Extensions of cyclic \boldsymbol{p}-groups which preserve the irreducibilities of induced characters

Katsusuke Seriguchi

(Received September 10, 2010; Revised October 22, 2011)

Abstract

For a prime p, we denote by B_{n} the cyclic group of order p^{n}. Let ϕ be a faithful irreducible character of B_{n}, where p is an odd prime. We study the p-group G containing B_{n} such that the induced character ϕ^{G} is also irreducible. Set $\left[N_{G}\left(B_{n}\right): B_{n}\right]=p^{m}$ and $\left[G: B_{n}\right]=p^{M}$. The purpose of this paper is to determine the structure of G under the hypothesis $\left[N_{G}\left(B_{n}\right): B_{n}\right]^{2 d} \leq p^{n}$, where d is the smallest integer not less than M / m.

Key words: p-group, extension, irreducible induced character, faithful irreducible character.

1. Introduction

Let G be a finite group. We denote by $\operatorname{Irr}(G)$ the set of complex irreducible characters of G and by $\operatorname{FIrr}(G)(\subset \operatorname{Irr}(G))$ the set of faithful irreducible characters of G.

Let p be a prime. For a non-negative integer n, we denote by B_{n} the cyclic group of order p^{n}. A finite group G is called an M-group, if every $\chi \in \operatorname{Irr}(G)$ is induced from a linear character of a subgroup of G.

It is well-known that every p-group is an M-group. Hence, when G is a p-group, for any $\chi \in \operatorname{Irr}(G)$, there exists a subgroup H of G and a linear character ϕ of H such that $\phi^{G}=\chi$. If we set $N=\operatorname{Ker} \phi$, then $N \triangleleft H$ and ϕ is a faithful irreducible character of $H / N \cong B_{n}$, for some non-negative integer n. In this paper, we will consider the case when $N=1$, that is, ϕ is a faithful linear character of $H \cong B_{n}$.

We consider the following:
Problem 1 Let p be an odd prime, and ϕ be a faithful irreducible character of B_{n}. Determine the p-group G such that $B_{n} \subset G$ and the induced character ϕ^{G} is also irreducible.

Since all the faithful irreducible characters of B_{n} are algebraically conjugate to each other, the irreducibility of $\phi^{G}\left(\phi \in \operatorname{FIr}\left(B_{n}\right)\right)$ is independent

[^0]of the choice of ϕ, and depends only on n.
On the other hand, when $p=2$, Iida and Yamada ([4]) proved the following interesting result:

Let \mathbf{Q} denote the rational field. Let G be a 2-group and χ a complex irreducible character of G. Then there exist subgroups $H \triangleright N$ in G and a complex irreducible character ϕ of H such that $\chi=\phi^{G}, \mathbf{Q}(\chi)=\mathbf{Q}(\phi)$, $N=\operatorname{Ker} \phi$ and

$$
H / N \cong Q_{n}(n \geq 2), \text { or } D_{n}(n \geq 2), \text { or } S D_{n}(n \geq 3), \text { or } B_{n}(n \geq 0)
$$

Here, Q_{n}, D_{n} and $S D_{n}$ denote the generalized quaternion group, the dihedral group of order $2^{n+1}(n \geq 2)$ and the semidihedral group of order 2^{n+1} $(n \geq 3)$, respectively, and $\mathbf{Q}(\chi)=\mathbf{Q}(\chi(g), g \in G)$.

Further, they considered the following:
Problem 2 Let ϕ be a faithful irreducible character of H, where $H=Q_{n}$ or D_{n} or $S D_{n}$. Determine the 2 -group G such that $H \subset G$ and the induced character ϕ^{G} is also irreducible.

Iida and Yamada ([3]) solved this problem in the case when $[G: H]=2$ or 4 and we have solved Problem 2 completely ([6]). In the paper, we showed that

$$
G=N_{G}(H) \quad \text { or } \quad N_{G}\left(N_{G}(H)\right),
$$

for all $H=Q_{n}$ or D_{n} or $S D_{n}$, if G satisfies the conditions of Problem 2. Here, as usual, $N_{G}(H)$ and $N_{G}\left(N_{G}(H)\right)$ are the normalizers of H and $N_{G}(H)$ in G, respectively. This means that, if we define subgroups of G by

$$
M_{1}=N_{G}(H), \quad \text { and } \quad M_{i+1}=N_{G}\left(M_{i}\right), \quad \text { for } i \geq 1,
$$

then

$$
H \subseteq M_{1} \subseteq M_{2}=M_{3}=M_{4}=\cdots=G
$$

for all $H=Q_{n}$ or D_{n} or $S D_{n}$.
In this paper, we consider Problem 1. We also define subgroups of G by

$$
N_{1}=N_{G}\left(B_{n}\right), \quad \text { and } \quad N_{i+1}=N_{G}\left(N_{i}\right), \quad \text { for } i \geq 1
$$

Concerning Problem 1, N_{1} has been determined by Iida ([2]), and $N_{2}=$ $N_{G}\left(N_{G}\left(B_{n}\right)\right)$ has also been determined under the hypothesis $\left[N_{1}: B_{n}\right]^{4} \leq$ p^{n} ([8]). For other results, see also [5] and [7].

The purpose of this article is to determine $N_{d}, d=1,2, \ldots$ under the hypothesis $\left[N_{1}: B_{n}\right]^{2 d} \leq p^{n}$.

Remark 1 When $p=2$, there are many possible 2-groups which satisfy the condition of Problem 1 (e.g. Q_{n}, D_{n} and $S D_{n}$), and it is difficult to determine them completely.

Remark 2 In this paper, we will say that " G is the extension group of N," when G contains N as a subgroup.

Throughout this paper, \mathbf{Z} and \mathbf{N} denote the set of rational integers and the natural numbers, respectively.

2. Statements of the results

For the rest of this paper, we assume that p is an odd prime.
First, we introduce the sequence of "extension groups":
(0) $G(n, m, 0)=\langle a\rangle=B_{n}$ with

$$
a^{p^{n}}=1
$$

(i) $G(n, m, 1)=\left\langle a, b_{1}\right\rangle$ with

$$
a^{p^{n}}=b_{1}^{p^{m}}=1, \quad b_{1} a b_{1}^{-1}=a^{1+p^{n-m}}, \quad(1 \leq m \leq n-1) .
$$

(ii) $G(n, m, 2)=\left\langle a, b_{1}, b_{2}\right\rangle$ with

$$
\begin{gathered}
a^{p^{n}}=b_{1}^{p^{m}}=1, \quad b_{1} a b_{1}^{-1}=a^{1+p^{n-m}}, \quad b_{2} a b_{2}^{-1}=a^{1+p^{n-2 m}} b_{1} \\
b_{2}^{p^{m}}=b_{1}, \quad b_{2} b_{1} b_{2}^{-1}=b_{1} \quad(2 m \leq n-1) .
\end{gathered}
$$

(d) $G(n, m, d)=\left\langle a, b_{1}, b_{2}, \ldots b_{d-1}, b_{d}\right\rangle$ with

$$
\begin{gathered}
a^{p^{n}}=b_{1}^{p^{m}}=1, \quad b_{1} a b_{1}^{-1}=a^{1+p^{n-m}}, \quad b_{i} a b_{i}^{-1}=a^{1+p^{n-i m}} b_{i-1}, \\
b_{i}^{p^{m}}=b_{i-1}, \quad b_{i} b_{i-1} b_{i}^{-1}=b_{i-1}, \quad 2 \leq i \leq d, \quad(d m \leq n-1)
\end{gathered}
$$

$(d-1,+t) G(n, m, d-1,+t)=\left\langle a, b_{1}, b_{2}, \ldots b_{d-1}, b\right\rangle$ with

$$
\begin{gathered}
a^{p^{n}}=b_{1}^{p^{m}}=1, \quad b_{1} a b_{1}^{-1}=a^{1+p^{n-m}}, \quad b_{i} a b_{i}^{-1}=a^{1+p^{n-i m}} b_{i-1}, \\
b_{i}^{p^{m}}=b_{i-1}, \quad b_{i} b_{i-1} b_{i}^{-1}=b_{i-1}, \quad 2 \leq i \leq d-1, \\
b a b^{-1}=a^{1+p^{n-(d-1) m-t}} b_{d-1}^{p^{m-t}}, \quad b b_{d-1} b^{-1}=b_{d-1}, \quad b^{p^{t}}=b_{d-1}, \\
(1 \leq t \leq m-1, \quad(d-1) m+t \leq n-1) .
\end{gathered}
$$

By using Proposition 1 below, we can show that $G(n, m, d)$ (respectively $G(n, m, d-1,+t))$ is an extension group of $G(n, m, d-1)$ for $d \geq 1$, when $2 d m \leq n$:

Proposition 1 Let N be a finite group such that $G \triangleright N$ and $G / N=\langle u N\rangle$ is a cyclic group of order m. Then $u^{m}=c \in N$. If we put $\sigma(x)=u x u^{-1}$, $x \in N$, then $\sigma \in \operatorname{Aut}(N)$ and (i) $\sigma^{m}(x)=c x c^{-1},(x \in N)$ (ii) $\sigma(c)=c$.

Conversely, if $\sigma \in \operatorname{Aut}(N)$ and $c \in N$ satisfy (i) and (ii), then there exists one and only one extension group G of N such that $G \triangleright N$ and $G / N=$ $\langle u N\rangle$ is a cyclic group of order m and $\sigma(x)=u x u^{-1}(x \in N)$ and $u^{m}=c$.

Proof. For instance, see Zassenhaus ([9, III, Section 7]).
The structure of N_{1} and N_{2} have been determined as follows:
(1) $N_{1}=N_{G}\left(B_{n}\right) \cong G(n, m, 1)$ for some $m \in \mathbf{N}, 1 \leq m \leq n-1$ ([2]).
(2) $N_{2}=N_{G}\left(N_{G}\left(B_{n}\right)\right) \cong G(n, m, 2)$ for some $m \in \mathbf{N}$, when $4 m \leq n$ and $2 m \leq M$, where $\left[N_{1}: B_{n}\right]=p^{m}$, and $\left[G: B_{n}\right]=p^{M}([8])$.

To state the theorem, we define the map []$_{0}: \mathbf{Q} \longrightarrow \mathbf{Z}$, by the following: $[x]_{0}=x$ if $x \in \mathbf{Z}$, and $[x]_{0}=n+1$ if $n<x<n+1$, for some $n \in \mathbf{Z}$.

Our main theorem is the following:
Theorem Let p be an odd prime, and G be a p-group which contains $B_{n}=\langle a\rangle$. Set $\left[N_{1}: B_{n}\right]=p^{m},\left[G: B_{n}\right]=p^{M}$ and $d=[M / m]_{0}$.

Suppose that $\phi^{G} \in \operatorname{Irr}(G)$ for any $\phi \in \operatorname{FIrr}\left(B_{n}\right)$. Further, suppose that $2 m d \leq n$. Then, $G=N_{d}$, and the following holds:
(1) $G \cong G(n, m, d)$ if $M=m d$.
(2) $G \cong G(n, m, d-1,+t)$ if $M<m d$, where $t=M-(d-1) m$.

To show the theorem, we prove Therem A,
Theorem A Let p be an odd prime, and G be a p-group which contains $B_{n}=\langle a\rangle$. Suppose that $\phi^{G} \in \operatorname{Irr}(G)$ for any $\phi \in \operatorname{FIrr}\left(B_{n}\right)$.

Set $\left[N_{1}: B_{n}\right]=p^{m}$ and $\left[G: B_{n}\right]=p^{M}$. Then, for any positive integer d satisfying, $2 m d \leq n$, and $m d \leq M$, we have $N_{d} \cong G(n, m, d)$.

More precisely, we can show the following
Theorem B Under the same assumption and the notation as in Theorem A, we can find the elements $b_{i} \in G, 1 \leq i \leq d$, and the integer $s_{d},\left(p, s_{d}\right)=1$, such that $a_{d}=a^{s_{d}}$ and b_{i} generate N_{i}, that is, $N_{i}=\left\langle a_{d}, b_{1}, b_{2}, \ldots, b_{i}\right\rangle=$ $\left\langle a_{d}, b_{i}\right\rangle\left(=\left\langle a, b_{i}\right\rangle\right), 1 \leq i \leq d$, and the following relations hold

$$
\begin{gathered}
a_{d}^{p^{n}}=b_{1}^{p^{m}}=1, \quad b_{1} a_{d} b_{1}^{-1}=a_{d}^{1+p^{n-m}}, \quad b_{i} a_{d} b_{i}^{-1}=a_{d}^{1+p^{n-i m}} b_{i-1} \\
b_{i}^{p^{m}}=b_{i-1}, \quad b_{i} b_{i-1} b_{i}^{-1}=b_{i-1}, \quad(2 \leq i \leq d)
\end{gathered}
$$

Remark 3 Conversely, in Corollary 1, we will see that the groups $G(n, m, d)$ satisfy the condition $(E X, B)$, which is defined in Section 3 of this paper. Hence these groups satisfy the conditions of Problem 1.

3. Some preleminary results

First, we state some results concerning the criterion for the irreducibilities of induced characters.

We denote by $\zeta=\zeta_{p^{n}}$ a primitive p^{n} th root of unity. It is known that, for $B_{n}=\langle a\rangle$, there are p^{n} irreducible characters $\phi_{\nu}\left(1 \leq \nu \leq p^{n}\right)$ of B_{n} :

$$
\phi_{\nu}\left(a^{i}\right)=\zeta^{\nu i}, \quad\left(1 \leq i \leq p^{n}\right)
$$

The irreducible character ϕ_{ν} is faithful if and only if $(\nu, p)=1$.
It is well-known that

$$
\operatorname{Aut}\langle a\rangle \cong\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{*} \cong C_{*} \times B_{n-1}
$$

where $\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{*}$ is the unit group of the factor ring $\mathbf{Z} / p^{n} \mathbf{Z}$ and C_{*} is the cyclic group of order $p-1$. Further, B_{n-1} is generated by the element $1+p$ in $\mathbf{Z} / p^{n} \mathbf{Z}$.

First, we state the following result of Shoda (cf. [1, p. 329]):

Proposition 2 Let G be a group and H be a subgroup of G. Let ϕ be a linear character of H. Then the induced character ϕ^{G} of G is irreducible if and only if, for each $x \in G-H=\{g \in G \mid g \notin H\}$, there exists $h \in x H x^{-1} \cap H$ such that $\phi(h) \neq \phi\left(x^{-1} h x\right)$. (Note that, when ϕ is faithful, the condition $\phi(h) \neq \phi\left(x^{-1} h x\right)$ holds if and only if $h \neq x^{-1} h x$.)

Using this result, we have the following:
Proposition 3 Let $\langle a\rangle=B_{n} \subset G$, and ϕ be a faithful irreducible character of B_{n}. Then the following conditions are equivalent:
(1) ϕ^{G} is irreducible,
(2) For each $g \in G-B_{n}$, there exists $h \in\langle a\rangle \cap g\langle a\rangle g^{-1}$ such that $g^{-1} h g \neq h$.

Definition 1 When the condition (2) of Proposition 3 holds, we say that G satisfies $(E X, B)$.

Let H be a group. We denote by $|H|$ the order of H. For a normal subgroup N of H, and any $g, h \in H$, we write

$$
g \equiv h \quad(\bmod N)
$$

when $g^{-1} h \in N$. For an element $g \in H$ we denote by $|g|$ the order of g.
For the rest of this section, we will show some equalities of the elements in $G(n, m, d)$.

In $G(n, m, 1)$, the following holds
Lemma 1 ([8, Lemma 1]) Suppose that $n \geq 2 m$, then the following equalities hold for any $i, j \in \mathbf{Z}$ and $l \in \mathbf{N}$.
(i) $a b_{1}^{p^{s}} \equiv b_{1}^{p^{s}} a\left(\bmod \left\langle a^{p^{n-m+s}}\right\rangle\right),(0 \leq s \leq m-1)$.
(ii) $b_{1} a^{p^{m}} b_{1}^{-1}=a^{p^{m}}$.
(iii) $b_{1}^{j} a^{i} b_{1}^{-j}=a^{i\left(1+j p^{n-m}\right)}$.
(iv) $\left(a^{i} b_{1}^{j}\right)^{l}=a^{i l+i j p^{n-m}(l(l-1) / 2)} b_{1}^{l j}$.
(v) $\left(a^{i} b_{1}^{j p^{s}}\right)^{p^{m-s}}=a^{i p^{m-s}},(0 \leq s \leq m-1)$.

For $d \geq 2$, we can see the following
Lemma 2 Suppose that $2 d m \leq n$, then the following assertions hold for any $i, j, s \in \mathbf{Z}$ and $d \in \mathbf{N}, 0 \leq s \leq m-1,2 \leq d$:
(i) $\left\langle a^{p^{n-t m+s}}\right\rangle \times\left\langle b_{t-1}^{p^{s}}\right\rangle(1 \leq t \leq d)$ and $\left\langle a^{p^{n-(d+1) m+s}}\right\rangle \cdot\left\langle b_{d}^{p^{s}}\right\rangle$ (the semidirect product of $\left\langle a^{p^{n-(d+1) m+s}}\right\rangle$ by $\left\langle b_{d}^{p^{s}}\right\rangle$) are the normal subgroups of $G(n, m, d)$, where $b_{0}=1$.
(ii) $\left(a^{i} b_{d}^{j}\right)^{l} \equiv a^{i l} b_{d}^{j l}\left(\bmod \left\langle a^{p^{n-d m}}\right\rangle \times\left\langle b_{d-1}\right\rangle\right)$, for any $l \in \mathbf{N}$.
(iii) $\left(a^{i} b_{d}^{j p^{s}}\right)^{p^{k m}} \equiv a^{i p^{k m}} b_{d}^{j p^{k m+s}}=a^{i p^{k m}} b_{d-k}^{j p^{s}}\left(\bmod \left\langle a^{p^{n-(d-k) m+s}}\right\rangle \times\right.$ $\left.\left\langle b_{d-k-1}^{p^{s}}\right\rangle\right)$, for any $k \in \mathbf{Z}, 1 \leq k \leq d-1$, where $b_{0}=1$.
(iv) $\left(a^{i} b_{d}^{j p^{s}}\right)^{p^{d m-s}}=a^{i p^{d m-s}}$,
(v) $b_{d} a^{p^{d m}} b_{d}^{-1}=a^{p^{d m}}$,

Proof. We show the lemma by the induction on d.
First, we show the case when $d=2$.
(i) Note that

$$
\begin{equation*}
b_{1} a^{p^{n-2 m}} b_{1}^{-1}=a^{p^{n-2 m}} \tag{1}
\end{equation*}
$$

by Lemma 1 (ii), and by our assumption that $4 m \leq n$. Further, since $b_{2} a^{p^{m}} b_{2}^{-1}=\left(a^{1+p^{n-2 m}} b_{1}\right)^{p^{m}}=a^{\left(1+p^{n-2 m}\right) p^{m}}$, by Lemma 1 (v), we have

$$
\begin{equation*}
b_{2} a^{p^{n-l m}} b_{2}^{-1} \in\left\langle a^{p^{n-l m}}\right\rangle \quad(l=1,2,3) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{2} a^{p^{n-2 m}} b_{2}^{-1}=a^{\left(1+p^{n-2 m}\right) p^{n-2 m}}=a^{p^{n-2 m}} \tag{3}
\end{equation*}
$$

because $4 m \leq n$.
Using (1) and (3), we get,

$$
\begin{equation*}
b_{2}^{l} a b_{2}^{-l}=a^{1+l p^{n-2 m}} b_{1}^{l} \tag{4}
\end{equation*}
$$

for any $l \in \mathbf{N}$. So,

$$
\begin{align*}
& b_{2}^{j p^{s}} a^{i} b_{2}^{-j p^{s}}=\left(a^{1+j p^{n-2 m+s}} b_{1}^{j p^{s}}\right)^{i} \equiv a^{i\left(1+j p^{n-2 m+s}\right)} b_{1}^{i j p^{s}} \\
&\left(\bmod \left\langle a^{p^{n-m+s}}\right\rangle\right) \tag{5}
\end{align*}
$$

for any $s \in \mathbf{Z}, 0 \leq s \leq m-1$, by Lemma 1 (i). Using (2) and (5), we can show (i).
(ii) follows from the fact that $b_{2} a b_{2}^{-1} \equiv a\left(\bmod \left\langle a^{p^{n-2 m}}\right\rangle \times\left\langle b_{1}\right\rangle\right)$.
(iii) Using (5) repeatedly, we have

$$
\begin{aligned}
\left(a^{i} b_{2}^{j p^{s}}\right)^{l} & \equiv a^{i l+i j p^{n-2 m+s}\{1+2+\cdots+(l-1)\}} b_{1}^{i j p^{s}\{1+2+\cdots+(l-1)\}} b_{2}^{l j p^{s}} \\
& \equiv a^{i l+i j p^{n-2 m+s}(l(l-1) / 2)} b_{1}^{i j p^{s}(l(l-1) / 2)} b_{2}^{l j p^{s}}\left(\operatorname { m o d } \left\langlea^{\left.\left.p^{n-m+s}\right\rangle\right)},\right.\right.
\end{aligned}
$$

for any $l \in \mathbf{N}, s \in \mathbf{Z}, 0 \leq s \leq m-1$.
In particular, we get

$$
\begin{equation*}
\left(a^{i} b_{2}^{j p^{s}}\right)^{p^{m}} \equiv a^{i p^{m}} b_{2}^{j p^{m+s}}=a^{i p^{m}} b_{1}^{j p^{s}} \quad\left(\bmod \left\langle a^{p^{n-m+s}}\right\rangle\right) \tag{6}
\end{equation*}
$$

This completes the proof of (iii).
(iv) By (6), we can write

$$
\left(a^{i} b_{2}^{j p^{s}}\right)^{p^{m}}=a^{i p^{m}+x p^{n-m+s}} b_{1}^{j p^{s}}
$$

for some $x \in \mathbf{Z}$. So, we have $\left(a^{i} b_{2}^{j p^{s}}\right)^{p^{2 m-s}}=a^{i p^{2 m-s}}$, by Lemma 1 (v).
(v) follows from (iv). This completes the proof of the case when $d=2$.
Suppose that the assertions of the lemma hold for any $e, 2 \leq e \leq d-1$.
(i) By the induction hypothesis, we have

$$
b_{d} a^{p^{l}} b_{d}^{-1}=\left(a^{1+p^{n-d m}} b_{d-1}\right)^{p^{l}}=a^{\left(1+p^{n-d m}\right) p^{l}}
$$

for any $l,(d-1) m \leq l$. Since $2 d m \leq n$, by our hypothesis, we have

$$
\begin{equation*}
b_{d} a^{p^{n-t m+s}} b_{d}^{-1} \in\left\langle a^{p^{n-t m+s}}\right\rangle \tag{7}
\end{equation*}
$$

for any $t \in \mathbf{N}, 1 \leq t \leq d+1$, and

$$
b_{d} a^{p^{n-d m}} b_{d}^{-1}=a^{\left(1+p^{n-d m}\right) p^{n-d m}}=a^{p^{n-d m}} .
$$

By the same calculations as in (4), we get

$$
b_{d}^{l} a b_{d}^{-l}=a^{1+l p^{n-d m}} b_{d-1}^{l} .
$$

for any $l \in \mathbf{N}$.
In particular, we kave

$$
b_{d}^{j p^{s}} a b_{d}^{-j p^{s}}=a^{1+j p^{n-d m+s}} b_{d-1}^{j p^{s}} .
$$

Since

$$
b_{d-1}^{j p^{s}} a b_{d-1}^{-j p^{s}}=a^{1+j p^{n-(d-1) m+s}} b_{d-2}^{j p^{s}} \equiv a \quad\left(\bmod \left\langle a^{p^{n-(d-1) m+s}}\right\rangle \times\left\langle b_{d-2}^{p^{s}}\right\rangle\right)
$$

for $s, j \in \mathbf{Z}, 0 \leq s \leq m-1$, by the induction hypothesis, we have

$$
\begin{align*}
& b_{d}^{j p^{s}} a^{i} b_{d}^{-j p^{s}}=\left(a^{1+j p^{n-d m+s}} b_{d-1}^{j p^{s}}\right)^{i} \equiv a^{i\left(1+j p^{n-d m+s}\right)} b_{d-1}^{i j p^{s}} \\
&\left(\bmod \left\langle a^{p^{n-(d-1) m+s}}\right\rangle\right.\left.\times\left\langle b_{d-2}^{p^{s}}\right\rangle\right) . \tag{8}
\end{align*}
$$

Therefore, we can write

$$
b_{d}^{j p^{s}} a^{i} b_{d}^{-j p^{s}}=a^{i\left(1+j p^{n-d m+s}\right)+x p^{n-(d-1) m+s}} b_{d-1}^{i j p^{s}} b_{d-2}^{y p^{s}},
$$

for some $x, y \in \mathbf{Z}$, and so, we have

$$
\begin{equation*}
a^{-i} b_{d}^{j p^{s}} a^{i} \in\left\langle a^{p^{n-(d+1) m+s}}\right\rangle \cdot\left\langle b_{d}^{p^{s}}\right\rangle \tag{9}
\end{equation*}
$$

By using (7) and (9), we can see that $\left\langle a^{\left.p^{n-(d+1) m+s}\right\rangle}\right\rangle\left\langle b_{d}^{p^{s}}\right\rangle$ is the normal subgroup of $G(n, m, d)$. For $t \leq d$, (i) can be shown by the induction hypothesis and (7).
(ii) follows from the fact that $b_{d} a b_{d}^{-1} \equiv a\left(\bmod \left\langle a^{p^{n-d m}}\right\rangle \times\left\langle b_{d-1}\right\rangle\right)$.
(iii) Using the equality (8) repeatedly, we have

$$
\begin{aligned}
&\left(a^{i} b_{d}^{j p^{s}}\right)^{l} \equiv a^{i l+i j p^{n-d m+s}(l(l-1) / 2)} b_{d-1}^{i j p^{s}(l(l-1) / 2)} b_{d}^{l j p^{s}} \\
&\left(\bmod \left\langle a^{p^{n-(d-1) m+s}}\right\rangle \times\left\langle b_{d-2}^{p^{s}}\right\rangle\right)
\end{aligned}
$$

for any $l \in \mathbf{N}$.
In particular, we have

$$
\left(a^{i} b_{d}^{j p^{s}}\right)^{p^{m}} \equiv a^{i p^{m}} b_{d}^{j p^{m+s}}=a^{i p^{m}} b_{d-1}^{j p^{s}} \quad\left(\bmod \left\langle a^{p^{n-(d-1) m+s}}\right\rangle \times\left\langle b_{d-2}^{p^{s}}\right\rangle\right)
$$

So, we can write

$$
\begin{aligned}
\left(a^{i} b_{d}^{j p^{s}}\right)^{p^{m}} & =a^{i p^{m}+x p^{n-(d-1) m+s}} b_{d-1}^{j p^{s}} b_{d-2}^{y p^{s}} \\
& =a^{i p^{m}+x p^{n-(d-1) m+s}} b_{d-1}^{j p^{s}+y p^{m+s}},
\end{aligned}
$$

for some $x, y \in \mathbf{Z}$.
Then, by the induction hypothesis, we have

$$
\begin{aligned}
\left(a^{i} b_{d}^{j p^{s}}\right)^{p^{k m}} & =\left(a^{i p^{m}+x p^{n-(d-1) m+s}} b_{d-1}^{j p^{s}+y p^{m+s}}\right)^{p^{(k-1) m}} \\
& \equiv a^{i p^{k m}+x p^{n-(d-k) m+s}} b_{d-k}^{j p^{s}+y p^{m+s}} \\
& \equiv a^{i p^{k m}} b_{d-k}^{j p^{s}} \quad\left(\bmod \left\langle a^{p^{n-(d-k) m+s}}\right\rangle \times\left\langle b_{d-k-1}^{p^{s}}\right\rangle\right)
\end{aligned}
$$

for $k \in \mathbf{Z}, 2 \leq k \leq d-1$. This completes the proof of (iii).
(iv) In particular, we have

$$
\left(a^{i} b_{d}^{j p^{s}}\right)^{p^{(d-1) m}} \equiv a^{i p^{(d-1) m}} b_{1}^{j p^{s}} \quad\left(\bmod \left\langle a^{p^{n-m+s}}\right\rangle\right)
$$

So, we can write

$$
\left(a^{i} b_{d}^{j p^{s}}\right)^{p^{(d-1) m}}=a^{i p^{(d-1) m}+x p^{n-m+s}} b_{1}^{j p^{s}},
$$

for some $x \in \mathbf{Z}$. Therefore we have

$$
\left(a^{i} b_{d}^{j p^{s}}\right)^{p^{d m-s}}=a^{i p^{d m-s}}
$$

by Lemma 1 (v).
(v) follows from (iv).
Corollary 1 Suppose that $2 d m \leq n$, then $G(n, m, d)$ satisfies $(E X, B)$.
Proof. Let $g \in G(n, m, d)$. Write $g=a^{i} b_{k}^{j p^{s}}, 1 \leq k \leq d, 0 \leq s \leq m-1$, $(j, p)=1$.

Then

$$
\begin{aligned}
g a g^{-1} & =\left(a^{i} b_{k}^{j p^{s}}\right) a\left(a^{i} b_{k}^{j p^{s}}\right)^{-1}=a^{i}\left(a^{1+j p^{n-k m+s}} b_{k-1}^{j p^{s}}\right) a^{-i} \\
& \equiv a^{1+j p^{n-k m+s}} b_{k-1}^{j p^{s}} \quad\left(\bmod \left\langle a^{p^{n-(k-1) m+s}}\right\rangle \times\left\langle b_{k-2}^{p^{s}}\right\rangle\right)
\end{aligned}
$$

So, we can write

$$
\begin{aligned}
g a g^{-1} & =a^{1+j p^{n-k m+s}+x_{0} p^{n-(k-1) m+s}} b_{k-1}^{j p^{s}} b_{k-2}^{y_{0} p^{s}} \\
& =a^{1+p^{n-k m+s}\left(j+x_{0} p^{m}\right)} b_{k-1}^{p^{s}\left(j+y_{0} p^{m}\right)}
\end{aligned}
$$

for some $x_{0}, y_{0} \in \mathbf{Z}$. If we set $x_{1}=j+x_{0} p^{m}$, and $y_{1}=j+y_{0} p^{m}$, then

$$
g a g^{-1}=a^{1+x_{1} p^{n-k m+s}} b_{k-1}^{y_{1} p^{s}},
$$

and $\left(x_{1}, p\right)=\left(y_{1}, p\right)=1$. So, $g a^{p^{l}} g^{-1}=\left(a^{1+x_{1} p^{n-k m+s}} b_{k-1}^{y_{1} p^{s}}\right)^{p^{l}} \in\langle a\rangle$ if and only if $l \geq(k-1) m-s$, by Lemma 2 (iii), (iv). Therefore we have

$$
g\langle a\rangle g^{-1} \cap\langle a\rangle=\left\langle a^{p^{(k-1) m-s}}\right\rangle .
$$

Since

$$
\begin{aligned}
g a^{p^{(k-1) m-s}} g^{-1} & =a^{\left(1+x_{1} p^{n-k m+s}\right) p^{(k-1) m-s}} \\
& =a^{p^{(k-1) m-s}+x_{1} p^{n-m}} \neq a^{p^{(k-1) m-s}},
\end{aligned}
$$

the proof of Corollary 1 is completed.

4. Proof of Theorem B

We show Theorem B by the induction on d. For $d=1$, we can show the assertion by the direct calculations, and for $d=2$, we have already shown it in [8].

Suppose that the assertion hold for any $e,(1 \leq e \leq d-1)$.
We use the same notations as in Theorem A, that is, s_{d-1} is the integer and $b_{i}(1 \leq i \leq d-1)$ are the elements in G such that $a_{d-1}=a^{s_{d-1}}$ and b_{1}, \ldots, b_{d-1} generate $N_{d-1}, N_{d-1}=\left\langle a_{d-1}, b_{1}, b_{2}, \ldots, b_{d-1}\right\rangle=\left\langle a_{d}, b_{d-1}\right\rangle$ $\left(=\left\langle a, b_{d-1}\right\rangle\right)$, and the following relations hold

$$
\begin{gathered}
a_{d-1}^{p^{n}}=1, \quad b_{i} a_{d-1} b_{i}^{-1}=a_{d-1}^{1+p^{n-i m}} b_{i-1} \\
b_{i}^{p^{m}}=b_{i-1}, \quad b_{i} b_{i-1} b_{i}^{-1}=b_{i-1}, \quad(1 \leq i \leq d-1)
\end{gathered}
$$

Let $f: N_{d} \longrightarrow N_{d} / N_{d-1}$ be the natural epimorphism of groups. For $g \in N_{d}$, we write o (g) for the order of $f(g)$ in N_{d} / N_{d-1}.

Define $p^{t_{0}}=\max \left\{\mathrm{o}(g) \mid g \in N_{d}\right\}$, and take an element $g_{0} \in N_{d}$ such that $\mathrm{o}\left(g_{0}\right)=p^{t_{0}}$. Hereafter we fix the element g_{0}.

Without loss of generality, we may assume that $a_{d-1}=a^{s_{d-1}}=a$.
We can show the following:

Claim I

(i) For any $g \in N_{d}$, there exist integers $r_{i}, 1 \leq i \leq d-1$, such that the following equalities hold:

$$
\begin{equation*}
\left(a^{r_{i}} g\right) b_{i}\left(a^{r_{i}} g\right)^{-1}=b_{i}, \quad 1 \leq i \leq d-1 \tag{I}
\end{equation*}
$$

Further, we can write

$$
\begin{equation*}
\left(a^{r_{d-1}} g\right) a\left(a^{r_{d-1}} g\right)^{-1}=a^{1+k_{d} p^{n-(d-1) m-t}} b_{d-1}^{l_{d} p^{m-t}} \tag{II}
\end{equation*}
$$

where k_{d}, l_{d} are the integers such that $\left(k_{d}, p\right)=\left(l_{d}, p\right)=1$ and $\mathrm{o}(g)=$ p^{t}.
(ii) $t_{0} \leq m$.
(iii) N_{d} is generated by a, b_{d-1} and g_{0}, that is, $N_{d}=\left\langle a, b_{d-1}, g_{0}\right\rangle$.

Proof. (i) (I). We show (i) (I) by the induction on i. When $i=1$, the proof is essentially the same as that of Claim I of [8], so we omit it.

Suppose that there exists an integer r_{i-1} such that

$$
\left(a^{r_{i-1}} g\right) b_{i-1}\left(a^{r_{i-1}} g\right)^{-1}=b_{i-1} .
$$

Without loss of generality, we can assume that $g b_{i-1} g^{-1}=b_{i-1}$.
Write gag $^{-1}=a^{x_{1}} b_{d-1}^{y_{1}}$, then $\left(x_{1}, p\right)=1$, because $\left(a^{x_{1}} b_{d-1}^{y_{1}}\right)^{p^{(d-1) m}}=$ $a^{x_{1} p^{(d-1) m}}$ and the order of $g a g^{-1}$ is p^{n}.

Since the order of $g b_{i} g^{-1}$ is $p^{i m}$, by Lemma 2 (iii), (iv), we can write $g b_{i} g^{-1}=a^{k} b_{i}^{l}$, for some $k, l \in \mathbf{Z}$.

Then

$$
\begin{aligned}
b_{i-1}=g b_{i-1} g^{-1}=g b_{i}^{p^{m}} g^{-1}=\left(a^{k} b_{i}^{l}\right)^{p^{m}} \equiv & a^{k p^{m}} b_{i-1}^{l} \\
& \left(\bmod \left\langle a^{p^{n-(i-1) m}}\right\rangle \times\left\langle b_{i-2}\right\rangle\right),
\end{aligned}
$$

by Lemma 2 (iii).
Therefore we have

$$
l \equiv 1 \quad\left(\bmod p^{m}\right) \quad \text { and } \quad k p^{m} \equiv 0 \quad\left(\bmod p^{n-(i-1) m}\right)
$$

So, we can write $l=1+l_{1} p^{m}, k=k_{1} p^{n-i m}$ and

$$
g b_{i} g^{-1}=a^{k_{1} p^{n-i m}} b_{i}^{1+l_{1} p^{m}}=a^{k_{1} p^{n-i m}} b_{i-1}^{l_{1}} b_{i},
$$

for some $k_{1}, l_{1} \in \mathbf{Z}$.
Since

$$
b_{i} a^{p^{n-i m}} b_{i}^{-1}=\left(a^{1+p^{n-i m}} b_{i-1}\right)^{p^{n-i m}}=a^{p^{n-i m}},
$$

by our assumption $n \geq 2 d m$ and Lemma 2 (iv), we have

$$
\begin{aligned}
b_{i-1} & =g b_{i-1} g^{-1}=g b_{i}^{p^{m}} g^{-1}=\left(a^{k_{1} p^{n-i m}} b_{i}^{1+l_{1} p^{m}}\right)^{p^{m}} \\
& =a^{k_{1} p^{n-(i-1) m}} b_{i-1}^{1+l_{1} p^{m}}=a^{k_{1} p^{n-(i-1) m}} b_{i-2}^{l_{1}} b_{i-1} .
\end{aligned}
$$

Therefore we get

$$
k_{1} \equiv 0 \quad\left(\bmod p^{(i-1) m}\right), \quad l_{1} \equiv 0 \quad\left(\bmod p^{(i-2) m}\right)
$$

So, we can write $l_{1}=l_{2} p^{(i-2) m}, k_{1}=k_{2} p^{(i-1) m}$ and

$$
g b_{i} g^{-1}=a^{k_{2} p^{n-m}} b_{1}^{l_{2}} b_{i},
$$

for some $k_{2}, l_{2} \in \mathbf{Z}$.
Taking the conjugate of both sides of the equality, $b_{i} a b_{i}^{-1}=$ $a^{1+p^{n-i m}} b_{i-1}$ by g, we get

$$
\left(a^{k_{2} p^{n-m}} b_{1}^{l_{2}} b_{i}\right)\left(a^{x_{1}} b_{d-1}^{y_{1}}\right)\left(a^{k_{2} p^{n-m}} b_{1}^{l_{2}} b_{i}\right)^{-1}=\left(a^{x_{1}} b_{d-1}^{y_{1}}\right)^{1+p^{n-i m}} b_{i-1} .
$$

Since $\left(a^{x_{1}} b_{d-1}^{y_{1}}\right)^{1+p^{n-i m}} b_{i-1}=a^{x_{1} p^{n-i m}}\left(a^{x_{1}} b_{d-1}^{y_{1}}\right) b_{i-1}=a^{x_{1}\left(1+p^{n-i m}\right)} b_{d-1}^{y_{1}}$ - b_{i-1}, and

$$
\begin{aligned}
& \left(a^{k_{2} p^{n-m}} b_{1}^{l_{2}} b_{i}\right)\left(a^{x_{1}} b_{d-1}^{y_{1}}\right)\left(a^{k_{2} p^{n-m}} b_{1}^{l_{2}} b_{i}\right)^{-1} \\
& \quad=b_{1}^{l_{2}}\left\{\left(a^{1+p^{n-i m}} b_{i-1}\right)^{x_{1}} b_{d-1}^{y_{1}}\right\} b_{1}^{-l_{2}} \\
& \quad=\left\{a^{\left(1+l_{2} p^{n-m}\right)\left(1+p^{n-i m}\right)} b_{i-1}\right\}^{x_{1}} b_{d-1}^{y_{1}},
\end{aligned}
$$

we have

$$
\begin{equation*}
\left\{a^{\left(1+l_{2} p^{n-m}\right)\left(1+p^{n-i m}\right)} b_{i-1}\right\}^{x_{1}}=a^{x_{1}\left(1+p^{n-i m}\right)} b_{i-1} . \tag{10}
\end{equation*}
$$

So, we get

$$
\begin{aligned}
& \left\{a^{\left(1+l_{2} p^{n-m}\right)\left(1+p^{n-i m}\right)} b_{i-1}\right\}^{x_{1}-1} \\
& \quad=a^{x_{1}\left(1+p^{n-i m}\right)} b_{i-1}\left\{a^{\left(1+l_{2} p^{n-m}\right)\left(1+p^{n-i m}\right)} b_{i-1}\right\}^{-1} \in\langle a\rangle .
\end{aligned}
$$

But $\left(a^{\left(1+l_{2} p^{n-m}\right)\left(1+p^{n-i m}\right)} b_{i-1}\right)^{p^{l}} \in\langle a\rangle$ if and only if $l \geq(i-1) m$, by Lemma 2 (iii), (iv).

Therefore we must have $x_{1}-1 \equiv 0\left(\bmod p^{(i-1) m}\right)$.
Write $x_{1}=1+x_{2} p^{(i-1) m}$ for some $x_{2} \in \mathbf{Z}$. Then we have

$$
\begin{align*}
& \left\{a^{\left(1+l_{2} p^{n-m}\right)\left(1+p^{n-i m}\right)} b_{i-1}\right\}^{x_{1}} \\
& \quad=\left\{a^{\left(1+l_{2} p^{n-m}\right)\left(1+p^{n-i m}\right)} b_{i-1}\right\}^{x_{2} p^{(i-1) m}}\left\{a^{\left(1+l_{2} p^{n-m}\right)\left(1+p^{n-i m}\right)} b_{i-1}\right\} \\
& \quad=a^{x_{2} p^{(i-1) m}\left(1+l_{2} p^{n-m}\right)\left(1+p^{n-i m}\right)}\left\{a^{\left(1+l_{2} p^{n-m}\right)\left(1+p^{n-i m}\right)} b_{i-1}\right\} \\
& \quad=a^{x_{1}\left(1+l_{2} p^{n-m}\right)\left(1+p^{n-i m}\right)} b_{i-1} . \tag{11}
\end{align*}
$$

By (10) and (11), we have $l_{2} \equiv 0\left(\bmod p^{m}\right)$, and so

$$
g b_{i} g^{-1}=a^{k_{2} p^{n-m}} b_{1}^{l_{2}} b_{i}=a^{k_{2} p^{n-m}} b_{i}
$$

Note that
$b_{i} a^{p^{(i-1) m}} b_{i}^{-1}=\left(a^{1+p^{n-i m}} b_{i-1}\right)^{p^{(i-1) m}}=a^{\left(1+p^{n-i m}\right) p^{(i-1) m}}=a^{p^{(i-1) m}+p^{n-m}}$.

So, if we take $r_{i}=k_{2} p^{(i-1) m}$, then

$$
\left(a^{r_{i}} g\right) b_{i}\left(a^{r_{i}} g\right)^{-1}=a^{k_{2} p^{(i-1) m}} g b_{i} g^{-1} a^{-k_{2} p^{(i-1) m}}=b_{i} .
$$

This completes the proof of (i) (I).
(ii) Let g be an arbitrary element in N_{d}, and write o $(g)=p^{t}$. If we set $g_{1}=a^{r_{d-1}} g$, then $g_{1} b_{d-1} g_{1}^{-1}=b_{d-1}$ and $\mathrm{o}\left(g_{1}\right)=\mathrm{o}(g)=p^{t}$. To prove (ii), we show that $t \leq m$.

Write $g_{1} a g_{1}^{-1}=a^{x} b_{d-1}^{y}$, for some $x, y \in \mathbf{Z}$.
It is easy to see that

$$
g_{1}\left(\left\langle a^{p^{n-(d-1) m}}\right\rangle \times\left\langle b_{d-2}\right\rangle\right) g_{1}^{-1}=\left\langle a^{p^{n-(d-1) m}}\right\rangle \times\left\langle b_{d-2}\right\rangle .
$$

Since

$$
b_{d-1} a b_{d-1}^{-1} \equiv a \quad\left(\bmod \left\langle a^{p^{n-(d-1) m}}\right\rangle \times\left\langle b_{d-2}\right\rangle\right)
$$

we have

$$
g_{1} a^{j} g_{1}^{-1}=\left(a^{x} b_{d-1}^{y}\right)^{j} \equiv a^{x j} b_{d-1}^{y j} \quad\left(\bmod \left\langle a^{p^{n-(d-1) m}}\right\rangle \times\left\langle b_{d-2}\right\rangle\right)
$$

for any $j \in \mathbf{N}$. Therefore we get

$$
g_{1}^{l} a g_{1}^{-l} \equiv a^{x^{l}} b_{d-1}^{y\left(x^{l-1}+\cdots+x+1\right)} \quad\left(\bmod \left\langle a^{p^{n-(d-1) m}}\right\rangle \times\left\langle b_{d-2}\right\rangle\right)
$$

for any $l \in \mathbf{N}$.
In particular,

$$
\begin{equation*}
g_{1}^{p^{t}} a g_{1}^{-p^{t}} \equiv a^{x^{p^{t}}} b_{d-1}^{y\left(x^{p^{t}-1}+\cdots+x+1\right)} \quad\left(\bmod \left\langle a^{p^{n-(d-1) m}}\right\rangle \times\left\langle b_{d-2}\right\rangle\right) \tag{12}
\end{equation*}
$$

Since $g_{1}^{p^{t}} \in N_{d-1}$, we must have

$$
g_{1}^{p^{t}} a g_{1}^{-p^{t}} \equiv a \quad\left(\bmod \left\langle a^{p^{n-(d-1) m}}\right\rangle \times\left\langle b_{d-2}\right\rangle\right)
$$

Therefore

$$
\begin{equation*}
x^{p^{t}} \equiv 1 \quad\left(\bmod p^{n-(d-1) m}\right), \tag{13}
\end{equation*}
$$

and

$$
y\left(x^{p^{t}-1}+\cdots+x+1\right) \equiv 0 \quad\left(\bmod p^{m}\right)
$$

By (13), we can write $x=1+x_{0} p^{n-(d-1) m-t}$, for some $x_{0} \in \mathbf{Z}$.
So,

$$
\begin{equation*}
y\left(x^{p^{t}-1}+\cdots+x+1\right)=y\left(\frac{x^{p^{t}}-1}{x-1}\right)=y p^{t} v \tag{14}
\end{equation*}
$$

for some $v \in \mathbf{Z},(p, v)=1$.
Suppose that $t \geq m+1$, then

$$
y\left(x^{p^{t-1}-1}+\cdots+x+1\right)=y p^{t-1} v_{1} \equiv 0 \quad\left(\bmod p^{m}\right)
$$

for some $v_{1} \in \mathbf{Z},\left(p, v_{1}\right)=1$.
This means that $g_{1}^{p^{t-1}} a g_{1}^{-p^{t-1}} \in N_{d-2}$ and $g_{1}^{p^{t-1}} \in N_{d-1}$, which contradicts our hypothesis that $\mathrm{o}(g)=p^{t}$. Therefore we must have $t \leq m$, and the proof of (ii) is completed.
(i) (II) By (12) and (14), we can write $y=y_{0} p^{m-t}$ and

$$
g_{1} a g_{1}^{-1}=a^{1+x_{0} p^{n-(d-1) m-t}} b_{d-1}^{y_{0} p^{m-t}}
$$

for some $y_{0} \in \mathbf{Z}$.
Since

$$
g_{1} a^{p^{n-(d-1) m-t}} g_{1}^{-1}=\left(a^{1+x_{0} p^{n-(d-1) m-t}} b_{d-1}^{y_{0} p^{m-t}}\right)^{p^{n-(d-1) m-t}}=a^{p^{n-(d-1) m-t}}
$$

by Lemma 2 (iv) and by our assumption $n \geq 2 d m$, we have

$$
g_{1}^{p^{t-1}} a g_{1}^{-p^{t-1}}=a^{1+x_{0} p^{n-(d-1) m-1}} b_{d-1}^{y_{0} p^{m-1}} .
$$

But $g_{1}^{p^{t-1}} \notin N_{d-1}$, we must have $\left(p, y_{0}\right)=1$.
Suppose that $\left(p, x_{0}\right)=p$, then we can write $x_{0}=x_{3} p$, for some $x_{3} \in \mathrm{Z}$, and

$$
g_{1}^{p^{t-1}} a g_{1}^{-p^{t-1}}=a^{1+x_{3} p^{n-(d-1) m}} b_{d-1}^{y_{0} p^{m-1}} .
$$

If we put $g_{2}=b_{d-1}^{-x_{3}} g_{1}^{p^{t-1}}$, then $g_{2} \notin N_{d-1}$.
Since $b_{d-1} a^{p^{n-(d-1) m}} b_{d-1}^{-1}=a^{p^{n-(d-1) m}}$, we have

$$
\begin{aligned}
g_{2} a g_{2}^{-1} & =b_{d-1}^{-x_{3}} a^{1+x_{3} p^{n-(d-1) m}} b_{d-1}^{y_{0} p^{m-1}} b_{d-1}^{x_{3}} \\
& =\left(a^{1-x_{3} p^{n-(d-1) m}} b_{d-2}^{-x_{3}}\right)\left(a^{x_{3} p^{n-(d-1) m}}\right)\left(b_{d-1}^{y_{0} p^{m-1}}\right) \\
& =a b_{d-2}^{-x_{3}} b_{d-1}^{y_{0} p^{m-1}}=a b_{d-1}^{\left(y_{0}-x_{3} p\right) p^{m-1}} .
\end{aligned}
$$

By Lemma 2 (iii), (iv), we have

$$
\left(g_{2} a g_{2}^{-1}\right)^{p^{l}}=\left(a b_{d-1}^{\left(y_{0}-x_{3} p\right) p^{m-1}}\right)^{p^{l}} \in\langle a\rangle
$$

if and only if $l \geq(d-2) m+1$.
Therefore we have

$$
g_{2}\langle a\rangle g_{2}^{-1} \cap\langle a\rangle=\left\langle a^{p^{(d-2) m+1}}\right\rangle .
$$

Further,

$$
g_{2} a^{p^{(d-2) m+1}} g_{2}^{-1}=\left(a b_{d-1}^{\left(y_{0}-x_{3} p\right) p^{m-1}}\right)^{p^{(d-2) m+1}}=a^{p^{(d-2) m+1}},
$$

by Lemma 2 (iv).
This contradicts our hypothesis that G satisfies $(E X, B)$. So, we must have $\left(x_{0}, p\right)=1$. If we set $k_{d}=x_{0}$ and $l_{d}=y_{0}$, we complete the proof of (i) (II).
(iii) Take an arbitrary element $u \in N_{d}$. Let $\mathrm{o}(u)=p^{t_{1}}$. Then, by (i), we may assume that

$$
u a u^{-1}=a^{1+h_{1} p^{n-(d-1) m-t_{1}}} b_{d-1}^{h_{2} p^{m-t_{1}}}
$$

and

$$
u b_{i} u^{-1}=b_{i}, \quad 1 \leq i \leq d-1
$$

where $\left(p, h_{1}\right)=\left(p, h_{2}\right)=1$. Since $t_{1} \leq t_{0}$, we can take an element $w \in$ $\left\langle a, b_{d-1}, g_{0}^{p^{t_{0}-t_{1}}}\right\rangle$ such that

$$
w^{-1} a w=a^{1+l_{1} p^{n-(d-1) m-t_{1}}} b_{d-1}^{l_{2} p^{m-t_{1}}}
$$

and

$$
w^{-1} b_{i} w=b_{i}, \quad 1 \leq i \leq d-1
$$

where $\left(p, l_{1}\right)=\left(p, l_{2}\right)=1$. Let c be the integer satisfying $l_{2} c \equiv-h_{2}$ $\left(\bmod p^{(d-2) m+t_{1}}\right)$, and set $w_{1}=w^{c}$. Then $(p, c)=1$,

$$
w_{1}^{-1} a w_{1}=a^{1+l_{1} c p^{n-(d-1) m-t_{1}}} b_{d-1}^{l_{2} c p^{m-t_{1}}}=a^{1+l_{1} c p^{n-(d-1) m-t_{1}}} b_{d-1}^{-h_{2} p^{m-t_{1}}},
$$

and

$$
w_{1}^{-1} b_{d-1} w_{1}=b_{d-1}
$$

Therefore we have

$$
\begin{aligned}
w_{1}^{-1}\left(u a u^{-1}\right) w_{1} & =w_{1}^{-1}\left(a^{1+h_{1} p^{n-(d-1) m-t_{1}}} b_{d-1}^{h_{2} p^{m-t_{1}}}\right) w_{1} \\
& =a^{1+\left(l_{1} c+h_{1}\right) p^{n-(d-1) m-t_{1}}} \in\langle a\rangle .
\end{aligned}
$$

This means that $w_{1}^{-1} u \in N_{1}$, so we must have $u \in\left\langle a, b_{d-1}, g_{0}\right\rangle$. This completes the proof of (iii).

Next, we show the following:
Claim II Let $a, b_{i},(1 \leq i \leq d-1)$ and g_{0} be the elements as in Claim I. Then there exist integers z_{1}, z_{2}, and the element $w \in N_{d-1}$ such that $\left(z_{1}, p\right)=\left(z_{2}, p\right)=1$, and $a_{1}=a^{z_{1}}, b_{i},(1 \leq i \leq d-1)$ and $b=w g_{0}^{z_{2}}$ satisfy the following relations:

$$
\begin{gathered}
a_{1}^{p^{n}}=1, \quad b_{i} a_{1} b_{i}^{-1}=a_{1}^{1+p^{n-i m}} b_{i-1}, \quad b_{i} b_{i-1} b_{i}^{-1}=b_{i-1}, \\
b_{i}^{p^{m}}=b_{i-1}(1 \leq i \leq d-1) \\
b a_{1} b^{-1}=a_{1}^{1+p^{n-(d-1) m-t_{0}}} b_{d-1}^{p^{m-t_{0}}}, \quad b b_{d-1} b^{-1}=b_{d-1}, \quad b^{p^{t_{0}}}=b_{d-1},
\end{gathered}
$$

where, $b_{0}=1$.
Proof. In this proof, we use the notations t and g instead of t_{0} and g_{0},
respectively. First we consider the element $g^{p^{t}}\left(\in N_{d-1}\right)$.
By Claim I, we may assume that

$$
\begin{equation*}
g a g^{-1}=a^{1+k_{d} p^{n-(d-1) m-t}} b_{d-1}^{l_{d} p^{m-t}} \tag{15}
\end{equation*}
$$

and

$$
g b_{i} g^{-1}=b_{i}, \quad 1 \leq i \leq d-1
$$

for some $k_{d}, l_{d} \in \mathbf{Z},\left(k_{d}, p\right)=\left(l_{d}, p\right)=1$.
By Lemma 2 (iii), (iv), we see that

$$
g a^{p^{l}} g^{-1} \notin\langle a\rangle
$$

for any $l \in \mathbf{N}, 1 \leq l \leq(d-2) m+t-1$, and

$$
g a^{p^{l}} g^{-1}=a^{\left(1+k_{d} p^{n-(d-1) m-t}\right) p^{l}}
$$

for any $l \in \mathbf{N},(d-2) m+t \leq l$. So,

$$
g a^{p^{l}} g^{-1}=a^{p^{l}}
$$

if and only if $(d-1) m+t \leq l$.
Since $g^{p^{t}} \in N_{d-1}$, we can write $g^{p^{t}}=a^{r_{1}} b_{d-1}^{s}$, for some $r_{1}, s \in \mathbf{Z}$. Since $g b_{d-1} g^{-1}=b_{d-1}$, we have $g a^{r_{1}} g^{-1}=a^{r_{1}}$. So we can write

$$
g^{p^{t}}=a^{r_{2} p^{(d-1) m+t}} b_{d-1}^{s},
$$

for some $r_{2} \in \mathbf{Z}$. Therefore we have

$$
\begin{align*}
g^{p^{t}} a g^{-p^{t}} & =\left(a^{r_{2} p^{(d-1) m+t}} b_{d-1}^{s}\right) a\left(a^{r_{2} p^{(d-1) m+t}} b_{d-1}^{s}\right)^{-1} \\
& =a^{1+s p^{n-(d-1) m}} b_{d-2}^{s} . \tag{16}
\end{align*}
$$

On the other hand, by (15), we have

$$
\begin{equation*}
g^{p^{t}} a g^{-p^{t}}=a^{1+k_{d} p^{n-(d-1) m}} b_{d-2}^{l_{d}} . \tag{17}
\end{equation*}
$$

Comparing (16) and (17), we get

$$
k_{d} \equiv s \quad\left(\bmod p^{(d-1) m}\right) \quad \text { and } \quad l_{d} \equiv s \quad\left(\bmod p^{(d-2) m}\right) .
$$

So, we can write

$$
\begin{equation*}
k_{d}=s+f_{1} p^{(d-1) m} \quad \text { and } \quad l_{d}=s+f_{2} p^{(d-2) m} \tag{18}
\end{equation*}
$$

for some $f_{1}, f_{2} \in \mathbf{Z}$.
Thus we can write

$$
g^{p^{t}}=a^{r_{2} p^{(d-1) m+t}} b_{d-1}^{k_{d}} .
$$

By (18), we have

$$
l_{d}=k_{d}-f_{1} p^{(d-1) m}+f_{2} p^{(d-2) m}
$$

and

$$
\begin{aligned}
g a g^{-1} & =a^{1+k_{d} p^{n-(d-1) m-t}} b_{d-1}^{l_{d} p^{m-t}} \\
& =a^{1+k_{d} p^{n-(d-1) m-t}} b_{d-1}^{\left\{k_{d}-f_{1} p^{(d-1) m}+f_{2} p^{(d-2) m}\right\} p^{m-t}} \\
& =a^{1+k_{d} p^{n-(d-1) m-t}} b_{d-1}^{k_{d} p^{m-t}} b_{1}^{f_{2} p^{m-t}} .
\end{aligned}
$$

So, we have

$$
g a^{p^{(d-1) m}} g^{-1}=a^{p^{(d-1) m}\left\{1+k_{d} p^{n-(d-1) m-t}\right\},}
$$

and

$$
\begin{align*}
g^{l} a^{r p^{(d-1) m}} g^{-l} & =a^{r p^{(d-1) m}\left\{1+k_{d} p^{n-(d-1) m-t}\right\}^{l}} \\
& =a^{r p^{(d-1) m}\left\{1+l k_{d} p^{n-(d-1) m-t}\right\}}, \tag{19}
\end{align*}
$$

for any $r \in \mathbf{Z}$ and $l \in \mathbf{N}$. By using (19), we get

$$
\begin{equation*}
\left(a^{r p^{(d-1) m}} g\right)^{l}=a^{l r p^{(d-1) m}} a^{r k_{d} p^{n-t}(l(l-1) / 2)} g^{l}, \tag{20}
\end{equation*}
$$

for any $r \in \mathbf{Z}$ and $l \in \mathbf{N}$. In particular, we have

$$
\left(a^{r p^{(d-1) m}} g\right)^{p^{t}}=a^{r p^{(d-1) m+t}} g^{p^{t}}=a^{r p^{(d-1) m+t}} a^{r_{2} p^{(d-1) m+t}} b_{d-1}^{k_{d}} .
$$

So, if we put $g_{2}=a^{-r_{2} p^{(d-1) m}} g$, we get

$$
\begin{aligned}
g_{2}^{p^{t}}=b_{d-1}^{k_{d}}, \quad g_{2} a g_{2}^{-1} & =a^{1+k_{d} p^{n-(d-1) m-t}} b_{d-1}^{k_{d} p^{m-t}} b_{1}^{f_{2} p^{m-t}} \\
g_{2} b_{i} g_{2}^{-1} & =b_{i}, \quad 1 \leq i \leq d-1
\end{aligned}
$$

Let v_{1} be the integer such that $k_{d} v_{1} \equiv 1\left(\bmod p^{(d-1) m+t}\right)$, and set $g_{3}=g_{2}^{v_{1}}$.
Then the following equalities hold:

$$
\begin{gathered}
g_{3}^{p^{t}}=g_{2}^{v_{1} p^{t}}=b_{d-1}^{k_{d} v_{1}}=b_{d-1}, \quad g_{3} b_{i} g_{3}^{-1}=b_{i}, \quad 1 \leq i \leq d-1 \\
g_{3} a g_{3}^{-1}=a^{1+k_{d} v_{1} p^{n-(d-1) m-t}} b_{d-1}^{k_{d} v_{1} p^{m-t}} b_{1}^{f_{2} v_{1} p^{m-t}} \\
=a^{1+p^{n-(d-1) m-t}} b_{d-1}^{p^{m-t}} b_{1}^{f_{2} v_{1} p^{m-t}}
\end{gathered}
$$

Further, let $a_{1}=a^{1-f_{2} v_{1} p^{(d-2) m}}$. Then $a_{1}^{p^{n-t}}=a^{p^{n-t}}$, and

$$
\begin{aligned}
g_{3} a_{1} g_{3}^{-1}= & \left(g_{3} a^{-f_{2} v_{1} p^{(d-2) m}} g_{3}^{-1}\right)\left(g_{3} a g_{3}^{-1}\right) \\
= & \left(a^{1+p^{n-(d-1) m-t}} b_{d-1}^{p^{m-t}} b_{1}^{f_{2} v_{1} p^{m-t}}\right)^{-f_{2} v_{1} p^{(d-2) m}} \\
& \cdot\left(a^{1+p^{n-(d-1) m-t}} b_{d-1}^{p^{m-t}} b_{1}^{f_{2} v_{1} p^{m-t}}\right) \\
\equiv & \left\{a^{\left(1+p^{n-(d-1) m-t}\right)\left(-f_{2} v_{1} p^{(d-2) m}\right)} b_{1}^{-f_{2} v_{1} p^{m-t}}\right\} \\
& \cdot\left(a^{1+p^{n-(d-1) m-t}} b_{d-1}^{p^{m-t}} b_{1}^{f_{2} v_{1} p^{m-t}}\right) \quad\left(\bmod \left\langle a^{p^{n-t}}\right\rangle\right) \\
\equiv & a^{\left(1+p^{n-(d-1) m-t}\right)\left(1-f_{2} v_{1} p^{(d-2) m}\right)} b_{d-1}^{p^{m-t}} \quad\left(\bmod \left\langle a^{p^{n-t}}\right\rangle\right) \\
\equiv & a_{1}^{1+p^{n-(d-1) m-t}} b_{d-1}^{p^{m-t}} \quad\left(\bmod \left\langle a^{p^{n-t}}\right\rangle\right) \\
\equiv & a_{1}^{1+p^{n-(d-1) m-t}} b_{d-1}^{p^{m-t}} \quad\left(\bmod \left\langle a_{1}^{p^{n-t}}\right\rangle\right) .
\end{aligned}
$$

So, we can write

$$
g_{3} a_{1} g_{3}^{-1}=a_{1}^{1+p^{n-(d-1) m-t}+y p^{n-t}} b_{d-1}^{p^{m-t}}
$$

for some $y \in \mathbf{Z}$. It is easy to see that

$$
a_{1}^{p^{n}}=1 \quad \text { and } \quad b_{i} a_{1} b_{i}^{-1}=a_{1}^{1+p^{n-i m}} b_{i-1}, \quad 1 \leq i \leq d-1
$$

Finally, if we set $b=b_{1}^{-y p^{m-t}} g_{3}$, then we have $b a_{1} b^{-1}=b_{1}^{-y p^{m-t}}\left(a_{1}^{1+p^{n-(d-1) m-t}+y p^{n-t}} b_{d-1}^{p^{m-t}}\right) b_{1}^{y p^{m-t}}=a_{1}^{1+p^{n-(d-1) m-t}} b_{d-1}^{p^{m-t}}$, and

$$
b^{p^{t}}=\left(b_{1}^{-y p^{m-t}} g_{3}\right)^{p^{t}}=g_{3}^{p^{t}}=b_{d-1}, \quad b b_{i} b^{-1}=b_{i} \quad 1 \leq i \leq d-1
$$

Thus the proof of Claim II is completed.
We can easily see that

$$
\left\langle a_{1}\right\rangle=\langle a\rangle \quad \text { and } \quad\left\langle a_{1}, b_{1}, \ldots, b_{d-1}, b\right\rangle=\left\langle a, b_{1}, \ldots, b_{d-1}, g_{0}\right\rangle=N_{d}
$$

We will complete the proof of the Theorem B, by showing the following:
Claim III $\quad t_{0}=m \quad$ when $\left[G: N_{d-1}\right] \geq p^{m}$.
Proof. We use the same notations as in Claim II, that is, $N_{d}=$ $\left\langle a_{1}, b_{1}, \ldots, b_{d-1}, b\right\rangle$, and $\left|N_{d} / N_{d-1}\right|=p^{t_{0}}$. For simplicity, we write t and a instead of t_{0} and a_{1}. Suppose that $t \leq m-1$. Take an element $u \in N_{G}\left(N_{d}\right)-N_{d}$ such that $u^{p} \in N_{d}$. By the same way as in the proof of Claim I, we can assume that $u b u^{-1}=b, u b_{i} u^{-1}=b_{i}, 1 \leq i \leq d-1$.

Further we can see that

$$
u\left(\left\langle a^{p^{n-(d-1) m-t}}\right\rangle \times\left\langle b_{d-1}^{p^{m-t}}\right\rangle\right) u^{-1}=\left\langle a^{p^{n-(d-1) m-t}}\right\rangle \times\left\langle b_{d-1}^{p^{m-t}}\right\rangle
$$

by using Lemma 2 (iii), (iv).
Let $u a u^{-1}=a^{x} b^{y}, x, y \in \mathbf{Z}$. Then we have

$$
\begin{aligned}
u^{p} a u^{-p} \equiv a^{x^{p}} b^{y\left(x^{p-1}+\cdots+x+1\right)} \equiv a^{x^{p}} b^{y\left(\left(x^{p}-1\right) /(x-1)\right)} \\
\quad\left(\bmod \left\langle a^{p^{n-(d-1) m-t}}\right\rangle \times\left\langle b_{d-1}^{p^{m-t}}\right\rangle\right) .
\end{aligned}
$$

Since $u^{p} \in N_{d}$, we must have

$$
x^{p} \equiv 1 \quad\left(\bmod p^{n-(d-1) m-t}\right),
$$

and

$$
y\left(\frac{x^{p}-1}{x-1}\right) \equiv 0 \quad\left(\bmod p^{m}\right)
$$

So, we can write $x=1+x_{1} p^{n-(d-1) m-t-1}$ for some $x_{1} \in \mathbf{Z}$. In this case, we can write $\frac{x^{p}-1}{x-1}=p z$ for some $z \in \mathbf{Z},(z, p)=1$. Therefore we must have $y \equiv 0\left(\bmod p^{m-1}\right)$. But this fact means $u a u^{-1}=a^{x} b^{y} \in N_{d-1}$. On the other hand, $u b_{i} u^{-1}=b_{i} 1 \leq i \leq d-1$, so we have $u \in N_{d}$, which contradicts our hypothesis that $u \notin N_{d}$. This completes the proof of Claim III.

5. Proof of Theorem

If $M=m d$, then, by Theorem A, we have $N_{d} \cong G(n, m, d)$. But $\left[G: B_{n}\right]=\left[G(n, m, d): B_{n}\right]$. So, $G=N_{d} \cong G(n, m, d)$.

When $M<m d$, we have $N_{d-1} \cong G(n, m, d-1)$, by Theorem A. By Claim I (iii) and Claim II, we can see that $N_{d} \cong G(n, m, d-1,+t)$, for some $t, 1 \leq t \leq m-1$. But, by the same argument as in Claim III, we must have $G=N_{d}$. Comparing $\left[G: B_{n}\right]$ and $\left[N_{d}: B_{n}\right]$, we have $t=M-(d-1) m$.

Acknowledgments The author would like to express his gratitude to the referee for his careful reading and pertinent suggestions.

References

[1] Curtis C. and Reiner I., Representation theory of finite groups and associative algebras (Interscience, New York, 1962).
[2] Iida Y., Normal extensions of a cyclic p-group. Comm. Algebra 30(4) (2002), 1801-1805.
[3] Iida Y. and Yamada T., Extensions and induced characters of quaternion, dihedral and semidihedral groups. SUT J. Math. 27 (1991), 237-262.
[4] Iida Y. and Yamada T., Types of faithful metacyclic 2-groups. SUT J. Math. 28 (1992), 23-46.
[5] Sekiguchi K., Irreducibilities of the induced characters of cyclic p-groups. Math. J. of Okayama Univ. 41 (1999), 27-36.
[6] Sekiguchi K., Extensions and the irreducibilities of induced characters of some 2-groups. Hokkaido Math. J. 31 (2002), 79-96.
[7] Sekiguchi K., Extensions and the irreducibilities of the induced characters of cyclic p-groups. Hiroshima Math. J. 32 (2002), 165-178.
[8] Sekiguchi K., Extensions and the induced characters of cyclic p-groups. Comm. Algebra 35 (2007), 3611-3623.
[9] Zassenhaus H., The theory of groups (Chelsea, New York, 1949).

> Department of Mathematics and Science
> School of Science and Engineering
> Kokushikan University
> 4-28-1 Setagaya Setagaya-Ku, Tokyo 154-8515, Japan
> E-mail: sekiguch@kokushikan.ac.jp

[^0]: 2000 Mathematics Subject Classification : 20C15.

