Hokkaido Mathematical Journal Vol. 35 (2006) p. 497-545

Propagation of microlocal regularities
in Sobolev spaces to solutions of boundary value problems
for elastic equations
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Abstract. We study propagation of microlocal regularities in the Sobolev space of so-
lutions to boundary value problems for the isotropic elastic equation. We assume that the
solutions microlocally belong to the Sobolev space of order s on the incident generalized
bicharacteristic to the boundary. Then we discuss that whether the solutions have the
same microlocal regularities in the Sobolev space on the reflected generalized bicharac-
teristic or not. Our results depend on the condition that how the incident generalized
bicharacteristic attaches to the boundary. In this paper we only consider the boundary
value problems for the isotropic elastic equation, however our method is valid for these
of higher order hyperbolic equations and generalized elastic equations.

Key words: elastic equation, propagation of sigularities, Sobolev space.

1. Introduction

It is well known that a solution u of Pu = f, where P is a strictly
hyperbolic single differential operator of order m, has the following property
on a propagation of regularities: Under the assumption that f microlocally
belongs to the Sobolev space H; on a null bicharacteristic strip v defined
from the principal symbol of P, if the solution u microlocally belongs to
Hgyn—1 at a point on the null bicharacteristic strip ~, then the solution u
has the same property at all points on = (see Theorem 2.1 of Chapter VI
in [15]). If we consider the boundary value problem for P, then the behavior
of v at the boundary point is very complicate depending on the shape of
the boundary. In Definition 3.1 of [12] (see also Definition 9.1) they define
generalized bicharacteristics for the boundary value problem and show that
a solution of the boundary value problem with the condition (2.2)4 in [12]
for a strictly hyperbolic second order single differential operator has the
same property on a propagation of microlocal regularities in C*° space along
generalized bicharacteristics (see Theorem 5.10 in [12]).
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The purpose of this paper is to study that in the Sobolev space Hj
a solution of boundary value problem for a hyperbolic system whose char-
acteristic roots have constant multiplicities has the same property. One
of the important and typical boundary value problems of such hyperbolic
operators is the elastic equation, that is,

O*u/ot> — (N + p)grad(divu) —pAu=f in RxQ, (1)
Bu=g on R x 99, (2)
where v = *(uq,...,uy) is the displacement, A\ and p are Lamé constants

such that A+2u > 0, 4 > 0 and A # 0. Here € is an open set in R" (n > 2)
with the smooth boundary 0€). The boundary condition is the Dirichlet
condition Bu = u or the free boundary condition

(Bu); =Y wvioi(u)  (j=1,...,n), (3)
=1

where
Uij(u) = \(div u)&ij + u(@ui/axj + 8uj/8xi) (4)

and v = (v1,...,Vv,) is the unit normal vector to 9f2.

In this paper we shall show that a solution of (1) and (2) has the prop-
erty on propagations of microlocal regularities in the Sobolev space H, along
generalized bicharacteristics. Here we only consider the problem (1) and (2).
However we remark that our method is valid for boundary value problems
of higher order single hyperbolic differential operators with constant multi-
ple characteristic roots considered in [4] and for these of generalized elastic
equations appeared in [14]. In particular if we assume that Lamé constants A
and p are functions of z satisfying the same condition in (1), all theorems in
this paper are hold without any changes. We also remark that a generalized
condition of (2.2)4 in [12] appears in (41) of Section 7 in this paper.

In the previous paper [19] we consider the same problem in C'*° category.
However in this paper we are interested in one of the following problems:
Let v+ be one of null bicharacteristic strips defined from the elastic equation
belonging to T*(R x ) \ 0 and incoming to the boundary, and v_ be the
generalized bicharacteristic defined from 74 after 4 touches the boundary,
which means that if v, transversely hits the boundary, then v_ is the re-
flected null bicharacteristic strip of v1. We assume that a solution of (1)
and (2) microlocally belongs to Hs at a point of 4 and that date f and
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g belong to the suitably good the Sobolev space. Then does the solution
microlocally belong to the same space H at points on _, or does the solu-
tion lose the microlocal regularity in the Sobolev space on y_7 The answers
depend on the condition that how v, attaches to the boundary, and are
stated as theorems of this paper. In the hyperbolic case, which means that
v+ transversely hits the boundary, a solution of (1) and (2) does not lose
the regularity on 7y_ (see Theorem 4.5). In diffractive case, which is defined
in the first part of Section 6, the statement ii) of Theorem 6.5 says that
a solution for the Dirichlet boundary condition B loses 1/2 the regularity
on y_. We believe that this result comes from technical problems to prove
the theorem. However the statement i) in Theorem 6.5 says that a solution
for the free boundary condition B loses more 1/3 the regularity on v_. We
believe that this phenomenon is natural, because the free boundary con-
dition does not satisfy the mathematically good condition at a diffractive
point, that is the uniform Lopatinski condition. Thus there is a possibility
that a solution of (1) and (2) loses microlocal regularities.

In the Sobolev space analogue problems are considered in [2] and [9].
In [2] they consider a microlocal regularity theorem of solutions to bound-
ary value problems for second order single hyperbolic differential operators.
Under the regularity conditions on the boundary of the solution and their
first order derivatives, they obtain the microlocal regularity of solutions near
a point belonging to X287+ U %26+ (see the forward part of Lemma 9.6 on
the definition of ¥¥). However it seems very difficult to extend their method
to hyperbolic systems. In Appendix B of [9] for the elastic equations with
the Dirichlet boundary condition they get similar theorems to these of this
paper. However they only consider .S waves and assume the strong condition
that the divergence of the solution is regular in 2 x R. Since they essentially
use the special form of the elastic equation and the Dirichlet condition, it is
also difficult to analyze general reflective phenomena appeared in our paper
by their method.

We may assume that 0 belongs to 02 and 912 is defined by the equation
xn, —g(2’) = 0 in a neighbourhood U; of 0 € R™, where (grad ¢)(0) = 0. By
the coordinate transform; yo =t, y; =z; (j =1,...,n—1), y, = z, — g(z’)
the problem (1) and (2) is reduced to the following one:

L(y,Dy)u=f in UyN{yn > 0}, (5)
Bo(y,Dy)u=g on UynN{y, =0}. (6)



500 K. Yamamoto

Here Uy = [—¢,c¢] x Uy for ¢ > 0 and the principal symbol La(y,n) of
L(y, Dy) is

16 En— (A1) (14 Gnn)! (T+Gnn) — |7+ G| * En,

where G = t(—(grad g)(y),1), 7 = '(*4",0) = *(n1,...,Mn—1,0), E, is the
n x n identity matrix. If B in (2) is the free boundary condition, then the
principal symbol of By(y, Dy) is

AGH (77 + G + pG - (77 + Gn) + (7 + Gna)' G, (7)
where - means the inner product in R”. From Lemma 1.1 of [19]

Det La(y,n) = (5 —pula+Gnal*)" (05— (A+2p)[7+Gnal?).— (8)

Since 1§ — pl7] + Gnn|* = —p|GI*{ (. — aly,n'))* + 7,(y,m0,n")}, where

a(y,n') =n"- (gradg)(y)/|G|* (9)

and

ro(ysm0,1") = ((pln"[*=15)|GI>=p(n"-(grad 9(y)))?) /pIG|*,  (10)
we have the following five cases;

i) Tatou = Tyu > 0, ii) Ta+2u > 0> T, iii) 0> Ta+2u = Ty

iv) ragou >rp =0, v)0="rro,>71y

In Section 2 we shall state function spaces used in this paper. In Sec-
tion 3 we shall show Theorem 3.1 on a propagation of regularities in the
interior of the domain. Since L(y, D,) is a system and from (8) all charac-
teristic roots of Lo(y, Dy) are not simple, we need to consider propagations
of regularities in the interior of the domain. In Section 4 we shall consider
hyperbolic problems, which is the case iii), and state Theorem 4.5 on re-
flection phenomena of regularities in the the Sobolev space. In Section 5
we shall consider the problem near elliptic points, which are the case i)
and ii). Theorem 5.1 for the case ii) is not complicate. However in the
case 1) the existence of Rayleigh waves makes difficulties to propagations of
regularities. This fact is stated in the later half of Section 5. In Section 6
we shall consider aq propagation of regularities near a diffractive point pg
which is defined by the conditions 7,(pg) = 0 and {n, — a,7,}(po) < 0.
In [20] we construct a microlocal parametrix near the diffractive point pg
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for the boundary value problem (5) and (6). Making use of the parametrix,
we shall show Theorem 6.5 and Theorem 6.6 on propagations of regularities
near diffractive points.

After section 7 we shall analyze the problem near glancing point pqg,
that is, r,(po) = 0. One of the aims in Section 7 and 8 is to show the
corresponding theorem to Theorem 2.3 in [12] for our problem in the Sobolev
space. However their argument to prove the theorem does not work in the
Sobolev space. So we shall improve and expand the argument used in [11],
where they consider simple boundary conditions for single second order
differential operators. In Section 7 as preliminaries we consider a boundary
value problem of a first order system, which is the microlocally reduced form
of (5) and (6) near a glancing point pg. The key theorem on propagations
of regularities is stated in Theorem 7.1, which is proved in Section 8. In
Section 9 we shall state theorems on propagations of regularities near gliding
points to solutions of our considered boundary value problem, which are
Theorem 9.5 and Theorem 9.7.

2. Function spaces

In this paper we use the function spaces introduced in Chapter II of [5].
Let Hi,, ;)(R™™!) be the function space defined in Definition 2.3.1 of [5]. Its
localized space H%?rf )(R"H) is denoted in Definition 2.3.1 of [5]. In Sec-

sS
tion 3 we shall use this space as k¢, (§) = (1+ €]2)™/2(1+ |€'|2)%/2, where
¢ is the dual variable of x = (zg,...,2,) asxzg =t and & = (&,...,&,). Let
a(z, D) be a pseudodifferential operator of order p on R"*! and b(z, D,)
be a pseudodifferential operator of order ¢ on R™ with a parameter xy. Then
we have the following properties, which are proved by the same argument
to one used in the proof of Proposition 2.5 in [1]:

Proposition 2.1 We have the following two statements:
i) a(z, D;) is a continuous linear operator from H,, o (R™*1) N &' (R")
to Hloc (Rn+1)
(m_p75) ’
i) b(x, Dy) is a continuous linear operator from H, o (R"T1) N & (R")

to Hige . (R™).

After Section 4 we shall use the function space H (ms)(f{f‘fl) defined in
Definition 2.5.1 of [5] as k(, ) (n) = (1+ |2)™/2(14|/|2)%/2, where R
{(yo,y1 - yn) € R" 1 4, >0}, n is the dual variable of 3 appeared in (5)
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and ' = (no,...,Mn—1). Its localized space is denoted by H%‘;rf 8)(I_{Tr1).
Let b(y,D,/) be a pseudodifferential operator of order ¢ with a smooth
parameter y,. Then from Theorem 2.5.1 in [5] and the argument used in

the proof of Proposition 2.5 in [1]. We have the following:

Proposition 2.2  The pseudodifferential operator b(y, D) is a continuous
linear operator from H(,, 8)(1-:{1“) to H%‘;rf S_q)(l:_{’}rﬂ). Here by H, | S)(Riﬂ)
we mean the set of all u € D'(R") such that there exists a distribution

U € Hpns) (R NE (R with U = u in RY™ = {y € R™™; y, > 0}.

For simplicity we denote Hy, 0)(€2) by Hp (), where Q = R"*! or Riﬂ.

The composition of a(z, D,) and b(x, D,/) appeared in Proposition 2.1
is well defined, if WF(a(x, D;)) C {(z,&) € T*R"1)\ 0; |&] < C|¢']}.
We have the following

Proposition 2.3 Let a(z, D;) be a pseudodifferential operator of order p
in R and b(z, D) be a pseudodifferential operator of order q in R™. If
WF(a(x, Dy)) satisfies the above condition, then the composition a(x, Dy)o
b(z, D) and b(z, Dy) o a(x, D) are pseudodifferential operators in R™*!
of order p + q, and their symbols have the same asymptotic expansions to
these of usual composition formulas of pseudodifferential operators in R"t1.

The above statement is proved by the same argument to one of Theorem 4.3
in Chapter II of [16].
Let P(y, Dy) be a pseudodifferential operator with a form

p—1
A(y)D + " a;(y, Dy)DJ,,
j=0

where A(y) is not zero and a;(y, D,/) is a properly supported pseudodiffer-
ential operator of order p — j. We have the following

Proposition 2.4 Let us consider the equation P(y, Dy)u = f in {y, > 0},
where [ € H(mﬁ)(RT'l) and u € H(thl)(RiH). We assume that there
exists properly supported pseudodifferential operator ¢(y, D,) of order 0,
which is elliptic at (0,n”), such that ¢(y,Dy)f € Hy(RY™) and
&(y, Dy )u € HT(RCLFH) with r < m + p. Then for any properly supported
pseudodifferential operator ¢o(y, Dy) such that the essential support I' of
the symbol ¢o(y, D,y) is contained in the set consisting of elliptic points of
¢(y, Dy, we see that ¢o(y, Dyy) f € Hmn(RITY) and ¢o(y, Dy )u € H (R,
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Proof. Let ®(y,D,/) be an elliptic properly supported pseudodifferential
operator of order 0 such that the symbol ®(y,n") of ®(y, D,/) is equal to
é(y,n') for (y,n') € T, where ¢(y,n’) is the symbol of ¢(y, D,s). Then we
have

dov = 0@~ Pv+po® ! (P—g)u+o(1-P 7 @)v. (11)

It implies that ¢o(y, Dy )f € Hm(f{iﬂ) and ¢o(y, Dy )u € H(m270)(f{’f“1),
where mg = min(my, 7). Thus we may assume r > m;. First we shall show
that for any ¢1(y, D,/) which satisfies the same conditions to these of ¢
there exists to € R such that ¢1(y, Dy )u € H(m+p7t2)(ﬁi+1), where t2 does
not depend on ¢;. The right hand side of P(¢1u) = ¢1f + [P, ¢1]u belongs
to H(m2752)(l:_{1+1), where my = min(m,m; —p + 1) and s = min(0, s1).
From Theorem 4.3.1 of [5] it implies that for some s3 ¢ju belongs to
H(m3183)(f{7j_+1), where mg = min(m—+p, m; +1). It follows that for some sy
o1 f + [P, é1u € H(m4754)(f{7ff1), where my4 = min(m + 1,m; — p+2). Re-
peatedly making use of this argument, we may assume that for some s;
P(¢1u) belongs to H(m785)(R1+1), if ¢ satisfies the conditions stated in
Proposition 2.4. Theorem 4.3.1 of [5] says that ¢1(y, Dy)u € H (1 p t,) (R
for some t. Next we shall use (11) as v = u. The second term of the right
hand side of (11) A2¢y®~(® — ¢) satisfies the conditions imposed on ¢1,
where A = (1+ |Dy/|)*2/2. Thus ¢o® (P — ¢)u belongs to Hpip(R).
Similarly we have the third term of the right hand side of (11) belongs to
Hpip(RYT). The proof is completed. O

3. Propagation of singularities in interior of the domain

In this section we shall consider the problem (1) in interior of the do-
main. Let u(z) € D'(R x Q) be a solution of (1) for f(x) € D'(R x Q). We
denote t by o and the dual variable of ¢ by &. We shall use the following
notion:

Definition 3.1 For (2°,£%) € T*(R x Q) \0 we say that u € Hy at (2°,£°)
if there exists a pseudodifferential operator ¢(z, D,) of order 0 such that
¢(z, D,) is elliptic at (z°,£°) and ¢(x, D;)u € Hg(R™1).

Let (2°,£%) be a point such that (£0)% — p|¢”°|? = 0, where ¢ =
(&1,...,&), pis por A+ 2u, and v: (—a,a) — T*(R™™1)\ 0 be a null
bicharacteristic strip for &2 — p|¢’|? such that v(0) = (2°,£°). Then we have
the following
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Theorem 3.1 Let u be a solution of (1). If f € Hg on v and u € Hgyq
at (x0,€%), then uw € Hyy 1 at all points of .

Proof. Let p(x) € Cg°(R x Q) be a smooth function with a compact
support near x” such that ¢ = 1 in a small neighbourhood Uy of 2°. Then
(D%, — Lo(Dy))(¢u) = of + f1, where D2 — Lo(D,) is the linear elastic
equation of (1) and fi = [D2 — Lo(Dy),¢lu is zero in U;. Let A be
the pseudodifferential operator with the symbol (1 + |¢/|>)}/? with ¢ =
(&1,...,&,). Then from Proposition 2.1 u; = A(pu) is well define, and U =
t(tuy, tug) with ug = Dy, (¢u) satisfies the following equation

(Do —M(Dy))U =10, (0 f + 1)), (12)

where

M(Dr) = (LO(DS/)A‘l 1(}) '

By Lemma 1.1 and the argument in Section 2 of [19] there exist an elliptic
pseudodifferential operator S(D,/) of order 0 and a pseudodifferential op-
erator K(D,/) of order —1 such that A(Dy/) = (Dy, — M)(1 + K)S~! —
(1+ K)S™Y(D,, — M) belongs to L=°°(R") near (z°,¢"), where M is of
order 1 and have the form

M, 0 ) o <M+ 0 )

~ with M, = P
< 0 M)\—‘r?p, ’ 0 Mp_

for p = p or A+2p. Here the principal symbol of Mj(DI/) is £u'/2|¢ | Ey_1,
and the principal symbol of M)\i+2#(DI/) is +(\ + 2u)Y/2|¢/|. From these
observations we have that V = S(1 + K)~!U satisfies the equation

(Dao—M(Dy))V = (0, (¢f+f1))+ A1 (Do) U, (13)

where A1(D,/) belongs to L=°°(R") near (2°,¢Y). Here we remark that
from Proposition 2.3 the right hand side of (13) belongs to Hs on 7. Now
we can use the argument in the proof of Theorem 2.1 in Chapter VI of [16],
because in our proof we can take the operator c(z, D,) appeared in the
proof of Theorem 2.1 in [16] as c¢i(z, Dy)E, where c¢i(x, D) is a scalar
pseudodifferential operator. It implies that V € H; on 7. Again making
use of Proposition 2.3, we see that U € H; on vy, which means that v € Hgy
on . The proof is complete. ]
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4. Hyperbolic cases

In the boundary value problem (5) and (6) we suppose that f belongs
to H%Sf;l)(Uo AR for some s; € R. We also assume that a solution u
belonging to D'(Up N {y, > 0}) is an extensible distribution to Uy. Then
from Theorem 4.3.1 in [5] we see that u belongs to H %8?32)([]0 AR for
some sy € R. It implies that we can take the meaning of the boundary
condition Bou on Uy N {y, = 0} from Theorem 2.5.6 in [5]. We shall use

the following similar definition to Definition 3.1 appeared in Section 3.

Definition 4.1 For a subset I')) contained in T*{y, > 0}\0 and a subset
I'® contained in T*{y, = 0}\0 we say that u(y) € C(R,; D'(R")) belongs
to Hy on T© UTM  if 4 belongs to Hy at each point of M) and for any
point p € ' () there exists a pseudodifferential operator é(y, D) of order 0,
which is elliptic at p, such that ¢(y, Dy)u € Hs(RM). We remark that
Definition 3.1 in Section 3 is invariant under coordinate transform. How-
ever this definition is not invariant under the general coordinate transform
preserving the set {y,, = 0}.

First we shall consider the following hyperbolic equation
(Dy,—H(y,Dy))V =F in R"x{0<y,<T}, (14)

where H(y,D,/) is a pseudodifferential operator of order 1 such that its
symbol H(y,n’) is zero, if |y/| is sufficiently large, and its principal symbol
has the form A(y, ) By, with real valued \(y,n") and the kx k unit matrix Fj.
Here we assume that F' € L%([0,7]; Hs, (R™)) for some s; € R, and V. €
H(LSQ)(RiH) for some sy € R. Let v be the null bicharacteristic strip of
Nn — My, n') passing through (0,7Y, A(0,17%)), where n # 0, and v+ be
yNT*{0 < y, < T}. We have the following

Proposition 4.1 We assume that for s > 0 F and V belongs to Hy on v,
and that there exists a pseudodifferential operator ¢1(y,D,) of order 0,
which is elliptic at (0,nY), such that ¢1(y, D,y)F € L*([0,T]; Hs(R™)).
Then we have the following two statements:

i) V(y',0) belongs to Hy at (0,n").

ii) There exists a pseudodifferential operator ¢(y, Dy) of order 0, which is
elliptic at (0,n"), such that ¢(y, D,/ )V € C([0,T]; Hs(R™)).

In order to prove the above proposition we need several preparations.
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We shall consider the following an initial boundary value problem for
first order hyperbolic system

(Dy, —H(y,Dy))V=F in R"x{0<uy,<T}, (15)

V=G on R"x{y,=z}, (16)

where z, € [0,7]. The symbol H(y,n') of H(y, D) is zero, if |y'| is suffi-

ciently large, and H(y, D,/) — H*(y, D) is of order 0. Then we have the
following

Lemma 4.2 Letr be an arbitrary real number. Then for any G € Hg(R")
and F € L?([0,T]; Hy(R™)) the Cauchy problem (15), (16) has the unique
solution V (zy, 2n) € C([0,T)?; Hs(R™)). Moreover the following estimate

holds. For any yn, zn € [0,T]
Yn
JLC )] (1)

Zn
The proof of this lemma is described in p.75 of [16] in the space Hs(M),
where M is a compact manifold. In our case we can not use the Ascoli’s

WVl < c<|rG||§+

theorem, however we may use the weak compactness of the Hilbert space
H (R™). We may assume that the symbol H(y,n') has an asymptotic ex-
pansion » 2% Hi—;(y,n') such that Hi_;(y,n’) is positively homogeneous
of degree 1 — j with respect to n', Hi_j(y,n’) = 0, if |¢/| > My > 0, and
Hi(y,n') = My, n')Ek, where E} is the unit matrix. From Lemma 4.2 we
can define the operator E(yn, z,), which is a continuous operator on [0, 72
from Hs(R™) to itself, such that V(y) = E(yn, 2,)G is the unique solution
of (15), (16) as G € Hs(R™) and F' = 0. From the uniqueness of the solution
of the problem (15), (16) it follows that E(t1, zn)E(zn,t2) = E(t1,t2) for all
t1, zn, t2 € [0,T] and the solution V of (15), (16) is equal to

V(e gn) = Blgn, )Gt [ By ) F (-7 dr. (18)

Zn

Let (Y, yn, 2n,n") be the solution of the following eikonal equation

Oy Oy

_ £\ _ 1
Oyn A(y, 8y/) 0 (19)
oW, zn, znm’) = (Y1) (20)

Then the fundamental solution E1(yn, z,,) of the initial problem (15), (16) as
F = 0 is a Fourier integral operator with the phase function ¢(y, z,,7') —
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(z/;n'). From (18) and the continuity property in Hg(R™) of Fourier in-
tegral operators with non-degenerate phase functions (see Theorem 1.9 in
Chapter 10 of [8]) we have the following

Lemma 4.3 If V(-,2,)€C(]0,T]; H-o(R™)), then (E(Yn, 2n)—E1(Yn, 2n))
V (-, zn) belongs to C([0,T)?; Hoo(R™)), where H_o(R") = User Hs(R™)
and Hoo(R") = Nyer Hy(R™).

Making use of the lemmas, we shall prove Proposition 4.1. From (18)
we have

0
V(-,0) = B(0, 2)V(- ,zn)+/ B0, 7)F(-,7)dr (21)

Let x(zn) be a C3°(]0,T1]) function, where 0 < T7 < T, such that yo =

0T1 X(zn) dz, is not zero. Multiply x(z5) to the both side of (21), and
integrate with respect to z, from 0 to T7. Then we have the following

Ty Ty

X0V<'70): E(O,T)X(T)V(-,T)dT— E(OvT)Xl(T>F('7T)d7_7

0 0 (22)

where x1(7) = fTTl X(zn) dzp. In the first term of the right hand side of (22)

from Lemma 4.3 we may consider

T

(Ex(xV)(¥') = i E1(0,7)x()V(-,7)dr,

which is a Fourier integral operator on R™ x (R™ x (0,7")) with the phase
function ®(y', 1, 2n,2") = &(Y,0,2,,m") — (Z/,1) and the amplitude
a(y',n',zn,2) = e1(y/,0,2n,1'), where e1(y', yn, zn,n’) is the amplitude of
E1(Yn, zn). It is well known (cf. [5]) that WEF(Ey(xV)) is contained in
the set {(v/,n') € T*R™ \ 0: there exists (z,{) € WF(xV) such that
(v',n',z,—C) € Cp}, where

Co = {(¥/, (grad,, )(¥/, 0, 20, ("), (grad,; ) (¥, 0, 2, ("), 20, —C
8(,0/82’”(3/,0,2”,(/))3 y’, 2 e Rny 0<z, <T, C/ 7& O}'
This relation is equivalent to the following;

WF(EQ(XV)) C {(yl(zl707Znac,)vnl(zl7oazna</)):
(2,¢', =090z, (v (2,0, 20, ('), 0, 2, () € WE(xV)},
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where (y/(2/,t, zn, ("), 7' (2/,t, 2, () is the solution of Hamilton equation:

dy'/dt = =0X/On', dn'[dt =0N0Y, ' (zn) =2, 0(zn)=("
From the relation
t
Pt ) = WO+ [ AW T G 720,020 €)

where 2’ = 2/(y/,t, z,,, (') is the inverse function of ¢ = ¢/(2,t, z,, (), we
see that |0p/0z, (Y (2,0, 20, (")) + M2/, 20, ()| < O(1)|2,]|¢']. By the as-
sumption on V we have xV = V; + V4 such that WF (V1) Ny =0 and V5 €
Hy,(R™"x(0,T)). Here from the theorem on propagations of regularities in in-
terior of the domain and the above argument we may assume that W F(V1)N
{ (yl(oa Zn, 0, 770/)7 Zn, 77,(07 Zn, 0, 770,)7 —0¢/02,(0, zn, 770/))§ Zp € supp X} =
0. Tt implies that (0,7”) does not belong to W F(Ey(V4)). Clearly we have
Ey (Vo) € Hy(R™).

Let us consider the second term in the right hand side of (22). From
Lemma 4.3 and the assumption on F' we may consider

T

; Ei (0, 7)x1(1)(1=¢1)F(-,T)dr,

where the symbol of ¢1(y, D) is 1 near (0,7%). Let ¢2(y, D,/) be a pseudo-
differential operator such that the symbol of ¢2(y', n’) satisfies ¢2(y', n')(1—
¢1(y,n')) = 0 for y, € [0,T1]. Let {Fn(-,7)} C C([0,7] : Hs(R")) be
a convergence sequence to F(-,7) in L*([0,T] : Hs(R™)). Then a con-
tinuity property in Hs(R"™) of E1(0,7) we see that fOTl E(0,7)x1(m)(1 —
1) Fn (-, 7) dr converges to fOTl Ei(0,7)xa(m)(1—=¢1)F(-,7)dr in Hs(R™).

Making use of an approximation by Riemann sum, we have

Ty
¢2(y', Dy) ; Er(0,7)x1(7)(1 = ¢1) Fn (-, 7) dr
Ty
= ¢2E1<077—)X1(7)(1 _¢1)Fm(‘77—) dr,
0
which converges to fOTl $2E1(0,7)x1(7)(1 — ¢1)F (-, 7)dr. This means that

Ty
¢2(y', Dy) ; Er(0,7)xa(r)(1 = ¢1)F (-, 7)dr
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T
= [ moma - o F( )
From the property on the wave front set of F;(0,7) for fixed 7 and the
assumption on the support of ¢2(y’,n') and (1 — ¢1(y,7n’)), it follows that
d2F1(0,7)(1 — ¢1) has a C* kernel, if 7 is sufficiently small, that is,
d2(y/, Dy) [ E (0, 7)x1(T)(1 — 1) F(-,7)dr € Cg°(R™). Thus we have
the statement i) of Proposition 4.1. If we use the formula

Yn
V() = Eyn, OV (-,00+ [ E(yn,7)F(-,7)dr,
0
then we get the statement ii) by the similar argument used in one of proving
the statement i) of Proposition 4.1. The proof of Proposition 4.1 is complete.
Next we shall consider the following initial value problem;

(D, — H(y.Dy))V=F in R"x{0<y,<T} (23)
V=G on R"x{y,=0} (24)

We have the following

Proposition 4.4 We assume that F € H(s,rl)(lf{’}fl) for some s > 0 and
r1 € R, and that F and G belong to Hy at (0,n”). Then V belongs to Hy
at (0,17%).

Proof. By the argument used in the proof of Proposition 4.1 it is
not difficult to show that there exists a pseudodifferential operator
¢1(y, Dyy) of order 0, which is elliptic at (0,7%), such that ¢1(y, D)V €
C([0,T]; Hs(R™)) N H(O,S)(R’r’l). Let ¢2(y, Dy ) be a pseudodifferential
operator of order 0 such that ¢2(y, D) is elliptic at (0,7”) and WF(¢2)
is contained in the set of elliptic points of ¢1. Then (D,, — H)(¢2V) =
G2 F + (Dy, ¢2)V — [H,¢2]V € Hg ) (R'*!). Repeatedly making use of
Theorem 4.3.1 of [5], we see that there exists a pseudodifferential operator
#(y, D,y) of order 0, which is elliptic at (0,7%), such that ¢(y, D)V €
H([s}+1,s—[s]—1)(RiH) C HS(RZ‘FH). The proof is completed. O

Let us consider the case iii) in Introduction. Let ¢(y) be a function
belonging to C5°(Up) such that ¢ = 1 near 0. At point py = (0,7n%) &
T*({yn = 0}) \ 0 we suppose the condition r);2,(0,7”) < 0. Let I'y and
I'y be a conic neighbourhood of pg such that I'y C I'g, and ¢(y, D,/) be
a pseudodifferential operator of order 0 such that the support of the symbol
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é(y,n') of ¢(y,D,) is contained in T'y x (—2€p,2€) and ¢(y,n’) = 1 in
'y X (—€g, €0) with a small positive number €5. By the argument used in
Section 1.3 in [19] there exist an elliptic pseudodifferential operator S(y, D,/)
of order 0 and a pseudodifferential operator K (y, D,/) of order —1 such that
the symbol of A;(y, D) = (D, — M)(1+ K)S™! — (1+ K)S~(D,, — M)
belongs to S™>(Tg x (—2¢0, 2¢9)). Here the form of M(y, D,,) is as follows;

Hy O .~ _(Hy O
<0 I~{> with Hi—<0 hi>7
where the principal symbol of Hy has a form Ay F,_1 with the real symbol
A+ (y,n') and h+(y, Dy) is a scalar pseudodifferential operator with the real
symbol. Let U = *(*(Apu), (Dy, pu)), where A = (1 + |D,|?)*/2, and put
V =(1+K)S !'¢U, and

F = (14 K)S7'¢'(0, () — (L, o)
= (14 K)S™ Dy, ¢ = [M, 6)U + A16U, (25)
where L is the differential operator in (5). Then V satisfies the following
(Dy,, —M(y,Dy))V =F in {y, >0} (26)

Let us consider the boundary operator. Put B = (FE,,0) if By is the
Dirichlet condition and B = (B1A™1, By) if By is the free boundary con-
dition. Here the forms of B; and By are denoted in (1.6) of [19]. For the
boundary operator B(y, Dy )V = BS(1+ K)~! V satisfies the following

B(y.Dy)V=C on {y,=0}. (27)

Here if By is the free boundary condition, then for As(y, Dy) = S(1+K)™!
(14 K)S~! — I we have

G = dpg—o|Bo, plut (B, ¢]U + B AU, (28)
and if By is the Dirichlet condition, then we have
G = pApg+ BAygU. (29)

If 342,(0,7”) < 0, then there exists the null bicharacteristic strip 75
of (nn — a)? +1,(y, 1) passing through (0,7%,a(0,n”) + e(—r,(0,n”))/?),
where p =y or A +2p and € = + or —. We denote 5, N T*(R" x (0, 00))
by 7;. Then we have the following
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Theorem 4.5 Let (0,nY) satisfy ra;2,(0,7n”) < 0. We assume that for
s>0andri € R f of (5) belongs to H%gfrl)(Ug NRIY), and satisfies the
following condition; f belongs to Hy on vy, Uy, U 7;\:2# U, Y {(0,7}.
We also assume that g € H2(Ug N R™) of (5) belongs to H, at (0,7%),
where r = s+ 1, if By is the Dirichlet condition, and r = s, if By is the free
boundary condition. Then we have the following two statements:

i) We shall consider the Dirichlet condition or the free boundary
condition with Lamé constants so that A\ > 4u. Then if a solution u €

H%ECSQ)(UO NRTY) of (5) and (6) satisfies that u belongs to Heq on ¥, U

7§/+2u’ where € and € are + or —, then u belongs to Hsy1 on 7, U ’y;j;u U
(0,7},

ii) We shall consider the free boundary condition under the assumption
on Lamé constants such that A < 4u. Then if a solution u belongs to
H%‘Q);Q)(Uo N RTFI) of (5) and (6) satisfies that u belongs to Hs11 on ¥y, U
Vigour where € is + or —, then w € Hsy1 on v, U7y, U {(0,7}.
Proof. Let (bf,...,bF ;b7 b7,...,b. ,,b7) be the principal symbol of
B(y,Dy). Then in the case considered in i) the matrices (b),...,b} ;,b%)
and (by,...,b, ;,b*) are nonsingular at (0,7%). Since the principal sym-
bol of S is denoted in (1.8) of [19], these facts are easily proved for the
Dirichlet condition. For the free boundary condition these facts are proved
in Remark 1.10 of [19]. In the case considered in ii) the two matrices
(by,...,bt 1,b7) and (by,...,b, ;,b7) are nonsingular at (0,17%). These
facts are verified in the proof of Theorem 1.9 of [19]. For simplicity we
assume that u € Hgy; on 'y:[ U 7)12“. Then from Proposition 2.3 we have
V=0+K)S'¢U € Hs on v U 7;+2u' We may assume that there ex-
ists a pseudodifferential operator ¢1(y, D) of order 0, which is elliptic at
(0,7%) such that ¢1(y, Dy )u € H(m’h)(l:_{?fl) for some m > 2 and r; € R.
Under this condition we shall prove that ¢o(y, Dy )u € H(m1+2’,2)(R7_:_+1)7
where m; = min(s,m — 1) and ¢y satisfies the same conditions to these
of ¢1. From (25), (28) and (29) there exists a pseudodifferential operator
¢3(y, D) which satisfies the same conditions to these of ¢1(y, D,/) such that
¢sF € Hp, (R and $3G\y,—0 € Hp, (R™), where my = min(s,m — 1).
Since Vi = (1 — x)M(y, Dy/)V belongs to H(ml’rl)(Rffl) for some 1 € R,
¢3Vi € Hppy (RIT), where x(v/) € C5°(R") and x = 1 near 0. Thus in (26)
we may assume that the symbol M(y, D) is zero in |y/| > My for some
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positive My. From the assumption on 7;' U 7/\++2M and Proposition 4.1 we
also have that ¢Z(tV+,v+)|yn:0 € Hp,, (R™) with the same type ¢4, where
Vo=tV vy, 'V_ o). Since (by,...,b, 1,b7) is elliptic at (0,1n%), we
see that ¢} ("V_,v_), —o also belongs to Hp, (R"). This fact and Propo-
sition 4.4 imply that there exists a pseudodifferential operator ¢s(y, D,/)
with the same properties to these of ¢ such that ¢5V € Hml(f{ﬁﬂ). It
follows that ¢gu € Hm1+1(f{1+1) for same type ¢6(y, D,/). From Theorem
4.3.1 of [5] and L(¢u) = ¢f + [L, plu we see that ¢ru € Hp, 10 —9) R
for same type ¢7(y, D,/). Repeatedly making use of this argument, we can
prove that ¢g1u € H g1 _9) (R'7T1). From (26), (28) and (29) it follows that
there exists ¢g with the same conditions to ¢; such that ¢sF € H S(RCLFH),
3G € Hg(R™). From Proposition 4.1 we see that u belongs to Hy at (0,7").
The property on v, U7y, . 18 easily proved from Proposition 2.3 and The-
orem 3.1. The proof is completed. g

5. Elliptic cases

First we shall consider the case ii) in Introduction. Let Ei(y, D,/) be
a pseudodifferential operator of order 1 with the principal symbol e (y, ')
such that +ey (y,n’) satisfies the conditions (1.6) and (1.7) of Chapter III
in [18] and ey (y,7n’) is independent of y if |y| is sufficiently large. We shall
consider the problem (15) and (16) for Dy, — E4(y, D,). In order to show
similar statements to these denoted in Proposition 4.1 and Proposition 4.4
we need the parametrix of the forward Cauchy problem for D, — E, (y, D,)
and one of the backward Cauchy problem for D,, — E_(y,D,/). The con-
structions of parametrices are done in Section 1 of Chapter III in [18].
Making use of the representation formula (1.45) and the estimate (1.11)
of Chapter III in [18], we can easily prove the corresponding propositions
to Proposition 4.1 and Proposition 4.4. If ry;9,(0,7%) > 0 > r,(0,n%),
then the principal symbol (b],...,b7 [, b* b7 ,...,b. ,b7) of B(y, Dy),

» Ym—1> »Yn—1
which is the boundary operator of the problem (1.14) in [19], satisfies that
the matrix (bic, . ,bf_l,bﬂ is non singular at (0,1n”) (see the proof of

Theorem 1.8 in [19]). From these observations we have the following

Theorem 5.1 Let (0,7%) be a point such that ry2,(0,7”) >0>r,(0,n").
We assume that for s >0 andr € R f € Hégfr)(Uo NRY™) of (5) satisfies
the following conditions; f belongs to Hs on ’y:' Uy, U {(0,7")}. We also
assume the condition on g appeared in the statement of Theorem 4.5. Then
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we have the following statement on a solution u € H%gcsz)(Uo ﬂf_{?fl) of the
boundary value problem (5), (6): If u belongs to Hsy1 on v, then u belongs

to Hey1 on v, U{(0,7”)}.

Next we shall consider the case i). If (0,1n”) satisfies the conditions
TM(O,UO/) > 0 and 1) = 0, then the forms of the principal symbol E
and E_ appeared in (1.7) of [19] are not simple (see the middle part of p.125
in [19]). However the principal symbol of E. satisfies the condition (1.7) in
Chapter IIT of [18], and the determinant R(y’,n) of the principal symbol
Bi(y,Dy) = (bf,...,bt_1,b"), which is called the Lopatinski determi-
nant, is non singular at (0,17%) (see Lemma 1.4 in [19]). So we have the
following

Theorem 5.2 Let (0,1n”) be a point such that r,(0,n%) > 0 and n§ = 0.
We assume that for some s > 0 andr € R f € Hé‘;fr)(Uo AR of (5)
satisfies the condition f belongs to Hs at (0,7'), and assume that g €
HY(UpNR™) of (6) satisfies the same conditions to these in Theorem 4.5.
Then a solution u € H%gfsz)(Uo NRTY) of the boundary value problem (5)
and (6) belongs to Hyi1 at (0,n).

We assume that (0,7”) satisfies the conditions r,(0,17%) > 0 and 13 # 0.
If the boundary condition is the Dirichlet condition, then the Lopatinski
determinant is not zero at (0,7”). Thus we have the following

Theorem 5.3 Let (0,1n”) be a point such that r,(0,n%) > 0 and n # 0.
If the boundary condition is the Dirichlet condition, then we have the exactly
same statement to one of Theorem 5.2.

If we consider the free boundary condition, then the Lopatinski deter-
minant R(y’,n") has real zeros, and at these points (OR/dno)(y’,n’) are not
zero (see Lemma 1.3 of [19]). Thus we need some global condition in order
to avoid the singularities along the null bicharacteristic strip of R(y’,7n’),
which is corresponding to the Raylight wave in seismology. We assume that
fand g in (1) and (2) are 0 and that a solution u(t, z) of (1) and (2) belongs
to Ha((Th, T2) X (wN)), where w is an open neighbourhood of R™\ Q. Fur-
thermore we suppose that for tg € (T3, T») data F' = t(*u(to, z), (Opu) (to, z))
have the property such that there exist data F belonging to D(AN) which
are equal to F' in wN (2, where A is the operator defined in (0.5) of [14] for
an isotropic elastic equation.
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Proposition 5.4 Let u(t,z) be a solution of (1) and (2), which satisfies
the above conditions. In the reduced boundary value problem (5) and (6)
we assume that (§o,0,n") satisfies the conditions 7,(Jo,0,n") > 0 and
R(%0,0,7”) = 0, where yo is corresponding to t in (1). Then the solution
of (5) and (6), which is reduced from u(t,x), belongs to Hs at (3jo,0,n"), if
s < N+1/2.

Proof. The first observation is as follows: Let U(t) be the one parameter
group defined in Theorem 1.12 of [14]. If F' € D(AYN), then the first com-
ponent ug(t, z) of U(t)F belongs to H}f}il(R x ). Then v(t,z) = u(t,z) —
ug(t, z) satisfies (1) and (2) and the condition (‘v(tg, ), (dv)(to,z)) = 0 if
z € wN Q. From these conditions and Theorem 3.1 of [14] it implies that
v(t,x) = 0 for |t — tg] < eo and x € W'\ Q, where ¢ is sufficiently small
and ' is an open subset of w such that @ C w. This means that u(t, x)|aQ
belongs to Hy1/2((to — €0, to + €0) x 99).

The second observation is as follows: Let us consider the boundary value

problem (26) and (27), where M (y, D,/) has the form (li;“ ; ) (y,Dyr)

with n X n matrix £, and F_. Then we have the boundary equation
Bi(y, Dy)Vy = Gy, (30)

where V], _o="("V,"V_) and forany s < N+1/2 G| = (G=B4V_)},, -0 €
H, at po=(§o,0,n"). We assume that the Lopatinski determinant R(y/’, D)
of By (y', Dyy) is zero at pg. Then there exists the null bicharacteristic strip 7
of R(y',n’) passing through py. From the condition OR/dno(pg) # 0 v is
parameterized by yo. Let & be {y(y0): £ 1o > 7%o}. In (30) from the left
hand side multiply a pseudodifferential operator C(y’, D,s) whose princi-
pal symbol is the cofactor matrix of the principal symbol of Bi(y', D).
Then we get the equation R(y/, D, )V4 = g4, where the principal symbol of
R(y/, D,)is R(y,n")E and g4 € Hy at pg. From the argument in the proof
of Theorem 2.1 in Chapter VI of [16], we have the following statement: If
V., belongs to Hs_1 on 4 (v-), then V belongs to Hs_1 on . From the
first observation we may always assume that V|, _o belongs to Hs—1 on 4
or y_, where s — 1 < N — 1/2. Repeatedly making use of the argument in
the second observation we can prove the desired property on uw. The proof
is completed. O
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6. Diffractive cases

In this section we shall consider a point (0,7") such that r,(0,7%) = 0
and {n, — a,7,}(0,7n”) < 0, where { , } is the Poisson bracket and p is p
or A+ 2u. This point is called a diffractive point with respect to p. The
construction of a parametrix to the boundary value problem (5) and (6) with
the diffractive boundary is done in [20] and propagations of regularities near
diffractive points in C*° category is studied in [19] and [20]. The proofs of
theorems appeared in this section are deeply depend on the arguments and
the results in [19] and [20]. The readers refer to these papers. First we shall
consider the free boundary condition and a diffractive point with respect
to p1. Let v, be the null bicharacteristic strip of (7, —a)?+7,(y,n’) passing
through (0,7Y,0). From the definition of diffractive points there exist half
rays fyj such that , = v, U(0, 7", 0) U+, and 'yff C T*{yn > 0}. We have
the following

Theorem 6.1 Let (0,7Y) be a diffractive point with respect to u and By
in (6) be the free boundary condition. In (5) we assume that f belongs to
C>=([0,Ty) : D'(R™) N L2([0,Ty] : HY(Uy N {y, = 0})) for s > 0 and
To > 0, and satisfies the following condition: There exists a pseudodiffer-
ential operator ¢(y, D,y) of order 0, which is elliptic at (0,n") such that
oy, Dy) f € C®(R" x [0,Tp)). In (6) we suppose that g belongs to Hy at
(0,7"). If a solution u in (5) and (6) belongs to Hgy1 on Yy, where e =+,
then u(y', 0) belongs to Hy o5 at (0,7”) and (D, u)(y',0) belongs to Hy_1 /3
at (0,n").

Proof. For simplicity we assume n = 3. In the arbitrary dimension case
the proof is done by the same method to one appeared here. We shall use
the decomposition (1.17), (1.18), (1.19) and (1.20) appeared in Section 1.4
of [19]. Here V = {('V, 04, 0.), F = '(fa, f1r, /) and G = '(g,91,9.)
are similarly defined to these appeared in (25) and (28). If v, is defined
by {(y(t),n(t)); t > 0}, then we define —;, by {y(—t), —n(-t); t < 0},
which is a part of the null bicharacteristic strip of (1, — a)? + r,, passing
through (0, —n"). Let ¢ (y/, D,/) be a pseudodifferential operator of order 0
whose symbol has the support in a small conic neighbourhood of (0, —p%).
Then for any h € H_g,1/3(R?) we shall consider the distribution F (¢h)
defined in Proposition 4.2 of [20]. Here € is + or — and F.(h) satisfies
the condition WF(Fu (h)y,~0) N (=7, ) = 0. Since in the proof of Propo-
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sition 4.2 in [20] F.(+h) is defined from GMv() which is denoted in (18)
of [20], we shall state the properties of GWy(M) | That is a continuous linear
operator from D'(Up) to C*°([0,T) : D'(Uy)), where Uy is an open neigh-
bourhood of 0 € R3. From Theorem 2.5.11’ in [7] and Proposition 4.2
of [20] the wave front set of G (vM)(-,49) for fixed yJ is contained in
the set {(y/,n') € T*(R3)\ 0; (¢/,7') is a projected point to T*{ys = yJ}
of 7;/, whose starting point belongs to W F(v(1))}. There exist small positive
numbers ¢; and ¢y such that for any ys € [c1, ¢2] G(l)(yg) is a composition
operator of a Fourier integral operator on R3 with a non-degenerate phase
function and a symbol belonging to Si é/ % and an operator A with the form
Av(n') = A(aly )~ 1x(n)o ('), where |A(aly' /%) 71| < C(1+7'|)/® and
x(1) is a cut function near —n”. Thus if v € H_,(R3), then GMo()
C([e1, ca); H-s(R3)). Here we remark that we can take arbitrary small ¢;
depending on the size of the support of x (') appeared in (18) of [20].

We define the extension of Vi of V5 such that Vi = Va, if y3 > 0, and
Vi =0, if y3 < 0. Similarly we also define f5. Take a scalar function
p(y) € C§°(U) which is identically 1 near 0, where U is a neighbourhood
of 0 € R, and put tE, (h) = F.(1h), where the component of F.(h) is
equal to the first four components of Fi/(¢h). Then we have

((Dy, — M2)(V5), p"E (h)
= (f5, 0" E4(h)) — i{Va(+,0), o' E(h)(+, 0)), (31)

where ( , ) and ( , )s are usual bilinear forms on L?(R*) and L?(R3),
respectively. The form (31) is equivalent to

(Va(+,0), 0 B4 (h)(+,0))o = —i(V5, p(Dy, + ' Mz2) B (h))
— (V5 [Dy, + "Mz, p] B+ (h)) — i(po 5, B ()
—i(f5,(1 = ¢)p'E4(R)), (32)

where ¢ = ¢(y', Dyr) is a pseudodifferential operator of order 0 such that
the support of the symbol ¢(y',n') of ¢(y', Dy) is in a conic neighbour-
hood of (0,7") € T*{ys = 0} and ¢(y/,7) = 1 in {(¢/,7) € T"{yn =
0}; (v/,—n') € suppy}. From Lemma 4.1 of [20] there exists the pseudodif-
ferential operator Ba(y, D,) whose form is a 4 x 2 matrix such that Va,,_o =
Bs(y',0, Dy )t (va, V3)|ys=0+91, where Vo = (v1,...,v4) and g1 belongs to Hy
at (0,7”). Then the left hand side of (32) is equal to
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(*(v2,v3), p'BEL(h) (Y, 0))o + ("(v2,v3), ['Ba, p|' E1(R)(y, 0))a
+ (g1, 0" E4 (h) (¥, 0))o- (33)

From Proposition 4.2 of [20] for any h € H;/3_,(R3) we have a distri-
bution ‘E, (h) which satisfies the conditions that 'E, (h) is a linear op-
erator and there exists a pseudodifferential operator ¢ (y’, D,s) such that
19 Ba('E () o — ), (1 — 1) Ba('E ()= and (1 — i) poh
are smooth functions on R3. Here we may assume that v (y/, D,y) is elliptic
at (0, —n"). From the argument sated in the back part of (52) in [20] and
the fourth line to the last of p.368 in [20] we have to take

@(1)(7’/) _ <COI§_1 (1)> @(2)(7}/)
n (18) of [20], where
(coK 1) () = (11 [P) O Alaln'P/%) /A (alof %)

with a = ng/|n’| and Airy function A(s), which belongs to 511;3?,0' If h €
H_5+1/3(R3), then we take v(?) as an element of H_g 113 (R3), which means
that v(V) is in H_,(R?). It implies that !F, () is a continuous linear oper-
ator from Hy /5 o(R3) to C([0,T] : H_,(R?)).

Let us consider the null bicharacteristic strip {(y(t,p),n(t,p))} of
(1, —a)? +1, starting at p near the diffractive point pg. If pg is a diffractive
point, then from the Malgrange’s preparation theorem we have ys(t, p) =
A(t, p){t? + B(p)t + C(p)}, where A(0,po) > 0, B(po) = 0 and C(pg) = 0.
It implies that there exist a small constant ¢y, co and a small conic neigh-
bourhood Ty of pg such that (dys/dt)(t,p) # 0 for all ¢; <t < co, p € Tg.
Thus we can use the statement i) of Proposition 4.1 for ¢; < ¢t < co2. From
the conditions on f and ‘E, (h), the statement i) of Proposition 4.1, and
the Banach’s closed graph theorem we see that all terms of the right hand
side of (32) are continuous linear functionals on Hj/3_4(R?). From (33) we
also see that (*(v2,v3), pvh)s is a linear functional on Hj3_s(R?). This
fact and Lemma 4.1 in [20] imply that u(y’,0) belongs to Hy o3 at (0,7”)
and (Dy,u)(y’,0) belongs to Hy_1/3 at (0,7”). The proof of Theorem 6.1
is complete. U

Next we shall consider the Dirichlet boundary condition. In this case
the Lopatinski determinant R(z’,7n’) defined in (46) of [20] is not zero at
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(0,7”). Thus we do not need the special form of ©;(n'). We have the
following

Theorem 6.2 Let (0,7Y) be a diffractive point with respect to p, and
By in (6) be the Dirichlet condition. In (5) we assume that f satisfies the
same condition stated in Theorem 6.1. In (6) we suppose that g € He11 at
(0,7”), where s > 0. If a solution u of (5) and (6) belongs to Hs1 on Vs
where € = =+, then u(y',0) belongs to Hsi1 at (0,nY) and (Dy,u)(y',0)
belongs to Hy at (0,7").

In order to prove a propagation of regularities we need a lemma and
a theorem. An operator P(y, Dy) has the form D}’ + Z;”:_ol D5 (Y, Dy/)Dgn,
where p;(y, D) is of order m— j and the symbol of p;(y, D) is independent
of y, if |y| is large. Then we have the following

Lemma 6.3 Let s be a non-negative number. Then for any f € Hs(l-:{iﬂ)
there exists w € H8+m(l:_{i+1) such that the 0 extension of f+ P(y, Dy)w to
{yn < 0} belongs to H,.(R™1) with r = max([s], s — 1/2), where [s] is the
Gauss symbol of s.

Proof.  From the form of P(y, D,) and Theorem 9.4 in p.41 of [10] there ex-
istsw € Hs+m(f{fﬁ+l) such that Dy, (Pw+f)(y/,0)=0(j =0,...,[s—1/2]).
Put g = Pw+ f. Then
D} (99 = (D}, 9)"  j=1,....[s],

where h¢ is the 0 extension to {y, < 0} of h. One of equivalent conditions
of h € Hy(Q) is the condition that Dih € H_(g,1s—j () for j =0,...,[s],
where Q = R"*! or R™FL. If 0 < s — [s] < 1/2, then we have that D} (¢°) €
Hy g—;(R™1) for j = 0,...,[s]. This means that ¢° € Hyy(R"*!) C
Hy_1(R"™1). If 1/2 < s —[s] < 1, then we have that AsI=iplg e
Hy (g(R),) for j = 0,...,[s], where A¥ = (1+ |Dy/|?)"/2. From The-
orem 11.4 in p.60 of [10] it follows that (All=7Dg)c = AlI=iDi(g%)
Hy (g_12(R"™1) for j = 0,...,[s]. This means that g° belongs to
H,_1,5(R"1). The proof is completed. O

The following theorem is due to the proof of Theorem 2.1.4 of [6] and
the statement in Lemma 8.33 of [1].
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Theorem 6.4 Let Q(y,D,) be a classical pseudodifferential operator of
order m in R™ 1 with the symbol q(y,n) ~ " q;(y,n) such that for some C
each term q;j(y,n) is a rational function of n, when C|n,| > || + 1, where
n = (Noy...,Mm—1). Then for any u, v, N, and a small number a in the
domain {0 < y, < a} Di (Q(u® 57(1'/))) is expressed by the following form,

where 5£Ly) is the v-th derivation of Dirac function with respect to y, = 0;
Py Ny, Dy )u+(2m)™" / eV N (y ' )aly') dn. (34)

Here P,,n(y,Dy) is a pseudodifferential operator with a symbol
PuvN(y, 1) € C([O,a);STJ“JFVH(R")) and g, N(y,n') satisfies the con-
dition that for any multi index o and any compact set K in R™ there ex-
ists a constant C N such that |(DSqu,n)(y,n')| < On (L +[0'[)™N for
(y,1') €[0,a) x K xRy

Our theorem on propagations of regularities near diffractive points with
respect to u is as follows:

Theorem 6.5 Let (0,7”) be a diffractive point with respect to i and f and
the solution w in (5) and (6) satisfies the all assumptions stated in Theo-
rem 6.1. Moreover we suppose that f € H¢(Uy N {y, > 0}) with some
neighbourhood Uy of 0 € R™ L. Then we have the following two statements.
i) If the boundary condition is the free boundary condition and g belongs
to Hy at (0,1”), then u belongs to Hy 1/ on Y CU {(0,7™}.

ii) If we consider the Dirichlet condition and g belongs to Hgy1 at (0,7%),
then u belongs to Hyy /5 on v, U {(0, n"}.

Proof. 'We only show the statement i). Making use of a cut function we
may consider the boundary value problem (5) and (6) in erfl with f €
H,(R'}*1). We apply Lemma 6.3 to f € Hy(R*") and L(y, D,). Denote
the 0 extension of g by ¢g¢. Then we have the following

L((u+w)%) = (F + Lw)* - Afu+w)(y/,0) @ 55}
- i(ADyn + B)(U + w)(y,a 0) ® 6yn’ (35)
where L(y, Dy) = A(y, Dy)D2, + B(y, Dy) Dy, + C(y, Dyy). From Lemma
6.3, Theorem 6.1 and usual computations the right hand side of (35) be-

longs to Hy_5/5 at (0,7”,0). Thus by Theorem 3.1 it follows that (u + w)®
belongs to H,y /6 on 7,. It implies that there exists a pseudodifferential
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operator p(y, Dy) of order 0, whose symbol is supported in a small conic
neighbourhood of (0,7Y,0) € T*(R"*!)\ 0 and is elliptic at (0,7, 0), such
that

p(y, Dy)(utw)® € Hypy (R (36)

Since L is elliptic near (0, (0,...,0),n,) with 7, # 0, there exists a prop-
erly supported classical pseudodifferential operator Q(y, Dy) of order —2,
which satisfies the condition in Theorem 6.4, such that QL = I + R, where
WE(R) N {(gm) € T*Rasa \ 05 [if] < dolials Iyl < 80} = 0. From (35)

we have
(u+w)*=—R(u+w)+Q(f + Lw)* — Q(A(u+w)(y,0) @ 5!
+i(ADy, + B)(u+w)(y',0) ®dy,). (37)

The second and third terms in the right hand side of (37) belong to H, 16
from Lemma 6.3 and Theorem 6.4. Let us consider the operator ¢(y, D,y)R,
which is a pseudodifferential operator on R™*! from Proposition 2.3. Since
the support of the symbol ¢(y,n) of ¢(y, Dy) is contained in T'y = {(y,7);
lyl < 61, [n”/In°l = '/In'|| < 61} for small 6 and L(y, Dy) is elliptic in
WER) N {(y:n); (y,n') € D) \ {(y:n); (y,1) € T1, [nn| < da2ln[} for
small 03 from (36), we see that ¢(y, Dy ) R(u + w)® belongs to H, /6. The
proof is completed. O

Next we shall consider a diffractive point (0,7”) with respect to A+ 2.
In this case the situation does not depend on boundary condition. Since
r#(O,no’ ) < 0, we have the null bicharacteristic strip -, passing through
(0,7%,a(0,n") £+ (—r#(O,no’))l/Q). The half rays belonging to T*{y, > 0}
are denoted by *y;r and v, . The following theorem is proved by the decom-
position (1,54)1, (1.55)+ and (1.56)+ in [19] and the argument used in the
proof of Theorem 6.5.

Theorem 6.6 Let (0,7Y) be a diffractive point with respect to \+2p. The
data f and g in (5) and (6) satisfy conditions mentioned in Theorem 6.1
and Theorem 6.2. Moreover we suppose that f € H*(Ug N {y, > 0}) for
some neighbourhood Uy of 0 € R, If a solution u of (5) and (6) belongs
to Hey1 on v, U ’yf\l+2u, where € and € are + or —, then u belong to Hyy1)0

on 7;52# U{(0,7")} and u also belongs to Hsyq on f)/l:EI'

In our proof the following condition is essential: there exists a pseudo-
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differential operator ¢(y, D,/) of order 0, which is elliptic at (0,1%), such
that ¢(y, Dy)f € C®(R™ x [0,Tp]), because we can not prove the L? con-
tinuity of the operators with the form (18) in [20]. However under some
conditions on f we can eliminate the above essential condition. We have
the following

Remark 6.7 In (1) and (2) we assume that f = f(z) has the following
property; there exists (0, f) € D(AN) such that f = fin UyN§, where A is
the operator defined in (0.5) of [14] for an isotropic elastic equation and
Uy is a neighbourhood of 0 € R™. Then for s < N + 1 a solution u of (5)
and (6) has the same properties stated in Theorem 6.5 and Theorem 6.6.

7. Preliminaries for analysis near glancing points

We shall say that (0,7”) € T*{y, = 0} \ 0 is a glancing point with
respect to p, if r,(0, 0, n") = 0 with the function r, appeared in (10). After
this section we devote to analyze propagations of regularities to solutions
near these glancing points. In this section we shall study the boundary
value problem for the operator P(y, D,/) which is reduced from (5) and (6)
near the considered glancing point. P(y, D,/) has the following form:

0 AE} A An

Ou-Ba (g, 0" )~ A ) (38)
where Ej, is the k x k unit matrix, a = a(y, D) is the differential operator
of order 1 defined by the symbol (9), A = (1 + |Dy|?)'/2, R,(y, Dy) is of
order 1 and its principal symbol is |7/|7'r,(y,n'), and A;; = A;(y, Dy)
is of order 0. The boundary condition B(y,D,/) is a k x 2k matrix and
their components are of order 0. We assume that the principal symbol of
B(y, D,s) is maximal rank at (0,7”) which is a glancing point with respect
to p. Let us consider a solution V(y) € C([0,00) : D'(R™)) of the following
problem

Py, D)V =F in {y,> 0} (39)
B(y,Dy)V =G on {y, =0}, (40)
where for s > 0 and some r; and ro F' € H(sy,,l)(l:_tiﬂ) N H(l’m)(l:_{’}rﬂ)
satisfies the condition that there exists a pseudodifferential operator

¢o(y, Dy), which is elliptic at (0,17”), such that ¢o(y, Dy)F € Hs(RT)N
H(l,s—l) (RiJrl)
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On the boundary operator we assume the following condition: Since
the principal symbol of B is maximal rank at (0,7%), we may assume that
there exist 'V = (01,...,7k), where 0; is one of the components of V', and
Dj(y, D) of order 0 (j = 1, 2) with a k x k matrix form such that BV = G
is denoted by Vi = D1 (y, Dy/)f/+G1 and Vo = Dy(y, Dy/)V—i—Gg. Here V =
L'V, Va) and G; (j = 1, 2) satisfies the same conditions to these which will
be imposed on G. Furthermore we assume that there exist k£ x k matrices
GE(y,n') and F(y,n'), whose components are positively homogeneous of
degree 0 with respect to 7/, such that G5 (y, ') is positive definite in a conic
neighbourhood T' of (0,7%) and

+{D}{G{ Dy + D3GF D1 + D3FEDy — DiFED1(rpn|72) By} > 0

(41)

in a conic neighbourhood of (0,7%), where D;(y,n’) (j = 1, 2) is the prin-
cipal symbol of D;(y, D,/). Moreover we suppose the following condition:

There exist a conic neighbourhood T of (0,7”) and a sufficiently small con-
stant ag > 0 such that

Det(B1+iaB2)(y',0,7) # 0 (42)

for all (¢/,n) € T and 0 < @ < ap, where the principal symbol of B in (6)
is denoted by (Bi1(y,n'), B2(y,n')) with the k x k matrix B; (j =1, 2).
For a subset ') © T*{y,, > 0}\0 and a subset T(©) ¢ T*{y,, = 0}\0 the
definition that V belongs to Hs on I@UTM is denoted in Definition 3.1 and
Definition 4.1. We denote by exp{tH Rg}(O, n”) the bicharacteristic strip of

Ry = n/[7'rp(y', 0,n') through (0,7%). Put
T = {(y', 1) € T{yn = 0} \ 0; r,(y/,0,7) <0,
(') = (0,0% /1% )] < €2}

and

T = {(y,n) € T{yn > 03\ 0; (1 — aly,n)* +rp(y, 1) =0,
0 <yn <& | /lnf) — .0 /In"])] < €}

We shall show the following key theorem on propagations of regularities:

Theorem 7.1 Let V € C([0,00) : D'(R")) satisfy the boundary value
problem (39) and (40), and (0,n”) be a glancing point with respect to p.
Here F' satisfies the conditions stated in the back part of (40). We assume
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that there exist a positive constant a1 and a neighbourhood of Uy of 0 € R"
such that for anyy € Uy X (0,a1) V belongs to Hg at (y,n) with |n,| > «|n/],
where a > 0 depends on y. We suppose (41) and (42), and that G belongs to
Hg /5 at (0, n"). Then there exist g > 0 and & > 0, which are independent

of V', such that if V belongs to Hs on FE?) UFS) for some €1 (€1 < €p), then
at any point (y',n') of {exp{tHRg}(O,UOI); |t| < de1} V belongs to Hs.

The first remark to prove Theorem 7.1 is that from Theorem 4.3.1 in [5] we
may show that there exists a pseudodifferential operator ¢(y, D,/), which
is elliptic at (v/,0,n") with (v/,7') € {exp{tHRg}(O,nO’); |t| < de1}, such
that ¢(y, Dy )V € H(Oys)(f{iﬂ). The second remark is that we may assume
a(y, Dy) = 0. In order to show this fact we need the coordinate transform x;
2= X'\ yn), 2n = yn with X'(y/,0) = ¢’ defined in Remark 1.2 of [19].
It is not difficult to show that if ' € C*°([0,¢) : D'(R™)), then F o x €
C*([0,€2) : D'(R™)) for some €3 > 0. We have the following lemma, which
is easily proved from Theorem 6.4 in Chapter 2 of [8], if we regard that 2’ =
X' (¥, yn) is a coordinate transform in R™ with the smooth parameter y,,.

Lemma 7.2 We assume that F', G and V in (39) and (40) satisfy all
conditions in Theorem 7.1. Then we have the following three statements.

i) Vo x satisfies P(z,D,)(V o x) = Fox in {z, > 0}, where the form of
P(z,D.) is the same to one of (5) with a = 0.

ii) There exists a pseudodifferential operator (50(2, D) of order 0, which is
elliptic at (0,¢%) with ¢ = 0", such that ¢o(z, D..)(Fox) € HsH/Q(R’}LH).
iii) The condition that V' belongs to Hg on FE?)UFE}) for some €1 is equivalent

to one that V o x belongs to Hs on f’é?) U f‘g) for some €1, where fg)) and

f‘g) are similarly defined for (z,() coordinate as a = 0.

From now on we assume that a(y, D,/) = 0. In order to prove Theo-
rem 7.1 we need the following

Lemma 7.3 We assume that F' and G in (39) and (40) satisfy the stated
conditions in Theorem 7.1, B satisfies the condition (42), and that a so-
lution V' of the boundary value problem satisfies the all conditions stated
in Theorem 7.1 as €1 = €. If the support of the symbol of a properly sup-
ported pseudodifferential operator A(y,D,), which is of order s, is con-
tained in Te = {(y,1); 0 <wn <€, |, 0 /|n']) = 0,0%/1n”])| < €}, then
A(y, D)V belongs to L*(R").
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Proof.  First we shall show that if (¢’,0,7) € I'c and r,(y’,0,7") > 0, then
V belongs to Hs at (7,0,7'). Let us check the Lopatinski determinant of
the boundary value problem (39) and (40). The eigen values of the ma-
trix <5%k af’“) are +(af)Y/?, where a8 # 0, and the eigen vectors of
+(aB)/? are t(te;, £67HaB)/?e;) (j = 1,...,k), where ¢; € R¥ such
that the j-th component of e; is 1 and the other components are 0. Thus
if 7,(¢',0,%") > 0, the boundary value problem (39) and (40) is a parabolic
type near (g',0,7). The Lopatinski matrix of this boundary value problem
is By 4+ iA7Y(r,)Y/2 By, which is non-singular at (¢, 0,7’) from the assump-
tion (42). Therefore by the argument used in Section 5 in [19] we have the
desired property on V near (7,0, 7). Thus from the assumptions on V' there
exists a; such that A(y, D,/)V belongs to L*(R"™ x [0,a1)). Let Pi(y,n) is
the principal symbol of P(y, D). Then from the form of P in (38) we have
Det Pi(y,n) = ((nm)* + rp)k. Thus if g, > 0 and (7,)% + 7,(¥, U, 7) # 0,
(g,7) is an elliptic point of P. Moreover if 7/ # 0, then from Proposi-
tion 2.3 we can construct a microlocal parametric of P near (y,7), which
is a pseudodifferential operator in R"*!. From Proposition 2.3 and the as-
sumption of F' we see that F' belongs to H at the all points contained in
{(y,m) € T*R™)\0: yn, >0, 7/ # 0, ¢o(y,n') # 0}, where ¢o(y,7') is the
principal symbol of ¢o(y, D,/) appeared in the assumption of F' in the back
part of (40). From these observations and the assumption of V' making use
of the partition of unity in the cotangential space T*(R" X ap/2,00)) \ 0
and Proposition 2.1, we can show the desired property on A(y, D,/)V. The
proof is complete. O

Let us consider the points along the ray exp{tH R(p)}(O, nY) for 0 <t <
de1. According to the argument in Section 2 of [11] we introduce coordinate
(t,s) = (s1,...,52,_1,t) in a neighbourhood of (0,7%), where |n%| = 1,
such that (0,1”) is the origin, and the Hamilton vector field H RO 18 0/0t,
where RB =r,(y,0,1')|n’|~1. We denote the coordinate transform by ¢’ =
y'(s,t), 0’ =n'(s,t) and its inverse transform by s = s(v/', ), t = t(y',n').
Let H be the Heaviside function, and put x(u) = H(1 — u)exp(1l/(u — 1)),
and f(u) = AH(2u—1)exp(2/(1—2u)), where A > 2exp2. Let § € C*(R)
vanish on (—oo, —1), be strictly increasing on (—1,—1/2), and be equal to 1
on (—1/2,00). We define the following two functions
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2.2

atonnt =52 25 (%)) w
s = EWE )

where § is fixed independently of ¢ and we choose ¢g <« d. Here we
choose @ > 1/2 such that if |t| < a"'¢? and |s| < a '€, then
(/8 5), 7 (6, 5)) /15 (£, 5), 7 (8, )| — (0, 7¥)| < €2. We also define g.(y, ) =
qe(yn, sy, 1), t(y',n")) and ge(y,n') = ge(yn, s(y', '), t(y', 7). For s € R,
1 <\ < o0, we define

A
o) = [yt dr (45)
0
and define similarly gf’/\(y, n"). Here ¢ and ¢g2’> are positively homoge-
neous of degree s and their supports are same sets and are independent of s.
The following properties on q; A and ge A are stated in Section 2 of [11].

Lemma 7.4 The symbols q?”\ and gﬁ’)‘ satisfy the following properties:

i) g (y,nm") > 0 on supp g and g (y,n') > 0 on suppge if 0 <e <€ < ep.
i) There exists as™(y,n/) € C®(R™! x R™\ 0) such that g (y,n) =
(a(y,n'))? and it satisfies symbol estimates ]8385,&?’)‘(3/, n')| < Co gl |~ 18]
where Co 3 does not depend on X € [1,00).

We also need the following properties on ¢¢ ”\, which are easily derived from
the definition of ¢=** and the relation x(u) = —x/(u)(1 — u).

Lemma 7.5 We have the following two statements:

1) 0 < gey, ') < 4a~'dege(y, 7).

ii) The first derivatives of qﬁ’)‘ satisfy that
9g2*
dy;
9g2*
o

(') = My, 1) + 85y, '),

(v, 1) = v ') + 65w,

where {af’/\}Azl and {ﬂ?’)‘}Azl are bounded sets in S7, {'yf_l’A}AE

and {05 }as1 are bounded sets in Siot &S (g, )| + [0 ey, )| <

O(l)éeflgf’A(y,n’), and supp 6;“ U supp 5571 s contained in T. for 1 <
A < oo, where T'c is appeared in Lemma 7.3.
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Theorem 7.1 will follow if we can show that for all fixed € < ¢; and
r=s

supHA_l/QAZH/?’)‘(y, Dy’)VHL2 < 00, (46)
A>1

where A = (14 |D,|2)*/2 and A7y, Dy) = ai™(y, Dy) By, with the pseu-
dodifferential operator ag’)‘(y,Dy/) whose symbol is a:’)‘(y,n’) stated in ii)
of Lemma 7.4. Inductively we may assume that (46) for r = s — 1/2 holds,
because when r is sufficiently negative, it holds. Under this assumption we
have the following

Lemma 7.6 Let bzs_l’A(y, D,/) be a pseudodifferential operator of order

2s—1 with the symbol b2* " (y, ') such that {b>* " (y, n')}r>1 is a bounded
set in Sffo_l and supp b?s_l)‘ C supp g’ ™. If we assume that for V.= Eu
(46) holds as r = s —1/2, then we have

(b2 My, Dy )u, u)| < Ces, (47)

where Ce s does not depend on \ € [1,00).

Proof. From i) of Lemma 7.4 if € < € < €, then ai,_l/Q’oo(y, D,) is elliptic
on supp g¢*>°. Thus there exists c? ’)‘(y, D,y ) of order 0 such that the symbols
of C2*(y,n') (A > 1) form a bounded set in 57, and b2y, Dy) =
((A—l/zaj;‘”)*c*?* (A=Y2a2>°))+d>(y, D), where the symbols of d} (y, D,/)
(A > 1) form a bounded set in S™>°. From (46) for r = s — 1/2 we complete

the proof. O

8. The proof of Theorem 7.1

In this section making use of lemmas in Section 7, we shall prove Theo-
rem 7.1. Let q2(y, D,) be a formally self-adjoint pseudodifferential operator
such that the support of the symbol is contained in supp g*™° and its prin-
cipal symbol is q?sﬂ’)‘(y,n’). The essential property of ¢1 = A" '¢ is as

follows

Lemma 8.1 Let R,(y, Dy) be a properly supported pseudodifferential op-
erator of order 1 with the principal symbol 1,(y,n')|n'|~t. If (46) holds for
V = Eyu as r = s — 1/2 and u satisfies the same assumptions on V in
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Theorem 7.1, then there exist positive constants C and Ce s such that
Re(i[Ry, qilu, u) > C| A" 2ag T2 |7, —C s, (48)
where C' does not depend on u, €, 6 and X\, and C s is independent of \.

Proof. From Lemma 7.6 and (46) for » = s —1/2 we calculate the principal
symbols of pseudodifferential operators appeared in the following equality:

[Ry,q1] = AV [R), q2] + A~ [Ry— R, qo] +[Ry, A V] ga, (49)

where Rg = Rp|yn:0. From Lemma 7.4 and Lemma 7.5 the second and
third terms of (49) are denoted by Ags’k(y,Dy/) + BEMy, D,) such
that {Azs’/\(y,n,)}Azl and {B?S’)‘(y,n’)}kzl are bounded sets in S%SO,
supp A2 C supp ¢, supp B>** C T, where T, is appeared in Lemma 7.3,
and the absolute value of the principal symbol to A% is dominated by
O(1)deln'|~1g2* ¢ (y, ), where we use the fact that ro(y, ) —rp(y,0,n') =
0(e2) on supp ¢=*TH>°. Let xe(y, n') be a symbol in S?,o such that y. = 1
in supp g¢'™ and supp x. C suppg,;” for some € < € < €. Making use
of the sharp Garding inequality for A?S”\(y,Dy/) + 0(1)56(A*1/2a§+1/2”\)*
(A*1/2a§+1/2”\), Lemma 7.3, Lemma 7.5 and Lemma 7.6 we have

Re(Nu,u) > Re(Nxe(y, Dy )u, Xe(y, Dy )u) — Ce s
> —0(1)del| A 22 2 — O(1)|Ixeull3-y o — C

€,

> —O(1)de||[ A7 2aS 12212 — 2 (50)

where N = i(A~'[R, — R), qo] + [R,, A" ']g2) and C¢ s, C! ; and C/; are in-
dependent of A. Since the principal symbol of Rg is positively homogeneous
of degree 1, for a(y,n') = a(yn,t(y',n'),s(v',n’)) we can show that

oa
ot
It implies that the principal symbol of i[Rg,qg] have the following form:;
1|~ Lg2 T A (y, ) + C2 My, 1), where {C2(y,7/)}as1 is a bounded set
in S%,So and supp c2 ¢ ['c, where I'c is in Lemma 7.3. Making use of
Xe(y, Dy) in (50) and the sharp Garding inequality, we see that

Re(i[R), qo]u, u) > C| A~V 2a3 22|12~ O, (51)

Hpo(a(y 11'/N) = 2 (yno (6,1 /N, sy 11 /N)).

where (' is positive and independent of u, €, 6 and A, and C, ; is independent
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of A. From (50) and (51) the proof is completed. O

Let Gi(y,Dy) and Fi(y,D,) be properly supported pseudodifferen-
tial operators with the principal symbols G{(y,n') and F; (y,n') appeared
in (41), respectively. For a pseudodifferential operator R,(y,D,) =
A7'R,(y, D) with A= = (1 + |D,y|?)~"/? we define the properly sup-
ported pseudodifferential operator ¢(y, D,/) = (1 — Rp)ql. We also define
properly supported pseudodifferential operators

_( 0 qE _(G1 0 (F 0

From the integration by parts we have the following
Lemma 8.2 PutQ1=FyQA'D,,. Then for Ve C*R;D'(R")) we have

—i{(GoQPV,V) = (GoQV, PV) + (Q1 PV, V) — (1V, PV)}
=i(Go(QM — M*Q)V,V) +i((@1M — M*Q1)V,V)
—i([M*,Go]QV, V) + (GoQV, V) + (GoQ'V, V) + (Q1V, V)
+ (G192, Vi) + (G1g" V1, Va)o + (F1,gA ™' Dy, Vo, Vi)
+ (FY AT Dy, 1, Va)a, (53)

where V ="*("V1,! Vi), P(y, Dy) in (39) is denoted by D,, — My, Dy), (, )
and ( , )o are L? products on RZL_H and R™, respectively, and the symbols
of Gy, Q' and Q) are derivatives with respect to y, of the symbols of Gy,
Q and Q1, respectively.

Let V be a solution of (39) and (40) and satisfy the conditions of Theo-
rem 7.1. For this V' we shall check the each term of the both hand sides
of (53). In order to estimate the terms we need the following

Lemma 8.3 Let C2* A( D) be a 2k x 2k matriz whose all (i,3) compo-

nents C’ffj)‘(y, D’) are pseudodzﬁerentzal operators of order 2s. For all com-

ponents we assume the following: The symbol C*5 My, ') of CQS’\( Y, )

€3] €,1]

satisfies that {C’2s )‘(y 7 )kas1 is a bounded set of S s Supp C'6 Z; Csupp g™,

€,1]
and the principal symbol C6 i ( y,m') of 2 ’\(y, D) has the estimate

€,1]

~28,\ —
|C25 My, n')| < Calnf| g2t (54)

671]
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where C' > 0 does not depend on €, §, A and a. Then we have the following
estimate;

((C25M (y, Dy )V, V)| < Cra| A2 AST2AV |12 C (55)

where C1 > 0 does not depend on €, §, X\ and o, and C.s > 0 does not
depend on .

Proof. We may assume that the form of C? S”\(y, D,/) is Hermitian, and
that for fixed (i,j) the (k,f) component of C?* is 0 except (k, ) is
equal to (i,7) or (j,i). Then the eigen values of Caln/| g2 ™ Eyy, +
CZ Ny, ') are Calyf|1gZ* and Caly/| 192" £ |C2 (y, )|, We
denote C2(y, Dy) by {CF & Ca(A~V2ATT/2N ) (A-1/24571/20) £
C’a(A_l/QAiH/Z’)‘)*(A_1/2A‘2+1/2’)‘). The estimate (55) follows from the
sharp Garding inequality for Ca(A*1/2Af+1/2’)‘)*(A*1/2A5+1/2’/\) + ¢
and the estimate for x.(y, Dy)V, where xc(y, D, ) is used in (50). The
proof is complete. O

The following lemma is a key part to verify Theorem 7.1.

Lemma 8.4 Under the assumptions in Theorem 7.1 we have the following
estimate

Re(i(Go(QM—M*Q)V,V) > C|A2AST2AV|2—C 5, (56)

where C s positive and independent of V', €, 6 and A, and C¢ s is indepen-
dent of A.

Proof. The principal symbol G1(y,n’) of G1(y, D,) is positive definite near
(0,7”). However we may assume that G1(y,n’) is globally positive definite.
Thus there exists a positive definite matrix Ga(y,n’), which is smooth, such
that G = (G2)? by the implicit function theorem (see the proof of Lemma
3.2.3 in [7]). Making use of Proposition 2.2.2 in [7], we have the elliptic
properly supported pseudodifferential operator G (y, Dy) such that

~ Gg(y,D /) 0 ) ek A
G= v . Goly,Dy) = G*G+R,
( 0 Ga(y, Dyr) oy Dy)

where R € L=*°. In (52) we put ¢ = (1 — R,)q1, where R, = A"'R,,. Then
from g7 A — Ag1 = 0 we see that
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CiEy 0 \
M-M*Q = A Y
au-arg- (O 5 Yea (57)
where A (y, D) is of order 2s whose symbol AX(y,n") have the support in
supp g, {A2(y,n')}a>1 is a bounded set in Siso, and the principal symbols
of all components in A} (y, D,/) are dominated by O(1)de|| L2 T (g, )
from i) of Lemma 7.5. Furthermore Cy(y, D,/) is equal to

C1 = [Ry, 1]+ Rplg2, A+ (g2, RJA T R,AT, (58)
and Cy(y, Dy) is equal to
Co = [Ry, q1]. (59)

Since |r,(y,n")| < O(1)e*|n’|* in supp g™, where O(1) does not depend
on €, 6 and A, from Lemma 7.5 all terms in the right hand sides of (58)
except [R,, q1] satisfy the same conditions to these of A}(y, D,/). Therefore
we have

(Go(QM—M*Q)V,V) = ([Ry, ]GV, Gv)+(N,V, V), (60)

where N1 =G*[G, [R,, @]+ GoA}  with A} (y, D,y) which satisfies the same
conditions on A(y, D,/) in (57). Making use of Lemma 7.6, Lemma 8.1,
Lemma 8.3 and the elliptic estimate for G, we have (56). The proof is
completed. O

Next we shall consider No = i(Q1 M — M*Q1 — [M*,Go]Q — iG,Q)
in (53). From the definitions of @)1 and M we see that N is denoted by the
following form;

iF1[R,, q1] 0 ) A } 1 A
. + B}, YA'D, + B}, 61
{( 0 iF1[R,, q1] L Y 2, (61)

where B]’-\7E (j = 1, 2) is of order 2s, the symbol Bﬁg(y,n’) of BJ’-\76 satisfies

that supp B]/-\76 C suppge’™ and {B]‘\,e})\zl is a bounded set in S7%, and the
absolute values of the principal symbols of all components of B;: (y, Dy) are
dominated by O(1)de|n/|~1g2*™**(y,n’). From the proof of Lemma 8.1 we

see that iFi[R,, qi] = (A*1/2A§+1/27/\)*F1(A*I/QA‘:H/Z)‘) + 6271 where

bgsfl’A(y, D) is of order 2s — 1, the support of the symbol bgsil’A(y, n') is

contained in supp g™, and {62°""*(y,7')}r>1 is a bounded set in S5,

From Lemma 7.6, Lemma 8.3 and the equality A=1D,, V = A" MV+A-IF
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it follows that

NV, V)| <C A2 A2 01D A~ L/245F1/20y,
€ Yn €
+ COe| AT PATTPAV|? 4 C (62)

where C' is independent of €, § and A, and C , is independent of A. From
(1.40), (1.41) and (1.42) in [19] we have

[(NoV, V)| < CO|ATY2ASTY2AV |2 C . (63)
Let us check (GoQ'V,V) in (53), which is equal to

(G14'V2, V1) +(G1(a") V1, V2),
where V = t(*V1,V3). Making use of Vo = (A+A12) H{Dy, Vi+AnVi—F},
where F = {(*Fy, ') and 9q./0yn = —(6/¢€) f'(yn/€?)ge, we have

G1q' (A + A12) "N (Dy, + A1)

_ —{56_1f/(yn/62)(A_1/2A§+1/2’>\)*G1(A_1/2A§+1/2’/\)
+CETATIDy, + O, (64)

where ij-_l”\(y, Dy) (j=1,2)is of order 2s—1 such that {C’i‘;ﬂ_l’)‘(y, n')}r>1

is a bounded set in Sffb—l and supp ij-_l”\ C supp g°°°. A similar represen-

tation holds for ¢’G3(A+ A12)~H(Dy, + A11). From (1.40), (1.41) and (1.42)
in [19] we have

(GoQV.V)| < O()S|ATZATH 22V |2 4O . (65)

Since (Q}V,V) = (F,QA™'D,, V,V) + (FoQ'A™*D,,V,V), from the same
argument of deriving (63) and (65) we have

@V, V)| < O(1)8|[A™2 A2y |24 C . (66)

Let us start the estimates of the boundary terms in (53). From the
assumption on B stated in the forward part of (41), V; = D;(v/, Dy/)f/ +
H; (j = 1, 2), where H; satisfies the same condition to one of G. Thus
(G14Va, Vi)a + (G1q* Vi, Va2)5 is equal to

((DjG1Ds + D3G1D1)qV,V)g + (N3V,V)s + Rs, (67)

where N3 = DiGilq, D] + D5G1([g2, A™(1 = R,) — ¢ + [R,, A" qa]) D1 +
D3G1lq, D1, and R3 = (G19D2V, H1)g + (G1qH2, D1V )g+ (G1qH2, H1)o +
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(G1q*H1,DoV)gy + (G1¢*D1V,Hy)y + (Gi¢*Hy, H3)y.  From Lemma
7.5 we can denote N3 by C’zsfl’)‘(y’,Dy/) + Cf’gfl’A(y’,Dy/), where
{052371@})\21 ( =1, 2) is abounded set in Sisofl, supp Cisfl’)‘ C supp g2,
SuppCzZ_l’)‘ Cc T¢, where I'c is in Lemma 7.3, and the absolute
value of the principal symbol to C’i‘;fl’)‘(y’ ,Dy) is dominated by
O(1)de || ~2¢2 (0, 4/, 7). From the sharp Gérding inequality it is not
difficult to show that
(CETHAV. V)l < O()oe AT ATV

+ Cse|A XV, (68)

where || - || is the L? norm on {y, = 0} and x(y, Dy/) is the pseudodiffer-
ential operator appeared in (50). We shall use the classical trace inequality
|A=Y20)|2 < 2|jv|| - [[A~LDy, v]|. Since there exists k x 2k matrix Ma(y, D)
of order 1 such that D, V = Ma(y, D,/)V + F, where F is made from F,
we see that

1A 2 V| |AT Dy, A7 2X V| < C e (69)
From the classical trace inequality and (1.41) in [12], we also see that

IATTASH2AV | < O()el|A2ASTPAT P 4C . (70)
From the classical trace inequality and the property on the support of
Ci‘;_l)‘(y, D,) it follows that

(C25V . V)al < e (71)

€

From (68), (69) and (70) we have
(N3V, V)al < O(L)S|IAT2 AT 2V |2 4O, (72)

where C  is independent of .

The required conditions on g9 are the following; ¢o is formally self ad-

joint and the principal symbol of g5 is qz SH’/\(y, n'). Here since the function

q€25+1,>\ is nonnegative, from the proof of Lemma 2.28 in [11] there exists

a function b§+1/2’)‘(y,n’) such that ¢2*™* = (b§+1/2”\)2, {b§+1/2’)‘},\21 is

a bounded set in 55?61/2 and

b2 (y,m') < O(1)(86) a2 (y, ). (73)
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Therefore we define
72 (y, Dy’) = (b§+1/2,/\(y7 Dy’))*(biﬂ/Q’)\(yy Dy’))7

where bgﬂ/ 2’)‘(y,Dy/) is the pseudodifferential operator with the symbol
b§+1/2’>‘(y,77’). Let us check the term Rs in (67). We shall consider
the term (G1¢*D1V,Hs)s in Rz, which is equal to (Aflbe/Q”\V,
Di(1— RO 2AGrHy) o+ (572 A1 (1= R,)* DV, b2 G Hy ) o +
(A= (1 — Rp)Dl]b§+1/2’)‘V,b§+1/2’AG’{H2)a. The absolute value of this
quantity is dominated by HA*Ibiﬂ/ZAVH% + |A5732x V|| + Cs, where
Xe is the pseudodifferential operator in (50). It is not difficult to show that
IAIIT2AT)12 < O(1)de| A 1al TPV || + Cu | A1 x V|2, Thus from

the similar argument we have that
|Rs| < O(1)5||ATV2ASF 22V 24O, . (74)

Since A_lDynVQ = Rp‘/l + Ao Vi + Ao Vo and A_lDynvl =Vot+ A1 V1 +
A19Va, where A;;(y, Dyy) is of order —1, we see that (quA_lDyan, Vi)o +
(Fig*A~'D,, V1, Va)g is equal to

((D3F1Da—D{F1R,D1)qV, V) ) +(NaV, V)o+Ru, (75)

where Ny is equal to D3Fy[q*, Do) + D5F1Ds[qe, A=) — DiFy [q,Rg]Dl —
DTFle[q, Dl] + Dikqu(Angl + A22D2) + D;qu*(AuDl + A12D2). Here
R4 has the form —(quRlef/, H1)3+(F1Q*D2‘~/, H2)3+N(Q(A,1‘~/+B0H1+
Cng), Dof/ + EOHl)a + (q*(A,1V + BoHl + COHQ), D()V + E()Hg)a, where
A_1 and A_; are pseudodifferential operators of order —1, and By, Cy, Dy,
Ey, By, Cy, Dy and Ey are pseudodifferential operators of order 0, which
are independent of €, ¢ and A. From similar computations to derive (74) we
have that

|R4| < O()S|A~V2A5T2V |24 O . (76)
Ny has the same properties to these of N3. Thus it follows that
(N4V, V)a| < O(1)S| A 2AT V|2 4C (77)

Final part is the estimate of (X¢V, V)s which comes from (67) and (75),
where X = DTGlDl +D§G1D1 +D§F1D2 — DTFLRle with G = G—lf— and



534 K. Yamamoto

Fy=F; in (41) and ¢ = (1 — R))A"!go. Put
Ny = X1A~V2[AY/2, (3t 1/22 )]st 1/2
X, AT Y22y AL/ /2
FATV2IX, (V2N 212
FATY2, (2 X AT 22 (78)

where X1 = X(1 — R,). Then the absolute value of the principal sym-
bol of N is dominated by O(1)de~tn/|~2g2 ™y, 1), and (XqV,V)y =
(X A~ V2p 2T A=1/2p3F2A7) o 4 (NS, V). From the sharp Garding
inequality we have that

(NV,V)p < O(1)de AT AT AV B4Cy [ IA* X VI3,
where x. is in (50). From (70) we see that

(N5V, V)ol < O()SAT2ATH2V |24+C, (79)
From the similar computation we have

Re(X A~12ps 20 AT 2p /27

> —O()S|ATPAT 2V = Gy,

which implies that

Re(X1A™'g2V, V) > —O(L)8|A~2ATH 2V |~ C (80)

where C; . does not depend on A.

Let us remark on the left hand side of (53). From the definition of
q2(y, Dy) appeared in the back part of (73), Lemma 7.5 and Lemma 8.3 we
see that the left hand side of (53) is dominated by

||A_1/2b§+1/2”\F||2 + ||A—1/2b§+1/2,AA—1DynFH2
+ O(1)de||[A™V2ASF2Ay )12 4 ¢
Finally from (53), (58), (63), (65), (66), (77), (79) and (80), we have
sup [ATH2ATEAV P < O (81)

which is equal to (46) for r = s. The proof of Theorem 7.1 is complete.
The proof of Theorem 7.1 also implies the following
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Theorem 8.5 Let B, V, F and G satisfy all conditions in Theorem 7.1.
We suppose that Gli(y, n') and Fli(y, n') in (41) satisfy the following strong

0
condition than one of (41): X4 has a form (Xi 0 ), where Xy is

0 XL
the principal symbol of DG Do+ DG Dy + DyFi=Dy — D{FEEDi R, and
the £ x ¢ matriz XQ (y,n') is positive definite near (0,7”) and the (k — £) x
k —¢) matriz XL(y,n') is non negative definite near (0,7%). Then Vy =
(f/l, .. .,f/g) have the following reqularity, where f/j 1s the j-th component
of V; For any point (7/,17) of {exp{tHng} (0,17 [t] < der} Vopy,—o belongs
to Hs at (g, 7).

Proof. Let X%(y,D,) and X'(y,D,) be pseudodifferential opera-

tors with the principal symbols X9 (y,n’) and X1 (y,n’), respectively.
Put Xo = X1 — R,)E; and X1 = X'(1 — R,)Ex—. Then for X;

in (78) (XiAT'qV, V)o = (XoA=27 20, A2 20y,
(KA ATV, (X - XAV

A—Y2B V2N 4 (NS, T)g, where T3 = (Visns ..., Vi), Xo = ()go ! )
1

and N5 is defined in (78). From the Garding inequality we see that there
exists a positive constant C' such that
Re(X1A™ oV, V) > CAT 23T /22 13
— O(1)8|| A2 AsH/2Ay 12 — ¢, . (82)
Combining derived inequalities in the proof of Theorem 7.1 with (82), we
can show that

Sup{[ATH2ATEAV P A3 AT ) < O

The proof is completed. O

We also need the following theorem under the week assumption that
G belongs to Hy at (0,1n”).

Theorem 8.6 Let B, V and F satisfy all conditions in Theorem 7.1.
We assume the week condition on G of (40) such that G belongs to Hg
at (0,7”). We suppose that £X+ of Theorem 8.5 is positive definite near
(0,7”). Then at any point (y',7') belonging to {exp{tHRg}(O,nO’); [t] <
der} Viy,—o belongs to Hs at (7', 7).

Proof. Since X in (82) is positive definite, we see that
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Re(X1A 1V, V) > O(1)||A~Y2p5 122712
— C8||A™Y2AsH2A7 )12 — ¢, (83)

where C is positive and independent to €, d and A. Let us check the terms R3
in (67) and Ry in (75) under the week assumption on G. From the form
of R3 we easily derive that for any ¢ > 0 |R3| < e’||A*1/2bf+1/2’/\V||(% +
Ce ¢ s, where Cy . 5 is independent of A\. We also have that for any ¢ |R4| <
A2 22 L o) A6 PAV R + Cu e, Where Cu g is inde-
pendent of A\. From (83) we wee that

SUp{[ATH ATV P ATV BV} < O

From the definition of V stated in the forward part of (67) the proof is
completed. O

9. Propagation of singularities at glancing points

First we shall show a similar theorem to Theorem 7.1 for the boundary
value problem (5) and (6). The most complicate case is that By is the free
boundary condition and (0,7") is a glancing point with respect to u, that
is, TM(O,UO/ ) = 0. First we shall consider this case. From the argument
in Section 1.4 of [19] there exist pseudodifferential operator S(y, D,/) and
K (y, Dy ), which are of order 0, and —1, respectively, such that they satisfy
the following condition (see (1.18), (1.19) and (1.20) in [19]): Let ¢(y)
be a function belonging to C§°(Up) with Uy in (5) such that ¢ = 1 near
0 € R*!, and ¢(y, D,/) be a pseudodifferential operator of order 0 such
that the support of the symbol ¢(y,n’) of ¢(y, Dy) is contained in a conic
neighbourhood of (0,0,7%) and ¢(y,n’) = 1 near (0,7”). Then

V = (1+K)S71¢'("(Apu), "(Dy, pu)) (84)

satisfies the following problems

(Dy, — Mo)V = Fy in yp >0 (85)
By(y,Dy)V =G  on 1y, =0,
(Dy, —e4)Ve=F;y in y,>0 (86)
Vi =G3+ B3V on y,=0

(Dy, —e—)V_=F_ in y,>0. (87)
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Here A = (14 |D,)Y2, V = 1"V, V;,V_) and F = *(*Fy, Fy,F_) are
defined by (25), and G2 and G3 are defined from G denoted in (28) and
they satisfy the same condition to one imposed on g. The form D, — M
in (85) is same to one in (38) as k = n — 1 and p = pu, and the principal
symbol of e+ (y, Dyy) is a(y,n') £ i(rxy2.(y, 17))'/2. First we shall check the
condition appeared in Theorem 7.1.

Lemma 9.1 Let an extensible distribution u to Uy be a solution of the
boundary value problem (5) and (6). Here we assume that f € HY% (U N
{yn > 0}) (s > 0). Then there exists ap such that for any y € Uy N {0 <
yn < ag} V belongs to Hy at (y,n) € T*R")\ 0 with .| > aln|,
where « depends on y. Moreover if f belongs to Hlocl(Uo N{y, > 0})N

(S rl)(R ntl )N H, Tz)(R”+ ) for s >0, r1 and ra, and if f also belongs to

Hy(R N Hq sy (R Dy at (0,7, then F defined in (25) satisfies the
all conditions stated in the back part of (40).

Proof. From (8) all points of {(y,0,n,) € T*(Up) \ 0} are elliptic points of
L(y, Dy). Thus for any point (y,7) with the conditions g, > 0 and |7,| >
a|ff’| for some a > 0 there exists a function ¢; € C§°(Up N {y, > 0}) and
x1(y, Dy) of order 0 such that x1(y, Dy)p1u € Hey1(R™1). Here we may
assume that ¢1 = 1 on some neighbourhood U;j of § and that the symbol
of x1(y,n) of x(y,Dy) is equal to 1 in {(y,n); v € Ui, |n.| > (a/2)|7'|}.
We have that u = u; + ug + ug, where u; = y1p1u, us = (1 — x1)p1u
and uz = (1 — ¢1)u. For V; = (1 + K)S~ ¢! (*(Apuj), (Dy, pu;)) (j =
1, 2, 3) we have V; € Hyy1(R’™). From Theorem 4.3.1 in [5] we see that
ug belongs to HI° " (R’ for some 1. It implies that for @a(y) € C§°(U1)
0oV € HS+1(R”+1). Let x2(y,Dy) be a pseudodifferential operator of
order zero such that the support of the symbol of x2(y, Dy) is contained in
{(y,m); x1(y,n) =1} and (y,n) is an elliptic point of x2(y, Dy). Then from
Proposition 2.3 x2p2(1+K)S™1¢ (A, Dy, )¢ (1—x1)¢1 is a pseudodifferential
operator of order —oo. It follows that ya¢2V3 belongs to C®°(R"H1). We
see that y2p2V belongs to Hs11 at (g, 7). The last statement on F is clearly
derived form the form (40). The proof is complete. O

We shall prove the following

Theorem 9.2 Let (0,7”) be a glancing point with respect to u, and an
extensible distribution u to Uy be a solution of (5) and (6). We suppose
that By is the free boundary condition, and that f satisfies the all conditions
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imposed in Lemma 9.1 and g belongs to Hyyq1,o(R"™) at (0,7'). If there
exist g and 0 > 0, which are independent of u, such that if u belongs
to Hgy1 on FE?) and Fg) as p = p for some 0 < €1 < €p, then at any point
(v, ') belonging to {exp{tHRg}(O,no’); |t] < de1} u belongs to Hyeiq.

Proof. From the late half on p.131 of [19] the principal symbol
(Bo1, Ba2)(y,n') of Bs(y,D,) and the principal symbol Bs(y,n’) of
Bs(y, D,) have the following forms:

322(61,0,...,0 b, 62,...,€n,1), 33:(0,...,0,bn,0,...,0), (88)

yvn

where e; € R;,_1 is the unit vector whose j-th component is 1 and i-th
component is 0 except ¢ # j, bl, is the n-th component of Bs, and b, is n-th
component of Bs. We check the condition (42) for Bs. From Lemma 1.20
in [19] the condition (42) holds for By of (88). From Lemma 9.1 and the
assumption of u V5 satisfies the condition stated in Theorem 7.1 on FE?)
and FE?) as p = p for some 0 < €1 < €g. Therefore let us apply Theo-
rem 7.1 to the problem (85). Since the form of Ba(y, D) is denoted by
(e1, b, ... bl e2,. .. en1), for V.= Y(Vy,Va,...,Vi_1), where Vj is the
j-th component of V we have V; = le/ +%(g21,0,...,0) and Vo = Dgf/ +
(0,%ga2), where V = {(*V1,'Va), Ga = t(*g12, 'ga) with goa(y) € R"2, and
the form of Dy (y, Dy) and Ds(y, D) are denoted in (1.45) of [19]. Put

1 b +a 0
+ — + )= _
Gl (yaDy’)—<b En—2>, Fl (yaDy) < 0 :FRBEn—Q), (89)

where a >0 and the principal symbol b(y,n’) in G{E(y, Dy)ist(bop, ..., by—1n)
if o), = "(bin,.-.,bn—1n) in (88). From Lemma 1.20 in [19] the principal
symbol of Gf is positive definite near (0,7”). Then the principal symbol
of X* = D{G{ D2 + D3Gy Dy + D3 Fi"Dy — D{F{" R\, D\ is equal to

a 0
where @’ = a(1 — |bin|?ru7'|71) + 2Re b1, (Jb]* — 1). If we take sufficiently
large a, then the principal symbol of +X* (y, D,y) satisfies the condition (41).
From Theorem 8.5 it implies that there exists a pseudodifferential oper-
ator ¢(y, D,y), which is elliptic at (0,7Y), such that ¢(y, Dy )Volyn=o €
Hs(R™). From Proposition 2.4 and its proof we see that ¢(y, Dy)Vj,,—o €

Hy_1/5(R™) (j # n). From (88) it follows that ¢(y, Dy )(Gs + B3V),, —o €
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H (R"™). Now we are able to use the argument of Section 5 in [19] to the
problem (86), and can show that ¢(y, Dy) Vs, —o € Hs(R"). The proof is
completed. O

Next we assume that By is the free boundary condition and (0,7")
is a glancing point with respect to A + 2u. Then TM(O,’UO/) is negative,
and there exists the null bicharacteristic strip :yff through (0, n” a(0,n”) +
(=7.(0,7Y))1/2). Put 'yff = ’ﬁf NT*{y, > 0}. We have the following

Theorem 9.3 Let (0,7”) be a gliding point with respect to A\ + 2u and
an extensible distribution u to Uy be a solution of (5) and (6), where By is
the free boundary, f satisfies the all conditions stated in Lemma 9.1. We
suppose that g belongs to Hy at (0,nY) and u belongs to Hsyq1 on Yy » where
a is + or —. Then there exist g > 0 and 6 > 0 such that if u satisfies the
condition stated in Theorem 9.2 on FE?) and Fg) as p = A+2u for some 0 <
€1 < €g, then u belongs to Hsy1 on vy, *U {exp{tHRgHu}(O,nO’); |t] < der}.

Proof. From the argument in Section 1.7 of [19] the boundary value prob-
lem (5) and (6) is reduced to the following problems (see (1.54)+, (1.55)+
and (1.56)+ in [19]):

(Dy, —H)Vy =F4 in y, >0, (91)
Vi=g—B_V_—cvy on y,=0
(Dy,, — Ma)V = F, in y, >0, (92)
ByV =gy —b_V_ on vy, =0,
(Dy, —H_)V_=F_ on 1y, >0, (93)

where V' = (vi,vs), Fy, F_ and F; satisfy the same conditions to these
of f, g1 and go satisfy the same conditions to these of g, the principal
symbol of Hy(y, D) is a(y,n') + (Fru(y,n'))?)En_1, Dy, — Ms has the
same form to (38) as k = 1 and p = A+ 2y, and Ba(y,Dy) = (1,4d).
Here we remark that d(y, D,/) has the real principal symbol, which means
that the condition (42) holds for By. If we assume that u belongs to Hs1
on v, , then from (93) and Proposition 4.4 we see that V_|y.=0 belongs
to Hy at (0,7”). Now we apply Theorem 8.6 to the problem (92). We can
conclude that (g1 — B_V_ — cva),,,—o belongs to H; at any point belonging
to {exp{tHRgMH}(O, n”); |t| < der}. From Proposition 4.4 we complete the
proof. O
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Now we shall consider the Dirichlet boundary condition. Let (0,1%)
be a gliding point with respect to . Then from (1.16) of [19] the prin-
cipal symbol of the boundary operator B(y, D,/) in (1.17) of [19] has the
form (b1,...,bop—2,by,b_) = ((aczl — 7 Pen) |72 do|n |7, dpa [T
di|’|71,0,...,0,(7 + aL_zMG)]n’rl). Here d, = '('/,n - gradg), d; =
Yd, d) - grad g), where dy(1)), ..., d;,_1(n) form a base of the orthogonal
space of 7’ in R™ and are of degree 1, 7 = *(no,...,mn—1,0), aiﬂ# =a+
i(ras2,)/? and G =t(—grad g, 1). Since grad g(0) = 0, det(b1, .. ., by—2, b4 )
is not zero. Therefore multiply a pseudodifferential operator whose princi-
pal symbol is the inverse matrix of (by,...,b,—2,b1) from the left side, we
may assume that boundary operator Ba(y,D, ) in (1.18) of [19] is
(En_l,BQQ(y, Dy/)). Then if D1 = —BQQ, D2 = En—l; Git = En—l and
FljE = t+akF,_1, where a is sufficiently large, then the condition of Theo-
rem 8.6 holds. Thus we can apply Theorem 8.6 to the problem (92). If
(0,n”) is a glancing point with respect to A + 2u, then from (1.8) of [19],
Son—1 and sg,, which are defined at the first part of Section 1.7 of [19],
the principal symbol of the boundary operator B(y, D,/) in (1.52) of [19]
have the form (b1, ..., b2,—2,b4+,b_), where det(b,...,b,—_1,bt) is not zero.
Thus the situation is the same to one of the case that (0,7") is a glancing
point with respect to p. We have the following

Theorem 9.4 Let an extensible distribution u to Uy be a solution of (5)
and (6), where By is the Dirichlet boundary condition and f satisfies the
all conditions stated in Lemma 9.1. We suppose that g belongs to Hsyq
at (0,0, and that if (0,0Y) is a glancing point with respect to X\ + 2y,
u belongs to Hsi1 on vy, where a is + or —. Then all properties on u
stated in Theorem 9.2 and Theorem 9.3 hold.

Following [11] we shall define a generalized bicharacteristic for p,(y,n) =
(77n - G)Q + T’p.

Definition 9.1 a) A subset 3 , of (T*(R" x (0,00)) \ 0) U (T*R™\ 0) is
the following set; If (y,n) € T*(R" x (0,00)) \ 0), then p,(y,n7) = 0 and
if (y',n") € T*R™\ 0, then there exists 7, such that p,(y’,0,7',7,) = 0.
Next we define various conic subsets of ¥, ,. Define Zg’p =Y, N (T*(R™ x

* 7i
(0,00))\ 0), 5, = {(¥/,0) € T*R")\ 0; 7,(y/,0,7) < 0} Ny, T =

{(W/ . 1) € TR\ 0; 7,(y/,0,11) = 0, F(HZ o) (/. 0,77) > 0} Ny, B =
{(yla 77/) € T*Rn\07 Tp(ylv Oa 77/) = 07 (ngyn)(y/v 07 77,) = O}HZb,p and Zliop =
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{(W,n") e T*R"\ 0; r,(y/,0,7') =0, (H;fpyn)(y’, 0,7") =0 for all k} NXy ,.
b) Using the notations in a), we shall define a generalized bicharacteris-
tic. Let I'p be a small conic neighbourhood of (0,7”) and g be (g x
[0,a) x R) UX;,. A generalized bicharacteristic is a curve v,: I — 3,
where I is interval, such that i) If v,(t)) € Eg,p’ to € I, then ~,(t) is
differential at to and 7y,(to) = Hy,(v,(to)), ii) If ~,(to) € S, U N,
to € I, then ~,(t) € Eg’p for 0 # |t — to| small, iii) If v,(tg) € E;’: U
21(3,37 to € I, then (y(t),n'(t)) is differentiable at ¢ = ¢y with the deriva-
tives (dya/dt)(to) = O, d(y'(£),1/ () /dty—s, = Hig(y/ (o). (t0)), where
o) =71,y 0,0) |7t

In [11] the following fact is proved: for any (0,7%) € %, , there ex-
ists a generalized bicharacteristic through this point, and that is unique
if (0,7") € S, \ X5 In [15] an example is given for which there ex-
ist two generalized bicharacteristics through the same point, that belongs
to 257, Let 7,(t) be any generalized bicharacteristic through (0,7"). We
set wpi = U{",(t); £t > 0}, where the union is taken over all generalized
bicharacteristics satisfying the above conditions.

Using these notations we shall show theorems on propagations of regu-
larities near glancing points. First we assume the condition to avoid diffrac-
tive points near (0,7).

Condition A: There exists a conic neighbourhood Ty of (0,7”) such that
ToNZ™ = 0.

In this case in the boundary value problem (5) and (6) we suppose that
u is an extensible distribution to Uy and f satisfies the all conditions stated
in Lemma 9.1. The boundary datum g satisfies the following condition:
First we suppose that (0,7%) is a glancing point with respect to . If By is
the free boundary condition, then g € H, /5 at (0,7"), and if By is the
Dirichlet condition, then g € Hs1 at (0,7”). Second we suppose that
(0,7”) is a glancing point with respect to A+ 2u. If By is the free boundary
condition, then g € Hy at (0,17%), and if By is the Dirichlet condition, then
g € Hyyq at (0,n”). Then we have the following

Theorem 9.5 We suppose that (0,7”) € 2223 satisfies the condition A
and that w, f and g satisfy the above conditions. Then we have the following
two statements.
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i) If p = p, and a solution u of (5) and (6) belongs to Hsi1 on 7y, N To,
where € is + or —, then u belongs to Hsi1 on (v, N To) U{(0, n"}.

i) If p = A+ 2u, and a solution u of (5) and (6) belongs to Hs11 on
(Vi U Y5q2u) N Lo, where € is + or —, then u belongs to Hgi1 on

(72 Uaia,) NTo) U{(0,77)}

From Theorem 3.1, Theorem 4.5, Theorem 5.1, Theorem 5.2, Theorem 9.2
Theorem 9.3 and Theorem 9.4 we can easily prove Theorem 9.5, if we use
the argument to verify Theorem 2.44 of [12], which is denoted in the middle
part of p.153 in [12].

In (a) in Definition 9.1 of this section if (0,7”) € Ei’:, then the
condition A holds. Thus Theorem 9.5 is one of generalizat’ions of The-
orem 4.15 in [1] in the Sobolev space. However near points belonging
to Eikpﬂ N Eik’* the situations are quiet different. Here making use
of functions r,0 = 7,(y',0,7") and 7,1 = (9ro/dyn)(¥',0,7'), we put
Sy =AW ) € TR\ 0; rp0(y/,n) = 0, (HY,grp1)(y', 1) =0, 0 <
j< k-2, :I:(Hk 217,7 )(y',n') > 0}, where Hﬂ'pyo is the Hamilton vector
field of 7,0, and Elg,p = EZ’;F U Elg”; (see Lemma 3.4 of [11]). We have the
following lemma

Lemma 9.6 If (0,7%) belongs to E%'H U 2" then there eists a se-

bp 7
quence {pm} such that p,, € Eg’; and {pm} converges to (0,7”) as m goes

to oo.

Proof. After a non—homogeneous canonical change of coordinates in T*R™\
0 near pg = (0,7”), we may assume that po = (0,0) and r,0(y',n’) = no.
Then the Hamiltonian vector field of r,o becomes to 0/0yo. If py € Eb o
then from the Malgrange’s preparation theorem we have that near (0,0)

—1
roa(yn') = Wh+ar (", n )yl + - +ap (¥, 0) AW 1),

where v = (y1,...,yn—1), A(0,0) # 0, and @;(0,0) =0 (j = 1,..., k). Here
1f po € 22 ~, then A(0, O) < 0. Thus if pg € E%H U Egl; ,

75 0 such that {yo } converges to 0 and (sgn A)(y(() )) < 0, where
p is 2k or 2k + 1. Since aj(0,0) = 0, we can take (y"(™ 7”(™) such that
[ (50, 0,5"0) (g™ )P+ - a0 ) AG, 071 <
(y™P Ay 0, 77"<m>)\ /2 and {(y™, "™} converges to (0,0), which
means that (y/(™),0,7”(™)) belongs to Zbﬁ . The proof is complete. O

we can take
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From Theorem 6.5 and Theorem 6.6 there exists a possibility that so-
lutions of (5) and (6) lose a regularity at points belonging to Zg’g. Thus
we suppose the following:

Condition B. There exists a conic neighbourhood of I'y € T*R"™ \ 0 of
(0,7”) and @ > 0 such that there is no generalized bicharacteristic connect-

(2)

b.p» Which is contained in Lo =T x[0,a) x R.

ing p; € Ei:p_ with po € X
Under this assumption we have the following

Theorem 9.7 We suppose that py = (0,1n”) satisfies condition B, and
that an extensible distribution u is a solution of (5) and (6), where g satisfies
the conditions in Theorem 9.5. In (5) f satisfies the condition that for some
To >0 f € H°(Uy N {y, >0})NC>=([0,Tp) : D' (Uo N {y, = 0}) and there
exists a pseudodifferential operator ¢o(y, Dyy), which is elliptic at (0,n”),
such that ¢o(y, Dy ) f € C*(R" x [0,Tp)). Then we have the following two
statements:

i) If po is a glancing point with respect to p and u € Hsyq on 'y;ﬂl_“o, where
7:,(0) = po, then u belongs to Hsyqa at po, which means that for some &g
u belongs to Hsiqa at all points in {7, 0 < —et < do} NT'o. Moreover if
for 81 > 60 {7, do < —et < &1} C (El()?; U Eé,p U E;’:) N o, then at all
points in {7, 0 < —et < 01} u belongs to Hsio. Here € is + or —, and
a = 1/6, if By is the free boundary condition, and o = 1/2, if By is the
Dirichlet condition.

ii) If po is a glancing point with respect to X + 2u and uw € Hgpq on
(i U 75420 N Do, where 45,5,(0) = po and 7(0) = (0,1”,a(0,7”) +
e(—rM(O,nO’)l/Q)) with po = (0,n%,0), then u belongs to Hgy 1/ on (v,°N
Lo) U{po}. If u belongs to Hepr on {vy{y,; 0 < —€t <do}, then u belongs
to Hopryo on {7359,; 0 < —et < 01}, where {v,{y,; 0o < —et < 01} is

0) 1 2,4\ ~ T
,pUZb,pUEb,p)mFO'

contained in (El()
Proof. From the theorems proved in Section 3, 4, 5, 6 and 8, the argument
to verify Theorem 2.44 of [12], which is stated in the middle part of p.153
in [12] we can get the following: In the case of the statement i) if u does
not belong to Hsy, at pg, then we can construct a generalized bicharacter-
istic 7, such that v,(0) = po and u does not belong to Hy,, at all points
in {y,(t); |t| < é}. In the case of the statement ii) if v belongs to Hsiq

on v, N [y and u does not belong to H, 1/2 at po, then we can construct
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a generalized bicharacteristic 7§, , such that 75, M(O) = po and u does not
belong to H, 4o at all points in {7§\+2H(t); 0 < e < d}. Thus if we use The-

orem 3.1 for Eg’p, Theorem 4.5 for Z%’p, and Theorem 6.5 and Theorem 6.6

for Ei’p_, we have the desired properties. The proof is completed. ]

We remark on the condition A and condition B. Let us come back to
the original problem (1) and (2). Then null bicharacteristic strips of £3 —
p(E2 4+ -+ &2) are lines. Thus we can state the following simple condition
on JN of satisfying the condition A or condition B. We assume that 0 € 2.
We say that € is locally convex near 0, if there exists a neighbourhood Uy
of 0 such that for all z € Uy N0 H, N U C Q, where H, is the tangential
plane of 9Q through z. If for all x € Uy N9 H, N Uy C QF°, then we say
that 2 is locally concave near 0. Then we have the following

Lemma 9.8 If Q is locally convex near 0, then the condition B holds for
all (0,n") € E,()?p. If Q is locally concave near 0, then the condition A holds

(2)
for all (0,n") € -

Finally we remark that Remark 6.7 stated in the last part of Section 6 is
valid for Theorem 9.5 and Theorem 9.7.
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