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Averages of Nevanlinna counting functions
of holomorphic self-maps of the unit disk

Hong Oh Kim
(Received February 12, 2003)

Abstract. We give an integral representation of the Nevanlinna counting function N,
of a holomorphic self-map ¢ of the unit disk D in terms of its boundary values ¢*.
This representation enables us to explicitly compute the averages of N, over the circle
and over the small disks around the origin. As a consequence, we give, for example, a
computational proof of the well known sub-averaging property of N,.
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1. Introduction

We are only concerned with holomorphic self-maps ¢ of the open unit
disk D on the complex plane. The Nevanlinna counting function

1
Ny(w) = Z 1ogm
w(z)=w

plays a very important role in the holomorphic change of variables by w =
©(z) in the integral representation ([ESS], [St]) and in the study of the
composition operator Cy,(f) = fop. For example, Cy, is a compact operator
on the Hardy space H? if and only if Ny(w) = o(log1/|w|). See [Sh1, Sh2].
In this paper, we obtain a representation of IV, in terms of the boundary
values ¢* of p by applying Jensen’s formula to (a—y)/(1—a¢) in Proposition
2.1. It clarifies the behavior of N, more clearly, and enables us to compute
the averages of N, over the circles and over the small disk around the
origin as in Theorem 3.1. The usefulness of such representations is justified
by giving a computational proof of the well known sub-averaging property
of N, and by other consequences and the representation of the Nevanlinna
counting functions of Rudin’s orthogonal functions in Section 4.
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2. Another representation of N,

For a holomorphic self-map ¢ and a € D, the bounded function (a —
©)/(1 — ap) has the canonical factorization as follows:

a—p(z
Lo — BASUARE) (21)
where B, is the Blaschke product
B,(z) = H Jzil 2 —_z , (multiplicities counted) (2.2)
oz)ma zi 1 —7zz

S, is the singular inner function

s = e (= [ E2a0) (23)

with the positive Borel measure u, singular with respect to the normalized
Lebesgue measure do on the boundary 9D of D, and Fj, is the outer function
given by

_ﬂ@)zdﬁwp<éngjbgftgi&g%w@o, (2.4)

7 real, with ¢*({) = lim, »; ¢(r{) which exists almost every ¢ € 0D. See
[G] for the canonical factorization. Applying Jensen’s formula [G, p. 54] to
(2.1), we have for a 7é ©(0)

' Z log —

o()=a
|25 <7

. LD os |05 et

- / log | Ba(r€)| dor(€) — 1(8D)
oD

a—*(¢)
* /aD 18 | T3 (0)

We applied the Fubini’s theorem to interchange the order of integration for
the last equality. Letting » /' 1 on both sides, we obtain

— (0
1 —ap(0)

log |7 (2.5)

IJ

do ().

log + Ny(a) (2.6)
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a—¢*(¢)

= — (‘9D+/ log |————=|do(().
HelOD)F o 8 T ) )
We note that for the Blaschke product B,,
lim log Ba(r€)do(£) = 0. (2.7)

r/1 Jop

See [G]. The representation (2.6) is a refined version of Lemma 2 in [N] or
of Littlewood’s inequality [Sh1, p. 187] and is the main part of the following
proposition.

Proposition 2.1 Let ¢ be a holomorphic self-map of D. Then

(a)
o |1=ap(0) a—o*(¢)
Nw(a)—log m’ +/3D log \1——5()0*6 dO'(C) —/J,a(aD) (28)
——logla=p(O)|+ | loglo="(O]do(0) - pa(D) (29)
oD
for a # ©(0), where u, is the singular measure associated with the
singular factor of (a — ¢)/(1 —ap). In particular,
1 —ayp(0
Ny(a) < log a—L;((O)z‘ . (2.10)
(b) If ¢ is an inner function, i.e., |¢*(C)] = 1 a.e. ( € D, then for a #
©(0)
N,(a) = log ‘%‘ ~ 1a(0D). (2.11)

(¢) we(0D) =0 for nearly all a € D, i.e., for all a in D except for a set
of logarithmic capacity zero and

1 —ap(0)
a—0) |

In particular, po,(0D) — 0 as |a| /1.

e (0D) < log (2.12)

We note that (2.8) is another form of (2.6). Since log|1—ap]| is harmonic
in D, we see that

log [1 — @p(0)| = /a log 1 " ()]d(0) (2.13)
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(2.9) follows from (2.8) and (2.13). Since |(a — ¢*)/(1 —ap*)| <1 a.e. on
0D and pe(0D) > 0, (2.10) follows from (2.8).

For the inner function ¢, |(a — ¢*)/(1 —ap*)] = 1 a.e. on 8D and so
(2.11) follows from (2.8). For the proof of (c), we recall the generalized
version of Frostman’s theorem by W. Rudin. See [F, R3, R4]. The theorem
is more general but we state it only for our bounded self-map ¢.

Theorem A (Rudin) Let ¢ be a bounded self-map of D. Then the least
harmonic majorant of log|a — ¢| is given by the Poisson integral of log|a —
©*| for nearly all a € D.

Proof of Proposition 2.1(c). From (2.1), the canonical factorization of a —
©(z) has the form:

a = ¢(z) = Bo(2)5a(2) Fal2)(1 — @p(2))-
We note that the outer factor of a — ¢(z) has the form
Fu(e)(1 = mp(s)) = exp ([ X2
oD § — 2

Therefore, the least harmonic majorant of log |a — ¢| is given by the Poisson
integral of

log|a — ¢*({)| do({) — dpa(().

See Lemma 5.2 of Chapter II in [G] for example. Therefore, it follows from
Theorem A that p, = 0 for nearly all a € D. Finally, (2.12) follows also
from (2.6). This completes the proof of Proposition 2.1. O

logla — ¢*(¢)| da(@) |

3. Averages of N,

The representation (2.9) of N, enables us to compute the averages of
Nevanlinna counting function N, over the circles and disks around the origin
as in the following theorem, which have very useful consequences. It is very
amusing fact that the averages can be neatly represented by the boundary
values as in the following theorem.

Theorem 3.1 Let ¢ be a holomorphic self-map of D. Then
(a)

[ Nulon) oo (3.1)
oD
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+|80(0)| +|‘10()| o
P +/&)D P do ()
_log+M+/1<fﬂ_¢"l>_ﬂdt
P P

where a(t) = o{|¢*| > t} is a nonincreasing function oft and logt z =
max(logz, 0).

(b)
1
w [ Nele da@ (32)

1 *
= log o +/8D10glso ()] do(C)

41 /WKR{ (W*T(f”f —1-log <%<_)‘)2} do (),

for 0 < R < |p(0)|. Here, dA = 2pdpda(n) denotes the normalized
area measure.

Proof. (a) We first note that u,(8D) does not contribute to the aver-
ages since it is zero nearly all a € D. Write a = pn and integrate (2.9)
with respect to do(n). Apply Fubini’s theorem to interchange the order of
integrations and use the well known integral

w
/ log | pn — w| do(n) = log™* bl | log p,
8D 0

to obtain

/ Np(pm)dor ()=— / log |01 — (0)| do ()
oD
/ / log |on — ¢ (¢)| do (7)do ()
+|90 )|+/ 10g+ | (Olda(o
oD ,

P P

for p # |p(0)]. This relation is true for p = |p(0)| by continuity. The
second representation follows by applying Theorem 8.16 in [R2] and the
third follows by applying integration by part to the second representation.
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See Exercise 17 on p. 141 in [R1] for example.
(b) Let 0 < R < [¢(0)]. We integrate (3.1) against (2p/R2)dp. First,
compute

1 [E 0

R?2-/0 2plog+@dp (3.3)
_L/Rz tog [(0) dp+ — [ 2plog L d
=gz ), leleOldo+ 55 | 20log-dp
_ e 1
= log 7 —1-2.

Now, we compute

R *
%/O /w 2plog™ @d/} (3.4)

1 R *
= 72 /| *|<R/0 2plog™ _|<p p(g)l dpdo(¢)
©
1 R *
+ ﬁ/l |>R/O 2plog™ le" Q)] I(EC)' dpdo(C)
2 g

_ 1 ()l l* Q)]
- /WR L 2105 apas(c)

1 R l* (¢
+ 2 /Icp*lzR/O 2plog . dpdo(¢)
1 * (2 %
= — d 1
o [P0 [ tosle(0)asc)
+ %o{lw*l > R} —o{|l¢"| > R}log R

= /8D log —l(péol do(¢) + %

(B - (20 s

Combining (3.3) and (3.4), we obtain (3.2). This completes the proof. O

The usefulness of the averages of N, is seen in the following corollary.
Especially, it gives a new computational proof of the sub-averaging property
of N,.
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Corollary 3.2 Let ¢ be a holomorphic self-map of D. Then
(a) Sub-averaging property. If 0 < R < |¢(0)|, then

1
<= / /|w|<R N, (w) dA(w). (3.5)

See [Shl].

1
lim ————
»/110g(1/p) Jop
In particular, (1) |p*| <1 a.e. if and only if

1 ~
lim s | No(om)dot) = 0 (7)

and (ii) ¢ is inner, i.e., |p*| =1 a.e. if and only if

o _
lim s [ V(o) dr() = 1. (3.8)

(¢) o is inner if and only if

/Npg“da) log ———————

forall0 < p<1.

Ne(pn)do(n) = of{|e*| =1} (3.6)

1
max(|¢(0)], p)

Proof. For (a), it suffices to note that

N (0) = log ——+ /8 _log || do — o(6D)

1
|0(0)]

from (2.8) and the quantity

(5 (=)

in (3.2) is nonnegative since z — 1 > logz for z > 0.
For (b), we note that log*(|¢(0)|/p) = 0 for p sufficiently close to 1 and
that

/ log™ =% " (C)] do(¢) (3.10)
oD P

| *(0)]
= log = d log —22d
/Wl:l og - do(¢) + /p g 8O
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1ol = 1} 1og MG
—{Isol—l}lgp+/ log do (C).

p<lp*|<1 P

(3.6) now follows since the second integral in (3.10) is dominated by
. 1 1
afp < |¢*] < 1}log; =0 <log;) , asp 1.

(c): If ¢ is inner and p < |¢(0)], then (3.1) becomes

/ Nw(ﬂn)da(n)z—longlj?_(O_”HOg}
oD 0

1
% max(p, [p(O)])”

If ¢ is not inner, then o{|¢*| < 1} > 0. For p > |¢(0)|, (3.1) can be written
as

/ Ny (om) do(n)
6D

1 (9]
= log —d log ——==d
/ltp*|=1 o P i /p<|<p*l<1 % P 710
=(1-o{lp* < 1})10g% +o <log %)

1
log —— 1.
# log PO o/

4. Application

Among the holomorphic self-maps ¢ with ||¢|lec = sup{|p(z)]: z €
D} = 1, T. Nakazi characterized the Rudin’s orthogonal functions, i.e.,
holomorphic self-maps ¢ for which {¢™, n =0, 1, 2, ...} is orthogonal with
respect to the usual inner product on H? as follows. For more on Rudin’s
orthogonal functions, see [B, NJ.

Theorem B (Nakazi) For a holomorphic self-map of D with ||¢]e = 1,
the following are equivalent:

(a) {p*, n=0,1,2, ...} is orthogonal in H2.

(b) Ny(z) = Ny(|z|) for nearly all z in D.

(c) There exists a positive Borel probability measure vy on [0, 1] with 1 €
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supp vo such that

1
t
Ny(z) = /Hlogm duvo(t)

for nearly all z in D.

We can describe the measure vy more precisely in terms of ¢* as an
application of Theorem 3.1 (a). For Rudin’s orthogonal functions ¢, ¢(0) =
0 and Ny, (z) is the same as the its radialization, i.e., its average over circles
around the origin,

1
Nolot) = | No(p)do(c) = = [ 1og % dat)

P

for nearly all z € D by Theorem 3.1 (a). Therefore, the positive Borel
measure in Theorem B (c) is given by dvy = —da(t) where a(t) = o{|¢*| >
t} as a nonincreasing function. Clearly, 1 € supp vy since ||pllec = 1. We
note that the mass at 1 is given by vo({1}) = o{|p*| = 1}.
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