On the growth of solutions of $w^{(n)}+e^{-z} w^{\prime}+Q(z) w=0$ and some related extensions

Saada Hamouda and Benharrat Belaïdi
(Received October 19, 2004; Revised February 28, 2005)

Abstract

In this paper, we show that if $Q(z)$ is a nonconstant polynomial, then every solution $w \not \equiv 0$ of the differential equation $w^{(n)}+e^{-z} w^{\prime}+Q(z) w=0$, has infinite order and we give an extension of this result. We will also show that if the equation $w^{(n)}+$ $e^{-z} w^{\prime}+c w=0$, where $c \neq 0$ is a complex constant, possesses a solution $w \not \equiv 0$ of finite order, then $c=-k^{n}$ where k is a positive integer. In the end, by study more general, we investigate the problem when $\sigma(Q)=1$.

Key words: linear differential equations, entire functions, finite order of growth.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna value distribution theory (see [10]). Let $\sigma(w)$ denote the order of an entire function w, that is,

$$
\begin{equation*}
\sigma(w)=\varlimsup_{r \rightarrow+\infty} \frac{\log T(r, w)}{\log r}=\varlimsup_{r \rightarrow+\infty} \frac{\log \log M(r, w)}{\log r}, \tag{1.1}
\end{equation*}
$$

where $T(r, w)$ is the Nevanlinna characteristic function of w (see [10]), and $M(r, w)=\max _{|z|=r}|w(z)|$.

Several authors have studied the particular differential equation

$$
\begin{equation*}
w^{\prime \prime}+e^{-z} w^{\prime}+B(z) w=0 \tag{1.2}
\end{equation*}
$$

where $B(z)$ is an entire function. For $B(z) \equiv c$ where c is a nonzero constant, Frei [6] showed that if equation (1.2) possesses a solution $w \not \equiv 0$ of finite order, then $c=-k^{2}$ where k is a positive integer. Conversely, for each positive integer k, the equation (1.2), with $B(z) \equiv c=-k^{2}$, possesses a solution w which is a polynomial in e^{z} of degree k. Other proofs of this result were given by Ozawa [14] and Wittich [15]. By completing results of Ozawa [14], Amemiya-Ozawa [1] and Gundersen [7], Langley showed in [12]

[^0]that if $B(z)$ is nonconstant polynomial, then every solution $w \not \equiv 0$ of (1.2) has infinite order.

In this paper, we will extend these results to the differential equation

$$
\begin{equation*}
w^{(n)}+e^{-z} w^{\prime}+B(z) w=0 \tag{1.3}
\end{equation*}
$$

where $n \geq 2$. In fact, we shall prove the following:
Theorem 1.1 If the equation

$$
\begin{equation*}
w^{(n)}+e^{-z} w^{\prime}+c w=0 \tag{1.4}
\end{equation*}
$$

where $c \neq 0$ is a complex constant, possesses a solution $w \not \equiv 0$ of finite order, then $c=-k^{n}$ where k is a positive integer. Conversely, for each positive integer k, the equation (1.4), with $c=-k^{n}$, possesses a solution w which is a polynomial in e^{z} of degree k.

Theorem 1.2 If $Q(z)$ is nonconstant polynomial, then every solution $w \not \equiv 0$ of the differential equation

$$
\begin{equation*}
w^{(n)}+e^{-z} w^{\prime}+Q(z) w=0 \tag{1.5}
\end{equation*}
$$

where $n \geq 2$, has infinite order.
Theorem 1.3 Let Q be nonconstant polynomial, P_{1}, \ldots, P_{n-1} be polynomials and $\alpha_{1}, \ldots, \alpha_{n-1}$ be real constants. Suppose that there exists an $s \in$ $\{1, \ldots, n-1\}$ such that $P_{s}\left(e^{\alpha_{s} z}\right)=e^{\alpha_{s} z}$ and either:
(i) $\alpha_{s}>0$ and $\alpha_{k} \leq 0$ for all $k=1, \ldots, s-1, s+1, \ldots, n-1$ or
(ii) $\alpha_{s}<0$ and $\alpha_{k} \geq 0$ for all $k=1, \ldots, s-1, s+1, \ldots, n-1$.

Then every solution $w \not \equiv 0$ of the differential equation

$$
\begin{align*}
& w^{(n)}+P_{n-1}\left(e^{\alpha_{n-1} z}\right) w^{(n-1)}+\cdots+P_{s}\left(e^{\alpha_{s} z}\right) w^{(s)}+\cdots \\
& \quad+P_{1}\left(e^{\alpha_{1} z}\right) w^{\prime}+Q(z) w=0 \tag{1.6}
\end{align*}
$$

where $n \geq 2$, is of infinite order.
Remark 1.1 The following two theorems are natural extensions of [4, Theorem 1] and [4, Theorem 2].

Theorem 1.4 Let $P_{1}(z)=a_{m} z^{m}+\cdots, P_{0}(z)=b_{m} z^{m}+\cdots(m \geq 1)$ be nonconstant polynomials such that $a_{m}=c b_{m}(c>1)$, and let $A_{j}(z)(\not \equiv 0)$ $(j=0,1)$ be entire functions with $\sigma\left(A_{j}\right)<m(j=0,1)$. Then every
solution $w \not \equiv 0$ of the differential equation

$$
\begin{equation*}
w^{(n)}+A_{1}(z) e^{P_{1}(z)} w^{\prime}+A_{0}(z) e^{P_{0}(z)} w=0 \tag{1.7}
\end{equation*}
$$

where $n \geq 2$, is of infinite order.
Theorem 1.5 Let $P_{1}(z)=a_{m} z^{m}+\cdots, P_{0}(z)=b_{m} z^{m}+\cdots(m \geq 1)$ be nonconstant polynomials such that $a_{m} b_{m} \neq 0$ and either $\arg a_{m} \neq \arg b_{m}$ or $a_{m}=c b_{m}(0<c<1)$, and let $A_{k}(z) \not \equiv 0(k=0, \ldots, n-1), B_{j}(z)(j=$ $0,1)$ be entire functions such that $\sigma\left(A_{k}\right)<m(k=0, \ldots, n-1), \sigma\left(B_{j}\right)<m$ $(j=0,1)$. Then every solution $w \not \equiv 0$ of the differential equation

$$
\begin{align*}
& w^{(n)}+A_{n-1}(z) w^{(n-1)}+\cdots+A_{2}(z) w^{\prime \prime} \\
& \quad+\left(A_{1}(z) e^{P_{1}(z)}+B_{1}(z)\right) w^{\prime}+\left(A_{0}(z) e^{P_{0}(z)}+B_{0}(z)\right) w=0, \tag{1.8}
\end{align*}
$$

where $n \geq 2$, is of infinite order.
Remark 1.2 Using the same reasoning as in the proof of Theorem 1 [7] we obtain that if $B(z)$ is a transcendental entire function with $\sigma(B) \neq 1$, then every solution $w \not \equiv 0$ of the equation (1.3) has infinite order.

By combining Theorem 1.4 and Theorem 1.5 we get the following result which investigate the case when $\sigma(B)=1$ in (1.3):

Corollary 1.1 If $B(z)$ is an entire function with $B(z)=h(z) e^{a z}$ where $a \neq-1$ is a complex constant and $h(z)$ is an entire function with $\sigma(h)<1$, then every solution $w \not \equiv 0$ of (1.3) is of infinite order.

2. Lemmas for the proofs of theorems

Our proofs depend mainly upon the following Lemmas.
Lemma 2.1 ([3]) Suppose that $A_{0}(z), \ldots, A_{n-1}(z)$ with $A_{0}(z) \not \equiv 0$ are entire functions such that for real constants $\alpha, \beta, \theta_{1}, \theta_{2}$, where $\alpha>0$, $\beta>0$, and $\theta_{1}<\theta_{2}$ we have

$$
\begin{equation*}
\left|A_{1}(z)\right| \geq \exp \left\{(1+o(1)) \alpha|z|^{\beta}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp \left\{o(1) \alpha|z|^{\beta}\right\} \quad(j=0,2, \ldots, n-1) \tag{2.2}
\end{equation*}
$$

as $z \rightarrow \infty$ in $\theta_{1} \leq \arg z \leq \theta_{2}$. Let $\varepsilon>0$ be a given small constant, and let $S(\varepsilon)$ denote the set $\theta_{1}+\varepsilon \leq \arg z \leq \theta_{2}-\varepsilon$.

If $w \not \equiv 0$ is a solution with $\sigma(w)<+\infty$ of the linear differential equation

$$
\begin{equation*}
w^{(n)}+A_{n-1}(z) w^{(n-1)}+\cdots+A_{1}(z) w^{\prime}+A_{0}(z) w=0 \tag{2.3}
\end{equation*}
$$

then the following conditions hold:
(i) There exists a constant $b \neq 0$ such that $w \rightarrow b$ as $z \rightarrow \infty$ in $S(\varepsilon)$. Furthermore, as $z \rightarrow \infty$ in $S(\varepsilon)$,

$$
\begin{equation*}
|w(z)-b| \leq \exp \left\{-(1+o(1)) \alpha|z|^{\beta}\right\} \tag{2.4}
\end{equation*}
$$

(ii) For each integer $m \geq 1$, as $z \rightarrow \infty$ in $S(\varepsilon)$,

$$
\begin{equation*}
\left|w^{(m)}(z)\right| \leq \exp \left\{-(1+o(1)) \alpha|z|^{\beta}\right\} \tag{2.5}
\end{equation*}
$$

Remark 2.1 It should be noted that formula (2.5) is a special case of Theorem 1 in [9].

By using similar proof as in the proof of Theorem 2.1 in [11], we can obtain the following:

Lemma 2.2 Suppose that $A_{0}(z), \ldots, A_{n-1}(z)$ are entire functions with $A_{0}(z) \not \equiv 0$ such that for real constants $\alpha, \beta, \theta_{1}, \theta_{2}, C$ where $\alpha>0, \beta>0$, $C>0$, and $\theta_{1}<\theta_{2}$ we have, for some integer $s, 1 \leq s \leq n-1$,

$$
\begin{equation*}
\left|A_{s}(z)\right| \geq \exp \left\{\alpha|z|^{\beta}\right\} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq C \tag{2.7}
\end{equation*}
$$

for all $j=0,1, \ldots, s-1, s+1, \ldots, n-1$ as $z \rightarrow \infty$ in $\theta_{1} \leq \arg z \leq \theta_{2}$. Given $\varepsilon>0$ small enough, and let $S(\varepsilon)$ denote the set $\theta_{1}+\varepsilon \leq \arg z \leq \theta_{2}-\varepsilon$.

If $w \not \equiv 0$ is a transcendental solution of (2.3) with $\sigma(w)<+\infty$, then the following conditions hold:
(i) There exists $j \in\{0, \ldots, s-1\}$ and a complex constant $b_{j} \neq 0$ such that $w^{(j)} \rightarrow b_{j}$ as $z \rightarrow \infty$ in $S(\varepsilon)$. Furthermore, as $z \rightarrow \infty$ in $S(\varepsilon)$,

$$
\begin{equation*}
\left|w^{(j)}(z)-b_{j}\right| \leq \exp \left\{-(\alpha-\rho)|z|^{\beta}\right\} \tag{2.8}
\end{equation*}
$$

where $0<\rho<\alpha$.
(ii) For each integer $m \geq j+1$, as $z \rightarrow \infty$ in $S(\varepsilon)$,

$$
\begin{equation*}
\left|w^{(m)}(z)\right| \leq \exp \left\{-(\alpha-\rho)|z|^{\beta}\right\} \tag{2.9}
\end{equation*}
$$

where $0<\rho<\alpha$.

Lemma 2.3 ([8, p. 89]) Let f be a transcendental entire function of finite order σ, let $\Gamma=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \ldots,\left(k_{m}, j_{m}\right)\right\}$ denote a finite set of distinct pairs of integers that satisfy $k_{i}>j_{i} \geq 0(i=1, \ldots, m)$, and let $\varepsilon>0$ be a given constant. Then there exists a set $E \subset[0,2 \pi)$ that has linear measure zero, such that if $\psi_{0} \in[0,2 \pi)-E$, then there is a constant $R_{0}=R_{0}\left(\psi_{0}\right)>1$ such that for all z satisfying $\arg z=\psi_{0}$ and $|z| \geq R_{0}$, and for all $(k, j) \in \Gamma$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq|z|^{(k-j)(\sigma-1+\varepsilon)} \tag{2.10}
\end{equation*}
$$

Lemma 2.4 ([4], [11], [9, Lemma 3]) Let $f(z)$ be an entire function and suppose that $\left|f^{(k)}(z)\right|$ is unbounded on some ray $\arg z=\theta$. Then there exists an infinite sequence of points $z_{n}=r_{n} e^{i \theta}(n=1,2, \ldots)$, where $r_{n} \rightarrow+\infty$, such that $f^{(k)}\left(z_{n}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{n}\right)}{f^{(k)}\left(z_{n}\right)}\right| \leq \frac{1}{(k-j)!}(1+o(1))\left|z_{n}\right|^{k-j} \quad(j=0, \ldots, k-1) \tag{2.11}
\end{equation*}
$$

Lemma 2.5 ([2]) Let $A_{0}(z), \ldots, A_{n-1}(z)$ be entire functions such that for real constants $\alpha, \beta, \mu, \theta_{1}, \theta_{2}$, where $\mu>0,0 \leq \beta<\alpha$ and $\theta_{1}<\theta_{2}$ we have

$$
\begin{equation*}
\left|A_{0}(z)\right| \geq \exp \left\{\alpha|z|^{\mu}\right\} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp \left\{\beta|z|^{\mu}\right\} \quad(j=1,2, \ldots, n-1) \tag{2.13}
\end{equation*}
$$

as $z \rightarrow \infty$ in $\theta_{1} \leq \arg z \leq \theta_{2}$. Then every solution $w \not \equiv 0$ of (2.3) is of infinite order.

Lemma 2.6 ([4]) Let $P(z)=a_{m} z^{m}+\cdots,\left(a_{m}=\alpha+i \beta \neq 0\right)$ be a polynomial with degree $m \geq 1$ and $A(z)(\not \equiv 0)$ be an entire function with $\sigma(A)<$ m. Set $f(z)=A(z) e^{P(z)}, z=r e^{i \theta}, \delta(P, \theta)=\alpha \cos m \theta-\beta \sin m \theta$. Then for any given $\varepsilon>0$, there exists a set $H_{1} \subset[0,2 \pi)$ that has linear measure zero, such that for any $\theta \in[0,2 \pi) \backslash\left(H_{1} \cup H_{2}\right)$, where $H_{2}=\{\theta \in[0,2 \pi)$: $\delta(P, \theta)=0\}$ is a finite set, there is $R>0$ such that for $|z|=r>R$, we have
(i) if $\delta(P, \theta)>0$, then

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{m}\right\} \leq|f(z)| \leq \exp \left\{(1+\varepsilon) \delta(P, \theta) r^{m}\right\} \tag{2.14}
\end{equation*}
$$

(ii) if $\delta(P, \theta)<0$, then

$$
\begin{equation*}
\exp \left\{(1+\varepsilon) \delta(P, \theta) r^{m}\right\} \leq|f(z)| \leq \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{m}\right\} \tag{2.15}
\end{equation*}
$$

3. Proof of Theorem 1.1

Let w_{1}, \ldots, w_{n} be n independent solutions of equation (1.4). We mention here that only at most one of solutions w_{1}, \ldots, w_{n} is of finite order of equation (1.4) (see [5]). We may suppose that $w_{1}(z)$ is a solution of finite order. Evidently $w_{1}(z+2 \pi i)$ is a solution of (1.4). Hence

$$
\begin{equation*}
w_{1}(z+2 \pi i)=\sum_{j=1}^{n} \alpha_{j} w_{j}(z) \tag{3.1}
\end{equation*}
$$

Since $w_{1}(z+2 \pi i)$ is of finite order too, then $\alpha_{j}=0$ for $j=2, \ldots, n$; and from Lemma 2.1 we have $w_{1}(z) \rightarrow b \neq 0, w_{1}(z+2 \pi i) \rightarrow b \neq 0$ as $z \rightarrow \infty$ in $S_{1}(\varepsilon): \pi / 2+\varepsilon \leq \arg z \leq 3 \pi / 2-\varepsilon(\varepsilon>0)$, which implies that $\alpha_{1}=1$ and $w_{1}(z+2 \pi i)=w_{1}(z)$. We deduce that there exist a regular function $f(\zeta)$ in $0<|\zeta|<\infty$ such that $w_{1}(z)=f\left(e^{z}\right)$. If $f(\zeta)$ has an essential singularity at $\zeta=0$, then $w_{1}(z)=f\left(e^{z}\right)$ does not have a limit as $z \rightarrow \infty$ in $S_{1}(\varepsilon): \pi / 2+\varepsilon \leq \arg z \leq 3 \pi / 2-\varepsilon(\varepsilon>0)$. Also, if $f(\zeta)$ has a pole at $\zeta=0$, then $w_{1}(z) \rightarrow \infty$ as $z \rightarrow \infty$ in $S_{1}(\varepsilon)$. Hence $f(\zeta)$ is an entire function $\left(f(\zeta)=\sum_{k=0}^{+\infty} a_{k} \zeta^{k}\right.$ and $\left.w_{1}(z)=\sum_{k=0}^{+\infty} a_{k} e^{k z}\right)$. Substituting this into (1.4), we obtain

$$
\begin{equation*}
\sum_{k=1}^{+\infty} k^{n} a_{k} e^{k z}+e^{-z} \sum_{k=1}^{+\infty} k a_{k} e^{k z}+c \sum_{k=0}^{+\infty} a_{k} e^{k z}=0 \tag{3.2}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\left(k^{n}+c\right) a_{k}+(k+1) a_{k+1}=0 \quad(k \geq 1) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1}+c a_{0}=0 \tag{3.4}
\end{equation*}
$$

We have $a_{0}=b \neq 0$. If $c \neq-k^{n}$ for all $k \geq 1$, then

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{\left|a_{k}\right|}{\left|a_{k+1}\right|}=0 \tag{3.5}
\end{equation*}
$$

which shows that the radius of convergence of $\sum_{k=0}^{+\infty} a_{k} \zeta^{k}$ is equal to zero. This is a contradiction. Hence there exists an integer $k_{0} \geq 1$, such that $c=$
$-k_{0}^{n}$. Thus from (3.3), $a_{k}=0$ for all $k \geq k_{0}+1$ and $w_{1}(z)=\sum_{j=0}^{k_{0}} a_{j} e^{j z}$. This proves Theorem 1.1.

4. Proof of Theorem 1.2

Suppose that $w \not \equiv 0$ is a solution of (1.5) of finite order. The conditions of Lemma 2.1 are verified in the sector $S_{2}(\varepsilon): \pi-\varepsilon \leq \arg z \leq \pi+\varepsilon(0<$ $\varepsilon<\pi / 2)$. Hence, there exists a constant $b \neq 0$ such that

$$
\begin{equation*}
|w(z)-b| \leq \exp \{-(1-\rho)|z| \cos \varepsilon\}, \tag{4.1}
\end{equation*}
$$

and for each integer $n \geq 1$

$$
\begin{equation*}
\left|w^{(n)}(z)\right| \leq \exp \{-(1-\rho)|z| \cos \varepsilon\}, \tag{4.2}
\end{equation*}
$$

where $0<\rho<1$ as $z \rightarrow \infty$ in $S_{2}^{\prime}(\varepsilon): \pi-\varepsilon<\arg z<\pi+\varepsilon(0<\varepsilon<\pi / 2)$. Furthermore, we have

$$
\begin{equation*}
\left|e^{-z}\right| \leq e^{|z|} \tag{4.3}
\end{equation*}
$$

and there exists a positive constant c and a sufficiently large r_{0}, such that for $|z| \geq r_{0}$, we have

$$
\begin{equation*}
|Q(z)| \leq c|z|^{q}, \tag{4.4}
\end{equation*}
$$

where $q=\operatorname{deg} Q(z)$. From (1.5), we can write

$$
\begin{equation*}
|Q(z) b| \leq\left|w^{(n)}(z)\right|+\left|e^{-z}\right|\left|w^{\prime}(z)\right|+|Q(z)||w(z)-b| . \tag{4.5}
\end{equation*}
$$

By (4.1)-(4.5), we obtain

$$
\begin{align*}
|Q(z) b| \leq & \exp \{-(1-\rho)|z| \cos \varepsilon\}+\exp \{|z|(1-(1-\rho) \cos \varepsilon)\} \\
& +c|z|^{q} \exp \{-(1-\rho)|z| \cos \varepsilon\} . \tag{4.6}
\end{align*}
$$

Since (4.6) is verified for any arbitrary $0<\varepsilon<\pi / 2$ and $0<\rho<1$, it follows that there exists a positive constant M, such that for any $|z|$ very large, we can obtain, by taking ε and ρ small enough, that $|Q(z)|<$ M. This contradicts that $Q(z)$ is a nonconstant polynomial. The proof of Theorem 1.2 is completed.

5. Proof of Theorem 1.3

Case. $\alpha_{s}>0$. If $\arg z=\theta \in S_{3}(\varepsilon)=\{z:-\varepsilon \leq \arg z \leq \varepsilon(0<\varepsilon<\pi / 2)\}$ and $|z|$ sufficiently large, then we have

$$
\begin{equation*}
\left|e^{\alpha_{s} z}\right| \geq \exp \left\{\alpha_{s} r \cos \varepsilon\right\} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P_{j}\left(e^{\alpha_{j} z}\right)\right| \leq C \tag{5.2}
\end{equation*}
$$

for all $j=1, \ldots, s-1, s+1, \ldots, n-1$, where $C>0$ is some real constant. Hence the conditions of Lemma 2.2 are verified. So, if we suppose that $w \not \equiv 0$ is solution of (1.6) with $\sigma(w)=\sigma<\infty$, then the following conditions hold:
(i) There exists $j \in\{0, \ldots, s-1\}$ and a complex constant $b_{j} \neq 0$ such that $w^{(j)} \rightarrow b_{j}$ as $z \rightarrow \infty$ in $S_{3}^{\prime}(\varepsilon):-\varepsilon<\arg z<\varepsilon(0<\varepsilon<\pi / 2)$ and more precisely,

$$
\begin{equation*}
\left|w^{(j)}(z)-b_{j}\right| \leq \exp \left\{-\left(\alpha_{s} \cos \varepsilon-\rho\right)|z|\right\} \tag{5.3}
\end{equation*}
$$

where $0<\rho<\alpha_{s} \cos \varepsilon$.
(ii) For each integer $m \geq j+1$, as $z \rightarrow \infty$ in $S_{3}^{\prime}(\varepsilon)$,

$$
\begin{equation*}
\left|w^{(m)}(z)\right| \leq \exp \left\{-\left(\alpha_{s} \cos \varepsilon-\rho\right)|z|\right\} \tag{5.4}
\end{equation*}
$$

where $0<\rho<\alpha_{s} \cos \varepsilon$. From the condition (i), by j-fold iterated integration along the line segment $[0, z]$, we obtain

$$
\begin{align*}
w(z)= & w(0)+w^{\prime}(0) \frac{z}{1!}+w^{\prime \prime}(0) \frac{z^{2}}{2!}+\cdots+w^{(j-1)}(0) \frac{z^{j-1}}{(j-1)!} \\
& +\int_{0}^{z} \cdots \int_{0}^{\zeta} \int_{0}^{\xi} w^{(j)}(t) d t d \xi \ldots d u \\
= & w(0)+w^{\prime}(0) \frac{z}{1!}+w^{\prime \prime}(0) \frac{z^{2}}{2!}+\cdots+w^{(j-1)}(0) \frac{z^{j-1}}{(j-1)!} \\
& +\int_{0}^{z} \cdots \int_{0}^{\zeta} \int_{0}^{\xi}\left(b_{j}+\lambda(t)\right) d t d \xi \ldots d u \\
= & w(0)+w^{\prime}(0) \frac{z}{1!}+w^{\prime \prime}(0) \frac{z^{2}}{2!}+\cdots+w^{(j-1)}(0) \frac{z^{j-1}}{(j-1)!}+\frac{b_{j}}{j!} z^{j} \\
& +\int_{0}^{z} \cdots \int_{0}^{\zeta} \int_{0}^{\xi} \lambda(t) d t d \xi \ldots d u \tag{5.5}
\end{align*}
$$

where $\lambda(z) \rightarrow 0$ and $|\lambda(z)| \leq \exp \left\{-\left(\alpha_{s} \cos \varepsilon-\rho\right)|z|\right\}\left(0<\rho<\alpha_{s} \cos \varepsilon\right)$ as $z \rightarrow \infty$ in $S_{3}^{\prime}(\varepsilon):-\varepsilon<\arg z<\varepsilon(0<\varepsilon<\pi / 2)$. It then follows from (5.5)

$$
\begin{align*}
& \frac{w^{(l)}(z)}{z^{j}} \rightarrow 0 \text { for all } l=1, \ldots, j \tag{5.6}\\
& \frac{w(z)}{z^{j}} \rightarrow \frac{b_{j}}{j!} \neq 0 \tag{5.7}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\frac{w(z)}{z^{j}}-\frac{b_{j}}{j!}\right|=O\left(\frac{1}{|z|}\right) \tag{5.8}
\end{equation*}
$$

as $z \rightarrow \infty$ in $S_{3}^{\prime}(\varepsilon)$. In the other hand, for $z \in S_{3}^{\prime}(\varepsilon)$, we have

$$
\begin{equation*}
\left|e^{\alpha_{s} z}\right| \leq \exp \left\{\alpha_{s} r\right\} \tag{5.9}
\end{equation*}
$$

We divide (1.6) over z^{j} and write it as follow

$$
\begin{align*}
|Q(z)| \frac{\left|b_{j}\right|}{j!} \leq & \frac{\left|w^{(n)}(z)\right|}{|z|^{j}}+\frac{\left|P_{n-1}\left(e^{\alpha_{n-1} z}\right)\right|\left|w^{(n-1)}(z)\right|}{|z|^{j}}+\cdots \\
& +\frac{\left|P_{s}\left(e^{\alpha_{s} z}\right)\right|\left|w^{(s)}(z)\right|}{|z|^{j}}+\cdots+\frac{\left|P_{1}\left(e^{\alpha_{1} z}\right)\right|\left|w^{\prime}(z)\right|}{|z|^{j}} \\
& +|Q(z)|\left|\frac{w(z)}{z^{j}}-\frac{b_{j}}{j!}\right| \tag{5.10}
\end{align*}
$$

By using (5.4) and (5.6)-(5.9), from (5.10) we get a contradiction as $z \rightarrow \infty$, $\varepsilon \rightarrow 0$ and $\rho \rightarrow 0$.
Case. $\alpha_{s}<0$. We take the sector $S_{2}(\varepsilon): \pi-\varepsilon \leq \arg z \leq \pi+\varepsilon(0<\varepsilon<$ $\pi / 2)$ and we use the same argument as above.

6. Proof of Theorem 1.4

Assume $w(z)$ is a transcendental solution of (1.7) with $\sigma(w)<\infty$. By Lemma 2.3, for any given $\varepsilon>0$, there exists a set $E_{1} \subset[0,2 \pi)$ that has linear measure zero, such that if $\theta \in[0,2 \pi) \backslash E_{1}$, then there is a constant $R_{0}(\theta)=R_{0}>1$ such that for all z satisfying $\arg z=\theta$ and $|z|=r \geq R_{0}$, we have

$$
\begin{equation*}
\left|\frac{w^{(n)}(z)}{w^{\prime}(z)}\right| \leq|z|^{(n-1)(\sigma-1+\varepsilon)} \tag{6.1}
\end{equation*}
$$

Let $P_{1}(z)=a_{m} z^{m}+\cdots,\left(a_{m}=\alpha+i \beta \neq 0\right), \delta\left(P_{1}, \theta\right)=\alpha \cos m \theta-\beta \sin m \theta$. By Lemma 2.6 we have for any given $0<\varepsilon<1$, there exists a set $H_{1} \subset$ $[0,2 \pi)$ that has linear measure zero, such that for any $\theta \in[0,2 \pi) \backslash\left(H_{1} \cup H_{2}\right)$ $\left(H_{2}=\left\{\theta \in[0,2 \pi): \delta\left(P_{1}, \theta\right)=0\right\}\right)$, there is $R_{1}>0$ such that for $|z|=r>$ R_{1}, we have
(i) if $\delta\left(P_{1}, \theta\right)<0$, then

$$
\begin{align*}
\left|A_{1}(z) e^{P_{1}(z)}\right| & \leq \exp \left\{(1-\varepsilon) \delta\left(P_{1}, \theta\right) r^{m}\right\} \\
\left|A_{0}(z) e^{P_{0}(z)}\right| & \leq \exp \left\{(1-\varepsilon) \frac{1}{c} \delta\left(P_{1}, \theta\right) r^{m}\right\} \tag{6.2}
\end{align*}
$$

(ii) if $\delta\left(P_{1}, \theta\right)>0$, then

$$
\begin{align*}
&\left|A_{1}(z) e^{P_{1}(z)}\right| \geq \exp \left\{(1-\varepsilon) \delta\left(P_{1}, \theta\right) r^{m}\right\} \\
&\left|A_{0}(z) e^{P_{0}(z)}\right| \leq \exp \left\{(1+\varepsilon) \frac{1}{c} \delta\left(P_{1}, \theta\right) r^{m}\right\} \tag{6.3}
\end{align*}
$$

Now we take $\theta \in[0,2 \pi) \backslash\left(E_{1} \cup H_{1} \cup H_{2}\right)$, such that the linear measure of $E_{1} \cup H_{1} \cup H_{2}$ is zero, then θ satisfies $\delta\left(P_{1}, \theta\right)<0$ or $\delta\left(P_{1}, \theta\right)>0$. We divide it into two cases to prove.
Case 1. $\delta\left(P_{1}, \theta\right)<0$. By $a_{m}=c b_{m}, \delta\left(P_{0}, \theta\right)=(1 / c) \delta\left(P_{1}, \theta\right)<0$. From (1.7), we get

$$
\begin{equation*}
1 \leq\left|A_{1}(z) e^{P_{1}(z)}\right|\left|\frac{w^{\prime}(z)}{w^{(n)}(z)}\right|+\left|A_{0}(z) e^{P_{0}(z)}\right|\left|\frac{w(z)}{w^{(n)}(z)}\right| \tag{6.4}
\end{equation*}
$$

If $\left|w^{(n)}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.4, there exists an infinite sequence of points $\left\{z_{p}=r_{p} e^{i \theta}\right\}$, where $r_{p} \rightarrow+\infty$ such that $w^{(n)}\left(z_{p}\right) \rightarrow \infty$ and

$$
\begin{align*}
\left|\frac{w^{\prime}\left(r_{p} e^{i \theta}\right)}{w^{(n)}\left(r_{p} e^{i \theta}\right)}\right| & \leq \frac{1}{(n-1)!}(1+o(1)) r_{p}^{n-1} \\
\left|\frac{w\left(r_{p} e^{i \theta}\right)}{w^{(n)}\left(r_{p} e^{i \theta}\right)}\right| & \leq \frac{1}{(n)!}(1+o(1)) r_{p}^{n} \tag{6.5}
\end{align*}
$$

Substituting (6.2) and (6.5) into (6.4) we get for any $\theta \in[0,2 \pi) \backslash\left(E_{1} \cup H_{1} \cup\right.$ $\left.H_{2}\right)$ and $r_{p}>\max \left(R_{0}, R_{1}\right)$,

$$
\begin{align*}
1 \leq & \frac{1}{(n-1)!} r_{p}^{n-1}(1+o(1)) \exp \left\{(1-\varepsilon) \delta\left(P_{1}, \theta\right) r_{p}^{m}\right\} \\
& +\frac{1}{(n)!} r_{p}^{n}(1+o(1)) \exp \left\{(1-\varepsilon) \frac{1}{c} \delta\left(P_{1}, \theta\right) r_{p}^{m}\right\} \tag{6.6}
\end{align*}
$$

which gives a contradiction as $r_{p} \rightarrow+\infty$. Hence $w^{(n)}\left(r e^{i \theta}\right)$ is bounded on $\arg z=\theta$, i.e.

$$
\begin{equation*}
\left|w^{(n)}\left(r e^{i \theta}\right)\right| \leq M_{1} \tag{6.7}
\end{equation*}
$$

where $M_{1}>0$ is a constant. From (6.7) and by n-fold iterated integration along the line segment $[0, z]$, we obtain

$$
\begin{equation*}
\left|w\left(r e^{i \theta}\right)\right| \leq|w(0)|+\left|w^{\prime}(0)\right| \frac{|z|}{1!}+\left|w^{\prime \prime}(0)\right| \frac{|z|^{2}}{2!}+\cdots+M_{1} \frac{|z|^{n}}{n!} \tag{6.8}
\end{equation*}
$$

on the ray $\arg z=\theta$.
Case 2. $\delta\left(P_{1}, \theta\right)>0$. Then $\delta\left(P_{0}, \theta\right)=(1 / c) \delta\left(P_{1}, \theta\right)>0$. By (1.7) we have

$$
\begin{equation*}
\left|A_{1}(z) e^{P_{1}(z)}\right| \leq\left|\frac{w^{(n)}(z)}{w^{\prime}(z)}\right|+\left|A_{0}(z) e^{P_{0}(z)}\right|\left|\frac{w(z)}{w^{\prime}(z)}\right| \tag{6.9}
\end{equation*}
$$

If $\left|w^{\prime}(z)\right|$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.4, there exists an infinite sequence of points $\left\{z_{p}=r_{p} e^{i \theta}\right\}$ where $r_{p} \rightarrow+\infty$ such that $w^{\prime}\left(z_{p}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{w\left(r_{p} e^{i \theta}\right)}{w^{\prime}\left(r_{p} e^{i \theta}\right)}\right| \leq(1+o(1)) r_{p} \tag{6.10}
\end{equation*}
$$

Substituting (6.1), (6.3) and (6.10) into (6.9) we get

$$
\begin{align*}
& \exp \left\{(1-\varepsilon) \delta\left(P_{1}, \theta\right) r_{p}^{m}\right\} \leq r_{p}^{(n-1)(\sigma-1+\varepsilon)} \\
& \quad+(1+o(1)) r_{p} \exp \left\{(1+\varepsilon) \frac{1}{c} \delta\left(P_{1}, \theta\right) r_{p}^{m}\right\} \\
& \quad \leq(1+o(1)) 2 r_{p}^{\alpha} \exp \left\{(1+\varepsilon) \frac{1}{c} \delta\left(P_{1}, \theta\right) r_{p}^{m}\right\} \tag{6.11}
\end{align*}
$$

where $\alpha=\max \{1,(n-1)(\sigma-1+\varepsilon)\}$.
If we choose ε such that $0<\varepsilon<(c-1) /(c+1)$ in (6.11), then we get a contradiction. Hence $\left|w^{\prime}\left(r e^{i \theta}\right)\right|$ is bounded on $\arg z=\theta$, i.e. there exists a constant $M_{2}>0$, such that

$$
\left|w^{\prime}\left(r e^{i \theta}\right)\right| \leq M_{2}
$$

As above, we get

$$
\left|w\left(r e^{i \theta}\right)\right|=\left|w(0)+\int_{0}^{z} w^{\prime}(u) d u\right| \leq|w(0)|+M_{2}|z|
$$

on the ray $\arg z=\theta$. In the two cases, we have

$$
\begin{equation*}
\left|w\left(r e^{i \theta}\right)\right| \leq|w(0)|+\left|w^{\prime}(0)\right| \frac{|z|}{1!}+\left|w^{\prime \prime}(0)\right| \frac{|z|^{2}}{2!}+\cdots+M \frac{|z|^{n}}{n!} \quad(M>0) \tag{6.12}
\end{equation*}
$$

on any ray $\arg z=\theta \in[0,2 \pi) \backslash\left(E_{1} \cup H_{1} \cup H_{2}\right)$. By Phragmén-Lindelöf Theorem [13], (6.12) holds in the whole plane. So, $w(z)$ is a polynomial. But $w(z)$ is a transcendental, hence every transcendental solution of (1.7) is of infinite order.

Now we prove that (1.7) cannot have nonzero polynomial solution. Assume $w(z)$ is nonzero polynomial of degree d. We can take a ray $\arg z=\theta$ such that $\delta\left(P_{1}, \theta\right)>0$. From (1.7), we can write

$$
\begin{equation*}
\left|A_{1}(z) e^{P_{1}(z)}\right|\left|w^{\prime}(z)\right| \leq\left|w^{(n)}(z)\right|+\left|A_{0}(z) e^{P_{0}(z)}\right||w(z)| \tag{6.13}
\end{equation*}
$$

and by using Lemma 2.6, we obtain

$$
\begin{aligned}
& (1+o(1)) r^{d-1} \exp \left\{(1-\varepsilon) \delta\left(P_{1}, \theta\right) r^{m}\right\} \\
& \quad \leq(1+o(1)) \lambda r^{d} \exp \left\{(1+\varepsilon) \frac{1}{c} \delta\left(P_{1}, \theta\right) r^{m}\right\}
\end{aligned}
$$

where $\lambda>0$ is some real constant, this is absurd by taking ε such that $0<\varepsilon<(c-1) /(c+1)$. Hence every solution $w \not \equiv 0$ of (1.7) is of infinite order.

7. Proof of Theorem 1.5

Suppose that $\arg a_{m} \neq \arg b_{m}$. By Lemma 2.6, there exists a ray $\arg z=\theta$ such that $\theta \in[0,2 \pi) \backslash\left(H_{1} \cup H_{2}\right)$, where H_{1} and H_{2} are defined as in Lemma 2.6, $H_{1} \cup H_{2}$ is of linear measure zero, and $\delta\left(P_{0}, \theta\right)>0$, $\delta\left(P_{1}, \theta\right)<0$ and for sufficiently large $|z|=r$, we have

$$
\begin{equation*}
\left|A_{0}(z) e^{P_{0}(z)}+B_{0}(z)\right| \geq(1+o(1)) \exp \left\{(1-\varepsilon) \delta\left(P_{0}, \theta\right) r^{m}\right\} \tag{7.1}
\end{equation*}
$$

and

$$
\begin{align*}
\left|A_{1}(z) e^{P_{1}(z)}+B_{1}(z)\right| & \leq \exp \left\{(1-\varepsilon) \delta\left(P_{1}, \theta\right) r^{m}\right\} \exp \left\{r^{\sigma\left(B_{1}\right)+\frac{\varepsilon}{2}}\right\} \\
& \leq \exp \left\{r^{\sigma\left(B_{1}\right)+\varepsilon}\right\} . \tag{7.2}
\end{align*}
$$

If we take ε in (7.1) and (7.2) such that $\sigma\left(B_{1}\right)+\varepsilon<m$, then the conditions (2.12), (2.13) of Lemma 2.5 are satisfied. Hence every solution $w \not \equiv 0$ of (1.8) is of infinite order.

On the growth of solutions of $w^{(n)}+e^{-z} w^{\prime}+Q(z) w=0$ and some related extensions

Now suppose that $a_{m}=c b_{m}(0<c<1)$. Then $\delta\left(P_{1}, \theta\right)=c \delta\left(P_{0}, \theta\right)$. Using the same reasoning as above, there exists a ray $\arg z=\theta$ satisfying $\delta\left(P_{1}, \theta\right)=c \delta\left(P_{0}, \theta\right)>0$ and for sufficiently large $|z|=r$

$$
\begin{equation*}
\left|A_{0}(z) e^{P_{0}(z)}+B_{0}(z)\right| \geq(1+o(1)) \exp \left\{(1-\varepsilon) \delta\left(P_{0}, \theta\right) r^{m}\right\} \tag{7.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{1}(z) e^{P_{1}(z)}+B_{1}(z)\right| \leq \exp \left\{(1+\varepsilon) c^{\prime} \delta\left(P_{0}, \theta\right) r^{m}\right\}, \tag{7.4}
\end{equation*}
$$

where $0<c<c^{\prime}<1$. By taking ε in (7.3), (7.4) such that $0<\varepsilon<\frac{1-c^{\prime}}{1+c^{\prime}}$, then from Lemma 2.5 we get the result.

Acknowledgement The authors would like to thank the referee for his/her helpful remarks and suggestions.

References

[1] Amemiya I. and Ozawa M., Non-existence of finite order solutions of $w^{\prime \prime}+e^{-z} w^{\prime}+$ $Q(z) w=0$. Hokkaido Math. J. 10 (1981) Special Issue, 1-17.
[2] Belaïdi B. and Hamouda S., Orders of solutions of an n-th order linear differential equations with entire coefficients. Electron. J. Diff. Eqns. (61) 2001 (2001), 1-5.
[3] Belaïdi B. and Hamani K., Order and hyper-order of entire solutions of linear differential equations with entire coefficients. Electron. J. Diff. Eqns. (17) 2003 (2003), $1-12$.
[4] Chen Z.X., The growth of solutions of $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$ where the order $(Q)=1$. Science in China (3) 45 (2002), 290-300.
[5] Frei M., Sur l'ordre des solutions entières d'une équation différentielle linéaire. C. R. Acad. Sci. Paris 236 (1953), 38-40.
[6] Frei M., Über die Subnormalen Lösungen der Differentialgleichung $w^{\prime \prime}+e^{-z} w^{\prime}+$ (Konst.) $w=0$. Comment. Math. Helv. 36 (1961), 1-8.
[7] Gundersen G.G., On the question of whether $f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0$ can admit a solution $f \not \equiv 0$ of finite order. Proc. Roy. Soc. Edinburgh 102A (1986), 9-17.
[8] Gundersen G.G., Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J. London Math. Soc. (2) 37 (1988), 88-104.
[9] Gundersen G.G. and Steinbart E.M., Finite order solutions of non-homogeneous linear differential equations. Ann. Acad. Sci. Fenn. A. I. Math. 17 (1992), 327-341.
[10] Hayman W.K., Meromorphic functions. Clarendon Press, Oxford, 1964.
[11] Laine I. and Yang R., Finite order solutions of complex linear differential equations. Electron. J. Diff. Eqns. (65) 2004 (2004), 1-8.
[12] Langley J.K., On complex oscillation and a problem of Ozawa. Kodai Math. J. 9 (1986), 430-439.
[13] Markushevich A.I., Theory of functions of a complex variable, Vol. II. translated by R.A. Silverman, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.
[14] Ozawa M., On a solution of $w^{\prime \prime}+e^{-z} w^{\prime}+(a z+b) w=0$. Kodai Math. J. 3 (1980), 295-309.
[15] Wittich H., Subnormale Lösungen der Differentialgleichung $w^{\prime \prime}+p\left(e^{z}\right) w^{\prime}+q\left(e^{z}\right) w=$ 0. Nagoya Math. J. 30 (1967), 29-37.

S. Hamouda
Department of Mathematics
Laboratory of Pure and Applied Mathematics University of Mostaganem
B. P 227 Mostaganem-(Algeria)
E-mail: Hamouda.saada@caramail.com
B. Belaïdi
Department of Mathematics
Laboratory of Pure and Applied Mathematics
University of Mostaganem
B. P 227 Mostaganem-(Algeria)
E-mail: belaidi@univ-mosta.dz
belaidi.benharrat@caramail.com

[^0]: 2000 Mathematics Subject Classification : Primary 34M10; Secondary 30D35.

