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Propagation of microlocal regularities

in Sobolev spaces to solutions of boundary value problems

for elastic equations

Kazuhiro Yamamoto
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Abstract. We study propagation of microlocal regularities in the Sobolev space of so-

lutions to boundary value problems for the isotropic elastic equation. We assume that the

solutions microlocally belong to the Sobolev space of order s on the incident generalized

bicharacteristic to the boundary. Then we discuss that whether the solutions have the

same microlocal regularities in the Sobolev space on the reflected generalized bicharac-

teristic or not. Our results depend on the condition that how the incident generalized

bicharacteristic attaches to the boundary. In this paper we only consider the boundary

value problems for the isotropic elastic equation, however our method is valid for these

of higher order hyperbolic equations and generalized elastic equations.
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1. Introduction

It is well known that a solution u of Pu = f , where P is a strictly
hyperbolic single differential operator of order m, has the following property
on a propagation of regularities: Under the assumption that f microlocally
belongs to the Sobolev space Hs on a null bicharacteristic strip γ defined
from the principal symbol of P , if the solution u microlocally belongs to
Hs+m−1 at a point on the null bicharacteristic strip γ, then the solution u

has the same property at all points on γ (see Theorem 2.1 of Chapter VI
in [15]). If we consider the boundary value problem for P , then the behavior
of γ at the boundary point is very complicate depending on the shape of
the boundary. In Definition 3.1 of [12] (see also Definition 9.1) they define
generalized bicharacteristics for the boundary value problem and show that
a solution of the boundary value problem with the condition (2.2)± in [12]
for a strictly hyperbolic second order single differential operator has the
same property on a propagation of microlocal regularities in C∞ space along
generalized bicharacteristics (see Theorem 5.10 in [12]).
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The purpose of this paper is to study that in the Sobolev space Hs

a solution of boundary value problem for a hyperbolic system whose char-
acteristic roots have constant multiplicities has the same property. One
of the important and typical boundary value problems of such hyperbolic
operators is the elastic equation, that is,

∂2u/∂t2 − (λ+ µ) grad(div u)− µ∆u = f in R× Ω, (1)

Bu = g on R× ∂Ω, (2)

where u = t(u1, . . . , un) is the displacement, λ and µ are Lamé constants
such that λ+2µ > 0, µ > 0 and λ 6= 0. Here Ω is an open set in Rn (n ≥ 2)
with the smooth boundary ∂Ω. The boundary condition is the Dirichlet
condition Bu = u or the free boundary condition

(Bu)j =
n∑

i=1

νiσij(u) (j = 1, . . . , n), (3)

where

σij(u) = λ(div u)δij + µ(∂ui/∂xj + ∂uj/∂xi) (4)

and ν = (ν1, . . . , νn) is the unit normal vector to ∂Ω.
In this paper we shall show that a solution of (1) and (2) has the prop-

erty on propagations of microlocal regularities in the Sobolev spaceHs along
generalized bicharacteristics. Here we only consider the problem (1) and (2).
However we remark that our method is valid for boundary value problems
of higher order single hyperbolic differential operators with constant multi-
ple characteristic roots considered in [4] and for these of generalized elastic
equations appeared in [14]. In particular if we assume that Lamé constants λ
and µ are functions of x satisfying the same condition in (1), all theorems in
this paper are hold without any changes. We also remark that a generalized
condition of (2.2)± in [12] appears in (41) of Section 7 in this paper.

In the previous paper [19] we consider the same problem in C∞ category.
However in this paper we are interested in one of the following problems:
Let γ+ be one of null bicharacteristic strips defined from the elastic equation
belonging to T ∗(R × Ω) \ 0 and incoming to the boundary, and γ− be the
generalized bicharacteristic defined from γ+ after γ+ touches the boundary,
which means that if γ+ transversely hits the boundary, then γ− is the re-
flected null bicharacteristic strip of γ+. We assume that a solution of (1)
and (2) microlocally belongs to Hs at a point of γ+ and that date f and
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g belong to the suitably good the Sobolev space. Then does the solution
microlocally belong to the same space Hs at points on γ−, or does the solu-
tion lose the microlocal regularity in the Sobolev space on γ−? The answers
depend on the condition that how γ+ attaches to the boundary, and are
stated as theorems of this paper. In the hyperbolic case, which means that
γ+ transversely hits the boundary, a solution of (1) and (2) does not lose
the regularity on γ− (see Theorem 4.5). In diffractive case, which is defined
in the first part of Section 6, the statement ii) of Theorem 6.5 says that
a solution for the Dirichlet boundary condition B loses 1/2 the regularity
on γ−. We believe that this result comes from technical problems to prove
the theorem. However the statement i) in Theorem 6.5 says that a solution
for the free boundary condition B loses more 1/3 the regularity on γ−. We
believe that this phenomenon is natural, because the free boundary con-
dition does not satisfy the mathematically good condition at a diffractive
point, that is the uniform Lopatinski condition. Thus there is a possibility
that a solution of (1) and (2) loses microlocal regularities.

In the Sobolev space analogue problems are considered in [2] and [9].
In [2] they consider a microlocal regularity theorem of solutions to bound-
ary value problems for second order single hyperbolic differential operators.
Under the regularity conditions on the boundary of the solution and their
first order derivatives, they obtain the microlocal regularity of solutions near
a point belonging to Σ2k,+ ∪ Σ2k+1 (see the forward part of Lemma 9.6 on
the definition of Σk). However it seems very difficult to extend their method
to hyperbolic systems. In Appendix B of [9] for the elastic equations with
the Dirichlet boundary condition they get similar theorems to these of this
paper. However they only consider S waves and assume the strong condition
that the divergence of the solution is regular in Ω×R. Since they essentially
use the special form of the elastic equation and the Dirichlet condition, it is
also difficult to analyze general reflective phenomena appeared in our paper
by their method.

We may assume that 0 belongs to ∂Ω and ∂Ω is defined by the equation
xn− g(x′) = 0 in a neighbourhood U1 of 0 ∈ Rn, where (grad g)(0) = 0. By
the coordinate transform; y0 = t, yj = xj (j = 1, . . . , n−1), yn = xn−g(x′)
the problem (1) and (2) is reduced to the following one:

L(y,Dy)u = f in U0 ∩ {yn > 0}, (5)

B0(y,Dy)u = g on U0 ∩ {yn = 0}. (6)
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Here U0 = [−c, c] × U1 for c > 0 and the principal symbol L2(y, η) of
L(y,Dy) is

η2
0En−(λ+µ)(η̄+Gηn)t(η̄+Gηn)−µ|η̄+Gηn|2En,

where G = t(−(grad g)(y), 1), η̄ = t(tη′′, 0) = t(η1, . . . , ηn−1, 0), En is the
n× n identity matrix. If B in (2) is the free boundary condition, then the
principal symbol of B0(y,Dy) is

λGt(η̄ +Gηn) + µG · (η̄ +Gηn) + µ(η̄ +Gηn)tG, (7)

where · means the inner product in Rn. From Lemma 1.1 of [19]

DetL2(y, η) = (η2
0−µ|η̄+Gηn|2)n−1(η2

0−(λ+2µ)|η̄+Gηn|2). (8)

Since η2
0 − ρ|η̄ +Gηn|2 = −ρ|G|2{(ηn − a(y, η′))2 + rρ(y, η0, η

′′)}, where

a(y, η′) = η′′ · (grad g)(y)/|G|2 (9)

and

rρ(y, η0, η
′′) =

(
(ρ|η′′|2−η2

0)|G|2−ρ(η′′·(grad g(y)))2
)
/ρ|G|4, (10)

we have the following five cases;

i) rλ+2µ ≥ rµ > 0, ii) rλ+2µ > 0 > rµ, iii) 0 > rλ+2µ > rµ

iv) rλ+2µ > rµ = 0, v) 0 = rλ+2µ > rµ.

In Section 2 we shall state function spaces used in this paper. In Sec-
tion 3 we shall show Theorem 3.1 on a propagation of regularities in the
interior of the domain. Since L(y,Dy) is a system and from (8) all charac-
teristic roots of L2(y,Dy) are not simple, we need to consider propagations
of regularities in the interior of the domain. In Section 4 we shall consider
hyperbolic problems, which is the case iii), and state Theorem 4.5 on re-
flection phenomena of regularities in the the Sobolev space. In Section 5
we shall consider the problem near elliptic points, which are the case i)
and ii). Theorem 5.1 for the case ii) is not complicate. However in the
case i) the existence of Rayleigh waves makes difficulties to propagations of
regularities. This fact is stated in the later half of Section 5. In Section 6
we shall consider aq propagation of regularities near a diffractive point ρ0

which is defined by the conditions rρ(ρ0) = 0 and {ηn − a, rρ}(ρ0) < 0.
In [20] we construct a microlocal parametrix near the diffractive point ρ0
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for the boundary value problem (5) and (6). Making use of the parametrix,
we shall show Theorem 6.5 and Theorem 6.6 on propagations of regularities
near diffractive points.

After section 7 we shall analyze the problem near glancing point ρ0,
that is, rρ(ρ0) = 0. One of the aims in Section 7 and 8 is to show the
corresponding theorem to Theorem 2.3 in [12] for our problem in the Sobolev
space. However their argument to prove the theorem does not work in the
Sobolev space. So we shall improve and expand the argument used in [11],
where they consider simple boundary conditions for single second order
differential operators. In Section 7 as preliminaries we consider a boundary
value problem of a first order system, which is the microlocally reduced form
of (5) and (6) near a glancing point ρ0. The key theorem on propagations
of regularities is stated in Theorem 7.1, which is proved in Section 8. In
Section 9 we shall state theorems on propagations of regularities near gliding
points to solutions of our considered boundary value problem, which are
Theorem 9.5 and Theorem 9.7.

2. Function spaces

In this paper we use the function spaces introduced in Chapter II of [5].
Let H(m,s)(Rn+1) be the function space defined in Definition 2.3.1 of [5]. Its
localized space H loc

(m,s)(R
n+1) is denoted in Definition 2.3.1 of [5]. In Sec-

tion 3 we shall use this space as k(m,s)(ξ) = (1+ |ξ|2)m/2(1+ |ξ′|2)s/2, where
ξ is the dual variable of x = (x0, . . . , xn) as x0 = t and ξ′ = (ξ1, . . . , ξn). Let
a(x,Dx) be a pseudodifferential operator of order p on Rn+1 and b(x,Dx′)
be a pseudodifferential operator of order q on Rn with a parameter x0. Then
we have the following properties, which are proved by the same argument
to one used in the proof of Proposition 2.5 in [1]:

Proposition 2.1 We have the following two statements:
i) a(x,Dx) is a continuous linear operator from H(m,s)(Rn+1) ∩ E ′(Rn+1)
to H loc

(m−p,s)(R
n+1).

ii) b(x,Dx′) is a continuous linear operator from H(m,s)(Rn+1) ∩ E ′(Rn+1)
to H loc

(m,s−q)(R
n+1).

After Section 4 we shall use the function space H(m,s)(R̄
n+1
+ ) defined in

Definition 2.5.1 of [5] as k(m,s)(η) = (1+|η|2)m/2(1+|η′|2)s/2, where R̄n+1
+ =

{(y0, y1 · · · yn) ∈ Rn+1; yn ≥ 0}, η is the dual variable of y appeared in (5)
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and η′ = (η0, . . . , ηn−1). Its localized space is denoted by H loc
(m,s)(R̄

n+1
+ ).

Let b(y,Dy′) be a pseudodifferential operator of order q with a smooth
parameter yn. Then from Theorem 2.5.1 in [5] and the argument used in
the proof of Proposition 2.5 in [1]. We have the following:

Proposition 2.2 The pseudodifferential operator b(y,Dy′) is a continuous
linear operator from Hc

(m,s)(R̄
n+1
+ ) to H loc

(m,s−q)(R̄
n+1
+ ). Here by Hc

(m,s)(R̄
n+1
+ )

we mean the set of all u ∈ D′(Rn+1
+ ) such that there exists a distribution

U ∈ H(m,s)(Rn+1) ∩ E ′(Rn+1) with U = u in Rn+1
+ = {y ∈ Rn+1; yn > 0}.

For simplicity we denote H(m,0)(Ω) by Hm(Ω), where Ω = Rn+1 or R̄n+1
+ .

The composition of a(x,Dx) and b(x,Dx′) appeared in Proposition 2.1
is well defined, if WF (a(x,Dx)) ⊂ {(x, ξ) ∈ T ∗(Rn+1) \ 0; |ξ0| < C|ξ′|}.
We have the following

Proposition 2.3 Let a(x,Dx) be a pseudodifferential operator of order p
in Rn+1 and b(x,Dx′) be a pseudodifferential operator of order q in Rn. If
WF (a(x,Dx)) satisfies the above condition, then the composition a(x,Dx)◦
b(x,Dx′) and b(x,Dx′) ◦ a(x,Dx) are pseudodifferential operators in Rn+1

of order p + q, and their symbols have the same asymptotic expansions to
these of usual composition formulas of pseudodifferential operators in Rn+1.

The above statement is proved by the same argument to one of Theorem 4.3
in Chapter II of [16].

Let P (y,Dy) be a pseudodifferential operator with a form

A(y)Dp
yn

+
p−1∑

j=0

aj(y,Dy′)Dj
yn
,

where A(y) is not zero and aj(y,Dy′) is a properly supported pseudodiffer-
ential operator of order p− j. We have the following

Proposition 2.4 Let us consider the equation P (y,Dy)u = f in {yn > 0},
where f ∈ H(m,s)(R̄

n+1
+ ) and u ∈ H(m1,s1)(R̄

n+1
+ ). We assume that there

exists properly supported pseudodifferential operator φ(y,Dy′) of order 0,
which is elliptic at (0, η0′), such that φ(y,Dy′)f ∈ Hm(R̄n+1

+ ) and
φ(y,Dy′)u ∈ Hr(R̄n+1

+ ) with r ≤ m + p. Then for any properly supported
pseudodifferential operator φ0(y,Dy′) such that the essential support Γ of
the symbol φ0(y,Dy′) is contained in the set consisting of elliptic points of
φ(y,Dy′), we see that φ0(y,Dy′)f ∈Hm(R̄n+1

+ ) and φ0(y,Dy′)u∈Hr(R̄n+1
+ ).
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Proof. Let Φ(y,Dy′) be an elliptic properly supported pseudodifferential
operator of order 0 such that the symbol Φ(y, η′) of Φ(y,Dy′) is equal to
φ(y, η′) for (y, η′) ∈ Γ, where φ(y, η′) is the symbol of φ(y,Dy′). Then we
have

φ0v = φ0Φ−1φv+φ0Φ−1(Φ−φ)v+φ0(1−Φ−1Φ)v. (11)

It implies that φ0(y,Dy′)f ∈ Hm(R̄n+1
+ ) and φ0(y,Dy′)u ∈ H(m2,0)(R̄

n+1
+ ),

where m2 = min(m1, r). Thus we may assume r > m1. First we shall show
that for any φ1(y,Dy′) which satisfies the same conditions to these of φ0

there exists t2 ∈ R such that φ1(y,Dy′)u ∈ H(m+p,t2)(R̄
n+1
+ ), where t2 does

not depend on φ1. The right hand side of P (φ1u) = φ1f + [P, φ1]u belongs
to H(m2,s2)(R̄

n+1
+ ), where m2 = min(m,m1 − p + 1) and s2 = min(0, s1).

From Theorem 4.3.1 of [5] it implies that for some s3 φ1u belongs to
H(m3,s3)(R̄

n+1
+ ), where m3 = min(m+p,m1 +1). It follows that for some s4

φ1f + [P, φ1]u ∈ H(m4,s4)(R̄
n+1
+ ), where m4 = min(m+ 1,m1 − p+ 2). Re-

peatedly making use of this argument, we may assume that for some s5
P (φ1u) belongs to H(m,s5)(R̄

n+1
+ ), if φ1 satisfies the conditions stated in

Proposition 2.4. Theorem 4.3.1 of [5] says that φ1(y,Dy′)u∈H(m+p,t2)(R̄
n+1
+ )

for some t2. Next we shall use (11) as v = u. The second term of the right
hand side of (11) Λt2

1 φ0Φ−1(Φ − φ) satisfies the conditions imposed on φ1,
where Λt2

1 = (1 + |Dy′ |)t2/2. Thus φ0Φ−1(Φ− φ)u belongs to Hm+p(R̄n+1
+ ).

Similarly we have the third term of the right hand side of (11) belongs to
Hm+p(R̄n+1

+ ). The proof is completed. ¤

3. Propagation of singularities in interior of the domain

In this section we shall consider the problem (1) in interior of the do-
main. Let u(x) ∈ D′(R×Ω) be a solution of (1) for f(x) ∈ D′(R×Ω). We
denote t by x0 and the dual variable of t by ξ0. We shall use the following
notion:

Definition 3.1 For (x0, ξ0) ∈ T ∗(R×Ω)\0 we say that u ∈ Hs at (x0, ξ0)
if there exists a pseudodifferential operator φ(x,Dx) of order 0 such that
φ(x,Dx) is elliptic at (x0, ξ0) and φ(x,Dx)u ∈ Hs(Rn+1).

Let (x0, ξ0) be a point such that (ξ00)
2 − ρ|ξ′0|2 = 0, where ξ′ =

(ξ1, . . . , ξn), ρ is µ or λ + 2µ, and γ : (−a, a) −→ T ∗(Rn+1) \ 0 be a null
bicharacteristic strip for ξ20 − ρ|ξ′|2 such that γ(0) = (x0, ξ0). Then we have
the following
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Theorem 3.1 Let u be a solution of (1). If f ∈ Hs on γ and u ∈ Hs+1

at (x0, ξ0), then u ∈ Hs+1 at all points of γ.

Proof. Let ϕ(x) ∈ C∞0 (R × Ω) be a smooth function with a compact
support near x0 such that ϕ = 1 in a small neighbourhood U1 of x0. Then
(D2

x0
− L0(Dx′))(ϕu) = ϕf + f1, where D2

x0
− L0(Dx′) is the linear elastic

equation of (1) and f1 = [D2
x0
− L0(Dx′), ϕ]u is zero in U1. Let Λ be

the pseudodifferential operator with the symbol (1 + |ξ′|2)1/2 with ξ′ =
(ξ1, . . . , ξn). Then from Proposition 2.1 u1 = Λ(ϕu) is well define, and U =
t(tu1,

tu2) with u2 = Dx0(ϕu) satisfies the following equation

(Dx0−M(Dx′))U = t(0, t(ϕf+f1)), (12)

where

M(Dx′) =
(

0 Λ
L0(Dx′)Λ−1 0

)
.

By Lemma 1.1 and the argument in Section 2 of [19] there exist an elliptic
pseudodifferential operator S(Dx′) of order 0 and a pseudodifferential op-
erator K(Dx′) of order −1 such that A(Dx′) = (Dx0 − M̃)(1 + K)S−1 −
(1 + K)S−1(Dx0 −M) belongs to L−∞(Rn) near (x0, ξ0′), where M̃ is of
order 1 and have the form

(
M̃µ 0
0 M̃λ+2µ

)
with M̃ρ =

(
M̃+

ρ 0
0 M̃−

ρ

)

for ρ = µ or λ+2µ. Here the principal symbol of M̃±
µ (Dx′) is ±µ1/2|ξ′|Ek−1,

and the principal symbol of M̃±
λ+2µ(Dx′) is ±(λ + 2µ)1/2|ξ′|. From these

observations we have that V = S(1 +K)−1U satisfies the equation

(Dx0−M̃(Dx′))V = t(0, t(ϕf+f1))+A1(Dx′)U, (13)

where A1(Dx′) belongs to L−∞(Rn) near (x0, ξ0′). Here we remark that
from Proposition 2.3 the right hand side of (13) belongs to Hs on γ. Now
we can use the argument in the proof of Theorem 2.1 in Chapter VI of [16],
because in our proof we can take the operator c(x,Dx) appeared in the
proof of Theorem 2.1 in [16] as c1(x,Dx)E, where c1(x,Dx) is a scalar
pseudodifferential operator. It implies that V ∈ Hs on γ. Again making
use of Proposition 2.3, we see that U ∈ Hs on γ, which means that u ∈ Hs+1

on γ. The proof is complete. ¤
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4. Hyperbolic cases

In the boundary value problem (5) and (6) we suppose that f belongs
to H loc

(0,s1)(U0 ∩ R̄n+1
+ ) for some s1 ∈ R. We also assume that a solution u

belonging to D′(U0 ∩ {yn > 0}) is an extensible distribution to U0. Then
from Theorem 4.3.1 in [5] we see that u belongs to H loc

(2,s2)(U0 ∩ R̄n+1
+ ) for

some s2 ∈ R. It implies that we can take the meaning of the boundary
condition B0u on U0 ∩ {yn = 0} from Theorem 2.5.6 in [5]. We shall use
the following similar definition to Definition 3.1 appeared in Section 3.

Definition 4.1 For a subset Γ(1) contained in T ∗{yn > 0}\0 and a subset
Γ(0) contained in T ∗{yn = 0}\0 we say that u(y) ∈ C(R̄+; D′(Rn)) belongs
to Hs on Γ(0) ∪ Γ(1), if u belongs to Hs at each point of Γ(1) and for any
point ρ ∈ Γ(0) there exists a pseudodifferential operator φ(y,Dy′) of order 0,
which is elliptic at ρ, such that φ(y,Dy′)u ∈ Hs(R̄n+1

+ ). We remark that
Definition 3.1 in Section 3 is invariant under coordinate transform. How-
ever this definition is not invariant under the general coordinate transform
preserving the set {yn = 0}.

First we shall consider the following hyperbolic equation

(Dyn−H(y,Dy′))V = F in Rn×{0 < yn < T}, (14)

where H(y,Dy′) is a pseudodifferential operator of order 1 such that its
symbol H(y, η′) is zero, if |y′| is sufficiently large, and its principal symbol
has the form λ(y, η′)Ek with real valued λ(y, η′) and the k×k unit matrix Ek.
Here we assume that F ∈ L2([0, T ]; Hs1(R

n)) for some s1 ∈ R, and V+ ∈
H(1,s2)(R̄

n+1
+ ) for some s2 ∈ R. Let γ be the null bicharacteristic strip of

ηn − λ(y, η′) passing through (0, η0′, λ(0, η0′)), where η0′ 6= 0, and γ+ be
γ ∩ T ∗{0 < yn < T}. We have the following

Proposition 4.1 We assume that for s ≥ 0 F and V belongs to Hs on γ+,
and that there exists a pseudodifferential operator φ1(y,Dy′) of order 0,
which is elliptic at (0, η0′), such that φ1(y,Dy′)F ∈ L2([0, T ];Hs(Rn)).
Then we have the following two statements:
i) V (y′, 0) belongs to Hs at (0, η0′).
ii) There exists a pseudodifferential operator φ(y,Dy′) of order 0, which is
elliptic at (0, η0′), such that φ(y,Dy′)V ∈ C([0, T ]; Hs(Rn)).

In order to prove the above proposition we need several preparations.



506 K. Yamamoto

We shall consider the following an initial boundary value problem for
first order hyperbolic system

(Dyn −H(y,Dy′))V = F in Rn × {0 < yn < T}, (15)

V = G on Rn × {yn = zn}, (16)

where zn ∈ [0, T ]. The symbol H(y, η′) of H(y,Dy′) is zero, if |y′| is suffi-
ciently large, and H(y,Dy′) − H∗(y,Dy′) is of order 0. Then we have the
following

Lemma 4.2 Let r be an arbitrary real number. Then for any G ∈ Hs(Rn)
and F ∈ L2([0, T ]; Hs(Rn)) the Cauchy problem (15), (16) has the unique
solution V (xn, zn) ∈ C([0, T ]2; Hs(Rn)). Moreover the following estimate
holds. For any yn, zn ∈ [0, T ]

‖V ( · , yn)‖2
s ≤ C

(
‖G‖2

s+
∣∣∣∣
∫ yn

zn

‖F ( · , τ)‖2
s dτ

∣∣∣∣
)
. (17)

The proof of this lemma is described in p.75 of [16] in the space Hs(M),
where M is a compact manifold. In our case we can not use the Ascoli’s
theorem, however we may use the weak compactness of the Hilbert space
Hs(Rn). We may assume that the symbol H(y, η′) has an asymptotic ex-
pansion

∑∞
j=0H1−j(y, η′) such that H1−j(y, η′) is positively homogeneous

of degree 1 − j with respect to η′, H1−j(y, η′) = 0, if |y′| ≥ M0 > 0, and
H1(y, η′) = λ(y, η′)Ek, where Ek is the unit matrix. From Lemma 4.2 we
can define the operator E(yn, zn), which is a continuous operator on [0, T ]2

from Hs(Rn) to itself, such that V (y) = E(yn, zn)G is the unique solution
of (15), (16) as G ∈ Hs(Rn) and F = 0. From the uniqueness of the solution
of the problem (15), (16) it follows that E(t1, zn)E(zn, t2) = E(t1, t2) for all
t1, zn, t2 ∈ [0, T ] and the solution V of (15), (16) is equal to

V ( · , yn) = E(yn, zn)G+
∫ yn

zn

E(yn, τ)F ( · , τ) dτ. (18)

Let ϕ(y′, yn, zn, η
′) be the solution of the following eikonal equation

∂ϕ

∂yn
− λ

(
y,
∂ϕ

∂y′
)

= 0 (19)

ϕ(y′, zn, zn, η′) = 〈y′, η′〉. (20)

Then the fundamental solution E1(yn, zn) of the initial problem (15), (16) as
F = 0 is a Fourier integral operator with the phase function ϕ(y, zn, η′) −
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〈z′, η′〉. From (18) and the continuity property in Hs(Rn) of Fourier in-
tegral operators with non-degenerate phase functions (see Theorem 1.9 in
Chapter 10 of [8]) we have the following

Lemma 4.3 If V (·, zn)∈C([0,T ];H−∞(Rn)), then (E(yn, zn)−E1(yn, zn))
V ( · , zn) belongs to C([0, T ]2; H∞(Rn)), where H−∞(Rn) = ∪s∈RHs(Rn)
and H∞(Rn) = ∩s∈RHs(Rn).

Making use of the lemmas, we shall prove Proposition 4.1. From (18)
we have

V ( · , 0) = E(0, zn)V ( · , zn)+
∫ 0

zn

E(0, τ)F ( · , τ) dτ. (21)

Let χ(zn) be a C∞0 ([0, T1]) function, where 0 < T1 < T , such that χ0 =∫ T1

0 χ(zn) dzn is not zero. Multiply χ(zn) to the both side of (21), and
integrate with respect to zn from 0 to T1. Then we have the following

χ0V ( · ,0)=
∫ T1

0
E(0, τ)χ(τ)V ( · , τ)dτ−

∫ T1

0
E(0, τ)χ1(τ)F ( · , τ)dτ,

(22)
where χ1(τ) =

∫ T1

τ χ(zn) dzn. In the first term of the right hand side of (22)
from Lemma 4.3 we may consider

(E2(χV ))(y′) =
∫ T1

0
E1(0, τ)χ(τ)V ( · , τ) dτ,

which is a Fourier integral operator on Rn × (Rn × (0, T )) with the phase
function Φ(y′, η′, zn, z′) = φ(y′, 0, zn, η′) − 〈z′, η′〉 and the amplitude
a(y′, η′, zn, z′) = e1(y′, 0, zn, η′), where e1(y′, yn, zn, η

′) is the amplitude of
E1(yn, zn). It is well known (cf. [5]) that WF (E2(χV )) is contained in
the set {(y′, η′) ∈ T ∗Rn \ 0: there exists (z, ζ) ∈ WF (χV ) such that
(y′, η′, z,−ζ) ∈ CΦ}, where

CΦ = {(y′, (gradx′ ϕ)(y′, 0, zn, ζ ′), (gradη′ ϕ)(y′, 0, zn, ζ ′), zn,−ζ ′,
∂ϕ/∂zn(y′, 0, zn, ζ ′)) : y′, z′ ∈ Rn, 0 < zn < T, ζ ′ 6= 0}.

This relation is equivalent to the following;

WF (E2(χV )) ⊂ {(
y′(z′, 0, zn, ζ ′), η′(z′, 0, zn, ζ ′)

)
:(

z, ζ ′,−∂ϕ/∂zn(y′(z′, 0, zn, ζ ′), 0, zn, ζ ′)
) ∈WF (χV )

}
,
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where
(
y′(z′, t, zn, ζ ′), η′(z′, t, zn, ζ ′)

)
is the solution of Hamilton equation:

dy′/dt = −∂λ/∂η′, dη′/dt = ∂λ/∂y′, y′(zn) = z′, η′(zn) = ζ ′.

From the relation

ϕ(y′, t, zn, ζ ′) = 〈y′, ζ ′〉+
∫ t

zn

λ
(
y′, τ, η′(z′(y′, τ, zn, ζ ′), τ, zn, ζ ′)

)
dτ,

where z′ = z′(y′, t, zn, ζ ′) is the inverse function of y′ = y′(z′, t, zn, ζ ′), we
see that |∂ϕ/∂zn(y′(z′, 0, zn, ζ ′)) + λ(z′, zn, ζ ′)| ≤ O(1)|zn| |ζ ′|. By the as-
sumption on V we have χV = V1 +V2 such that WF (V1)∩γ+ = ∅ and V2 ∈
Hs(Rn×(0, T )). Here from the theorem on propagations of regularities in in-
terior of the domain and the above argument we may assume thatWF (V1)∩{(
y′(0, zn, 0, η0′), zn, η′(0, zn, 0, η0′),−∂ϕ/∂zn(0, zn, η0′)

)
; zn ∈ suppχ

}
=

∅. It implies that (0, η0′) does not belong to WF (E2(V1)). Clearly we have
E2(V2) ∈ Hs(Rn).

Let us consider the second term in the right hand side of (22). From
Lemma 4.3 and the assumption on F we may consider

∫ T1

0
E1(0, τ)χ1(τ)(1−φ1)F ( · , τ) dτ,

where the symbol of φ1(y,Dy′) is 1 near (0, η0′). Let φ2(y,Dy′) be a pseudo-
differential operator such that the symbol of φ2(y′, η′) satisfies φ2(y′, η′)(1−
φ1(y, η′)) = 0 for yn ∈ [0, T1]. Let {Fm( · , τ)} ⊂ C([0, T ] : Hs(Rn)) be
a convergence sequence to F ( · , τ) in L2([0, T ] : Hs(Rn)). Then a con-
tinuity property in Hs(Rn) of E1(0, τ) we see that

∫ T1

0 E1(0, τ)χ1(τ)(1 −
φ1)Fm( · , τ) dτ converges to

∫ T1

0 E1(0, τ)χ1(τ)(1−φ1)F ( · , τ) dτ in Hs(Rn).
Making use of an approximation by Riemann sum, we have

φ2(y′, Dy′)
∫ T1

0
E1(0, τ)χ1(τ)(1− φ1)Fm( · , τ) dτ

=
∫ T1

0
φ2E1(0, τ)χ1(τ)(1− φ1)Fm( · , τ) dτ,

which converges to
∫ T1

0 φ2E1(0, τ)χ1(τ)(1−φ1)F ( · , τ) dτ . This means that

φ2(y′, Dy′)
∫ T1

0
E1(0, τ)χ1(τ)(1− φ1)F ( · , τ) dτ
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=
∫ T1

0
φ2E1(0, τ)χ1(τ)(1− φ1)F ( · , τ) dτ.

From the property on the wave front set of E1(0, τ) for fixed τ and the
assumption on the support of φ2(y′, η′) and (1 − φ1(y, η′)), it follows that
φ2E1(0, τ)(1 − φ1) has a C∞ kernel, if τ is sufficiently small, that is,
φ2(y′, Dy′)

∫ T1

0 E1(0, τ)χ1(τ)(1 − φ1)F ( · , τ) dτ ∈ C∞0 (Rn). Thus we have
the statement i) of Proposition 4.1. If we use the formula

V ( · , yn) = E(yn, 0)V ( · , 0)+
∫ yn

0
E(yn, τ)F ( · , τ) dτ,

then we get the statement ii) by the similar argument used in one of proving
the statement i) of Proposition 4.1. The proof of Proposition 4.1 is complete.

Next we shall consider the following initial value problem;

(Dyn −H(y,Dy′))V = F in Rn × {0 < yn < T}, (23)

V = G on Rn × {yn = 0}. (24)

We have the following

Proposition 4.4 We assume that F ∈ H(s,r1)(R̄
n+1
+ ) for some s ≥ 0 and

r1 ∈ R, and that F and G belong to Hs at (0, η0′). Then V belongs to Hs

at (0, η0′).

Proof. By the argument used in the proof of Proposition 4.1 it is
not difficult to show that there exists a pseudodifferential operator
φ1(y,Dy′) of order 0, which is elliptic at (0, η0′), such that φ1(y,Dy′)V ∈
C([0, T ]; Hs(Rn)) ∩ H(0,s)(R̄

n+1
+ ). Let φ2(y,Dy′) be a pseudodifferential

operator of order 0 such that φ2(y,Dy′) is elliptic at (0, η0′) and WF (φ2)
is contained in the set of elliptic points of φ1. Then (Dyn − H)(φ2V ) =
φ2F + (Dynφ2)V − [H,φ2]V ∈ H(0,s)(R̄

n+1
+ ). Repeatedly making use of

Theorem 4.3.1 of [5], we see that there exists a pseudodifferential operator
φ(y,Dy′) of order 0, which is elliptic at (0, η0′), such that φ(y,Dy′)V ∈
H([s]+1,s−[s]−1)(R̄

n+1
+ ) ⊂ Hs(R̄n+1

+ ). The proof is completed. ¤

Let us consider the case iii) in Introduction. Let ϕ(y) be a function
belonging to C∞0 (U0) such that ϕ = 1 near 0. At point ρ0 = (0, η0′) ∈
T ∗({yn = 0}) \ 0 we suppose the condition rλ+2µ(0, η0′) < 0. Let Γ0 and
Γ1 be a conic neighbourhood of ρ0 such that Γ1 ⊂ Γ0, and φ(y,Dy′) be
a pseudodifferential operator of order 0 such that the support of the symbol
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φ(y, η′) of φ(y,Dy′) is contained in Γ0 × (−2ε0, 2ε0) and φ(y, η′) = 1 in
Γ1 × (−ε0, ε0) with a small positive number ε0. By the argument used in
Section 1.3 in [19] there exist an elliptic pseudodifferential operator S(y,Dy′)
of order 0 and a pseudodifferential operator K(y,Dy′) of order −1 such that
the symbol of A1(y,Dy′) = (Dyn − M̃)(1 +K)S−1− (1 +K)S−1(Dyn −M)
belongs to S−∞(Γ0× (−2ε0, 2ε0)). Here the form of M̃(y,Dy′) is as follows;

(
H̃+ 0
0 H̃−

)
with H̃± =

(
H± 0
0 h±

)
,

where the principal symbol of H± has a form λ±En−1 with the real symbol
λ±(y, η′) and h±(y,Dy′) is a scalar pseudodifferential operator with the real
symbol. Let U = t(t(Λϕu), t(Dynϕu)), where Λ = (1 + |Dy′ |2)1/2, and put
V = (1 +K)S−1φU , and

F = (1 +K)S−1φt(0, t(ϕf)− t([L,ϕ]u))

− (1 +K)S−1(Dynφ− [M,φ])U +A1φU, (25)

where L is the differential operator in (5). Then V satisfies the following

(Dyn−M̃(y,Dy′))V = F in {yn > 0}. (26)

Let us consider the boundary operator. Put B̃ = (En, 0) if B0 is the
Dirichlet condition and B̃ = (B1Λ−1, B2) if B0 is the free boundary con-
dition. Here the forms of B1 and B2 are denoted in (1.6) of [19]. For the
boundary operator B(y,Dy′)V = B̃S(1 +K)−1 V satisfies the following

B(y,Dy′)V = G on {yn = 0}. (27)

Here if B0 is the free boundary condition, then for A2(y,Dy′) = S(1+K)−1

(1 +K)S−1 − I we have

G = φϕg−φ[B0, ϕ]u+[B̃, φ]U+B̃A2φU, (28)

and if B0 is the Dirichlet condition, then we have

G = φΛϕg+ B̃A2φU. (29)

If rλ+2µ(0, η0′) < 0, then there exists the null bicharacteristic strip γ̃ε
ρ

of (ηn − a)2 + rρ(y, η′) passing through (0, η0′, a(0, η0′) + ε(−rρ(0, η0′))1/2),
where ρ = µ or λ + 2µ and ε = + or −. We denote γ̃ε

ρ ∩ T ∗(Rn × (0,∞))
by γε

ρ. Then we have the following
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Theorem 4.5 Let (0, η0′) satisfy rλ+2µ(0, η0′) < 0. We assume that for
s ≥ 0 and r1 ∈ R f of (5) belongs to H loc

(s,r1)(U0 ∩ R̄n+1
+ ), and satisfies the

following condition; f belongs to Hs on γ+
µ ∪γ−µ ∪γ+

λ+2µ∪γ−λ+2µ∪{(0, η0′)}.
We also assume that g ∈ H loc

s2
(U0 ∩ Rn) of (5) belongs to Hr at (0, η0′),

where r = s+1, if B0 is the Dirichlet condition, and r = s, if B0 is the free
boundary condition. Then we have the following two statements:
i) We shall consider the Dirichlet condition or the free boundary
condition with Lamé constants so that λ > 4µ. Then if a solution u ∈
H loc

(2,s2)(U0 ∩ R̄n+1
+ ) of (5) and (6) satisfies that u belongs to Hs+1 on γε

µ ∪
γε′

λ+2µ, where ε and ε′ are + or −, then u belongs to Hs+1 on γ−ε
µ ∪ γ−ε′

λ+2µ ∪
{(0, η0′)}.
ii) We shall consider the free boundary condition under the assumption
on Lamé constants such that λ ≤ 4µ. Then if a solution u belongs to
H loc

(2,s2)(U0 ∩ R̄n+1
+ ) of (5) and (6) satisfies that u belongs to Hs+1 on γε

µ ∪
γε

λ+2µ, where ε is + or −, then u ∈ Hs+1 on γ−ε
µ ∪ γ−ε

λ+2µ ∪ {(0, η0′)}.
Proof. Let (b+1 , . . . , b

+
n−1, b

+, b−1 , . . . , b
−
n−1, b

−) be the principal symbol of
B(y,Dy′). Then in the case considered in i) the matrices (b+1 , . . . , b

+
n−1, b

±)
and (b−1 , . . . , b

−
n−1, b

±) are nonsingular at (0, η0′). Since the principal sym-
bol of S is denoted in (1.8) of [19], these facts are easily proved for the
Dirichlet condition. For the free boundary condition these facts are proved
in Remark 1.10 of [19]. In the case considered in ii) the two matrices
(b+1 , . . . , b

+
n−1, b

+) and (b−1 , . . . , b
−
n−1, b

−) are nonsingular at (0, η0′). These
facts are verified in the proof of Theorem 1.9 of [19]. For simplicity we
assume that u ∈ Hs+1 on γ+

µ ∪ γ+
λ+2µ. Then from Proposition 2.3 we have

V = (1 + K)S−1φU ∈ Hs on γ+
µ ∪ γ+

λ+2µ. We may assume that there ex-
ists a pseudodifferential operator φ1(y,Dy′) of order 0, which is elliptic at
(0, η0′) such that φ1(y,Dy′)u ∈ H(m,r1)(R̄

n+1
+ ) for some m ≥ 2 and r1 ∈ R.

Under this condition we shall prove that φ2(y,Dy′)u ∈ H(m1+2,−2)(R̄
n+1
+ ),

where m1 = min(s,m − 1) and φ2 satisfies the same conditions to these
of φ1. From (25), (28) and (29) there exists a pseudodifferential operator
φ3(y,Dy′) which satisfies the same conditions to these of φ1(y,Dy′) such that
φ3F ∈ Hm1(R̄

n+1
+ ) and φ3G|yn=0 ∈ Hm1(R

n), where m1 = min(s,m − 1).
Since V1 = (1− χ)M̃(y,Dy′)V belongs to H(m1,r1)(R̄

n+1
+ ) for some r1 ∈ R,

φ3V1 ∈ Hm1(R̄
n+1
+ ), where χ(y′) ∈ C∞0 (Rn) and χ = 1 near 0. Thus in (26)

we may assume that the symbol M̃(y,Dy′) is zero in |y′| ≥ M0 for some
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positive M0. From the assumption on γ+
µ ∪ γ+

λ+2µ and Proposition 4.1 we
also have that φt

4(
tV+, v+)|yn=0 ∈ Hm1(R

n) with the same type φ4, where
V = t(tV+, v+,

tV−, v−). Since (b−1 , . . . , b
−
n−1, b

−) is elliptic at (0, η0′), we
see that φt

4(
tV−, v−)|yn=0 also belongs to Hm1(R

n). This fact and Propo-
sition 4.4 imply that there exists a pseudodifferential operator φ5(y,Dy′)
with the same properties to these of φ1 such that φ5V ∈ Hm1(R̄

n+1
+ ). It

follows that φ6u ∈ Hm1+1(R̄n+1
+ ) for same type φ6(y,Dy′). From Theorem

4.3.1 of [5] and L(φu) = φf + [L, φ]u we see that φ7u ∈ H(m1+2,−2)(R̄
n+1
+ )

for same type φ7(y,Dy′). Repeatedly making use of this argument, we can
prove that φ1u ∈ H(s+1,−2)(R̄

n+1
+ ). From (26), (28) and (29) it follows that

there exists φ8 with the same conditions to φ1 such that φ8F ∈ Hs(R̄n+1
+ ),

φ8G ∈ Hs(Rn). From Proposition 4.1 we see that u belongs toHs at (0, η0′).
The property on γ−µ ∪ γ−λ+2µ is easily proved from Proposition 2.3 and The-
orem 3.1. The proof is completed. ¤

5. Elliptic cases

First we shall consider the case ii) in Introduction. Let E±(y,Dy′) be
a pseudodifferential operator of order 1 with the principal symbol e±(y, η′)
such that ±e±(y, η′) satisfies the conditions (1.6) and (1.7) of Chapter III
in [18] and e±(y, η′) is independent of y if |y| is sufficiently large. We shall
consider the problem (15) and (16) for Dyn −E±(y,Dy′). In order to show
similar statements to these denoted in Proposition 4.1 and Proposition 4.4
we need the parametrix of the forward Cauchy problem for Dyn−E+(y,Dy′)
and one of the backward Cauchy problem for Dyn − E−(y,Dy′). The con-
structions of parametrices are done in Section 1 of Chapter III in [18].
Making use of the representation formula (1.45) and the estimate (1.11)
of Chapter III in [18], we can easily prove the corresponding propositions
to Proposition 4.1 and Proposition 4.4. If rλ+2µ(0, η0′) > 0 > rµ(0, η0′),
then the principal symbol (b+1 , . . . , b

+
n−1, b

+, b−1 , . . . , b
−
n−1, b

−) of B(y,Dy′),
which is the boundary operator of the problem (1.14) in [19], satisfies that
the matrix (b±1 , . . . , b

±
n−1, b

+) is non singular at (0, η0′) (see the proof of
Theorem 1.8 in [19]). From these observations we have the following

Theorem 5.1 Let (0, η0′) be a point such that rλ+2µ(0, η0′)> 0>rµ(0, η0′).
We assume that for s ≥ 0 and r ∈ R f ∈ H loc

(s,r)(U0 ∩ R̄n+1
+ ) of (5) satisfies

the following conditions; f belongs to Hs on γ+
µ ∪ γ−µ ∪ {(0, η0′)}. We also

assume the condition on g appeared in the statement of Theorem 4.5. Then
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we have the following statement on a solution u ∈ H loc
(2,s2)(U0∩ R̄n+1

+ ) of the
boundary value problem (5), (6): If u belongs to Hs+1 on γε

µ, then u belongs
to Hs+1 on γ−ε

µ ∪ {(0, η0′)}.
Next we shall consider the case i). If (0, η0′) satisfies the conditions

rµ(0, η0′) > 0 and η0
0 = 0, then the forms of the principal symbol E+

and E− appeared in (1.7) of [19] are not simple (see the middle part of p.125
in [19]). However the principal symbol of E+ satisfies the condition (1.7) in
Chapter III of [18], and the determinant R(y′, η′) of the principal symbol
B+(y′, Dy′) = (b+1 , . . . , b

+
n−1, b

+), which is called the Lopatinski determi-
nant, is non singular at (0, η0′) (see Lemma 1.4 in [19]). So we have the
following

Theorem 5.2 Let (0, η0′) be a point such that rµ(0, η0′) > 0 and η0
0 = 0.

We assume that for some s ≥ 0 and r ∈ R f ∈ H loc
(s,r)(U0 ∩ R̄n+1

+ ) of (5)
satisfies the condition f belongs to Hs at (0, η′), and assume that g ∈
H loc

s2
(U0∩Rn) of (6) satisfies the same conditions to these in Theorem 4.5.

Then a solution u ∈ H loc
(2,s2)(U0 ∩ R̄n+1

+ ) of the boundary value problem (5)
and (6) belongs to Hs+1 at (0, η0′).

We assume that (0, η0′) satisfies the conditions rµ(0, η0′) > 0 and η0
0 6= 0.

If the boundary condition is the Dirichlet condition, then the Lopatinski
determinant is not zero at (0, η0′). Thus we have the following

Theorem 5.3 Let (0, η0′) be a point such that rµ(0, η0′) > 0 and η0
0 6= 0.

If the boundary condition is the Dirichlet condition, then we have the exactly
same statement to one of Theorem 5.2.

If we consider the free boundary condition, then the Lopatinski deter-
minant R(y′, η′) has real zeros, and at these points (∂R/∂η0)(y′, η′) are not
zero (see Lemma 1.3 of [19]). Thus we need some global condition in order
to avoid the singularities along the null bicharacteristic strip of R(y′, η′),
which is corresponding to the Raylight wave in seismology. We assume that
f and g in (1) and (2) are 0 and that a solution u(t, x) of (1) and (2) belongs
to H2((T1, T2)×(ω∩Ω)), where ω is an open neighbourhood of Rn \Ω. Fur-
thermore we suppose that for t0 ∈ (T1, T2) data F = t(tu(t0, x), t(∂tu)(t0, x))
have the property such that there exist data F̃ belonging to D(AN ) which
are equal to F in ω ∩Ω, where A is the operator defined in (0.5) of [14] for
an isotropic elastic equation.
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Proposition 5.4 Let u(t, x) be a solution of (1) and (2), which satisfies
the above conditions. In the reduced boundary value problem (5) and (6)
we assume that (ȳ0, 0, η0′) satisfies the conditions rµ(ȳ0, 0, η0′) > 0 and
R(ȳ0, 0, η0′) = 0, where y0 is corresponding to t in (1). Then the solution
of (5) and (6), which is reduced from u(t, x), belongs to Hs at (ȳ0, 0, η0′), if
s ≤ N + 1/2.

Proof. The first observation is as follows: Let U(t) be the one parameter
group defined in Theorem 1.12 of [14]. If F̃ ∈ D(AN ), then the first com-
ponent u0(t, x) of U(t)F̃ belongs to H loc

N+1(R× Ω̄). Then v(t, x) = u(t, x)−
u0(t, x) satisfies (1) and (2) and the condition (tv(t0, x), t(∂tv)(t0, x)) = 0 if
x ∈ ω ∩ Ω. From these conditions and Theorem 3.1 of [14] it implies that
v(t, x) = 0 for |t − t0| < ε0 and x ∈ ω′ \ Ω, where ε0 is sufficiently small
and ω′ is an open subset of ω such that ω̄′ ⊂ ω. This means that u(t, x)|∂Ω

belongs to HN+1/2((t0 − ε0, t0 + ε0)× ∂Ω).
The second observation is as follows: Let us consider the boundary value

problem (26) and (27), where M̃(y,Dy′) has the form
(
E+ 0
0 E−

)
(y,Dy′)

with n× n matrix E+ and E−. Then we have the boundary equation

B+(y′, Dy′)V+ = G+, (30)

where V|yn=0 = t(tV+,
tV−) and for any s ≤ N+1/2 G+ = (G−B+V−)|yn=0 ∈

Hs at ρ0 =(ȳ0, 0, η0′). We assume that the Lopatinski determinantR(y′, Dy′)
of B+(y′, Dy′) is zero at ρ0. Then there exists the null bicharacteristic strip γ
of R(y′, η′) passing through ρ0. From the condition ∂R/∂η0(ρ0) 6= 0 γ is
parameterized by y0. Let γ± be {γ(y0) : ± y0 > ȳ0}. In (30) from the left
hand side multiply a pseudodifferential operator C(y′, Dy′) whose princi-
pal symbol is the cofactor matrix of the principal symbol of B+(y′, Dy′).
Then we get the equation R̃(y′, Dy′)V+ = g̃+, where the principal symbol of
R̃(y′, Dy′) is R(y, η′)E and g̃+ ∈ Hs at ρ0. From the argument in the proof
of Theorem 2.1 in Chapter VI of [16], we have the following statement: If
V+ belongs to Hs−1 on γ+(γ−), then V+ belongs to Hs−1 on γ. From the
first observation we may always assume that V+|yn=0 belongs to Hs−1 on γ+

or γ−, where s− 1 ≤ N − 1/2. Repeatedly making use of the argument in
the second observation we can prove the desired property on u. The proof
is completed. ¤
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6. Diffractive cases

In this section we shall consider a point (0, η0′) such that rρ(0, η0′) = 0
and {ηn − a, rρ}(0, η0′) < 0, where { , } is the Poisson bracket and ρ is µ
or λ + 2µ. This point is called a diffractive point with respect to ρ. The
construction of a parametrix to the boundary value problem (5) and (6) with
the diffractive boundary is done in [20] and propagations of regularities near
diffractive points in C∞ category is studied in [19] and [20]. The proofs of
theorems appeared in this section are deeply depend on the arguments and
the results in [19] and [20]. The readers refer to these papers. First we shall
consider the free boundary condition and a diffractive point with respect
to µ. Let γµ be the null bicharacteristic strip of (ηn−a)2 + rµ(y, η′) passing
through (0, η0′, 0). From the definition of diffractive points there exist half
rays γ±µ such that γµ = γ+

µ ∪ (0, η0′, 0)∪γ−µ and γ±µ ⊂ T ∗{yn > 0}. We have
the following

Theorem 6.1 Let (0, η0′) be a diffractive point with respect to µ and B0

in (6) be the free boundary condition. In (5) we assume that f belongs to
C∞([0, T0) : D′(Rn)) ∩ L2([0, T0] : H loc

s (U0 ∩ {yn = 0})) for s ≥ 0 and
T0 > 0, and satisfies the following condition: There exists a pseudodiffer-
ential operator φ(y,Dy′) of order 0, which is elliptic at (0, η0′) such that
φ(y,Dy′)f ∈ C∞(Rn × [0, T0)). In (6) we suppose that g belongs to Hs at
(0, η0′). If a solution u in (5) and (6) belongs to Hs+1 on γε

µ, where ε = ±,
then u(y′, 0) belongs to Hs+2/3 at (0, η0′) and (Dynu)(y′, 0) belongs to Hs−1/3

at (0, η0′).

Proof. For simplicity we assume n = 3. In the arbitrary dimension case
the proof is done by the same method to one appeared here. We shall use
the decomposition (1.17), (1.18), (1.19) and (1.20) appeared in Section 1.4
of [19]. Here V = t(tV2, v+, v−), F = t(tf2, f+, f−) and G = t(tg2, g+, g−)
are similarly defined to these appeared in (25) and (28). If γε

µ is defined
by {(y(t), η(t)); t > 0}, then we define −γε

µ by {y(−t),−η(−t); t < 0},
which is a part of the null bicharacteristic strip of (ηn − a)2 + rµ passing
through (0,−η0′). Let ψ(y′, Dy′) be a pseudodifferential operator of order 0
whose symbol has the support in a small conic neighbourhood of (0,−η0′).
Then for any h ∈ H−s+1/3(R3) we shall consider the distribution Fε′(ψh)
defined in Proposition 4.2 of [20]. Here ε′ is + or − and Fε′(ψh) satisfies
the condition WF (Fε′(ψh)|yn>0)∩ (−γ−ε

µ ) = ∅. Since in the proof of Propo-
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sition 4.2 in [20] Fε′(ψh) is defined from G(1)v(1) which is denoted in (18)
of [20], we shall state the properties of G(1)v(1). That is a continuous linear
operator from D′(U0) to C∞([0, T ) : D′(U0)), where U0 is an open neigh-
bourhood of 0 ∈ R3. From Theorem 2.5.11’ in [7] and Proposition 4.2
of [20] the wave front set of G(1)(v(1))( · , y0

3) for fixed y0
3 is contained in

the set {(y′, η′) ∈ T ∗(R3) \ 0; (y′, η′) is a projected point to T ∗{y3 = y0
3}

of γε′
µ , whose starting point belongs toWF (v(1))}. There exist small positive

numbers c1 and c2 such that for any y3 ∈ [c1, c2] G(1)(y3) is a composition
operator of a Fourier integral operator on R3 with a non-degenerate phase
function and a symbol belonging to S−1/6

1,0 and an operator A with the form
Âv(η′) = A(α|η′|2/3)−1χ(η′)v̂(η′), where

∣∣A(α|η′|2/3)−1
∣∣ ≤ C(1+|η′|)1/6 and

χ(η′) is a cut function near −η0′. Thus if v(1) ∈ H−s(R3), then G(1)v(1) ∈
C([c1, c2]; H−s(R3)). Here we remark that we can take arbitrary small c1
depending on the size of the support of χ(η′) appeared in (18) of [20].

We define the extension of V c
2 of V2 such that V c

2 = V2, if y3 ≥ 0, and
V c

2 = 0, if y3 < 0. Similarly we also define f c
2 . Take a scalar function

ρ(y) ∈ C∞0 (U) which is identically 1 near 0, where U is a neighbourhood
of 0 ∈ R4, and put tE+(h) = F̃ε′(ψh), where the component of F̃ε′(ψh) is
equal to the first four components of Fε′(ψh). Then we have

〈(Dyn −M2)(V c
2 ), ρtE+(h)〉

= 〈f c
2 , ρ

tE+(h)〉 − i〈V2( · , 0), ρtE+(h)( · , 0)〉∂ , (31)

where 〈 , 〉 and 〈 , 〉∂ are usual bilinear forms on L2(R4) and L2(R3),
respectively. The form (31) is equivalent to

〈V2( · , 0), ρtE+(h)( · , 0)〉∂ = −i〈V c
2 , ρ(Dy3 + tM2)tE+(h)〉

− i〈V c
2 , [Dy3 + tM2, ρ]tE+(h)〉 − i〈ρφf c

2 ,
tE+(h)〉

− i〈f c
2 ,

t(1− φ)ρtE+(h)〉, (32)

where φ = φ(y′, Dy′) is a pseudodifferential operator of order 0 such that
the support of the symbol φ(y′, η′) of φ(y′, Dy′) is in a conic neighbour-
hood of (0, η0′) ∈ T ∗{y3 = 0} and φ(y′, η′) = 1 in {(y′, η′) ∈ T ∗{yn =
0}; (y′,−η′) ∈ suppψ}. From Lemma 4.1 of [20] there exists the pseudodif-
ferential operator B2(y,Dy′) whose form is a 4×2 matrix such that V2|y3=0 =
B2(y′, 0, Dy′)t(v2, v3)|y3=0+g1, where V2 = (v1, . . . , v4) and g1 belongs to Hs

at (0, η0′). Then the left hand side of (32) is equal to
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〈t(v2, v3), ρtBt
2E+(h)(y′, 0)〉∂ + 〈t(v2, v3), [tB2, ρ]tE+(h)(y′, 0)〉∂

+ 〈g1, ρtE+(h)(y′, 0)〉∂ . (33)

From Proposition 4.2 of [20] for any h ∈ H1/3−s(R3) we have a distri-
bution tE+(h) which satisfies the conditions that tE+(h) is a linear op-
erator and there exists a pseudodifferential operator ψ1(y′, Dy′) such that
ψ1ρ(tB2(tE+(h))|yn=0 − ψh), (1 − ψ1)ρtB2(tE+(h))|yn=0 and (1 − ψ1)ρψh
are smooth functions on R3. Here we may assume that ψ(y′, Dy′) is elliptic
at (0,−η0′). From the argument sated in the back part of (52) in [20] and
the fourth line to the last of p.368 in [20] we have to take

v̂(1)(η′) =
(
c0K

−1 0
0 1

)
v̂(2)(η′)

in (18) of [20], where

(c0K−1)(η′) = (1+|η′|2)1/6A(α|η′|2/3)/A′(α|η′|2/3)

with α = η0/|η′| and Airy function A(s), which belongs to S
1/3
1/3,0. If h ∈

H−s+1/3(R3), then we take v(2) as an element of H−s+1/3(R3), which means
that v(1) is in H−s(R3). It implies that tE+(h) is a continuous linear oper-
ator from H1/3−s(R3) to C([0, T ] : H−s(R3)).

Let us consider the null bicharacteristic strip {(y(t, ρ), η(t, ρ))} of
(ηn−a)2 +rµ starting at ρ near the diffractive point ρ0. If ρ0 is a diffractive
point, then from the Malgrange’s preparation theorem we have y3(t, ρ) =
A(t, ρ){t2 + B(ρ)t + C(ρ)}, where A(0, ρ0) > 0, B(ρ0) = 0 and C(ρ0) = 0.
It implies that there exist a small constant c1, c2 and a small conic neigh-
bourhood Γ0 of ρ0 such that (dy3/dt)(t, ρ) 6= 0 for all c1 < t < c2, ρ ∈ Γ0.
Thus we can use the statement i) of Proposition 4.1 for c1 < t < c2. From
the conditions on f and tE+(h), the statement i) of Proposition 4.1, and
the Banach’s closed graph theorem we see that all terms of the right hand
side of (32) are continuous linear functionals on H1/3−s(R3). From (33) we
also see that 〈t(v2, v3), ρψh〉∂ is a linear functional on H1/3−s(R3). This
fact and Lemma 4.1 in [20] imply that u(y′, 0) belongs to Hs+2/3 at (0, η0′)
and (Dynu)(y′, 0) belongs to Hs−1/3 at (0, η0′). The proof of Theorem 6.1
is complete. ¤

Next we shall consider the Dirichlet boundary condition. In this case
the Lopatinski determinant R(x′, η′) defined in (46) of [20] is not zero at
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(0, η0′). Thus we do not need the special form of v̂1(η′). We have the
following

Theorem 6.2 Let (0, η0′) be a diffractive point with respect to µ, and
B0 in (6) be the Dirichlet condition. In (5) we assume that f satisfies the
same condition stated in Theorem 6.1. In (6) we suppose that g ∈ Hs+1 at
(0, η0′), where s ≥ 0. If a solution u of (5) and (6) belongs to Hs+1 on γε

µ,
where ε = ±, then u(y′, 0) belongs to Hs+1 at (0, η0′) and (Dynu)(y′, 0)
belongs to Hs at (0, η0′).

In order to prove a propagation of regularities we need a lemma and
a theorem. An operator P (y,Dy) has the form Dm

yn
+

∑m−1
j=0 pj(y,Dy′)D

j
yn ,

where pj(y,Dy′) is of orderm−j and the symbol of pj(y,Dy′) is independent
of y, if |y| is large. Then we have the following

Lemma 6.3 Let s be a non-negative number. Then for any f ∈ Hs(R̄n+1
+ )

there exists w ∈ Hs+m(R̄n+1
+ ) such that the 0 extension of f +P (y,Dy)w to

{yn < 0} belongs to Hr(Rn+1) with r = max([s], s − 1/2), where [s] is the
Gauss symbol of s.

Proof. From the form of P (y,Dy) and Theorem 9.4 in p.41 of [10] there ex-
ists w ∈ Hs+m(R̄n+1

+ ) such thatDj
yn(Pw+f)(y′, 0) = 0 (j = 0, . . . , [s−1/2]).

Put g = Pw + f . Then

Dj
yn

(gc) = (Dj
yn
g)c j = 1, . . . , [s],

where hc is the 0 extension to {yn < 0} of h. One of equivalent conditions
of h ∈ Hs(Ω) is the condition that Dj

nh ∈ Hs−[s],[s]−j(Ω) for j = 0, . . . , [s],
where Ω = Rn+1 or R̄n+1

+ . If 0 ≤ s− [s] ≤ 1/2, then we have that Dj
n(gc) ∈

H0,[s]−j(Rn+1) for j = 0, . . . , [s]. This means that gc ∈ H[s](Rn+1) ⊆
Hs−1/2(Rn+1). If 1/2 < s − [s] < 1, then we have that Λ[s]−jDj

ng ∈
Hs−[s](R

+
n+1) for j = 0, . . . , [s], where Λk = (1 + |Dy′ |2)1/2. From The-

orem 11.4 in p.60 of [10] it follows that (Λ[s]−jDj
ng)c = Λ[s]−jDj

n(gc) ∈
Hs−[s]−1/2(Rn+1) for j = 0, . . . , [s]. This means that gc belongs to
Hs−1/2(Rn+1). The proof is completed. ¤

The following theorem is due to the proof of Theorem 2.1.4 of [6] and
the statement in Lemma 8.33 of [1].
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Theorem 6.4 Let Q(y,Dy) be a classical pseudodifferential operator of
order m in Rn+1 with the symbol q(y, η) ∼ ∑

qj(y, η) such that for some C
each term qj(y, η) is a rational function of ηn when C|ηn| > |η′|+ 1, where
η′ = (η0, . . . , ηn−1). Then for any µ, ν, N , and a small number a in the
domain {0 ≤ yn < a} Dµ

yn(Q(u ⊗ δ
(ν)
n )) is expressed by the following form,

where δ(ν)
n is the ν-th derivation of Dirac function with respect to yn = 0;

Pµ,ν,N (y,Dy′)u+(2π)−n

∫
ei〈y

′,η′〉qµ,ν,N (y, η′)û(η′) dη′. (34)

Here Pµ,ν,N (y,Dy′) is a pseudodifferential operator with a symbol
pµ,ν,N (y, η′) ∈ C([0, a);Sm+µ+ν+1

1,0 (Rn)) and qµ,ν,N (y, η′) satisfies the con-
dition that for any multi index α and any compact set K in Rn there ex-
ists a constant CK,N such that |(Dα

y qµ,ν,N )(y, η′)| ≤ CN,K(1 + |η′|)−N for
(y, η′) ∈ [0, a)×K ×Rn

η′.

Our theorem on propagations of regularities near diffractive points with
respect to µ is as follows:

Theorem 6.5 Let (0, η0′) be a diffractive point with respect to µ and f and
the solution u in (5) and (6) satisfies the all assumptions stated in Theo-
rem 6.1. Moreover we suppose that f ∈ H loc

s (U0 ∩ {yn > 0}) with some
neighbourhood U0 of 0 ∈ Rn+1. Then we have the following two statements.
i) If the boundary condition is the free boundary condition and g belongs
to Hs at (0, η0′), then u belongs to Hs+1/6 on γ−ε

µ ∪ {(0, η0′)}.
ii) If we consider the Dirichlet condition and g belongs to Hs+1 at (0, η0′),
then u belongs to Hs+1/2 on γ−ε

µ ∪ {(0, η0′)}.
Proof. We only show the statement i). Making use of a cut function we
may consider the boundary value problem (5) and (6) in Rn+1

+ with f ∈
Hs(R̄n+1

+ ). We apply Lemma 6.3 to f ∈ Hs(R̄n+1
+ ) and L(y,Dy). Denote

the 0 extension of g by gc. Then we have the following

L((u+ w)c) = (f + Lw)c −A(u+ w)(y′, 0)⊗ δ(1)yn

− i(ADyn +B)(u+ w)(y′, 0)⊗ δyn , (35)

where L(y,Dy) = A(y,Dy′)D2
yn

+ B(y,Dy′)Dyn + C(y,Dy′). From Lemma
6.3, Theorem 6.1 and usual computations the right hand side of (35) be-
longs to Hs−5/6 at (0, η0′, 0). Thus by Theorem 3.1 it follows that (u+w)c

belongs to Hs+1/6 on γµ. It implies that there exists a pseudodifferential
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operator p(y,Dy) of order 0, whose symbol is supported in a small conic
neighbourhood of (0, η0′, 0) ∈ T ∗(Rn+1) \ 0 and is elliptic at (0, η0′, 0), such
that

p(y,Dy)(u+w)c ∈ Hs+1/6(R
n+1). (36)

Since L is elliptic near (0, (0, . . . , 0), ηn) with ηn 6= 0, there exists a prop-
erly supported classical pseudodifferential operator Q(y,Dy) of order −2,
which satisfies the condition in Theorem 6.4, such that QL = I +R, where
WF (R) ∩ {(y, η) ∈ T ∗Rn+1 \ 0; |η′| ≤ δ0|ηn|, |yn| ≤ δ0} = ∅. From (35)
we have

(u+w)c =−R(u+w)c +Q(f +Lw)c−Q(A(u+w)(y′,0)⊗ δ(1)yn

+ i(ADyn +B)(u+w)(y′,0)⊗ δyn). (37)

The second and third terms in the right hand side of (37) belong to Hs+1/6

from Lemma 6.3 and Theorem 6.4. Let us consider the operator φ(y,Dy′)R,
which is a pseudodifferential operator on Rn+1 from Proposition 2.3. Since
the support of the symbol φ(y, η′) of φ(y,Dy′) is contained in Γ1 =

{
(y, η′);

|y| < δ1,
∣∣η0′/|η0| − η′/|η′|∣∣ < δ1

}
for small δ1 and L(y,Dy) is elliptic in

(WF (R) ∩ {(y, η); (y, η′) ∈ Γ1}) \ {(y, η); (y, η′) ∈ Γ1, |ηn| < δ2|η′|} for
small δ2 from (36), we see that φ(y,Dy′)R(u+w)c belongs to Hs+1/6. The
proof is completed. ¤

Next we shall consider a diffractive point (0, η0′) with respect to λ+2µ.
In this case the situation does not depend on boundary condition. Since
rµ(0, η0′) < 0, we have the null bicharacteristic strip γµ passing through(
0, η0′, a(0, η0′) ± (−rµ(0, η0′))1/2

)
. The half rays belonging to T ∗{yn > 0}

are denoted by γ+
µ and γ−µ . The following theorem is proved by the decom-

position (1, 54)±, (1.55)± and (1.56)± in [19] and the argument used in the
proof of Theorem 6.5.

Theorem 6.6 Let (0, η0′) be a diffractive point with respect to λ+2µ. The
data f and g in (5) and (6) satisfy conditions mentioned in Theorem 6.1
and Theorem 6.2. Moreover we suppose that f ∈ H loc

s (U0 ∩ {yn > 0}) for
some neighbourhood U0 of 0 ∈ Rn+1. If a solution u of (5) and (6) belongs
to Hs+1 on γε

µ ∪ γε′
λ+2µ, where ε and ε′ are + or −, then u belong to Hs+1/2

on γ−ε′
λ+2µ ∪ {(0, η0′)} and u also belongs to Hs+1 on γ−ε′

µ .

In our proof the following condition is essential: there exists a pseudo-
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differential operator φ(y,Dy′) of order 0, which is elliptic at (0, η0′), such
that φ(y,Dy′)f ∈ C∞(Rn × [0, T0]), because we can not prove the L2 con-
tinuity of the operators with the form (18) in [20]. However under some
conditions on f we can eliminate the above essential condition. We have
the following

Remark 6.7 In (1) and (2) we assume that f = f(x) has the following
property; there exists (0, f̃) ∈ D(AN ) such that f = f̃ in U0∩Ω, where A is
the operator defined in (0.5) of [14] for an isotropic elastic equation and
U0 is a neighbourhood of 0 ∈ Rn. Then for s ≤ N + 1 a solution u of (5)
and (6) has the same properties stated in Theorem 6.5 and Theorem 6.6.

7. Preliminaries for analysis near glancing points

We shall say that (0, η0′) ∈ T ∗{yn = 0} \ 0 is a glancing point with
respect to ρ, if rρ(0, 0, η0′) = 0 with the function rρ appeared in (10). After
this section we devote to analyze propagations of regularities to solutions
near these glancing points. In this section we shall study the boundary
value problem for the operator P (y,Dy′) which is reduced from (5) and (6)
near the considered glancing point. P (y,Dy′) has the following form:

(Dyn−a)E2k−
(

0 ΛEk

−RρEk 0

)
−

(
A11 A12

A21 A22

)
, (38)

where Ek is the k× k unit matrix, a = a(y,Dy′) is the differential operator
of order 1 defined by the symbol (9), Λ = (1 + |Dy′ |2)1/2, Rρ(y,Dy′) is of
order 1 and its principal symbol is |η′|−1rρ(y, η′), and Aij = Aij(y,Dy′)
is of order 0. The boundary condition B(y,Dy′) is a k × 2k matrix and
their components are of order 0. We assume that the principal symbol of
B(y,Dy′) is maximal rank at (0, η0′) which is a glancing point with respect
to ρ. Let us consider a solution V (y) ∈ C([0,∞) : D′(Rn)) of the following
problem

P (y,Dy)V = F in {yn > 0} (39)

B(y,Dy′)V = G on {yn = 0}, (40)

where for s ≥ 0 and some r1 and r2 F ∈ H(s,r1)(R̄
n+1
+ ) ∩ H(1,r2)(R̄

n+1
+ )

satisfies the condition that there exists a pseudodifferential operator
φ0(y,Dy′), which is elliptic at (0, η0′), such that φ0(y,Dy′)F ∈ Hs(R̄n+1

+ )∩
H(1,s−1)(R̄

n+1
+ ).



522 K. Yamamoto

On the boundary operator we assume the following condition: Since
the principal symbol of B is maximal rank at (0, η0′), we may assume that
there exist tṼ = (ṽ1, . . . , ṽk), where ṽj is one of the components of V , and
Dj(y,Dy′) of order 0 (j = 1, 2) with a k×k matrix form such that BV = G

is denoted by V1 = D1(y,Dy′)Ṽ +G1 and V2 = D2(y,Dy′)Ṽ +G2. Here V =
t(tV1,

t V2) and Gj (j = 1, 2) satisfies the same conditions to these which will
be imposed on G. Furthermore we assume that there exist k × k matrices
G±1 (y, η′) and F±1 (y, η′), whose components are positively homogeneous of
degree 0 with respect to η′, such that G±1 (y, η′) is positive definite in a conic
neighbourhood Γ of (0, η0′) and

±{D∗
1G

±
1 D2 +D∗

2G
±
1 D1 +D∗

2F
±
1 D2 −D∗

1F
±
1 D1(rρ|η′|−2)Ek} ≥ 0

(41)

in a conic neighbourhood of (0, η0′), where Dj(y, η′) (j = 1, 2) is the prin-
cipal symbol of Dj(y,Dy′). Moreover we suppose the following condition:
There exist a conic neighbourhood Γ of (0, η0′) and a sufficiently small con-
stant a0 > 0 such that

Det(B1+iaB2)(y′, 0, η′) 6= 0 (42)

for all (y′, η′) ∈ Γ and 0 < a < a0, where the principal symbol of B in (6)
is denoted by (B1(y, η′), B2(y, η′)) with the k × k matrix Bj (j = 1, 2).

For a subset Γ(1) ⊂ T ∗{yn > 0}\0 and a subset Γ(0) ⊂ T ∗{yn = 0}\0 the
definition that V belongs to Hs on Γ(0)∪Γ(1) is denoted in Definition 3.1 and
Definition 4.1. We denote by exp{tHR0

ρ
}(0, η0′) the bicharacteristic strip of

R0
ρ = |η′|−1rρ(y′, 0, η′) through (0, η0′). Put

Γ(0)
ε =

{
(y′, η′) ∈ T ∗{yn = 0} \ 0; rρ(y′, 0, η′) ≤ 0,∣∣(y′, η′/|η′|)− (0, η0′/|η0′|)∣∣ ≤ ε2

}

and

Γ(1)
ε =

{
(y, η) ∈ T ∗{yn > 0} \ 0; (ηn − a(y, η′))2 + rρ(y, η′) = 0,

0 < yn ≤ ε2,
∣∣(y′, η′/|η′|)− (0, η0′/|η0′|)

∣∣ ≤ ε2
}

We shall show the following key theorem on propagations of regularities:

Theorem 7.1 Let V ∈ C([0,∞) : D′(Rn)) satisfy the boundary value
problem (39) and (40), and (0, η0′) be a glancing point with respect to ρ.
Here F satisfies the conditions stated in the back part of (40). We assume
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that there exist a positive constant a1 and a neighbourhood of U1 of 0 ∈ Rn

such that for any y ∈ U1×(0, a1) V belongs to Hs at (y, η) with |ηn| > α|η′|,
where α > 0 depends on y. We suppose (41) and (42), and that G belongs to
Hs+1/2 at (0, η0′). Then there exist ε0 > 0 and δ > 0, which are independent

of V , such that if V belongs to Hs on Γ(0)
ε1 ∪Γ(1)

ε1 for some ε1 (ε1 ≤ ε0), then
at any point (y′, η′) of {exp{tHR0

ρ
}(0, η0′); |t| < δε1} V belongs to Hs.

The first remark to prove Theorem 7.1 is that from Theorem 4.3.1 in [5] we
may show that there exists a pseudodifferential operator φ(y,Dy′), which
is elliptic at (y′, 0, η′) with (y′, η′) ∈ {exp{tHR0

ρ
}(0, η0′); |t| < δε1}, such

that φ(y,Dy′)V ∈ H(0,s)(R̄
n+1
+ ). The second remark is that we may assume

a(y,Dy′) = 0. In order to show this fact we need the coordinate transform χ;
z′ = χ′(y′, yn), zn = yn with χ′(y′, 0) = y′ defined in Remark 1.2 of [19].
It is not difficult to show that if F ∈ C∞([0, ε0) : D′(Rn)), then F ◦ χ ∈
C∞([0, ε2) : D′(Rn)) for some ε2 > 0. We have the following lemma, which
is easily proved from Theorem 6.4 in Chapter 2 of [8], if we regard that z′ =
χ′(y′, yn) is a coordinate transform in Rn with the smooth parameter yn.

Lemma 7.2 We assume that F , G and V in (39) and (40) satisfy all
conditions in Theorem 7.1. Then we have the following three statements.
i) V ◦ χ satisfies P̃ (z,Dz)(V ◦ χ) = F ◦ χ in {zn > 0}, where the form of
P̃ (z,Dz) is the same to one of (5) with a = 0.
ii) There exists a pseudodifferential operator φ̃0(z,Dz′) of order 0, which is
elliptic at (0, ζ0′) with ζ0′ = η0′, such that φ̃0(z,Dz′)(F ◦χ) ∈ Hs+1/2(R̄

n+1
+ ).

iii) The condition that V belongs to Hs on Γ(0)
ε1 ∪Γ(1)

ε1 for some ε1 is equivalent
to one that V ◦ χ belongs to Hs on Γ̃(0)

ε̃1
∪ Γ̃(1)

ε̃1
for some ε̃1, where Γ̃(0)

ε̃1
and

Γ̃(1)
ε̃1

are similarly defined for (z, ζ) coordinate as a = 0.

From now on we assume that a(y,Dy′) = 0. In order to prove Theo-
rem 7.1 we need the following

Lemma 7.3 We assume that F and G in (39) and (40) satisfy the stated
conditions in Theorem 7.1, B satisfies the condition (42), and that a so-
lution V of the boundary value problem satisfies the all conditions stated
in Theorem 7.1 as ε1 = ε. If the support of the symbol of a properly sup-
ported pseudodifferential operator A(y,Dy′), which is of order s, is con-
tained in Γε = {(y, η′); 0 ≤ yn ≤ ε2,

∣∣(y′, η′/|η′|)− (0, η0′/|η0′|)
∣∣ ≤ ε2}, then

A(y,Dy′)V belongs to L2(R̄n+1
+ ).
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Proof. First we shall show that if (ȳ′, 0, η̄′) ∈ Γε and rρ(ȳ′, 0, η̄′) > 0, then
V belongs to Hs at (ȳ′, 0, η̄′). Let us check the Lopatinski determinant of
the boundary value problem (39) and (40). The eigen values of the ma-

trix
(

0 αEk

βEk 0

)
are ±(αβ)1/2, where αβ 6= 0, and the eigen vectors of

±(αβ)1/2 are t(tej ,±β−1(αβ)1/2tej) (j = 1, . . . , k), where ej ∈ Rk such
that the j-th component of ej is 1 and the other components are 0. Thus
if rρ(ȳ′, 0, η̄′) > 0, the boundary value problem (39) and (40) is a parabolic
type near (ȳ′, 0, η̄′). The Lopatinski matrix of this boundary value problem
is B1 + iΛ−1(rρ)1/2B2, which is non-singular at (ȳ′, 0, η̄′) from the assump-
tion (42). Therefore by the argument used in Section 5 in [19] we have the
desired property on V near (ȳ′, 0, η̄′). Thus from the assumptions on V there
exists a1 such that A(y,Dy′)V belongs to L2(Rn × [0, a1)). Let P1(y, η) is
the principal symbol of P (y,Dy). Then from the form of P in (38) we have
DetP1(y, η) =

(
(ηn)2 + rρ

)k. Thus if ȳn > 0 and (η̄n)2 + rρ(ȳ′, ȳn, η̄
′) 6= 0,

(ȳ, η̄) is an elliptic point of P . Moreover if η̄′ 6= 0, then from Proposi-
tion 2.3 we can construct a microlocal parametric of P near (ȳ, η̄), which
is a pseudodifferential operator in Rn+1. From Proposition 2.3 and the as-
sumption of F we see that F belongs to Hs at the all points contained in
{(y, η) ∈ T ∗(Rn+1)\0: yn > 0, η′ 6= 0, φ0(y, η′) 6= 0}, where φ0(y, η′) is the
principal symbol of φ0(y,Dy′) appeared in the assumption of F in the back
part of (40). From these observations and the assumption of V making use
of the partition of unity in the cotangential space T ∗(Rn × a0/2,∞)) \ 0
and Proposition 2.1, we can show the desired property on A(y,Dy′)V . The
proof is complete. ¤

Let us consider the points along the ray exp{tHR0
ρ
}(0, η0′) for 0 ≤ t <

δε1. According to the argument in Section 2 of [11] we introduce coordinate
(t, s) = (s1, . . . , s2n−1, t) in a neighbourhood of (0, η0′), where |η0′| = 1,
such that (0, η0′) is the origin, and the Hamilton vector field HR0

ρ
is ∂/∂t,

where R0
ρ = rρ(y′, 0, η′)|η′|−1. We denote the coordinate transform by y′ =

y′(s, t), η′ = η′(s, t) and its inverse transform by s = s(y′, η′), t = t(y′, η′).
Let H be the Heaviside function, and put χ(u) = H(1− u) exp(1/(u− 1)),
and f(u) = AH(2u−1) exp(2/(1−2u)), where A > 2 exp 2. Let β ∈ C∞(R)
vanish on (−∞,−1), be strictly increasing on (−1,−1/2), and be equal to 1
on (−1/2,∞). We define the following two functions
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qε(yn, s, t) = β
(at
ε2

)
χ
(at
δε

+
a2s2

ε4
+ f

(yn

ε2

))
(43)

gε(yn, s, t) = − a

δε
β
(at
ε2

)
χ′

(at
δε

+
a2s2

ε4
+ f

(yn

ε2

))
, (44)

where δ is fixed independently of ε and we choose ε0 ¿ δ. Here we
choose a > 1/2 such that if |t| ≤ a−1ε2 and |s| ≤ a−1ε2, then∣∣(y′(t, s), η′(t, s))/|(y′(t, s), η′(t, s))|−(0, η0′)

∣∣ ≤ ε2. We also define qε(y, η′) =
qε(yn, s(y′, η′), t(y′, η′)) and gε(y, η′) = gε(yn, s(y′, η′), t(y′, η′)). For s ∈ R,
1 ≤ λ ≤ ∞, we define

qs,λ
ε (y, η′) =

∫ λ

0
qε(y, η′/r)rs−1 dr (45)

and define similarly gs,λ
ε (y, η′). Here qs,∞

ε and gs,∞
ε are positively homoge-

neous of degree s and their supports are same sets and are independent of s.
The following properties on qs,λ

ε and gs,λ
ε are stated in Section 2 of [11].

Lemma 7.4 The symbols qs,λ
ε and gs,λ

ε satisfy the following properties:
i) qε′(y, η′) > 0 on supp qε and gε′(y, η′) > 0 on supp gε if 0 < ε < ε′ ≤ ε0.
ii) There exists as,λ

ε (y, η′) ∈ C∞(Rn+1 × Rn \ 0) such that gs,λ
ε (y, η′) =

(as,λ
ε (y, η′))2 and it satisfies symbol estimates |∂α

y ∂
β
η′a

s,λ
ε (y, η′)|≤Cα,β |η′|s−|β|,

where Cα,β does not depend on λ ∈ [1,∞).

We also need the following properties on qs,λ
ε , which are easily derived from

the definition of qs,λ
ε and the relation χ(u) = −χ′(u)(1− u)2.

Lemma 7.5 We have the following two statements:
i) 0 ≤ qε(y, η′) ≤ 4a−1δεgε(y, η′).
ii) The first derivatives of qs,λ

ε satisfy that

∂qs,λ
ε

∂yj
(y, η′) = αs,λ

ε (y, η′) + βs,λ
ε (y, η′),

∂qs,λ
ε

∂ηj
(y, η′) = γs−1,λ

ε (y, η′) + δs−1,λ
ε (y, η′),

where {αs,λ
ε }λ≥1 and {βs,λ

ε }λ≥1 are bounded sets in Ss
1,0, {γs−1,λ

ε }λ≥1

and {δs−1,λ
ε }λ≥1 are bounded sets in Ss−1

1,0 , |αs,λ
ε (y, η′)| + |η′| |γs,λ

ε (y, η′)| ≤
O(1)δε−1gs,λ

ε (y, η′), and suppβs,λ
ε ∪ supp δs−1,λ

ε is contained in Γε for 1 ≤
λ ≤ ∞, where Γε is appeared in Lemma 7.3.
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Theorem 7.1 will follow if we can show that for all fixed ε < ε1 and
r = s

sup
λ≥1

∥∥Λ−1/2Ar+1/2,λ
ε (y,Dy′)V

∥∥
L2 <∞, (46)

where Λ = (1 + |Dy′ |2)1/2 and Ar,λ
ε (y,Dy′) = ar,λ

ε (y,Dy′)Ek with the pseu-
dodifferential operator ar,λ

ε (y,Dy′) whose symbol is ar,λ
ε (y, η′) stated in ii)

of Lemma 7.4. Inductively we may assume that (46) for r = s− 1/2 holds,
because when r is sufficiently negative, it holds. Under this assumption we
have the following

Lemma 7.6 Let b2s−1,λ
ε (y,Dy′) be a pseudodifferential operator of order

2s−1 with the symbol b2s−1,λ
ε (y, η′) such that {b2s−1,λ

ε (y, η′)}λ≥1 is a bounded
set in S2s−1

1,0 and supp b2s−1,λ
ε ⊂ supp gs,∞

ε . If we assume that for V = Eku

(46) holds as r = s− 1/2, then we have

|(b2s−1,λ
ε (y,Dy′)u, u)| ≤ Cε,s, (47)

where Cε,s does not depend on λ ∈ [1,∞).

Proof. From i) of Lemma 7.4 if ε < ε′ < ε0, then as−1/2,∞
ε′ (y,Dy′) is elliptic

on supp gs,∞
ε . Thus there exists C0,λ

ε (y,Dy′) of order 0 such that the symbols
of C0,λ

ε (y, η′) (λ ≥ 1) form a bounded set in S0
1,0 and b2s−1,λ

ε (y,Dy′) =
((Λ−1/2as,∞

ε′ )∗C0,λ
ε (Λ−1/2as,∞

ε′ ))+dλ
ε (y,Dy′), where the symbols of dλ

ε (y,Dy′)
(λ ≥ 1) form a bounded set in S−∞. From (46) for r = s−1/2 we complete
the proof. ¤

8. The proof of Theorem 7.1

In this section making use of lemmas in Section 7, we shall prove Theo-
rem 7.1. Let q2(y,Dy′) be a formally self-adjoint pseudodifferential operator
such that the support of the symbol is contained in supp gs,∞

ε and its prin-
cipal symbol is q2s+1,λ

ε (y, η′). The essential property of q1 = Λ−1q2 is as
follows

Lemma 8.1 Let Rρ(y,Dy′) be a properly supported pseudodifferential op-
erator of order 1 with the principal symbol rρ(y, η′)|η′|−1. If (46) holds for
V = Eku as r = s − 1/2 and u satisfies the same assumptions on V in
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Theorem 7.1, then there exist positive constants C and Cε,s such that

Re(i[Rρ, q1]u, u) ≥ C‖Λ−1/2as+1/2,λ
ε u‖2

L2−Cε,s, (48)

where C does not depend on u, ε, δ and λ, and Cε,s is independent of λ.

Proof. From Lemma 7.6 and (46) for r = s−1/2 we calculate the principal
symbols of pseudodifferential operators appeared in the following equality:

[Rρ, q1] = Λ−1[R0
ρ, q2]+Λ−1[Rρ−R0

ρ, q2]+[Rρ,Λ−1]q2, (49)

where R0
ρ = Rρ|yn=0. From Lemma 7.4 and Lemma 7.5 the second and

third terms of (49) are denoted by A2s,λ
ε (y,Dy′) + B2s,λ

ε (y,Dy′) such
that {A2s,λ

ε (y, η′)}λ≥1 and {B2s,λ
ε (y, η′)}λ≥1 are bounded sets in S2s

1,0,
suppA2s,λ

ε ⊂ supp gs,∞
ε , suppB2s,λ

ε ⊂ Γε, where Γε is appeared in Lemma 7.3,
and the absolute value of the principal symbol to A2s,λ

ε is dominated by
O(1)δε|η′|−1g2s+1,ε

ε (y, η′), where we use the fact that rρ(y, η′)−rρ(y′, 0, η′) =
0(ε2) on supp q2s+1,∞

ε . Let χε(y, η′) be a symbol in S0
1,0 such that χε = 1

in supp gs,∞
ε and suppχε ⊂ supp gs,∞

ε′ for some ε < ε′ < ε0. Making use
of the sharp G̊arding inequality for A2s,λ

ε (y,Dy′) + O(1)δε(Λ−1/2a
s+1/2,λ
ε )∗

(Λ−1/2a
s+1/2,λ
ε ), Lemma 7.3, Lemma 7.5 and Lemma 7.6 we have

Re(Nu, u) ≥ Re(Nχε(y,Dy′)u, χε(y,Dy′)u)− Cε,s

≥ −O(1)δε‖Λ−1/2as+1/2,λ
ε u‖2 −O(1)‖χεu‖2

s−1/2 − C ′ε,s

≥ −O(1)δε‖Λ−1/2as+1/2,λ
ε u‖2 − C ′′ε,s (50)

where N = i(Λ−1[Rρ −R0
ρ, q2] + [Rρ,Λ−1]q2) and Cε,s, C ′ε,s and C ′′ε,s are in-

dependent of λ. Since the principal symbol of R0
ρ is positively homogeneous

of degree 1, for a(y, η′) = ã(yn, t(y′, η′), s(y′, η′)) we can show that

HR0
ρ
(a(y, η′/λ)) =

∂ã

∂t

(
yn, t(y′, η′/λ), s(y′, η′/λ)

)
.

It implies that the principal symbol of i[R0
ρ, q2] have the following form;

|η′|−1g2s+1,λ
ε (y, η′) + C2s,λ

ε (y, η′), where {C2s,λ
ε (y, η′)}λ≥1 is a bounded set

in S2s
1,0 and suppC2s,λ

ε ⊂ Γε, where Γε is in Lemma 7.3. Making use of
χε(y,Dy′) in (50) and the sharp G̊arding inequality, we see that

Re(i[R0
ρ, q2]u, u) ≥ C1‖Λ−1/2as+1/2,λ

ε u‖2−Cε,s, (51)

where C1 is positive and independent of u, ε, δ and λ, and Cε,s is independent
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of λ. From (50) and (51) the proof is completed. ¤

Let G1(y,Dy′) and F1(y,Dy′) be properly supported pseudodifferen-
tial operators with the principal symbols G+

1 (y, η′) and F+
1 (y, η′) appeared

in (41), respectively. For a pseudodifferential operator R̄ρ(y,Dy′) =
Λ−1Rρ(y,Dy′) with Λ−1 = (1 + |Dy′ |2)−1/2 we define the properly sup-
ported pseudodifferential operator q(y,Dy′) = (1 − R̄ρ)q1. We also define
properly supported pseudodifferential operators

Q =
(

0 qEk

q∗Ek 0

)
, G0 =

(
G1 0
0 G1

)
, F0 =

(
F1 0
0 F1

)
. (52)

From the integration by parts we have the following

Lemma 8.2 Put Q1 =F0QΛ−1Dyn. Then for V∈C∞(R̄+;D′(Rn)) we have

− i{(G0QPV, V )− (G0QV,PV ) + (Q1PV, V )− (Q1V, PV )}
= i(G0(QM −M∗Q)V, V ) + i((Q1M −M∗Q1)V, V )

− i([M∗, G0]QV, V ) + (G′0QV, V ) + (G0Q
′V, V ) + (Q′1V, V )

+ (G1qV2, V1)∂ + (G1q
∗V1, V2)∂ + (F1, qΛ−1DynV2, V1)∂

+ (F ∗1 Λ−1DynV1, V2)∂ , (53)

where V = t(tV1,
t V2), P (y,Dy) in (39) is denoted by Dyn−M(y,Dy′), ( , )

and ( , )∂ are L2 products on R̄n+1
+ and Rn, respectively, and the symbols

of G′0, Q
′ and Q′1 are derivatives with respect to yn of the symbols of G0,

Q and Q1, respectively.

Let V be a solution of (39) and (40) and satisfy the conditions of Theo-
rem 7.1. For this V we shall check the each term of the both hand sides
of (53). In order to estimate the terms we need the following

Lemma 8.3 Let C2s,λ
ε (y,Dy′) be a 2k× 2k matrix whose all (i, j) compo-

nents C2s,λ
ε,ij (y,D′

y) are pseudodifferential operators of order 2s. For all com-

ponents we assume the following: The symbol C2s,λ
ε,ij (y, η′) of C2s,λ

ε,ij (y,Dy′)

satisfies that {C2s,λ
ε,ij (y,η′)}λ≥1 is a bounded set of S2s

1,0, suppC2s,λ
ε,ij ⊂ suppgs,∞

ε ,

and the principal symbol C̄2s,λ
ε,ij (y, η′) of C2s,λ

ε,ij (y,Dy′) has the estimate

|C̄2s,λ
ε,ij (y, η′)| ≤ Cα|η′|−1g2s+1,λ

ε , (54)
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where C > 0 does not depend on ε, δ, λ and α. Then we have the following
estimate;

|(C2s,λ
ε (y,Dy′)V, V )| ≤ C1α‖Λ1/2As+1/2,λ

ε V ‖2+Cε,s, (55)

where C1 > 0 does not depend on ε, δ, λ and α, and Cε,s > 0 does not
depend on λ.

Proof. We may assume that the form of C2s,λ
ε (y,Dy′) is Hermitian, and

that for fixed (i, j) the (k, `) component of C2s,λ
ε is 0 except (k, `) is

equal to (i, j) or (j, i). Then the eigen values of Cα|η′|−1g2s+1,λ
ε E2k ±

C̄2s,λ
ε (y, η′) are Cα|η′|−1g2s+1,λ

ε and Cα|η′|−1g2s+1,λ
ε ± |C̄2s,λ

ε,ij (y, η′)|. We

denote C2s,λ
ε (y,Dy′) by {C2s,λ

ε ± Cα(Λ−1/2A
s+1/2,λ
ε )∗(Λ−1/2A

s+1/2,λ
ε )} ∓

Cα(Λ−1/2A
s+1/2,λ
ε )∗(Λ−1/2A

s+1/2,λ
ε ). The estimate (55) follows from the

sharp G̊arding inequality for Cα(Λ−1/2A
s+1/2,λ
ε )∗(Λ−1/2A

s+1/2,λ
ε ) ± C2s,λ

ε

and the estimate for χε(y,Dy′)V , where χε(y,Dy′) is used in (50). The
proof is complete. ¤

The following lemma is a key part to verify Theorem 7.1.

Lemma 8.4 Under the assumptions in Theorem 7.1 we have the following
estimate

Re(i(G0(QM−M∗Q)V, V ) ≥ C‖Λ−1/2As+1/2,λ
ε V ‖2−Cε,s, (56)

where C is positive and independent of V , ε, δ and λ, and Cε,s is indepen-
dent of λ.

Proof. The principal symbol G1(y, η′) of G1(y,Dy′) is positive definite near
(0, η0′). However we may assume that G1(y, η′) is globally positive definite.
Thus there exists a positive definite matrix G2(y, η′), which is smooth, such
that G1 = (G2)2 by the implicit function theorem (see the proof of Lemma
3.2.3 in [7]). Making use of Proposition 2.2.2 in [7], we have the elliptic
properly supported pseudodifferential operator G̃(y,Dy′) such that

G̃ =
(
G2(y,Dy′) 0

0 G2(y,Dy′)

)
, G0(y,Dy′) = G̃∗G̃+R,

where R ∈ L−∞. In (52) we put q = (1− R̄ρ)q1, where R̄ρ = Λ−1Rρ. Then
from q∗1Λ− Λq1 = 0 we see that
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QM−M∗Q =
(
C1Ek 0

0 C2Ek

)
+Aλ

ε , (57)

where Aλ
ε (y,Dy′) is of order 2s whose symbol Aλ

ε (y, η′) have the support in
supp gs,∞

ε , {Aλ
ε (y, η′)}λ≥1 is a bounded set in S2s

1,0, and the principal symbols
of all components in Aλ

ε (y,Dy′) are dominated by O(1)δε|η′|−1g2s+1,λ
ε (y, η′)

from i) of Lemma 7.5. Furthermore C1(y,Dy′) is equal to

C1 = [Rρ, q1]+Rρ[q2,Λ−1]+[q2, Rρ]Λ−1RρΛ−1, (58)

and C2(y,Dy′) is equal to

C2 = [Rρ, q1]. (59)

Since |rρ(y, η′)| ≤ O(1)ε2|η′|2 in supp gs,∞
ε , where O(1) does not depend

on ε, δ and λ, from Lemma 7.5 all terms in the right hand sides of (58)
except [Rρ, q1] satisfy the same conditions to these of Aλ

ε (y,Dy′). Therefore
we have

(G0(QM−M∗Q)V, V ) = ([Rρ, q1]G̃V, G̃v)+(N1V, V ), (60)

whereN1 =G̃∗[G̃, [Rρ, q1]]+G0A
λ
1,ε with Aλ

1,ε(y,Dy′) which satisfies the same
conditions on Aλ

ε (y,Dy′) in (57). Making use of Lemma 7.6, Lemma 8.1,
Lemma 8.3 and the elliptic estimate for G̃, we have (56). The proof is
completed. ¤

Next we shall consider N2 = i(Q1M − M∗Q1 − [M∗, G0]Q − iG′0Q)
in (53). From the definitions of Q1 and M we see that N2 is denoted by the
following form;

{(
iF1[Rρ, q1] 0

0 iF1[Rρ, q1]

)
+Bλ

1,ε

}
Λ−1Dyn +Bλ

2,ε, (61)

where Bλ
j,ε (j = 1, 2) is of order 2s, the symbol Bλ

j,ε(y, η
′) of Bλ

j,ε satisfies
that suppBλ

j,ε ⊂ supp gs,∞
ε and {Bλ

j,ε}λ≥1 is a bounded set in S2s
1,0, and the

absolute values of the principal symbols of all components of Bλ
j,ε(y,Dy′) are

dominated by O(1)δε|η′|−1g2s+1,λ
ε (y, η′). From the proof of Lemma 8.1 we

see that iF1[Rρ, q1] = (Λ−1/2A
s+1/2,λ
ε )∗F1(Λ−1/2A

s+1/2,λ
ε ) + b2s−1,λ

ε , where
b2s−1,λ
ε (y,Dy′) is of order 2s− 1, the support of the symbol b2s−1,λ

ε (y, η′) is
contained in supp gs,∞

ε , and {b2s−1,λ
ε (y, η′)}λ≥1 is a bounded set in S2s−1

1,0 .
From Lemma 7.6, Lemma 8.3 and the equality Λ−1DynV = Λ−1MV +Λ−1F
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it follows that

|(N2V, V )| ≤ C‖Λ−1/2As+1/2,λ
ε Λ−1DynV ‖ ‖Λ−1/2As+1/2,λ

ε V ‖
+ Cδε‖Λ−1/2As+1/2,λ

ε V ‖2 + Cε,s, (62)

where C is independent of ε, δ and λ, and Cε,s is independent of λ. From
(1.40), (1.41) and (1.42) in [19] we have

|(N2V, V )| ≤ Cδ‖Λ−1/2As+1/2,λ
ε V ‖2+Cε,s. (63)

Let us check (G0Q
′V, V ) in (53), which is equal to

(G1q
′V2, V1)+(G1(q∗)′V1, V2),

where V = t(tV1,
tV2). Making use of V2 = (Λ+A12)−1{DynV1+A11V1−F1},

where F = t(tF1,
tF2) and ∂qε/∂yn = −(δ/ε)f ′(yn/ε

2)gε, we have

G1q
′(Λ +A12)−1(Dyn +A11)

= −{
δε−1f ′(yn/ε

2)(Λ−1/2As+1/2,λ
ε )∗G1(Λ−1/2As+1/2,λ

ε )

+ C2s−1,λ
ε,1

}
Λ−1Dyn + C2s−1,λ

ε,2 , (64)

where C2s−1,λ
ε,j (y,Dy′) (j=1, 2) is of order 2s−1 such that {C2s−1,λ

ε,j (y, η′)}λ≥1

is a bounded set in S2s−1
1,0 and suppC2s−1,λ

ε,j ⊂ supp gs,∞
ε . A similar represen-

tation holds for q′G∗1(Λ+A12)−1(Dyn +A11). From (1.40), (1.41) and (1.42)
in [19] we have

|(G0Q
′V, V )| ≤ O(1)δ‖Λ−1/2As+1/2,λ

ε V ‖2+Cε,s. (65)

Since (Q′1V, V ) = (F ′0QΛ−1DynV, V ) + (F0Q
′Λ−1DynV, V ), from the same

argument of deriving (63) and (65) we have

|(Q′1V, V )| ≤ O(1)δ‖Λ−1/2As+1/2,λ
ε V ‖2+Cε,s. (66)

Let us start the estimates of the boundary terms in (53). From the
assumption on B stated in the forward part of (41), Vj = Dj(y′, Dy′)Ṽ +
Hj (j = 1, 2), where Hj satisfies the same condition to one of G. Thus
(G1qV2, V1)∂ + (G1q

∗V1, V2)∂ is equal to

((D∗
1G1D2 +D∗

2G1D1)qṼ , Ṽ )∂ + (N3Ṽ , Ṽ )∂ +R3, (67)

where N3 = D∗
1G1[q,D2] +D∗

2G1([q2,Λ−1](1− R̄ρ)− q + [R̄ρ,Λ−1q2])D1 +
D∗

2G1[q,D1], and R3 = (G1qD2Ṽ ,H1)∂ +(G1qH2, D1Ṽ )∂ +(G1qH2,H1)∂ +
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(G1q
∗H1, D2Ṽ )∂ + (G1q

∗D1Ṽ ,H2)∂ + (G1q
∗H1,H2)∂ . From Lemma

7.5 we can denote N3 by C2s−1,λ
ε,1 (y′, Dy′) + C2s−1,λ

ε,2 (y′, Dy′), where
{C2s−1,λ

ε,j }λ≥1 (j = 1, 2) is a bounded set in S2s−1
1,0 , suppC2s−1,λ

ε,1 ⊂ supp gs,∞
ε ,

suppC2s−1,λ
ε,2 ⊂ Γε, where Γε is in Lemma 7.3, and the absolute

value of the principal symbol to C2s−1,λ
ε,1 (y′, Dy′) is dominated by

O(1)δε−1|η′|−2g2s+1,λ
ε (0, y′, η′). From the sharp G̊arding inequality it is not

difficult to show that

|(C2s−1,λ
ε,1 Ṽ , Ṽ )∂ | ≤ O(1)δε−1‖Λ−1As+1/2,λ

ε Ṽ ‖2
∂

+ Cs,ε‖Λs−1χεṼ ‖2
∂ , (68)

where ‖ · ‖∂ is the L2 norm on {yn = 0} and χε(y,Dy′) is the pseudodiffer-
ential operator appeared in (50). We shall use the classical trace inequality
‖Λ−1/2v‖2

∂ ≤ 2‖v‖ · ‖Λ−1Dynv‖. Since there exists k×2k matrix M2(y,Dy′)
of order 1 such that Dyn Ṽ = M2(y,Dy′)V + F̃ , where F̃ is made from F ,
we see that

‖Λs−1/2χεṼ ‖+‖Λ−1DynΛs−1/2χεṼ ‖ ≤ Cs,ε. (69)

From the classical trace inequality and (1.41) in [12], we also see that

‖Λ−1As+1/2,λ
ε Ṽ ‖2

∂ ≤ O(1)ε‖Λ−1/2As+1/2,λ
ε Ṽ ‖2+Cs,ε. (70)

From the classical trace inequality and the property on the support of
C2s−1λ

ε,2 (y,Dy′) it follows that

|(C2s−1,λ
ε,2 Ṽ , Ṽ )∂ | ≤ Cs,ε. (71)

From (68), (69) and (70) we have

|(N3Ṽ , Ṽ )∂ | ≤ O(1)δ‖Λ−1/2As+1/2,λ
ε V ‖2+Cs,ε, (72)

where Cs,ε is independent of λ.
The required conditions on q2 are the following; q2 is formally self ad-

joint and the principal symbol of q2 is q2s+1,λ
ε (y, η′). Here since the function

q2s+1,λ
ε is nonnegative, from the proof of Lemma 2.28 in [11] there exists

a function b
s+1/2,λ
ε (y, η′) such that q2s+1,λ

ε = (bs+1/2,λ
ε )2, {bs+1/2,λ

ε }λ≥1 is
a bounded set in Ss+1/2

1,0 and

bs+1/2,λ
ε (y, η′) ≤ O(1)(δε)1/2as+1/2,λ

ε (y, η′). (73)
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Therefore we define

q2(y,Dy′) = (bs+1/2,λ
ε (y,Dy′))∗(bs+1/2,λ

ε (y,Dy′)),

where b
s+1/2,λ
ε (y,Dy′) is the pseudodifferential operator with the symbol

b
s+1/2,λ
ε (y, η′). Let us check the term R3 in (67). We shall consider

the term (G1q
∗D1Ṽ ,H2)∂ in R3, which is equal to (Λ−1b

s+1/2,λ
ε Ṽ ,

D∗
1(1−R̄ρ)b

s+1/2,λ
ε G∗1H2)∂ +([bs+1/2,λ

ε ,Λ−1(1−R̄ρ)∗D1]Ṽ , b
s+1/2,λ
ε G∗1H2)∂ +

([Λ−1, (1 − R̄ρ)D1]b
s+1/2,λ
ε Ṽ , b

s+1/2,λ
ε G∗1H2)∂ . The absolute value of this

quantity is dominated by ‖Λ−1b
s+1/2,λ
ε Ṽ ‖2

∂ + ‖Λs−3/2χεṼ ‖2
∂ + Cs,ε, where

χε is the pseudodifferential operator in (50). It is not difficult to show that
‖Λ−1b

s+1/2,λ
ε Ṽ ‖2

∂ ≤ O(1)δε‖Λ−1a
s+1/2,λ
ε Ṽ ‖2

∂ + Cs,ε‖Λs−1χεṼ ‖2
∂ . Thus from

the similar argument we have that

|R3| ≤ O(1)δ‖Λ−1/2As+1/2,λ
ε V ‖2+Cs,ε. (74)

Since Λ−1DynV2 = R̄ρV1+A21V1+A22V2 and Λ−1DynV1 = V2+A11V1+
A12V2, where Aij(y,Dy′) is of order −1, we see that (F1qΛ−1DynV2, V1)∂ +
(F1q

∗Λ−1DynV1, V2)∂ is equal to
(
(D∗

2F1D2−D∗
1F1R̄ρD1)qṼ , Ṽ

)
∂
+(N4Ṽ , Ṽ )∂+R4, (75)

where N4 is equal to D∗
2F1[q∗, D2] + D∗

2F1D2[q2,Λ−1] − D∗
1F1[q, R̄0

ρ]D1 −
D∗

1F1R̄
0
ρ[q,D1] +D∗

1F1q(A21D1 +A22D2) +D∗
2F1q

∗(A11D1 +A12D2). Here
R4 has the form −(F1qR̄ρD1Ṽ ,H1)∂ +(F1q

∗D2Ṽ ,H2)∂ +
(
q(A−1Ṽ +B0H1+

C0H2), D0Ṽ +E0H1

)
∂
+

(
q∗(Ā−1Ṽ + B̄0H1 + C̄0H2), D̄0Ṽ + Ē0H2

)
∂
, where

A−1 and Ā−1 are pseudodifferential operators of order −1, and B0, C0, D0,
E0, B̄0, C̄0, D̄0 and Ē0 are pseudodifferential operators of order 0, which
are independent of ε, δ and λ. From similar computations to derive (74) we
have that

|R4| ≤ O(1)δ‖Λ−1/2As+1/2
ε V ‖2+Cs,ε. (76)

N4 has the same properties to these of N3. Thus it follows that

|(N4Ṽ , Ṽ )∂ | ≤ O(1)δ‖Λ−1/2As+1/2
ε V ‖2+Cs,ε. (77)

Final part is the estimate of (XqṼ , Ṽ )∂ which comes from (67) and (75),
where X = D∗

1G1D1 +D∗
2G1D1 +D∗

2F1D2−D∗
1F1R̄ρD1 with G1 = G+

1 and
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F1 = F+
1 in (41) and q = (1− R̄ρ)Λ−1q2. Put

N5 = X1Λ−1/2[Λ−1/2, (bs+1/2,λ
ε )∗]bs+1/2,λ

ε

+ [X1,Λ−1/2](bs+1/2,λ
ε )∗Λ−1/2bs+1/2,λ

ε

+ Λ−1/2[X1, (bs+1/2,λ
ε )∗]Λ−1/2bs+1/2,λ

ε

+ [Λ−1/2, (bs+1/2,λ
ε )∗]X1Λ−1/2bs+1/2,λ

ε , (78)

where X1 = X(1 − R̄ρ). Then the absolute value of the principal sym-
bol of N5 is dominated by O(1)δε−1|η′|−2g2s+1,λ

ε (y, η′), and (XqṼ , Ṽ )∂ =
(X1Λ−1/2b

s+1/2,λ
ε Ṽ ,Λ−1/2b

s+1/2,λ
ε Ṽ )∂+(N5Ṽ , Ṽ )∂ . From the sharp G̊arding

inequality we have that

|(N5Ṽ , Ṽ )∂ ≤ O(1)δε−1‖Λ−1As+1/2,λ
ε Ṽ ‖2

∂+Cs,ε‖Λs−1χεṼ ‖2
∂ ,

where χε is in (50). From (70) we see that

|(N5Ṽ , Ṽ )∂ | ≤ O(1)δ‖Λ−1/2As+1/2
ε V ‖2+Cs,ε. (79)

From the similar computation we have

Re(X1Λ−1/2bs+1/2
ε Ṽ ,Λ−1/2bs+1/2

ε Ṽ )∂

≥ −O(1)δ‖Λ−1/2As+1/2
ε V ‖2 − Cs,ε,

which implies that

Re(X1Λ−1q2Ṽ , Ṽ )∂ ≥ −O(1)δ‖Λ−1/2As+1/2
ε V ‖2−Cs,ε, (80)

where Cs,ε does not depend on λ.
Let us remark on the left hand side of (53). From the definition of

q2(y,Dy′) appeared in the back part of (73), Lemma 7.5 and Lemma 8.3 we
see that the left hand side of (53) is dominated by

‖Λ−1/2bs+1/2,λ
ε F‖2 + ‖Λ−1/2bs+1/2,λ

ε Λ−1DynF‖2

+O(1)δε‖Λ−1/2As+1/2,λ
ε V ‖2 + Cε,s

Finally from (53), (58), (63), (65), (66), (77), (79) and (80), we have

sup
λ
‖Λ−1/2As+1/2,λ

ε V ‖2 ≤ Cs,ε, (81)

which is equal to (46) for r = s. The proof of Theorem 7.1 is complete.
The proof of Theorem 7.1 also implies the following
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Theorem 8.5 Let B, V , F and G satisfy all conditions in Theorem 7.1.
We suppose that G±1 (y, η′) and F±1 (y, η′) in (41) satisfy the following strong

condition than one of (41): ±X± has a form
(
X0± 0
0 X1±

)
, where X± is

the principal symbol of D∗
1G

±
1 D2 +D∗

2G
±
1 D1 +D∗

2F
±
1 D2−D∗

1F
±
1 D1R̄ρ, and

the `× ` matrix X0±(y, η′) is positive definite near (0, η0′) and the (k− `)×
k − `) matrix X1±(y, η′) is non negative definite near (0, η0′). Then Ṽ0 =
(Ṽ1, . . . , Ṽ`) have the following regularity, where Ṽj is the j-th component
of Ṽ ; For any point (ȳ′, η̄′) of {exp{tHR0

ρ
}(0, η0′); |t| ≤ δε1} Ṽ0|yn=0 belongs

to Hs at (ȳ′, η̄′).

Proof. Let X0(y,Dy′) and X1(y,Dy′) be pseudodifferential opera-
tors with the principal symbols X0

+(y, η′) and X1
+(y, η′), respectively.

Put X̄0 = X0(1 − R̄ρ)E` and X̄1 = X1(1 − R̄ρ)Ek−`. Then for X1

in (78) (X1Λ−1q2Ṽ , Ṽ )∂ = (X̄0Λ−1/2b
s+1/2,λ
ε Ṽ0, Λ−1/2b

s+1/2,λ
ε Ṽ0)∂ +

(X̄1Λ−1/2b
s+1/2,λ
ε Ṽ1, Λ−1/2b

s+1/2,λ
ε Ṽ1)∂ + ((X1 − X2)Λ−1/2b

s+1/2,λ
ε Ṽ ,

Λ−1/2b
s+1/2,λ
ε Ṽ )∂ +(N5Ṽ , Ṽ )∂ , where Ṽ1 = (Ṽ`+1, . . . , Ṽk), X2 =

(
X̄0 0
0 X̄1

)

and N5 is defined in (78). From the G̊arding inequality we see that there
exists a positive constant C such that

Re(X1Λ−1q2Ṽ , Ṽ )∂ ≥ C‖Λ−1/2bs+1/2,λ
ε Ṽ0‖2

∂

−O(1)δ‖Λ−1/2As+1/2,λ
ε Ṽ ‖2 − Cs,ε. (82)

Combining derived inequalities in the proof of Theorem 7.1 with (82), we
can show that

sup
λ
{‖Λ−1/2As+1/2,λ

ε V ‖2+‖Λ−1/2bs+1/2,λ
ε Ṽ0‖2

∂} < Cs,λ.

The proof is completed. ¤

We also need the following theorem under the week assumption that
G belongs to Hs at (0, η0′).

Theorem 8.6 Let B, V and F satisfy all conditions in Theorem 7.1.
We assume the week condition on G of (40) such that G belongs to Hs

at (0, η0′). We suppose that ±X± of Theorem 8.5 is positive definite near
(0, η0′). Then at any point (ȳ′, η̄′) belonging to {exp{tHR0

ρ
}(0, η0′); |t| ≤

δε1} V|yn=0 belongs to Hs at (ȳ′, η̄′).

Proof. Since X1 in (82) is positive definite, we see that
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Re(X1Λ−1q2Ṽ , Ṽ )∂ ≥ O(1)‖Λ−1/2bs+1/2,λ
ε Ṽ ‖2

∂

− Cδ‖Λ−1/2As+1/2,λ
ε Ṽ ‖2 − Cs,ε, (83)

where C is positive and independent to ε, δ and λ. Let us check the terms R3

in (67) and R4 in (75) under the week assumption on G. From the form
of R3 we easily derive that for any ε′ > 0 |R3| ≤ ε′‖Λ−1/2b

s+1/2,λ
ε Ṽ ‖2

∂ +
Cε′,ε,s, where Cε′,ε,s is independent of λ. We also have that for any ε′ |R4| ≤
ε′‖Λ−1/2b

s+1/2,λ
ε Ṽ ‖2

∂ + O(1)‖Λ−1b
s+1/2,λ
ε Ṽ ‖2

∂ + Cε′,ε,s, where Cε′,ε,s is inde-
pendent of λ. From (83) we wee that

sup
λ
{‖Λ−1/2As+1/2,λ

ε V ‖2+‖Λ−1/2bs+1/2,λ
ε Ṽ ‖2

∂} < Cs,λ.

From the definition of Ṽ stated in the forward part of (67) the proof is
completed. ¤

9. Propagation of singularities at glancing points

First we shall show a similar theorem to Theorem 7.1 for the boundary
value problem (5) and (6). The most complicate case is that B0 is the free
boundary condition and (0, η0′) is a glancing point with respect to µ, that
is, rµ(0, η0′) = 0. First we shall consider this case. From the argument
in Section 1.4 of [19] there exist pseudodifferential operator S(y,Dy′) and
K(y,Dy′), which are of order 0, and −1, respectively, such that they satisfy
the following condition (see (1.18), (1.19) and (1.20) in [19]): Let ϕ(y)
be a function belonging to C∞0 (U0) with U0 in (5) such that ϕ = 1 near
0 ∈ Rn+1, and φ(y,Dy′) be a pseudodifferential operator of order 0 such
that the support of the symbol φ(y, η′) of φ(y,Dy′) is contained in a conic
neighbourhood of (0, 0, η0′) and φ(y, η′) = 1 near (0, η0′). Then

V = (1+K)S−1φt(t(Λϕu), t(Dynϕu)) (84)

satisfies the following problems

(Dyn −M2)V̄ = F2 in yn > 0 (85)

B2(y,Dy′)V̄ = G2 on yn = 0,

(Dyn − e+)V+ = F+ in yn > 0 (86)

V+ = G3 +B3V̄ on yn = 0

(Dyn − e−)V− = F− in yn > 0. (87)
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Here Λ = (1 + |Dy′ |2)1/2, V = t(tV̄ , V+, V−) and F = t(tF2, F+, F−) are
defined by (25), and G2 and G3 are defined from G denoted in (28) and
they satisfy the same condition to one imposed on g. The form Dyn −M2

in (85) is same to one in (38) as k = n − 1 and ρ = µ, and the principal
symbol of e±(y,Dy′) is a(y, η′)± i(rλ+2µ(y, η))1/2. First we shall check the
condition appeared in Theorem 7.1.

Lemma 9.1 Let an extensible distribution u to U0 be a solution of the
boundary value problem (5) and (6). Here we assume that f ∈ H loc

s−1(U0 ∩
{yn > 0}) (s ≥ 0). Then there exists a0 such that for any y ∈ U0 ∩ {0 <
yn < a0} V belongs to Hs at (y, η) ∈ T ∗(Rn+1) \ 0 with |ηn| > α|η′|,
where α depends on y. Moreover if f belongs to H loc

s−1(U0 ∩ {yn > 0}) ∩
H(s,r1)(R̄

n+1
+ )∩H(1,r2)(R̄

n+1
+ ) for s ≥ 0, r1 and r2, and if f also belongs to

Hs(R̄n+1
+ ) ∩H(1,s−1)(R̄

n+1
+ ) at (0, η0′), then F defined in (25) satisfies the

all conditions stated in the back part of (40).

Proof. From (8) all points of {(y, 0, ηn) ∈ T ∗(U0) \ 0} are elliptic points of
L(y,Dy). Thus for any point (ȳ, η̄) with the conditions ȳn > 0 and |η̄n| >
α|η̄′| for some α > 0 there exists a function ϕ1 ∈ C∞0 (U0 ∩ {yn > 0}) and
χ1(y,Dy) of order 0 such that χ1(y,Dy)ϕ1u ∈ Hs+1(Rn+1). Here we may
assume that ϕ1 = 1 on some neighbourhood U1 of ȳ and that the symbol
of χ1(y, η) of χ(y,Dy) is equal to 1 in {(y, η); y ∈ U1, |ηn| > (α/2)|η′|}.
We have that u = u1 + u2 + u3, where u1 = χ1ϕ1u, u2 = (1 − χ1)ϕ1u

and u3 = (1 − ϕ1)u. For Ṽj = (1 + K)S−1φt(t(Λϕuj), t(Dynϕuj)) (j =
1, 2, 3) we have Ṽ1 ∈ Hs+1(R̄n+1

+ ). From Theorem 4.3.1 in [5] we see that
u3 belongs toH loc

s+1,r1
(R̄n+1

+ ) for some r1. It implies that for ϕ2(y) ∈ C∞0 (U1)
ϕ2Ṽ3 ∈ Hs+1(R̄n+1

+ ). Let χ2(y,Dy) be a pseudodifferential operator of
order zero such that the support of the symbol of χ2(y,Dy) is contained in
{(y, η); χ1(y, η) = 1} and (ȳ, η̄) is an elliptic point of χ2(y,Dy). Then from
Proposition 2.3 χ2ϕ2(1+K)S−1φt(Λ, Dyn)ϕ(1−χ1)ϕ1 is a pseudodifferential
operator of order −∞. It follows that χ2ϕ2Ṽ3 belongs to C∞(Rn+1). We
see that χ2ϕ2V belongs to Hs+1 at (ȳ, η̄). The last statement on F is clearly
derived form the form (40). The proof is complete. ¤

We shall prove the following

Theorem 9.2 Let (0, η0′) be a glancing point with respect to µ, and an
extensible distribution u to U0 be a solution of (5) and (6). We suppose
that B0 is the free boundary condition, and that f satisfies the all conditions
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imposed in Lemma 9.1 and g belongs to Hs+1/2(Rn) at (0, η′). If there
exist ε0 and δ > 0, which are independent of u, such that if u belongs
to Hs+1 on Γ(0)

ε1 and Γ(1)
ε1 as ρ = µ for some 0 < ε1 ≤ ε0, then at any point

(ȳ′, η̄′) belonging to {exp{tHR0
µ
}(0, η0′); |t| < δε1} u belongs to Hs+1.

Proof. From the late half on p.131 of [19] the principal symbol
(B21, B22)(y, η′) of B2(y,Dy′) and the principal symbol B3(y, η′) of
B3(y,Dy′) have the following forms:

B2=(e1,0, . . . ,0, b′n,e2, . . . ,en−1), B3=(0, . . . ,0, bn,0, . . . ,0), (88)

where ej ∈ Rn−1 is the unit vector whose j-th component is 1 and i-th
component is 0 except i 6= j, b′n is the n-th component of B2, and bn is n-th
component of B3. We check the condition (42) for B2. From Lemma 1.20
in [19] the condition (42) holds for B2 of (88). From Lemma 9.1 and the
assumption of u V2 satisfies the condition stated in Theorem 7.1 on Γ(0)

ε1

and Γ(0)
ε1 as ρ = µ for some 0 < ε1 < ε0. Therefore let us apply Theo-

rem 7.1 to the problem (85). Since the form of B2(y,Dy′) is denoted by
(e1, b′2, . . . , b

′
n, e2, . . . , en−1), for Ṽ = t(V̄n, V̄2, . . . , V̄n−1), where V̄j is the

j-th component of V̄ we have V1 = D1Ṽ + t(g21, 0, . . . , 0) and V2 = D2Ṽ +
t(0, tg22), where V̄ = t(tV1,

tV2), G2 = t(tg12,
tg22) with g22(y) ∈ Rn−2, and

the form of D1(y,Dy′) and D2(y,Dy′) are denoted in (1.45) of [19]. Put

G±1 (y,Dy′)=
(

1 b∗

b En−2

)
, F±1 (y,Dy′)=

(±a 0
0 ∓R̄0

µEn−2

)
, (89)

where a>0 and the principal symbol b(y, η′) inG±1 (y,Dy′) is t(b2n, . . . , bn−1n)
if b′n = t(b1n, . . . , bn−1n) in (88). From Lemma 1.20 in [19] the principal
symbol of G±1 is positive definite near (0, η0′). Then the principal symbol
of X± = D∗

1G
±
1 D2 +D∗

2G
±
1 D2 +D∗

2F
±
1 D1 −D∗

1F
±
1 R̄

0
µD1 is equal to

±
(
a′ 0
0 (rµ|η′|−2)2

)
, (90)

where a′ = a(1 − |b1n|2rµ|η′|−1) + 2 Re b1n(|b|2 − 1). If we take sufficiently
large a, then the principal symbol of±X±(y,Dy′) satisfies the condition (41).
From Theorem 8.5 it implies that there exists a pseudodifferential oper-
ator φ(y,Dy′), which is elliptic at (0, η0′), such that φ(y,Dy′)V̄n|yn=0 ∈
Hs(Rn). From Proposition 2.4 and its proof we see that φ(y,Dy′)V̄j|yn=0 ∈
Hs−1/2(Rn) (j 6= n). From (88) it follows that φ(y,Dy′)(G3 +B3V̄ )|yn=0 ∈
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Hs(Rn). Now we are able to use the argument of Section 5 in [19] to the
problem (86), and can show that φ(y,Dy′)V±|yn=0 ∈ Hs(Rn). The proof is
completed. ¤

Next we assume that B0 is the free boundary condition and (0, η0′)
is a glancing point with respect to λ + 2µ. Then rµ(0, η0′) is negative,
and there exists the null bicharacteristic strip γ̃±µ through

(
0, η0′, a(0, η0′)±

(−rµ(0, η0′))1/2
)
. Put γ±µ = γ̃±µ ∩ T ∗{yn > 0}. We have the following

Theorem 9.3 Let (0, η0′) be a gliding point with respect to λ + 2µ and
an extensible distribution u to U0 be a solution of (5) and (6), where B0 is
the free boundary, f satisfies the all conditions stated in Lemma 9.1. We
suppose that g belongs to Hs at (0, η0′) and u belongs to Hs+1 on γα

µ , where
α is + or −. Then there exist ε0 > 0 and δ > 0 such that if u satisfies the
condition stated in Theorem 9.2 on Γ(0)

ε1 and Γ(1)
ε1 as ρ = λ+2µ for some 0 <

ε1 ≤ ε0, then u belongs to Hs+1 on γ−α
µ ∪ {exp{tHR0

λ+2µ
}(0, η0′); |t| < δε1}.

Proof. From the argument in Section 1.7 of [19] the boundary value prob-
lem (5) and (6) is reduced to the following problems (see (1.54)±, (1.55)±
and (1.56)± in [19]):

(Dyn −H+)V+ = F+ in yn > 0, (91)

V+ = g1 −B−V− − cv2 on yn = 0

(Dyn −M2)V̄ = F2 in yn > 0, (92)

B2V̄ = g2 − b−V− on yn = 0,

(Dyn −H−)V− = F− on yn > 0, (93)

where V̄ = t(v1, v2), F+, F− and F2 satisfy the same conditions to these
of f , g1 and g2 satisfy the same conditions to these of g, the principal
symbol of H±(y,Dy′) is a(y, η′) + (∓rµ(y, η′))1/2)En−1, Dyn −M2 has the
same form to (38) as k = 1 and ρ = λ + 2µ, and B2(y,Dy′) = (1, d).
Here we remark that d(y,Dy′) has the real principal symbol, which means
that the condition (42) holds for B2. If we assume that u belongs to Hs+1

on γ−µ , then from (93) and Proposition 4.4 we see that V−|yn=0 belongs
to Hs at (0, η0′). Now we apply Theorem 8.6 to the problem (92). We can
conclude that (g1−B−V−− cv2)|yn=0 belongs to Hs at any point belonging
to {exp{tHR0

λ+2µ
}(0, η0′); |t| < δε1}. From Proposition 4.4 we complete the

proof. ¤
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Now we shall consider the Dirichlet boundary condition. Let (0, η0′)
be a gliding point with respect to µ. Then from (1.16) of [19] the prin-
cipal symbol of the boundary operator B(y,Dy′) in (1.17) of [19] has the
form (b1, . . . , b2n−2, b+, b−) =

(
(ad̃1 − |η′|2en)|η′|−2, d2|η′|−1, . . . , dn−1|η′|−1,

d̃1|η′|−1, 0, . . . , 0, (η̄ + α+
λ+2µG)|η′|−1

)
. Here d̃1 = t(tη′, η′ · grad g), dj =

t(td′j , d
′
j · grad g), where d′2(η

′), . . . , d′n−1(η
′) form a base of the orthogonal

space of η′ in Rn and are of degree 1, η̄ = t(η0, . . . , ηn−1, 0), α±λ+2µ = a ±
i(rλ+2µ)1/2 andG = t(− grad g, 1). Since grad g(0) = 0, det(b1, . . . , bn−2, b+)
is not zero. Therefore multiply a pseudodifferential operator whose princi-
pal symbol is the inverse matrix of (b1, . . . , bn−2, b+) from the left side, we
may assume that boundary operator B2(y,Dy′) in (1.18) of [19] is
(En−1, B22(y,Dy′)). Then if D1 = −B22, D2 = En−1, G±1 = En−1 and
F±1 = ±aEn−1, where a is sufficiently large, then the condition of Theo-
rem 8.6 holds. Thus we can apply Theorem 8.6 to the problem (92). If
(0, η0′) is a glancing point with respect to λ + 2µ, then from (1.8) of [19],
s2n−1 and s2n, which are defined at the first part of Section 1.7 of [19],
the principal symbol of the boundary operator B(y,Dy′) in (1.52) of [19]
have the form (b1, . . . , b2n−2, b+, b−), where det(b1, . . . , bn−1, b±) is not zero.
Thus the situation is the same to one of the case that (0, η0′) is a glancing
point with respect to µ. We have the following

Theorem 9.4 Let an extensible distribution u to U0 be a solution of (5)
and (6), where B0 is the Dirichlet boundary condition and f satisfies the
all conditions stated in Lemma 9.1. We suppose that g belongs to Hs+1

at (0, η0′), and that if (0, η0′) is a glancing point with respect to λ + 2µ,
u belongs to Hs+1 on γα

µ , where α is + or −. Then all properties on u

stated in Theorem 9.2 and Theorem 9.3 hold.

Following [11] we shall define a generalized bicharacteristic for pρ(y, η) =
(ηn − a)2 + rρ.

Definition 9.1 a) A subset Σb,ρ of (T ∗(Rn × (0,∞)) \ 0) ∪ (T ∗Rn \ 0) is
the following set; If (y, η) ∈ T ∗(Rn × (0,∞)) \ 0), then pρ(y, η) = 0 and
if (y′, η′) ∈ T ∗Rn \ 0, then there exists ηn such that pρ(y′, 0, η′, ηn) = 0.
Next we define various conic subsets of Σb,ρ. Define Σ0

b,ρ = Σb,ρ ∩ (T ∗(Rn×
(0,∞)) \ 0), Σ1

b,ρ = {(y′, η′) ∈ T ∗(Rn) \ 0; rρ(y′, 0, η′) < 0} ∩ Σb,ρ, Σ2,±
b,ρ =

{(y′, η′) ∈ T ∗Rn \ 0; rρ(y′, 0, η′) = 0, ∓(H2
pρ
yn)(y′, 0, η′) > 0}∩Σb,ρ, Σ(3)

b,ρ =
{(y′, η′) ∈ T ∗Rn\0; rρ(y′, 0, η′) = 0, (H2

pρ
yn)(y′, 0, η′) = 0}∩Σb,ρ and Σ∞b,ρ =
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{(y′, η′) ∈ T ∗Rn \ 0; rρ(y′, 0, η′) = 0, (Hk
pρ
yn)(y′, 0, η′) = 0 for all k} ∩Σb,ρ.

b) Using the notations in a), we shall define a generalized bicharacteris-
tic. Let Γ0 be a small conic neighbourhood of (0, η0′) and Σ0 be (Γ0 ×
[0, a) × R) ∪ Σb,ρ. A generalized bicharacteristic is a curve γρ : I → Σ0,
where I is interval, such that i) If γρ(t0) ∈ Σ0

b,ρ, t0 ∈ I, then γρ(t) is
differential at t0 and γρ(t0) = Hpρ(γρ(t0)), ii) If γρ(t0) ∈ Σ1

b,ρ ∪ Σ2,−
b,ρ ,

t0 ∈ I, then γρ(t) ∈ Σ0
b,ρ for 0 6= |t − t0| small, iii) If γρ(t0) ∈ Σ2,+

b,ρ ∪
Σ(3)

b,ρ , t0 ∈ I, then (y(t), η′(t)) is differentiable at t = t0 with the deriva-
tives (dyn/dt)(t0) = 0, d(y′(t), η′(t))/dt|t=t0 = Hr0

ρ
(y′(t0), η′(t0)), where

r0ρ(y
′, η′) = rρ(y′, 0, η′)|η′|−1.

In [11] the following fact is proved: for any (0, η0′) ∈ Σb,ρ there ex-
ists a generalized bicharacteristic through this point, and that is unique
if (0, η0′) ∈ Σb,ρ \ Σ∞b,ρ. In [15] an example is given for which there ex-
ist two generalized bicharacteristics through the same point, that belongs
to Σ∞b,ρ. Let γρ(t) be any generalized bicharacteristic through (0, η′). We
set γ±ρ = ∪{γρ(t); ±t > 0}, where the union is taken over all generalized
bicharacteristics satisfying the above conditions.

Using these notations we shall show theorems on propagations of regu-
larities near glancing points. First we assume the condition to avoid diffrac-
tive points near (0, η′).

Condition A: There exists a conic neighbourhood Γ0 of (0, η0′) such that
Γ0 ∩ Σ(2),−

b,ρ = ∅.
In this case in the boundary value problem (5) and (6) we suppose that
u is an extensible distribution to U0 and f satisfies the all conditions stated
in Lemma 9.1. The boundary datum g satisfies the following condition:
First we suppose that (0, η0′) is a glancing point with respect to µ. If B0 is
the free boundary condition, then g ∈ Hs+1/2 at (0, η0′), and if B0 is the
Dirichlet condition, then g ∈ Hs+1 at (0, η0′). Second we suppose that
(0, η0′) is a glancing point with respect to λ+2µ. If B0 is the free boundary
condition, then g ∈ Hs at (0, η0′), and if B0 is the Dirichlet condition, then
g ∈ Hs+1 at (0, η0′). Then we have the following

Theorem 9.5 We suppose that (0, η0′) ∈ Σ(2)
b,ρ satisfies the condition A

and that u, f and g satisfy the above conditions. Then we have the following
two statements.
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i) If ρ = µ, and a solution u of (5) and (6) belongs to Hs+1 on γε
µ ∩ Γ0,

where ε is + or −, then u belongs to Hs+1 on (γ−ε
µ ∩ Γ0) ∪ {(0, η0′)}.

ii) If ρ = λ + 2µ, and a solution u of (5) and (6) belongs to Hs+1 on
(γε

µ ∪ γε
λ+2µ) ∩ Γ0, where ε is + or −, then u belongs to Hs+1 on(

(γ−ε
µ ∪ γ−ε

λ+2µ) ∩ Γ0

) ∪ {(0, η0′)}.
From Theorem 3.1, Theorem 4.5, Theorem 5.1, Theorem 5.2, Theorem 9.2
Theorem 9.3 and Theorem 9.4 we can easily prove Theorem 9.5, if we use
the argument to verify Theorem 2.44 of [12], which is denoted in the middle
part of p.153 in [12].

In (a) in Definition 9.1 of this section if (0, η0′) ∈ Σ2,+
b,ρ , then the

condition A holds. Thus Theorem 9.5 is one of generalizations of The-
orem 4.15 in [1] in the Sobolev space. However near points belonging
to Σ2k+1

b,ρ ∩ Σ2k,−
b,ρ the situations are quiet different. Here making use

of functions rρ,0 = rρ(y′, 0, η′) and rρ,1 = (∂r0/∂yn)(y′, 0, η′), we put
Σk,±

b,ρ = {(y′, η′) ∈ T ∗Rn \ 0; rρ,0(y′, η′) = 0, (Hj
rρ,0rρ,1)(y′, η′) = 0, 0 ≤

j < k − 2, ±(Hk−2
rρ,0

rρ,1)(y′, η′) > 0}, where Hj
rρ,0 is the Hamilton vector

field of rρ,0, and Σk
b,ρ = Σk,+

b,ρ ∪ Σk,−
b,ρ (see Lemma 3.4 of [11]). We have the

following lemma

Lemma 9.6 If (0, η0′) belongs to Σ2k+1
b,ρ ∪ Σ2k,−

b,ρ , then there exists a se-
quence {ρm} such that ρm ∈ Σ2,−

b,ρ and {ρm} converges to (0, η0′) as m goes
to ∞.

Proof. After a non-homogeneous canonical change of coordinates in T ∗Rn\
0 near ρ0 = (0, η0′), we may assume that ρ0 = (0, 0) and rρ,0(y′, η′) = η0.
Then the Hamiltonian vector field of rρ,0 becomes to ∂/∂y0. If ρ0 ∈ Σp

b,ρ,
then from the Malgrange’s preparation theorem we have that near (0, 0)

rρ,1(y′, η′) = (yp
0+a1(y′′, η′)y

p−1
0 +· · ·+ap(y′′, η′))A(y′, η′),

where y′′ = (y1, . . . , yn−1), A(0, 0) 6= 0, and aj(0, 0) = 0 (j = 1, . . . , k). Here
if ρ0 ∈ Σ2k,−

b,ρ , then A(0, 0) < 0. Thus if ρ0 ∈ Σ2k+1
b,ρ ∪ Σ2k,−

b,ρ , we can take

y
(m)
0 6= 0 such that {y(m)

0 } converges to 0 and (sgnA)(y(m)
0 )p < 0, where

p is 2k or 2k + 1. Since aj(0, 0) = 0, we can take (y′′(m), η′′(m)) such that
|(a1(y′′(m), 0, η′′(m))(y(m)

0 )p−1 + · · ·+ ap(y′′(m), 0, η′′(m)))A(y(m)′, 0, η′′(m))| <
|(y(m)

0 )pA(y(m)′, 0, η′′(m))|/2 and {(y′(m), η′′(m))} converges to (0, 0), which
means that (y′(m), 0, η′′(m)) belongs to

∑2,−
b,ρ . The proof is complete. ¤
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From Theorem 6.5 and Theorem 6.6 there exists a possibility that so-
lutions of (5) and (6) lose a regularity at points belonging to

∑2,−
b,ρ . Thus

we suppose the following:

Condition B. There exists a conic neighbourhood of Γ0 ⊂ T ∗Rn \ 0 of
(0, η0′) and a > 0 such that there is no generalized bicharacteristic connect-
ing ρ1 ∈ Σ2,−

b,ρ with ρ2 ∈ Σ(2)
b,ρ , which is contained in Γ̄0 = Γ0 × [0, a)×R.

Under this assumption we have the following

Theorem 9.7 We suppose that ρ0 = (0, η0′) satisfies condition B, and
that an extensible distribution u is a solution of (5) and (6), where g satisfies
the conditions in Theorem 9.5. In (5) f satisfies the condition that for some
T0 > 0 f ∈ H loc

s (U0 ∩ {yn > 0}) ∩ C∞([0, T0) : D′(U0 ∩ {yn = 0}) and there
exists a pseudodifferential operator φ0(y,Dy′), which is elliptic at (0, η0′),
such that φ0(y,Dy′)f ∈ C∞(Rn × [0, T0)). Then we have the following two
statements:
i) If ρ0 is a glancing point with respect to µ and u ∈ Hs+1 on γε

µ∩ Γ̄0, where
γε

µ(0) = ρ0, then u belongs to Hs+α at ρ0, which means that for some δ0
u belongs to Hs+α at all points in {γ−ε

µ ; 0 < −εt < δ0} ∩ Γ̄0. Moreover if

for δ1 > δ0 {γ−ε
µ ; δ0 < −εt < δ1} ⊂ (Σ(0)

b,ρ ∪ Σ1
b,ρ ∪ Σ2,+

b,ρ ) ∩ Γ̄0, then at all
points in {γ−ε

µ ; 0 < −εt < δ1} u belongs to Hs+α. Here ε is + or −, and
α = 1/6, if B0 is the free boundary condition, and α = 1/2, if B0 is the
Dirichlet condition.
ii) If ρ0 is a glancing point with respect to λ + 2µ and u ∈ Hs+1 on
(γε

µ ∪ γε
λ+2µ) ∩ Γ̄0, where γε

λ+2µ(0) = ρ0 and γε
µ(0) =

(
0, η0′, a(0, η0′) +

ε(−rµ(0, η0′)1/2)
)

with ρ0 = (0, η0′, 0), then u belongs to Hs+1/2 on (γ−ε
µ ∩

Γ̄0) ∪ {ρ0}. If u belongs to Hs+1 on {γ−ε
λ+2µ; 0 < −εt < δ0}, then u belongs

to Hs+1/2 on {γ−ε
λ+2µ; 0 < −εt < δ1}, where {γ−ε

λ+2µ; δ0 < −εt < δ1} is

contained in (Σ(0)
b,ρ ∪ Σ1

b,ρ ∪ Σ2,+
b,ρ ) ∩ Γ̄0.

Proof. From the theorems proved in Section 3, 4, 5, 6 and 8, the argument
to verify Theorem 2.44 of [12], which is stated in the middle part of p.153
in [12] we can get the following: In the case of the statement i) if u does
not belong to Hs+α at ρ0, then we can construct a generalized bicharacter-
istic γµ such that γµ(0) = ρ0 and u does not belong to Hs+α at all points
in {γµ(t); |t| < δ}. In the case of the statement ii) if u belongs to Hs+1

on γε
µ ∩ Γ̄0 and u does not belong to Hs+1/2 at ρ0, then we can construct
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a generalized bicharacteristic γε
λ+2µ such that γε

λ+2µ(0) = ρ0 and u does not
belong to Hs+1/2 at all points in {γε

λ+2µ(t); 0 < ε < δ}. Thus if we use The-
orem 3.1 for Σ0

b,ρ, Theorem 4.5 for Σ1
b,ρ, and Theorem 6.5 and Theorem 6.6

for Σ2,−
b,ρ , we have the desired properties. The proof is completed. ¤

We remark on the condition A and condition B. Let us come back to
the original problem (1) and (2). Then null bicharacteristic strips of ξ20 −
ρ(ξ21 + · · ·+ ξ2n) are lines. Thus we can state the following simple condition
on ∂Ω of satisfying the condition A or condition B. We assume that 0 ∈ ∂Ω.
We say that Ω is locally convex near 0, if there exists a neighbourhood U0

of 0 such that for all x ∈ U0 ∩ ∂Ω Hx ∩ U0 ⊂ Ω̄, where Hx is the tangential
plane of ∂Ω through x. If for all x ∈ U0 ∩ ∂Ω Hx ∩ U0 ⊂ Ω̄c, then we say
that Ω is locally concave near 0. Then we have the following

Lemma 9.8 If Ω is locally convex near 0, then the condition B holds for
all (0, η0′) ∈ Σ(2)

b,ρ . If Ω is locally concave near 0, then the condition A holds

for all (0, η0′) ∈ Σ(2)
b,ρ .

Finally we remark that Remark 6.7 stated in the last part of Section 6 is
valid for Theorem 9.5 and Theorem 9.7.
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