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Abstract. For a prime p, we denote by Bn the cyclic group of order pn. Let φ

be a faithful irreducible character of Bn, where p is an odd prime. We study the

p-group G containing Bn such that the induced character φG is also irreducible. Set

[NG(Bn) : Bn] = pm and [G : Bn] = pM . The purpose of this paper is to determine

the structure of G under the hypothesis [NG(Bn) : Bn]2d ≤ pn, where d is the smallest

integer not less than M/m.

Key words: p-group, extension, irreducible induced character, faithful irreducible char-

acter.

1. Introduction

Let G be a finite group. We denote by Irr(G) the set of complex ir-
reducible characters of G and by FIrr(G) (⊂ Irr(G)) the set of faithful
irreducible characters of G.

Let p be a prime. For a non-negative integer n, we denote by Bn the
cyclic group of order pn. A finite group G is called an M -group, if every
χ ∈ Irr(G) is induced from a linear character of a subgroup of G.

It is well-known that every p-group is an M -group. Hence, when G is
a p-group, for any χ ∈ Irr(G), there exists a subgroup H of G and a linear
character φ of H such that φG = χ. If we set N = Ker φ, then N ¢ H and
φ is a faithful irreducible character of H/N ∼= Bn, for some non-negative
integer n. In this paper, we will consider the case when N = 1, that is, φ is
a faithful linear character of H ∼= Bn.

We consider the following:

Problem 1 Let p be an odd prime, and φ be a faithful irreducible character
of Bn. Determine the p-group G such that Bn ⊂ G and the induced character
φG is also irreducible.

Since all the faithful irreducible characters of Bn are algebraically con-
jugate to each other, the irreducibility of φG (φ ∈ FIrr(Bn)) is independent
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of the choice of φ, and depends only on n.
On the other hand, when p = 2, Iida and Yamada ([4]) proved the

following interesting result:
Let Q denote the rational field. Let G be a 2-group and χ a complex

irreducible character of G. Then there exist subgroups H ¤ N in G and
a complex irreducible character φ of H such that χ = φG, Q(χ) = Q(φ),
N = Ker φ and

H/N ∼= Qn (n ≥ 2), or Dn (n ≥ 2), or SDn (n ≥ 3), or Bn (n ≥ 0).

Here, Qn, Dn and SDn denote the generalized quaternion group, the dihe-
dral group of order 2n+1 (n ≥ 2) and the semidihedral group of order 2n+1

(n ≥ 3), respectively, and Q(χ) = Q(χ(g), g ∈ G).
Further, they considered the following:

Problem 2 Let φ be a faithful irreducible character of H, where H = Qn

or Dn or SDn. Determine the 2-group G such that H ⊂ G and the induced
character φG is also irreducible.

Iida and Yamada ([3]) solved this problem in the case when [G : H] = 2
or 4 and we have solved Problem 2 completely ([6]). In the paper, we showed
that

G = NG(H) or NG(NG(H)),

for all H = Qn or Dn or SDn, if G satisfies the conditions of Problem
2. Here, as usual, NG(H) and NG(NG(H)) are the normalizers of H and
NG(H) in G, respectively. This means that, if we define subgroups of G by

M1 = NG(H), and Mi+1 = NG(Mi), for i ≥ 1,

then

H ⊆ M1 ⊆ M2 = M3 = M4 = · · · = G,

for all H = Qn or Dn or SDn.
In this paper, we consider Problem 1. We also define subgroups of G by

N1 = NG(Bn), and Ni+1 = NG(Ni), for i ≥ 1.
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Concerning Problem 1, N1 has been determined by Iida ([2]), and N2 =
NG(NG(Bn)) has also been determined under the hypothesis [N1 : Bn]4 ≤
pn ([8]). For other results, see also [5] and [7].

The purpose of this article is to determine Nd, d = 1, 2, . . . under the
hypothesis [N1 : Bn]2d ≤ pn.

Remark 1 When p = 2, there are many possible 2-groups which satisfy
the condition of Problem 1 (e.g. Qn, Dn and SDn), and it is difficult to
determine them completely.

Remark 2 In this paper, we will say that “G is the extension group of
N ,” when G contains N as a subgroup.

Throughout this paper, Z and N denote the set of rational integers and
the natural numbers, respectively.

2. Statements of the results

For the rest of this paper, we assume that p is an odd prime.
First, we introduce the sequence of “extension groups”:

(0) G(n,m, 0) = 〈a〉 = Bn with

apn

= 1.

(i) G(n,m, 1) = 〈a, b1〉 with

apn

= bpm

1 = 1, b1ab−1
1 = a1+pn−m

, (1 ≤ m ≤ n− 1).

(ii) G(n,m, 2) = 〈a, b1, b2〉 with

apn

= bpm

1 = 1, b1ab−1
1 = a1+pn−m

, b2ab−1
2 = a1+pn−2m

b1,

bpm

2 = b1, b2b1b
−1
2 = b1 (2m ≤ n− 1).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) G(n,m, d) = 〈a, b1, b2, . . . bd−1, bd〉 with

apn

= bpm

1 = 1, b1ab−1
1 = a1+pn−m

, biab−1
i = a1+pn−im

bi−1,

bpm

i = bi−1, bibi−1b
−1
i = bi−1, 2 ≤ i ≤ d, (dm ≤ n− 1).
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(d− 1, + t) G(n,m, d− 1, + t) = 〈a, b1, b2, . . . bd−1, b〉 with

apn

= bpm

1 = 1, b1ab−1
1 = a1+pn−m

, biab−1
i = a1+pn−im

bi−1,

bpm

i = bi−1, bibi−1b
−1
i = bi−1, 2 ≤ i ≤ d− 1,

bab−1 = a1+pn−(d−1)m−t

bpm−t

d−1 , bbd−1b
−1 = bd−1, bpt

= bd−1,

(1 ≤ t ≤ m− 1, (d− 1)m + t ≤ n− 1).

By using Proposition 1 below ,we can show that G(n,m, d) (respectively
G(n,m, d− 1, + t)) is an extension group of G(n,m, d− 1) for d ≥ 1, when
2dm ≤ n:

Proposition 1 Let N be a finite group such that G¤N and G/N = 〈uN〉
is a cyclic group of order m. Then um = c ∈ N . If we put σ(x) = uxu−1,
x ∈ N , then σ ∈ Aut(N) and (i) σm(x) = cxc−1, (x ∈ N) (ii) σ(c) = c.

Conversely, if σ ∈ Aut(N) and c ∈ N satisfy (i) and (ii), then there
exists one and only one extension group G of N such that G¤N and G/N =
〈uN〉 is a cyclic group of order m and σ(x) = uxu−1 (x ∈ N) and um = c.

Proof. For instance, see Zassenhaus ([9, III, Section 7]). ¤

The structure of N1 and N2 have been determined as follows:

(1) N1 = NG(Bn) ∼= G(n,m, 1) for some m ∈ N, 1 ≤ m ≤ n− 1 ([2]).
(2) N2 = NG(NG(Bn)) ∼= G(n,m, 2) for some m ∈ N, when 4m ≤ n and

2m ≤ M , where [N1 : Bn] = pm, and [G : Bn] = pM ([8]).

To state the theorem, we define the map [ ]0 : Q −→ Z, by the following:
[x]0 = x if x ∈ Z, and [x]0 = n + 1 if n < x < n + 1, for some n ∈ Z.

Our main theorem is the following:

Theorem Let p be an odd prime, and G be a p-group which contains
Bn = 〈a〉. Set [N1 : Bn] = pm, [G : Bn] = pM and d = [M/m]0.

Suppose that φG ∈ Irr(G) for any φ ∈ FIrr(Bn). Further, suppose that
2md ≤ n. Then, G = Nd, and the following holds:

(1) G ∼= G(n,m, d) if M = md.
(2) G ∼= G(n,m, d− 1,+t) if M < md, where t = M − (d− 1)m.
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To show the theorem, we prove Therem A,

Theorem A Let p be an odd prime, and G be a p-group which contains
Bn = 〈a〉. Suppose that φG ∈ Irr(G) for any φ ∈ FIrr(Bn).

Set [N1 : Bn] = pm and [G : Bn] = pM . Then , for any positive integer
d satisfying, 2md ≤ n, and md ≤ M , we have Nd

∼= G(n,m, d).

More precisely, we can show the following

Theorem B Under the same assumption and the notation as in Theorem
A, we can find the elements bi ∈ G, 1 ≤ i ≤ d, and the integer sd, (p, sd) = 1,
such that ad = asd and bi generate Ni, that is, Ni = 〈ad, b1, b2, . . . , bi〉 =
〈ad, bi〉 (= 〈a, bi〉), 1 ≤ i ≤ d, and the following relations hold

apn

d = bpm

1 = 1, b1adb
−1
1 = a1+pn−m

d , biadb
−1
i = a1+pn−im

d bi−1,

bpm

i = bi−1, bibi−1b
−1
i = bi−1, (2 ≤ i ≤ d).

Remark 3 Conversely, in Corollary 1, we will see that the groups
G(n,m, d) satisfy the condition (EX, B), which is defined in Section 3 of
this paper. Hence these groups satisfy the conditions of Problem 1.

3. Some preleminary results

First, we state some results concerning the criterion for the irreducibil-
ities of induced characters.

We denote by ζ = ζpn a primitive pnth root of unity. It is known that,
for Bn = 〈a〉, there are pn irreducible characters φν (1 ≤ ν ≤ pn) of Bn:

φν(ai) = ζνi, (1 ≤ i ≤ pn).

The irreducible character φν is faithful if and only if (ν, p) = 1.
It is well-known that

Aut〈a〉 ∼=
(
Z/pnZ

)∗ ∼= C∗ ×Bn−1

where (Z/pnZ)∗ is the unit group of the factor ring Z/pnZ and C∗ is the
cyclic group of order p− 1. Further, Bn−1 is generated by the element 1+ p

in Z/pnZ.
First, we state the following result of Shoda (cf. [1, p. 329]):
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Proposition 2 Let G be a group and H be a subgroup of G. Let φ be a
linear character of H. Then the induced character φG of G is irreducible
if and only if, for each x ∈ G − H = {g ∈ G | g /∈ H}, there exists
h ∈ xHx−1 ∩H such that φ(h) 6= φ(x−1hx). (Note that, when φ is faithful,
the condition φ(h) 6= φ(x−1hx) holds if and only if h 6= x−1hx.)

Using this result, we have the following:

Proposition 3 Let 〈a〉 = Bn ⊂ G, and φ be a faithful irreducible character
of Bn. Then the following conditions are equivalent :

(1) φG is irreducible,
(2) For each g ∈ G−Bn, there exists h ∈ 〈a〉∩g〈a〉g−1 such that g−1hg 6= h.

Definition 1 When the condition (2) of Proposition 3 holds, we say that
G satisfies (EX, B).

Let H be a group. We denote by |H| the order of H. For a normal
subgroup N of H, and any g, h ∈ H, we write

g ≡ h (mod N)

when g−1h ∈ N . For an element g ∈ H we denote by |g| the order of g.

For the rest of this section, we will show some equalities of the elements
in G(n,m, d).

In G(n,m, 1), the following holds

Lemma 1 ([8, Lemma 1]) Suppose that n ≥ 2m, then the following equal-
ities hold for any i, j ∈ Z and l ∈ N.

( i ) abps

1 ≡ bps

1 a (mod 〈apn−m+s〉), (0 ≤ s ≤ m− 1).
( ii ) b1a

pm

b−1
1 = apm

.

(iii) bj
1a

ib−j
1 = ai(1+jpn−m).

(iv) (aibj
1)

l = ail+ijpn−m(l(l−1)/2)blj
1 .

( v ) (aibjps

1 )pm−s

= aipm−s

, (0 ≤ s ≤ m− 1).

For d ≥ 2, we can see the following

Lemma 2 Suppose that 2dm ≤ n, then the following assertions hold for
any i, j, s ∈ Z and d ∈ N, 0 ≤ s ≤ m− 1, 2 ≤ d:
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( i ) 〈apn−tm+s〉 × 〈bps

t−1〉 (1 ≤ t ≤ d) and 〈apn−(d+1)m+s〉 · 〈bps

d 〉 (the semidi-
rect product of 〈apn−(d+1)m+s〉 by 〈bps

d 〉) are the normal subgroups of
G(n,m, d), where b0 = 1.

( ii ) (aibj
d)

l ≡ ailbjl
d (mod 〈apn−dm〉 × 〈bd−1〉), for any l ∈ N.

(iii) (aibjps

d )pkm ≡ aipkm

bjpkm+s

d = aipkm

bjps

d−k (mod 〈apn−(d−k)m+s〉 ×
〈bps

d−k−1〉), for any k ∈ Z, 1 ≤ k ≤ d− 1, where b0 = 1.

(iv) (aibjps

d )pdm−s

= aipdm−s

,

( v ) bda
pdm

b−1
d = apdm

,

Proof. We show the lemma by the induction on d.
First, we show the case when d = 2.

( i ) Note that

b1a
pn−2m

b−1
1 = apn−2m

(1)

by Lemma 1 (ii), and by our assumption that 4m ≤ n. Further, since
b2a

pm

b−1
2 = (a1+pn−2m

b1)pm

= a(1+pn−2m)pm

, by Lemma 1 (v), we
have

b2a
pn−lm

b−1
2 ∈ 〈

apn−lm〉
(l = 1, 2, 3), (2)

and

b2a
pn−2m

b−1
2 = a(1+pn−2m)pn−2m

= apn−2m

, (3)

because 4m ≤ n.
Using (1) and (3), we get,

bl
2ab−l

2 = a1+lpn−2m

bl
1 (4)

for any l ∈ N. So,

bjps

2 aib−jps

2 =
(
a1+jpn−2m+s

bjps

1

)i ≡ ai(1+jpn−2m+s)bijps

1

(mod 〈apn−m+s〉), (5)
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for any s ∈ Z, 0 ≤ s ≤ m− 1, by Lemma 1 (i). Using (2) and (5), we
can show (i).

( ii ) follows from the fact that b2ab−1
2 ≡ a (mod 〈apn−2m〉 × 〈b1〉).

(iii) Using (5) repeatedly, we have

(
aibjps

2

)l ≡ ail+ijpn−2m+s{1+2+···+(l−1)}bijps{1+2+···+(l−1)}
1 bljps

2

≡ ail+ijpn−2m+s(l(l−1)/2)b
ijps(l(l−1)/2)
1 bljps

2 (mod 〈apn−m+s〉),

for any l ∈ N, s ∈ Z, 0 ≤ s ≤ m− 1.
In particular, we get

(
aibjps

2

)pm

≡ aipm

bjpm+s

2 = aipm

bjps

1 (mod 〈apn−m+s〉). (6)

This completes the proof of (iii).
(iv) By (6), we can write

(
aibjps

2

)pm

= aipm+xpn−m+s

bjps

1 ,

for some x ∈ Z. So, we have (aibjps

2 )p2m−s

= aip2m−s

, by Lemma 1
(v).

( v ) follows from (iv). This completes the proof of the case when d = 2.

Suppose that the assertions of the lemma hold for any e, 2 ≤ e ≤ d− 1.

( i ) By the induction hypothesis, we have

bda
pl

b−1
d =

(
a1+pn−dm

bd−1

)pl

= a(1+pn−dm)pl

,

for any l, (d− 1)m ≤ l. Since 2dm ≤ n, by our hypothesis, we have

bda
pn−tm+s

b−1
d ∈ 〈

apn−tm+s〉
, (7)

for any t ∈ N, 1 ≤ t ≤ d + 1, and

bda
pn−dm

b−1
d = a(1+pn−dm)pn−dm

= apn−dm

.

By the same calculations as in (4), we get
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bl
dab−l

d = a1+lpn−dm

bl
d−1.

for any l ∈ N.
In particular, we kave

bjps

d ab−jps

d = a1+jpn−dm+s

bjps

d−1.

Since

bjps

d−1ab−jps

d−1 = a1+jpn−(d−1)m+s

bjps

d−2 ≡ a (mod 〈apn−(d−1)m+s〉×〈bps

d−2〉),

for s, j ∈ Z, 0 ≤ s ≤ m− 1, by the induction hypothesis, we have

bjps

d aib−jps

d =
(
a1+jpn−dm+s

bjps

d−1

)i ≡ ai(1+jpn−dm+s)bijps

d−1

(mod 〈apn−(d−1)m+s〉 × 〈bps

d−2〉). (8)

Therefore, we can write

bjps

d aib−jps

d = ai(1+jpn−dm+s)+xpn−(d−1)m+s

bijps

d−1b
yps

d−2,

for some x, y ∈ Z, and so, we have

a−ibjps

d ai ∈ 〈
apn−(d+1)m+s〉 · 〈bps

d

〉
. (9)

By using (7) and (9), we can see that 〈apn−(d+1)m+s〉 · 〈bps

d 〉 is the
normal subgroup of G(n,m, d). For t ≤ d, (i) can be shown by the
induction hypothesis and (7).

( ii ) follows from the fact that bdab−1
d ≡ a (mod 〈apn−dm〉 × 〈bd−1〉).

(iii) Using the equality (8) repeatedly, we have

(
aibjps

d

)l ≡ ail+ijpn−dm+s(l(l−1)/2)b
ijps(l(l−1)/2)
d−1 bljps

d

(mod 〈apn−(d−1)m+s〉 × 〈bps

d−2〉),

for any l ∈ N.
In particular, we have
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(
aibjps

d

)pm

≡ aipm

bjpm+s

d = aipm

bjps

d−1 (mod 〈apn−(d−1)m+s〉 × 〈bps

d−2〉).

So, we can write

(
aibjps

d

)pm

= aipm+xpn−(d−1)m+s

bjps

d−1b
yps

d−2

= aipm+xpn−(d−1)m+s

bjps+ypm+s

d−1 ,

for some x, y ∈ Z.
Then, by the induction hypothesis, we have

(
aibjps

d

)pkm

=
(
aipm+xpn−(d−1)m+s

bjps+ypm+s

d−1

)p(k−1)m

≡ aipkm+xpn−(d−k)m+s

bjps+ypm+s

d−k

≡ aipkm

bjps

d−k (mod 〈apn−(d−k)m+s〉 × 〈bps

d−k−1〉),

for k ∈ Z, 2 ≤ k ≤ d− 1. This completes the proof of (iii).
(iv) In particular, we have

(
aibjps

d

)p(d−1)m

≡ aip(d−1)m

bjps

1 (mod 〈apn−m+s〉).

So, we can write

(
aibjps

d

)p(d−1)m

= aip(d−1)m+xpn−m+s

bjps

1 ,

for some x ∈ Z. Therefore we have

(
aibjps

d

)pdm−s

= aipdm−s

,

by Lemma 1 (v).
( v ) follows from (iv). ¤

Corollary 1 Suppose that 2dm ≤ n, then G(n,m, d) satisfies (EX, B).

Proof. Let g ∈ G(n,m, d). Write g = aibjps

k , 1 ≤ k ≤ d, 0 ≤ s ≤ m − 1,
(j, p) = 1.

Then
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gag−1 =
(
aibjps

k

)
a
(
aibjps

k

)−1 = ai
(
a1+jpn−km+s

bjps

k−1

)
a−i

≡ a1+jpn−km+s

bjps

k−1 (mod 〈apn−(k−1)m+s〉 × 〈bps

k−2〉).

So, we can write

gag−1 = a1+jpn−km+s+x0pn−(k−1)m+s

bjps

k−1b
y0ps

k−2

= a1+pn−km+s(j+x0pm)b
ps(j+y0pm)
k−1

for some x0, y0 ∈ Z. If we set x1 = j + x0p
m, and y1 = j + y0p

m, then

gag−1 = a1+x1pn−km+s

by1ps

k−1 ,

and (x1, p) = (y1, p) = 1. So, gapl

g−1 = (a1+x1pn−km+s

by1ps

k−1 )pl ∈ 〈a〉 if and
only if l ≥ (k − 1)m− s, by Lemma 2 (iii), (iv). Therefore we have

g〈a〉g−1 ∩ 〈a〉 =
〈
ap(k−1)m−s〉

.

Since

gap(k−1)m−s

g−1 = a(1+x1pn−km+s)p(k−1)m−s

= ap(k−1)m−s+x1pn−m 6= ap(k−1)m−s

,

the proof of Corollary 1 is completed. ¤

4. Proof of Theorem B

We show Theorem B by the induction on d. For d = 1, we can show the
assertion by the direct calculations, and for d = 2, we have already shown
it in [8].

Suppose that the assertion hold for any e, (1 ≤ e ≤ d− 1).
We use the same notations as in Theorem A, that is, sd−1 is the integer

and bi (1 ≤ i ≤ d − 1) are the elements in G such that ad−1 = asd−1

and b1, . . . , bd−1 generate Nd−1, Nd−1 = 〈ad−1, b1, b2, . . . , bd−1〉 = 〈ad, bd−1〉
(= 〈a, bd−1〉), and the following relations hold
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apn

d−1 = 1, biad−1b
−1
i = a1+pn−im

d−1 bi−1,

bpm

i = bi−1, bibi−1b
−1
i = bi−1, (1 ≤ i ≤ d− 1).

Let f : Nd −→ Nd/Nd−1 be the natural epimorphism of groups. For
g ∈ Nd, we write o(g) for the order of f(g) in Nd/Nd−1.

Define pt0 = max{o(g) | g ∈ Nd}, and take an element g0 ∈ Nd such
that o(g0) = pt0 . Hereafter we fix the element g0.

Without loss of generality, we may assume that ad−1 = asd−1 = a.
We can show the following:

Claim I

( i ) For any g ∈ Nd, there exist integers ri, 1 ≤ i ≤ d − 1, such that the
following equalities hold :

(arig)bi(arig)−1 = bi, 1 ≤ i ≤ d− 1 (I)

Further, we can write

(ard−1g)a(ard−1g)−1 = a1+kdpn−(d−1)m−t

bldpm−t

d−1 , (II)

where kd, ld are the integers such that (kd, p) = (ld, p) = 1 and o(g) =
pt.

( ii ) t0 ≤ m.
(iii) Nd is generated by a, bd−1 and g0, that is, Nd = 〈a, bd−1, g0〉.

Proof. (i) (I). We show (i) (I) by the induction on i. When i = 1, the
proof is essentially the same as that of Claim I of [8], so we omit it.

Suppose that there exists an integer ri−1 such that

(ari−1g)bi−1(ari−1g)−1 = bi−1.

Without loss of generality, we can assume that gbi−1g
−1 = bi−1.

Write gag−1 = ax1by1
d−1, then (x1, p) = 1, because (ax1by1

d−1)
p(d−1)m

=

ax1p(d−1)m

and the order of gag−1 is pn.
Since the order of gbig

−1 is pim, by Lemma 2 (iii), (iv), we can write
gbig

−1 = akbl
i, for some k, l ∈ Z.

Then
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bi−1 = gbi−1g
−1 = gbpm

i g−1 = (akbl
i)

pm ≡ akpm

bl
i−1

(mod 〈apn−(i−1)m〉 × 〈bi−2〉),

by Lemma 2 (iii).
Therefore we have

l ≡ 1 (mod pm) and kpm ≡ 0 (mod pn−(i−1)m).

So, we can write l = 1 + l1p
m, k = k1p

n−im and

gbig
−1 = ak1pn−im

b1+l1pm

i = ak1pn−im

bl1
i−1bi,

for some k1, l1 ∈ Z.
Since

bia
pn−im

b−1
i =

(
a1+pn−im

bi−1

)pn−im

= apn−im

,

by our assumption n ≥ 2dm and Lemma 2 (iv), we have

bi−1 = gbi−1g
−1 = gbpm

i g−1 =
(
ak1pn−im

b1+l1pm

i

)pm

= ak1pn−(i−1)m

b1+l1pm

i−1 = ak1pn−(i−1)m

bl1
i−2bi−1.

Therefore we get

k1 ≡ 0 (mod p(i−1)m), l1 ≡ 0 (mod p(i−2)m).

So, we can write l1 = l2p
(i−2)m, k1 = k2p

(i−1)m and

gbig
−1 = ak2pn−m

bl2
1 bi,

for some k2, l2 ∈ Z.
Taking the conjugate of both sides of the equality, biab−1

i =
a1+pn−im

bi−1 by g, we get

(
ak2pn−m

bl2
1 bi

)(
ax1by1

d−1

)(
ak2pn−m

bl2
1 bi

)−1 =
(
ax1by1

d−1

)1+pn−im

bi−1.
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Since (ax1by1
d−1)

1+pn−im

bi−1 = ax1pn−im

(ax1by1
d−1)bi−1 = ax1(1+pn−im)by1

d−1

·bi−1, and

(
ak2pn−m

bl2
1 bi

)(
ax1by1

d−1

)(
ak2pn−m

bl2
1 bi

)−1

= bl2
1

{
(a1+pn−im

bi−1)x1by1
d−1

}
b−l2
1

=
{
a(1+l2pn−m)(1+pn−im)bi−1

}x1
by1
d−1,

we have

{
a(1+l2pn−m)(1+pn−im)bi−1

}x1 = ax1(1+pn−im)bi−1. (10)

So, we get

{
a(1+l2pn−m)(1+pn−im)bi−1

}x1−1

= ax1(1+pn−im)bi−1

{
a(1+l2pn−m)(1+pn−im)bi−1

}−1 ∈ 〈a〉.

But (a(1+l2pn−m)(1+pn−im)bi−1)pl ∈ 〈a〉 if and only if l ≥ (i−1)m, by Lemma
2 (iii), (iv).

Therefore we must have x1 − 1 ≡ 0 (mod p(i−1)m).
Write x1 = 1 + x2p

(i−1)m for some x2 ∈ Z. Then we have

{
a(1+l2pn−m)(1+pn−im)bi−1

}x1

=
{
a(1+l2pn−m)(1+pn−im)bi−1

}x2p(i−1)m{
a(1+l2pn−m)(1+pn−im)bi−1

}

= ax2p(i−1)m(1+l2pn−m)(1+pn−im)
{
a(1+l2pn−m)(1+pn−im)bi−1

}

= ax1(1+l2pn−m)(1+pn−im)bi−1. (11)

By (10) and (11), we have l2 ≡ 0 (mod pm), and so

gbig
−1 = ak2pn−m

bl2
1 bi = ak2pn−m

bi.

Note that

bia
p(i−1)m

b−1
i =

(
a1+pn−im

bi−1

)p(i−1)m

= a(1+pn−im)p(i−1)m

= ap(i−1)m+pn−m

.
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So, if we take ri = k2p
(i−1)m, then

(arig)bi(arig)−1 = ak2p(i−1)m

gbig
−1a−k2p(i−1)m

= bi.

This completes the proof of (i) (I).
(ii) Let g be an arbitrary element in Nd, and write o(g) = pt. If we set

g1 = ard−1g, then g1bd−1g
−1
1 = bd−1 and o(g1) = o(g) = pt. To prove (ii),

we show that t ≤ m.
Write g1ag−1

1 = axby
d−1, for some x, y ∈ Z.

It is easy to see that

g1

(〈apn−(d−1)m〉 × 〈bd−2〉
)
g−1
1 =

〈
apn−(d−1)m〉× 〈bd−2〉.

Since

bd−1ab−1
d−1 ≡ a (mod 〈apn−(d−1)m〉 × 〈bd−2〉),

we have

g1a
jg−1

1 =
(
axby

d−1

)j ≡ axjbyj
d−1 (mod 〈apn−(d−1)m〉 × 〈bd−2〉),

for any j ∈ N. Therefore we get

gl
1ag−l

1 ≡ axl

b
y(xl−1+···+x+1)
d−1 (mod 〈apn−(d−1)m〉 × 〈bd−2〉),

for any l ∈ N.
In particular,

gpt

1 ag−pt

1 ≡ axpt

b
y(xpt−1+···+x+1)
d−1 (mod 〈apn−(d−1)m〉 × 〈bd−2〉). (12)

Since gpt

1 ∈ Nd−1, we must have

gpt

1 ag−pt

1 ≡ a (mod 〈apn−(d−1)m〉 × 〈bd−2〉).

Therefore

xpt ≡ 1 (mod pn−(d−1)m), (13)
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and

y
(
xpt−1 + · · ·+ x + 1

) ≡ 0 (mod pm).

By (13), we can write x = 1 + x0p
n−(d−1)m−t, for some x0 ∈ Z.

So,

y
(
xpt−1 + · · ·+ x + 1

)
= y

(
xpt − 1
x− 1

)
= yptv, (14)

for some v ∈ Z, (p, v) = 1.
Suppose that t ≥ m + 1, then

y
(
xpt−1−1 + · · ·+ x + 1

)
= ypt−1v1 ≡ 0 (mod pm).

for some v1 ∈ Z, (p, v1) = 1.
This means that gpt−1

1 ag−pt−1

1 ∈ Nd−2 and gpt−1

1 ∈ Nd−1, which contra-
dicts our hypothesis that o(g) = pt. Therefore we must have t ≤ m, and the
proof of (ii) is completed.

(i) (II) By (12) and (14), we can write y = y0p
m−t and

g1ag−1
1 = a1+x0pn−(d−1)m−t

by0pm−t

d−1

for some y0 ∈ Z.
Since

g1a
pn−(d−1)m−t

g−1
1 =

(
a1+x0pn−(d−1)m−t

by0pm−t

d−1

)pn−(d−1)m−t

= apn−(d−1)m−t

by Lemma 2 (iv) and by our assumption n ≥ 2dm, we have

gpt−1

1 ag−pt−1

1 = a1+x0pn−(d−1)m−1
by0pm−1

d−1 .

But gpt−1

1 /∈ Nd−1, we must have (p, y0) = 1.
Suppose that (p, x0) = p, then we can write x0 = x3p, for some x3 ∈ Z,

and

gpt−1

1 ag−pt−1

1 = a1+x3pn−(d−1)m

by0pm−1

d−1 .
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If we put g2 = b−x3
d−1g

pt−1

1 , then g2 /∈ Nd−1.

Since bd−1a
pn−(d−1)m

b−1
d−1 = apn−(d−1)m

, we have

g2ag−1
2 = b−x3

d−1a
1+x3pn−(d−1)m

by0pm−1

d−1 bx3
d−1

=
(
a1−x3pn−(d−1)m

b−x3
d−2

)(
ax3pn−(d−1)m)(

by0pm−1

d−1

)

= ab−x3
d−2b

y0pm−1

d−1 = ab
(y0−x3p)pm−1

d−1 .

By Lemma 2 (iii), (iv), we have

(
g2ag−1

2

)pl

=
(
ab

(y0−x3p)pm−1

d−1

)pl

∈ 〈a〉,

if and only if l ≥ (d− 2)m + 1.
Therefore we have

g2〈a〉g−1
2 ∩ 〈a〉 =

〈
ap(d−2)m+1〉

.

Further,

g2a
p(d−2)m+1

g−1
2 =

(
ab

(y0−x3p)pm−1

d−1

)p(d−2)m+1

= ap(d−2)m+1
,

by Lemma 2 (iv).
This contradicts our hypothesis that G satisfies (EX, B). So, we must

have (x0, p) = 1. If we set kd = x0 and ld = y0, we complete the proof of (i)
(II).

(iii) Take an arbitrary element u ∈ Nd. Let o(u) = pt1 . Then, by (i),
we may assume that

uau−1 = a1+h1pn−(d−1)m−t1
bh2pm−t1

d−1 ,

and

ubiu
−1 = bi, 1 ≤ i ≤ d− 1,

where (p, h1) = (p, h2) = 1. Since t1 ≤ t0, we can take an element w ∈
〈a, bd−1, g

pt0−t1

0 〉 such that
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w−1aw = a1+l1pn−(d−1)m−t1
bl2pm−t1

d−1 ,

and

w−1biw = bi, 1 ≤ i ≤ d− 1,

where (p, l1) = (p, l2) = 1. Let c be the integer satisfying l2c ≡ −h2

(mod p(d−2)m+t1), and set w1 = wc. Then (p, c) = 1,

w−1
1 aw1 = a1+l1cpn−(d−1)m−t1

bl2cpm−t1

d−1 = a1+l1cpn−(d−1)m−t1
b−h2pm−t1

d−1 ,

and

w−1
1 bd−1w1 = bd−1.

Therefore we have

w−1
1 (uau−1)w1 = w−1

1

(
a1+h1pn−(d−1)m−t1

bh2pm−t1

d−1

)
w1

= a1+(l1c+h1)p
n−(d−1)m−t1 ∈ 〈a〉.

This means that w−1
1 u ∈ N1, so we must have u ∈ 〈a, bd−1, g0〉. This

completes the proof of (iii).
Next, we show the following:

Claim II Let a, bi, (1 ≤ i ≤ d − 1) and g0 be the elements as in Claim
I. Then there exist integers z1, z2, and the element w ∈ Nd−1 such that
(z1, p) = (z2, p) = 1, and a1 = az1 , bi, (1 ≤ i ≤ d− 1) and b = wgz2

0 satisfy
the following relations:

apn

1 = 1, bia1b
−1
i = a1+pn−im

1 bi−1, bibi−1b
−1
i = bi−1,

bpm

i = bi−1 (1 ≤ i ≤ d− 1)

ba1b
−1 = a1+pn−(d−1)m−t0

1 bpm−t0

d−1 , bbd−1b
−1 = bd−1, bpt0 = bd−1,

where, b0 = 1.

Proof. In this proof, we use the notations t and g instead of t0 and g0,
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respectively. First we consider the element gpt

(∈ Nd−1).
By Claim I, we may assume that

gag−1 = a1+kdpn−(d−1)m−t

bldpm−t

d−1 , (15)

and

gbig
−1 = bi, 1 ≤ i ≤ d− 1,

for some kd, ld ∈ Z, (kd, p) = (ld, p) = 1.
By Lemma 2 (iii), (iv), we see that

gapl

g−1 /∈ 〈a〉,

for any l ∈ N, 1 ≤ l ≤ (d− 2)m + t− 1, and

gapl

g−1 = a(1+kdpn−(d−1)m−t)pl

,

for any l ∈ N, (d− 2)m + t ≤ l. So,

gapl

g−1 = apl

,

if and only if (d− 1)m + t ≤ l.
Since gpt ∈ Nd−1, we can write gpt

= ar1bs
d−1, for some r1, s ∈ Z. Since

gbd−1g
−1 = bd−1, we have gar1g−1 = ar1 . So we can write

gpt

= ar2p(d−1)m+t

bs
d−1,

for some r2 ∈ Z. Therefore we have

gpt

ag−pt

=
(
ar2p(d−1)m+t

bs
d−1

)
a
(
ar2p(d−1)m+t

bs
d−1

)−1

= a1+spn−(d−1)m

bs
d−2. (16)

On the other hand, by (15), we have

gpt

ag−pt

= a1+kdpn−(d−1)m

bld
d−2. (17)
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Comparing (16) and (17), we get

kd ≡ s (mod p(d−1)m) and ld ≡ s (mod p(d−2)m).

So, we can write

kd = s + f1p
(d−1)m and ld = s + f2p

(d−2)m, (18)

for some f1, f2 ∈ Z.
Thus we can write

gpt

= ar2p(d−1)m+t

bkd

d−1.

By (18), we have

ld = kd − f1p
(d−1)m + f2p

(d−2)m,

and

gag−1 = a1+kdpn−(d−1)m−t

bldpm−t

d−1

= a1+kdpn−(d−1)m−t

b
{kd−f1p(d−1)m+f2p(d−2)m}pm−t

d−1

= a1+kdpn−(d−1)m−t

bkdpm−t

d−1 bf2pm−t

1 .

So, we have

gap(d−1)m

g−1 = ap(d−1)m{1+kdpn−(d−1)m−t},

and

glarp(d−1)m

g−l = arp(d−1)m{1+kdpn−(d−1)m−t}l

= arp(d−1)m{1+lkdpn−(d−1)m−t}, (19)

for any r ∈ Z and l ∈ N. By using (19), we get

(
arp(d−1)m

g
)l = alrp(d−1)m

arkdpn−t(l(l−1)/2)gl, (20)
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for any r ∈ Z and l ∈ N. In particular, we have

(
arp(d−1)m

g
)pt

= arp(d−1)m+t

gpt

= arp(d−1)m+t

ar2p(d−1)m+t

bkd

d−1.

So, if we put g2 = a−r2p(d−1)m

g, we get

gpt

2 = bkd

d−1, g2ag−1
2 = a1+kdpn−(d−1)m−t

bkdpm−t

d−1 bf2pm−t

1 ,

g2big
−1
2 = bi, 1 ≤ i ≤ d− 1.

Let v1 be the integer such that kdv1 ≡ 1 (mod p(d−1)m+t), and set g3 = gv1
2 .

Then the following equalities hold:

gpt

3 = gv1pt

2 = bkdv1
d−1 = bd−1, g3big

−1
3 = bi, 1 ≤ i ≤ d− 1,

g3ag−1
3 = a1+kdv1pn−(d−1)m−t

bkdv1pm−t

d−1 bf2v1pm−t

1

= a1+pn−(d−1)m−t

bpm−t

d−1 bf2v1pm−t

1 .

Further, let a1 = a1−f2v1p(d−2)m

. Then apn−t

1 = apn−t

, and

g3a1g
−1
3 =

(
g3a

−f2v1p(d−2)m

g−1
3

)(
g3ag−1

3

)

=
(
a1+pn−(d−1)m−t

bpm−t

d−1 bf2v1pm−t

1

)−f2v1p(d−2)m

· (a1+pn−(d−1)m−t

bpm−t

d−1 bf2v1pm−t

1

)

≡ {
a(1+pn−(d−1)m−t)(−f2v1p(d−2)m)b−f2v1pm−t

1

}

· (a1+pn−(d−1)m−t

bpm−t

d−1 bf2v1pm−t

1

)
(mod 〈apn−t〉)

≡ a(1+pn−(d−1)m−t)(1−f2v1p(d−2)m)bpm−t

d−1 (mod 〈apn−t〉)

≡ a1+pn−(d−1)m−t

1 bpm−t

d−1 (mod 〈apn−t〉)

≡ a1+pn−(d−1)m−t

1 bpm−t

d−1 (mod 〈apn−t

1 〉).

So, we can write



206 K. Sekiguchi

g3a1g
−1
3 = a1+pn−(d−1)m−t+ypn−t

1 bpm−t

d−1 ,

for some y ∈ Z. It is easy to see that

apn

1 = 1 and bia1b
−1
i = a1+pn−im

1 bi−1, 1 ≤ i ≤ d− 1.

Finally, if we set b = b−ypm−t

1 g3, then we have

ba1b
−1 = b−ypm−t

1

(
a1+pn−(d−1)m−t+ypn−t

1 bpm−t

d−1

)
bypm−t

1 = a1+pn−(d−1)m−t

1 bpm−t

d−1 ,

and

bpt

=
(
b−ypm−t

1 g3

)pt

= gpt

3 = bd−1, bbib
−1 = bi 1 ≤ i ≤ d− 1.

Thus the proof of Claim II is completed. ¤

We can easily see that

〈a1〉 = 〈a〉 and 〈a1, b1, . . . , bd−1, b〉 = 〈a, b1, . . . , bd−1, g0〉 = Nd.

We will complete the proof of the Theorem B, by showing the following:

Claim III t0 = m when [G : Nd−1] ≥ pm.

Proof. We use the same notations as in Claim II, that is, Nd =
〈a1, b1, . . . , bd−1, b〉, and |Nd/Nd−1| = pt0 . For simplicity, we write t and
a instead of t0 and a1. Suppose that t ≤ m − 1. Take an element
u ∈ NG(Nd) − Nd such that up ∈ Nd. By the same way as in the proof
of Claim I, we can assume that ubu−1 = b, ubiu

−1 = bi, 1 ≤ i ≤ d− 1.
Further we can see that

u
(〈apn−(d−1)m−t〉 × 〈bpm−t

d−1 〉
)
u−1 =

〈
apn−(d−1)m−t〉× 〈

bpm−t

d−1

〉
,

by using Lemma 2 (iii), (iv).
Let uau−1 = axby, x, y ∈ Z. Then we have

upau−p ≡ axp

by(xp−1+···+x+1) ≡ axp

by((xp−1)/(x−1))

(mod 〈apn−(d−1)m−t〉 × 〈bpm−t

d−1 〉).
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Since up ∈ Nd, we must have

xp ≡ 1 (mod pn−(d−1)m−t),

and

y

(
xp − 1
x− 1

)
≡ 0 (mod pm).

So, we can write x = 1 + x1p
n−(d−1)m−t−1 for some x1 ∈ Z. In this case,

we can write xp−1
x−1 = pz for some z ∈ Z, (z, p) = 1. Therefore we must have

y ≡ 0 (mod pm−1). But this fact means uau−1 = axby ∈ Nd−1. On the
other hand, ubiu

−1 = bi 1 ≤ i ≤ d−1, so we have u ∈ Nd, which contradicts
our hypothesis that u /∈ Nd. This completes the proof of Claim III. ¤

5. Proof of Theorem

If M = md, then, by Theorem A, we have Nd
∼= G(n,m, d). But

[G : Bn] = [G(n,m, d) : Bn]. So, G = Nd
∼= G(n,m, d).

When M < md, we have Nd−1
∼= G(n,m, d − 1), by Theorem A. By

Claim I (iii) and Claim II, we can see that Nd
∼= G(n,m, d−1,+t), for some

t, 1 ≤ t ≤ m− 1. But, by the same argument as in Claim III, we must have
G = Nd. Comparing [G : Bn] and [Nd : Bn], we have t = M − (d− 1)m. ¤
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