(\mathfrak{p}^{e})a’(v’))(x)

where

a(v)=(\begin{array}{ll}1 uv\delta_{\mathfrak{p}}0 1\end{array}) , a’(v’)=(\begin{array}{ll}1 u’v’\delta_{\mathfrak{p}}0 1\end{array})

We see that

a’(v’)b(\mathfrak{p}^{e})a(v)b(\mathfrak{p}^{e})(b(\mathfrak{p}^{e})a(v)b(\mathfrak{p}^{e})a’(v’))^{-1}

=(\begin{array}{lll}(1- vv’\pi_{\mathfrak{p}}^{e-i-l})^{2}+vv’\pi_{\mathfrak{p}}^{e-i-l} vv^{\prime 2}\pi_{\mathfrak{p}}^{e-2i-l} v^{2}v,\pi_{\mathfrak{p}}^{2e-i-2l} 1+vv,\pi_{\mathfrak{p}}^{e-i-l}\end{array}) ,

which is in \Gamma_{\mathfrak{p}}(c) . Since (1-vv’\pi_{\mathfrak{p}}^{e-i-l})^{2}+vv’\pi_{\mathfrak{p}}^{e-i-l}\equiv 1 mod (\pi_{\mathfrak{p}}^{n}) ,

f|a’(v’)b(\mathfrak{p}^{e})a(v)b(\mathfrak{p}^{e})=f|b(\mathfrak{p}^{e})a(v)b(\mathfrak{p}^{e})a’(v’) .

It follows that

f|R_{X1}|\eta_{\mathfrak{p}^{e},\varphi\chi_{1}^{2}}^{(c)}|R_{\varphi\chi 1X2}|\eta_{\mathfrak{p}^{e},\varphi\chi_{2}^{2}}^{(c)}=f|\eta_{\mathfrak{p}^{e},\varphi}^{(c)}|R_{\varphi\chi 1X2}|\eta_{\mathfrak{p}^{e},\varphi(\chi_{1}\chi_{2})^{2}}^{(c)}|R_{X1} .

\square

Lemma 4.2 For Hecke characters \chi_{1} and \chi_{2} , we suppose that \chi_{1} satisfies
the condition (V) and the conductor of \chi_{2} is 0_{F} . Then we have for an
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element g of S_{k}^{0}(c, \psi) ,

g|V_{X1X2}=\chi_{2}(*\mathfrak{p}^{e})g|V_{X1} .

Proof. We see that

g|V_{X1X2}=g|R_{X1}|R_{X2}|\eta_{\mathfrak{p}^{e},\varphi\chi 1^{2}X2^{2}}^{(c)}|R_{\chi_{2}}|R_{\varphi\chi}

=\chi_{2}^{*}(\mathfrak{p}^{e})g|R_{X1}|\eta_{\mathfrak{p}^{e},\varphi\chi 1^{2}X2}^{(c)}|R_{X2}|R_{\varphi\chi}

=\chi_{2}^{*}(\mathfrak{p}^{e})g|V_{X1} .

by Remark 2.3 and Proposition 2.5. \square

Now we prove Theorem 1.1 in more general case.

Theorem 4.3 Let f be a primitive form of S_{k}^{0}(c, \psi) . If 3n\leq e , (A_{id})^{2\alpha}=

(\psi^{\alpha})^{*}(\mathfrak{p}^{e}) , where \alpha is an order of \varphi_{\mathfrak{p}} as the character of (0_{F}/\mathfrak{p}^{n})^{\cross} .

Proof. We see by above lemma,

f|(V_{\overline{\varphi}})^{\alpha}=f|(V_{id})^{\alpha-1}|V-\alpha=(\overline{\varphi}^{\alpha})^{*}(\mathfrak{p}^{e})f|(V_{id})^{\alpha} .

Hence

f|(V_{id})^{2\alpha}=(\varphi^{\alpha})^{*}(\mathfrak{p}^{e})f|(V_{\overline{\varphi}})^{\alpha}|(V_{id})^{\alpha}=(\varphi^{\alpha})^{*}(\mathfrak{p}^{e})f|(V_{id}V_{\overline{\varphi}})^{\alpha}

=(\varphi^{\alpha})^{*}(\mathfrak{p}^{e})f|(\eta_{\mathfrak{p}^{e},\varphi}^{(c)}\eta_{\mathfrak{p}^{e},\overline{\varphi}}^{(c)})^{\alpha}=(\varphi^{\alpha})^{*}(\mathfrak{p}^{e})
\{\psi_{\mathfrak{p}}(-1)(\psi\overline{\varphi})^{*}(\mathfrak{p}^{e})\}^{\alpha}f

=(\psi^{\alpha})^{*}(\mathfrak{p}^{e})f

by Proposition 2.5. Therefore we obtain the result. \square
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