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On the ÃLojasiewicz exponent

Zbigniew Jelonek

(Received November 18, 2004)

Abstract. Let K be an algebraically closed field and let X ⊂ Kl be an n-dimensional

affine variety of degree D. We give a sharp estimation of the degree of the set of non-

properness for generically-finite separable and dominant mapping f = (f1, . . . , fn) : X →
Kn. We show that such a mapping must be finite, provided it has a sufficiently large geo-

metric degree. Moreover, we estimate the ÃLojasiewicz exponent at infinity of a polynomial

mapping f : X → Km with a finite number of zeroes.
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1. Introduction

Let K be an algebraically closed field and let X ⊂ Kl be an affine
n-dimensional variety over K. Let f : X → Kn be a generically-finite dom-
inant polynomial mapping. We say that f is finite at a point y ∈ Kn, if
there exists a Zariski open neighborhood U of y such that the mapping
resf−1(U) f : f−1(U) → U is finite.

The set Sf of points at which the mapping f is not finite, plays a fun-
damental role in the study of generically-finite morphisms of affine varieties
(see [3], [4]). We say that the set Sf is the set of non-properness of the
mapping f . In the first part of this paper we study the set Sf . Assume that
X is of degree D, and f = (f1, . . . , fn) : X → Kn is a generically-finite sep-
arable and dominant mapping. We show that the set Sf is a hypersurface
and

degSf ≤ D(
∏n

i=1 deg fi)− µ(f)
min1≤i≤n deg fi

,

where µ(f) is the geometric degree of f . We show also that this estimation
is sharp. Moreover, we prove that such a mapping must be finite provided
it has a sufficiently large geometric degree.

Now assume that f = (f1, . . . , fm) : X → Km is a polynomial mapping
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with a finite set (possibly empty) of zeroes. Assume that deg fi = di and
d1 ≥ d2 ≥ · · · ≥ dm. Let | · |v be any non-trivial absolute value on the field
K and for a = (a1, . . . , am) ∈ Km define ‖a‖v = maxm

i=1 |ai|v. Recall that
the ÃLojasiewicz exponent e(f) of the mapping f at infinity is the number:

e(f) = sup{a : there is a constant C > 0:

‖f(x)‖v > C‖x‖a
v, for x ∈ X and ‖x‖v À 0}.

For X = Cn with the Euclidean norm, the estimation of the ÃLojasiewicz
exponent has been done in [1], [6], [2]. For a sequence d1 ≥ d2 ≥ · · · ≥
dm > 0, put N(d1, . . . , dm;n) =

∏m
i=1 di for m ≤ n, N(d1, . . . , dm;n) =

(
∏n−1

i=1 di)dm for m > n > 1 and N(d1, . . . , dm;n) = dm for m > n = 1.
They have proved that if f = (f1, . . . , fm) has only finitely many zeros on
Cn, then:

e(f) ≥ dm −N(d1, . . . , dm;n) +
∑

f(a)=0

µa(f),

where µa(f) stands for the local multiplicity of the mapping f at a point
a ∈ Cn (see Definition 5.3). We generalize this result (using a quite different
method) on every affine variety X ⊂ Cl and every non-trivial absolute value
| · |v. We show that, if X ⊂ Cl is an affine n-dimensional variety of degree
D and f = (f1, . . . , fm) has only finitely many zeros on X, then we have

e(f) ≥ dm −DN(d1, . . . , dm;n) +
∑

f(a)=0

µa(f),

and this estimation is sharp. Here µa(f) stands for the local multiplicity
of the mapping f |X at a point a (see Definition 5.3). In particular our
result (Theorem 5.6) generalizes Proposition 1.10 from [6] and Theorem 7.3
from [2]. Moreover, in the general case (of arbitrary field K) we prove
(Theorem 5.2) that:

e(f) ≥ dm −DN(d1, . . . , dm;n) + ν,

where ν is the number of zeroes of f . We use here the methods from our
recent paper [5]. We include proofs of most results which we use and thus
our exposition is self-contained.
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2. Terminology

We assume that K is an algebraically closed field. If X ⊂ Kl is an affine
variety of codimension k, then by deg X we mean the number of common
points of X and sufficiently general linear subspace M of dimension k. In
particular if X = Kl, then deg X = 1.

If X ⊂ Kl is an affine variety and g ∈ K[X] is a regular function, then
we put

deg g = min{degG : G ∈ K[x1, . . . , xl] and G|X = g}.
If f : X → Y is a polynomial generically-finite mapping of affine va-

rieties, then we define the geometric degree of f , denoted µ(f), to be the
number [K(X) : f∗K(Y )]. If the mapping f is separable, then it is well-
known that the µ(f) is equal to the number of points in a generic fiber of
f .

3. Perron Theorem

We start with the following important Generalized Perron Theorem (see
[5] and [10]).

Theorem 3.1 (Generalized Perron Theorem) Let L be a field and let
X ⊂ Lk be an affine variety of dimension n and of degree D. Assume that
Q1, . . . , Qn+1 ∈ L[X] are non-constant regular functions with degQi = di.
If the mapping Q = (Q1, . . . , Qn+1) : X → Ln+1 is generically finite, then
there exists a non-zero polynomial W (T1, . . . , Tn+1) ∈ L[T1, . . . , Tn+1] such
that
a) W (Q1, . . . , Qn+1) = 0 on X,
b) degW (T d1

1 , T d2
2 , . . . , Tn+1

dn+1) ≤ D
∏n+1

j=1 dj.

Proof. We sketch the proof. Without loss of generality we can assume that
the field L is algebraically closed. Let X̃ = {(x, w) ∈ X × Ln+1 : Qi(x) =
wdi

i +wi} (if di = 1 we takeQi(x) = wi). LetW be an irreducible polynomial
such that W (Q1, . . . , Qn+1) = 0 and take P (T1, . . . , Tn+1) = W (T d1

1 +
T1, . . . , T

dn+1

n+1 + Tn+1). Let Y = {w ∈ Ln+1 : P (w) = 0}.
Since the polynomial W is reduced it is not difficult to check that the

polynomial P is also reduced. In particular we have deg Y = degP . The
sets X̃, Y are affine sets of pure dimension n. Now consider the mapping
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π : X̃ 3 (x, w) → w ∈ Y.
It is easy to see that π is a dominant generically finite mapping. Conse-
quently

deg π deg Y ≤ deg X̃.

By the Bezout Theorem we have deg X̃ ≤ D
∏n+1

j=1 dj . This finishes the
proof. ¤

4. The set Sf for polynomial mappings

Let K be an algebraically closed field and let X, Y be affine varieties
over K. Recall the following (see [3], [4]):

Definition 4.1 Let f : X → Y be a generically-finite dominant polyno-
mial mapping of affine varieties. We say that f is finite at a point y ∈ Y ,
if there exists a Zariski open neighborhood U of y such that the mapping
resf−1(U) f : f−1(U) → U is finite.

It is well-known that the set Sf of points at which the mapping f is not
finite, is either empty or it is a hypersurface (see [3], [4] and Theorem 4.2).
We say that the set Sf is the set of non-properness of the mapping f .

Let X ⊂ Kl be an affine variety of dimension n. In this section we give a
sharp estimation of the degree of the hypersurface Sf for a generically-finite
separable and dominant polynomial mapping f = (f1, . . . , fn) : X → Kn.
As a corollary, we show that if the geometric degree µ(f) of the mapping
f is sufficiently large (relatively to the degree of X and the degrees of
polynomials fj), then the mapping f must be finite.

First we recall our result about the set Sf (see [3], [4]). Let X be an
affine n-dimensional variety and let f : X → Kn be a dominant, generically-
finite polynomial mapping. We have:

Theorem 4.2 Let f : X → Kn be a dominant generically finite polyno-
mial map and let k(f1, . . . , fn) ⊂ K(X) be the induced field extension. Let
K[X] = K[g1, . . . , gr] and

tni +
ni∑

k=1

ai
k(f)tni−k = 0,
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where the ai
k ∈ K(f1, . . . , fn) are rational functions, be the minimal equa-

tion of gi over K(f1, . . . , fn). Let S denote the union of poles of all func-
tions ai

k. Then f is finite at a point y if and only if y ∈ Kn \ S.

Proof. ⇒ It is enough to prove that the mapping

f : X \ f−1(S) → Kn \ S
is finite. If S is the empty set, then K[f1, . . . , fn] ⊂ K[g1, . . . , gr] is an
integral extension and the mapping f is finite. Otherwise S, and hence
f−1(S) is a hypersurface. Let S = {x : A(x) = 0} for some polynomial
A. Let V = X \ f−1(S) and let W = Kn \ S. Then V, W are affine
varieties and K[V ] = K[g1, . . . , gr][(A(f)−1], K[W ] = K[x1, . . . , xn][A−1].
Hence f∗K[W ] = K[f1, . . . , fn][(A(f)−1]. Since all functions ai

k are regular
in W we conclude that elements gi are integral over f∗K[W ]. Of course
a polynomial A(f)−1 is also integral, and we get the integral extension
f∗K[W ] ⊂ K[V ].

⇐ The following lemma is well-known:

Lemma 4.3 Let A, B be integral domains, B = A[g1, . . . , gn] such that
the quotient field B0 (of B) is finite field extension of the quotient field A0

(of A). Assume that A is a normal ring.
The ring B is a finite A-module if and only if the following condition

holds: if Pi ∈ A0[t] is the minimal monic polynomial of gi over A0, then
Pi ∈ A[t], i = 1, . . . , n.

Now let f be finite over x ∈ Kn. It means that there is a affine neigh-
borhood U of y such that the mapping resf−1(U) f : f−1(U) → U is finite.
Of course, we can assume that U = Kn \ {x : A(x) = 0}, where A is a poly-
nomial. By the assumption, the ring K[f−1(U)] = K[g1, . . . , gr][(A(f)−1]
is integral over the ring f∗K[U ] = K[f1, . . . , fn][(A(f)−1]. By Lemma 4.3
we have, that the coefficients ai

k(f) of polynomials

tni +
ni∑

k=1

ai
k(f)tni−k, i = 1, . . . , m

belong to the ring K[f1, . . . , fn][(A(f))−1]. Hence

ai
k ∈ K[x1, . . . , xn][(A(x))−1]

and consequently they are regular in U . Thus U ⊂ Kn \ S. ¤
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Corollary 4.4 Let X be an affine n-dimensional variety and let f =
(f1, . . . , fn) : X → Kn be a generically finite mapping. Let S be a set of
non-properness of the mapping f . Then for every polynomial G ∈ K[X], if
WG(T1, . . . , Tn, t) =

∑s
i=0 ai(T )ts−i ∈ K[T, t] is irreducible and

WG(f1, . . . , fn, G) = 0,

then

{T : a0(T ) = 0} ⊂ S.

Proof. Observe that the mapping f : X \f−1(S) → Kn \S, is finite. More-
over, K[Kn \ S] = K[x1, . . . , xn]h, where h is the reduced equation of S.
Now Corollary 4.4 follows directly from Lemma 4.3 ¤

Corollary 4.5 Let X ⊂ Kl be an affine n−dimensional variety and let
f : X → Kn be a dominant generically finite and separable polynomial map-
ping. Assume that p ∈ K[x1, . . . , xl] and that

Pp(f, p) :=
µ∑

k=0

ak(f)pµ−k = 0,

(where ak(T ) ∈ K[T1, . . . , Tn]) is the minimal irreducible equation of p over
K[f1, . . . , fn]. Then there is a linear form p, such that
a) µ = µ(f),
b) Sf = {T ∈ Kn : a0(T ) = 0}.

Proof. For t ∈ K let αt =
∑l

i=0 t
ixi. Let St denote the set of poles of coef-

ficients of the minimal equation of αt over K(f1, . . . , fn). By Theorem 4.2
we have St ⊂ Sf . Since the hypersurface Sf has only finite number of irre-
ducible components, we have (by the Dirichlet box principle) that there is
an infinite subset T ⊂ K, such that if t, t′ ∈ T then St = St′ .

Since the extension K(f) ⊂ K(X) is separable, we have that there are
a finite number of fields between K(f) and K(X). In particular, we can
assume that for t, t′ ∈ T we have K(f)(αt) = K(f)(αt′).

Take t1, . . . , tl ∈ T , where ti 6= tj for i 6= j. It is easy to check that
linear forms αti , i = 1, . . . , l generates the algebra K[X]. By Theorem 4.2,
we have Sf =

⋃l
j=1 Stj . Since Sti = Stj we have in fact that Sf = Sti .

Moreover, since K(f)(αt) = K(f)(αt′) for t ∈ T , we obtain that K(f)(αt) =
K(X). In particular if we take p = αt (where t ∈ T ), we have µ = µ(f) and
Sf = {T ∈ Kn : a0(T ) = 0}. ¤
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The following result gives a (sharp) estimation of the degree of the set
Sf :

Theorem 4.6 Let X ⊂ Kl be an affine n-dimensional variety of degree
D and let f = (f1, . . . , fn) : X → Kn be a generically finite dominant and
separable mapping. Then the set Sf of non-properness of the mapping f is
a hypersurface (or the empty set) and

degSf ≤ D(
∏n

i=1 deg fi)− µ(f)
min1≤i≤n deg fi

,

where µ(f) is the geometric degree of f .

Proof. Let p be a linear form as in Corollary 4.5. Consider the mapping

Φ: X 3 x→ (f1(x), . . . , fn(x), p(x)) ∈ Kn+1.

Let deg fi = di. By the Generalized Perron Theorem (Theorem 3.1) there
exists a non-zero polynomial W (T1, . . . , Tn, Y ) ∈ K[T1, . . . , Tn, Y ] such
that
a) W (f1, . . . , fn, p) = 0 on X,
b) degW (T d1

1 , T d2
2 , . . . , T dn

n , Y ) ≤ D
∏n

j=1 dj .
Let

Pp =
µ∑

k=0

ak(f)pµ−k = 0,

where the ak ∈ K[f1, . . . , fn], be the minimal irreducible equation of p over
K[f1, . . . , fn]. By the minimality of Pp we have

Pp(T, Y )|W (T, Y ),

in particular degPp(T d1
1 , T d2

2 , . . . , Tn
dn , Y ) ≤ D

∏n
j=1 dj . Thus

deg a0(T d1
1 , T d2

2 , . . . , Tn
dn)Y µ(f) ≤ D

n∏

j=1

dj .

This means that

deg a0(T d1
1 , T d2

2 , . . . , Tn
dn) ≤ D

n∏

j=1

dj − µ(f).

Clearly deg a0(T d1
1 , T d2

2 , . . . , Tn
dn)≥ (min1≤i≤n di)(deg a0). Finally by Cor-
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ollary 4.5 we have

degSf ≤ D(
∏n

i=1 deg fi)− µ(f)
min1≤i≤n deg fi

.

¤

Corollary 4.7 Let X ⊂ Kl be an affine n-dimensional variety of degree
D and let f = (f1, . . . , fn) : X → Kn be a generically finite, separable and
dominant mapping. If

µ(f) > D
( n∏

i=1

deg fi

)
− min

1≤i≤n
deg fi,

then the mapping f is finite.

Example 4.8 Let n ≥ 2 and set Γn = {(x1, . . . , xn) ∈ Kn :
∏n

i=1 xi = 1}.
Take f : Γn 3 (x1, . . . , xn) → (x1, . . . , xn−1) ∈ Kn−1. It is easy to see that

deg Γn = n and Sf =
n−1⋃

i=1

{x : xi = 0}.

Thus deg Sf = n− 1. On the other hand deg fi = 1 and µ(f) = 1. Hence

D
( n∏

i=1

deg fi

)
− µ(f) = n− 1 = degSf .

This means that our estimation is sharp.

5. On the ÃLojasiewicz exponent

We begin with the folowing important fact (see also [5]):

Theorem 5.1 Let K be an algebraically closed field and take m ≤ n. Let
f1, . . . , fm ∈ K[x1, . . . , xl] be polynomials with deg fi = di and let X ⊂ Kl

be an affine algebraic n-dimensional variety of degree D. Assume that the
set V (f1, . . . , fm) ∩X is finite. If we take a sufficiently general system of
coordinates (x1, . . . , xl), then there exist polynomials gij ∈ K[x1, . . . , xl]
and non-zero polynomials φi(xi) ∈ K[xi], such that
a) deg gijfj ≤ DN(d1, . . . , dm;n),
b) φi(xi) =

∑m
j=1 gijfj for every i = 1, . . . , l (on X).
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Proof. Let V (f1, . . . , fm) = {a1, . . . , ar}. The mapping

Φ: X ×K 3 (x, z) → (x, f1(x)z, . . . , fm(x)z) ∈ Kl ×Km

is a (non-closed) embedding outside the set {a1, . . . , ar} × K. Take Γ =
cl(Φ(X × K)). Let s = l + m and π : Γ → Kn+1 be a generic projection of
the form

π : X 3 (x1, . . . , xs)→
( s∑

j=1

a1jxj ,
s∑

j=2

a2jxj , . . . ,
s∑

j=n

anjxj

)
∈Kn.

Hence π is a finite mapping. Define Ψ := π ◦ Φ(x, z). We have

Ψ =
( m∑

j=1

γ1jfjz + l1(x), . . . ,
m∑

j=n

γnjfjz + ln(x), ln+1(x)
)

:=
(
Ψ1(x, z), . . . , Ψn+1(x, z)

)
,

where l1, . . . , ln+1 are generic linear forms. In particular we can assume
that ln+1 is a variable x1 in a generic system of coordinates.

Apply the Generalized Perron Theorem to L = K(z), polynomials
Ψ1, . . . , Ψn+1 ∈ L[x] and to the variety X considered over L. Thus there
exists a non-zero polynomial W (T1, . . . , Tn+1) ∈ L[T1, . . . , Tn+1] such that
W (Ψ1, . . . , Ψn+1) = 0 on X, and

degW (T d1
1 , T d2

2 , . . . , Tn+1
dn+1) ≤ D

n∏

j=1

dj .

Since coefficients of a polynomial W are in K(z), we obtain that there is a
non-zero polynomial W̃ ∈ K[T1, . . . , Tn+1, Y ], such that
a) W̃ (Ψ1(x, z), . . . , Ψn+1(x, z), z) = 0,
b) degT W̃ (T d1

1 , T d2
2 , . . . , Tn+1

dn+1 , Y ) ≤ D
∏n

j=1 dj , where degT denotes
the degree with respect to variables T = (T1, . . . , Tn+1).

Note that the mapping Ψ = (Ψ1, . . . , Ψn+1) : X × K → Kn+1 is finite
outside the set

⋃r
j=1{T ∈ Kn : Tn+1 = aj1}, where aj1 is the first coordinate

of aj (recall that we consider a generic system of coordinates in which x1 =
ln+1!). In particular the set of non-properness of the mapping Ψ is contained
in the hypersurface S = {T ∈ Kn+1 :

∏r
j=1(Tn+1 − aj1) = 0}.

Since the mapping Ψ = (Ψ1, . . . , Ψn+1) : X × K → Kn+1 is finite out-
side S, for every polynomial G ∈ K[x1, . . . , xn, z] there is a minimal poly-
nomial PG(T, Y ) ∈ K[T1, . . . , Tn+1][Y ], such that PG(Ψ1, . . . , Ψn+1, G) =
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∑s
i=0 bi(Ψ1, . . . , Ψn+1)Gs−i = 0 and the coefficient b0 satisfies {T : b0(T ) =

0} ⊂ S (see Corollary 4.4).
Take here G = z. By the minimality of Pz, we have

Pz(T, Y )|W̃ (T, Y ),

in particular degT Pz(T d1
1 , T d2

2 , . . . , Tn+1
dn+1 , z) ≤ D

∏n
j=1 dj . Let N be

the degree of Pz with respect to Y . Add all terms of the form zNQ(x)
which occur in the expression Pz(Ψ1, . . . , Ψn+1, z). It is easy to see that Q
must be either equal to b0(x1) or must be of a form fs1

1 · · · fsn
n P (x), where∑

si > 0 and deg fs1
1 · · · fsn

n P (x) ≤ D
∏n

j=1 dj . Thus we have the equality
b0(x1) +

∑
figi = 0, where deg figi ≤ D

∏n
j=1 dj . Take φ1 = b0. By the

construction the polynomial φ1 has zeroes only in a11, . . . , ar1.
Further, since the form ln+1 was generic, we can find n forms of this

type which are linearly independent. Hence in a similar way as above we
can construct polynomials φi(xi), i = 2, . . . , l as in b). ¤

Now we are in a position to prove:

Theorem 5.2 Let K be an algebraically closed field with a non-trivial ab-
solute value |−|v : K→ R. Let X ⊂ Kl be an affine n-dimensional variety of
degree D. Assume that f1, . . . , fm ∈ K[x1, . . . , xl] have only finite number
ν (possibly ν = 0) of zeros on X. Let di = deg fi (where d1 ≥ d2 ≥ · · · ≥
dm > 0). Put f = (f1, . . . , fm). Then there is a constant C > 0, such that
for x ∈ X

‖f(x)‖v ≥ C‖x‖dm−DN(d1, ..., dm;n)+ν
v ,

if ‖x‖v is sufficiently large.

Proof. Take a general linear combination:

F1 = f1, Fi =
m∑

j=i

γijfj , i = 2, . . . , n, (or F1 = fm for n = 1).

Since the number of zeroes of F1, . . . , Fn is finite and greater or equal to
ν, we can assume that m ≤ n. We can also assume that fi = Fi. Now
Theorem 5.2 is a consequence of the Elimination Theorem (Theorem 5.1).
Indeed, we can assume that the system of coordinates is sufficiently generic
and there exist polynomials gij ∈ K[x1, . . . , xl] and polynomials φi(xi) ∈
K[xi], such that
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a) deg gijfj ≤ DN(d1, . . . , dm;n),
b) φi(xi) =

∑m
j=1 gijfj ,

Observe that we have deg φi ≥ ν (we can assume that all zeroes of f1, . . . , fn

have all different coordinates!). Further, if G(x1, . . . , xl) ∈ K[x1, . . . , xl] is
a polynomial of degree at most d, then

|G(x)|v < C‖x‖d
v

for large ‖x‖v. On the other hand if φ(t) is a polynomial of one variable t
of degree at least ν, then |φ(t)|v > C ′|t|νv for large |t|v. In particular from
b) we get

A‖x‖DN(d1, ..., dm;n)−dm
v ‖f(x)‖ > B‖x‖ν

v

and consequently

‖f(x)‖v ≥ C‖x‖dm−DN(d1, ..., dm;n)+ν
v ,

for ‖x‖v sufficiently large. ¤

Now we can prove our main result. First we introduce the notion of a
local multiplicity:

Definition 5.3 Let X ⊂ Cl be an affine variety and let f : X → Cm be
a polynomial mapping. Assume that the fiber f−1(0) is finite and non-
empty and let a ∈ f−1(0). Let Y = cl(f(X)) and let Y0 =

⋃l
j=1 Yj be a

decomposition of the analytic germ of Y at 0 into irreducible components.
We define the local multiplicity of the mapping f at the point a, denoted
µa(f), to be the number of points in U ∩ (

⋃l
j=1 f

−1(yj)), where U is a
sufficiently small neighborhood of a (in the classical topology) and yj ∈ Yj

are sufficiently general points.

Remark 5.4 If m = dimX, then µa(f) is the standard multiplicity, see
e.g., [9].

We need also the following:

Lemma 5.5 Let ∆ ⊂ Cl be a polydisc and let Y ⊂ ∆ be an analytic set of
pure dimension n. Let Fk : Y → Cn, k = 1, 2, . . . be holomorphic mappings
and assume that Fk converges to F almost uniformly on Y . If the fiber
F−1(0) is finite and non-empty, then there exists a number k0 and an open
neighborhood U of 0 and an open neighborhood V of F−1(0) such that all
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mappings

Fk : V ∩ F−1
k (U) → U, k ≥ k0,

are proper. Moreover, we can take V and U as small as we want.

Proof. Let V be a relatively compact neighborhood of F−1(0). Let Ui be
a ball around 0 of radius 1/i. Assume that Lemma does not hold. Then
for every i we find an arbitrary large number ni such that the mapping
Fni : V ∩ F−1

ni
(Ui) → Ui is not proper. Since V is compact, this means that

the set (V \ V )∩F−1
ni

(Ui) is not empty, e.g., it contains a point xi ∈ V \ V .
Hence we have a sequence of points xi ∈ V \V , such that Fni(xi) ∈ Ui. Since
the set V \ V is compact, we can assume that the sequence xi, i = 1, 2, . . .
has a limit x0 in V \ V . Moreover, we can assume that n1 < n2 < n3 < · · ·
Now we have 0 = limFni(xi) = F (x0). Thus x0 ∈ F−1(0). Since x0 6∈ V , it
is a contradiction. ¤

Finally we have our main result:

Theorem 5.6 Let X ⊂ Cl be an affine n-dimensional variety of degree D.
Let |−|v : C→ R be a non-trivial absolute value. Assume that f1, . . . , fm ∈
C[x1, . . . , xl] have only finite set (possibly empty) of zeros on X. Let di =
deg fi (where d1 ≥ d2 ≥ · · · ≥ dm > 0) and put f = (f1, . . . , fm). Then
there is a constant C > 0, such that for x ∈ X

‖f(x)‖v ≥ C‖x‖v
dm−DN(d1, ..., dm;n)+

P
f(a)=0 µa(f),

if ‖x‖v is sufficiently large.

Proof. Taking a general linear combination as before, it is not difficult to
check that we can assume m ≤ n. If m < n, then V (f1, . . . , fm) = ∅ and
Theorem 5.6 follows directly from Theorem 5.2. Hence we can assume that
m = n and V (f1, . . . , fn) 6= ∅.

Arguing as in the proof of Theorem 5.2, we see that it is enough to
prove that deg φi ≥

∑
f(a)=0 µa(f) (the notation is as in Theorem 5.2). Let

V (f1, . . . , fn) = {a1, . . . , ar} and let ai = (ai1, . . . , ail).
Consider polynomials φi as in Theorem 5.1. Take φ1 = φ. From the

proof of Theorem 5.1 we have the equality:

φ(x1)zs +
s∑

j=1

aj

( n∑

j=1

γ1jfjz + l1(x), . . . ,



On the ÃLojasiewicz exponent 483

n∑

j=n

γnjfjz + ln(x), x1

)
zs−j = 0, (5.1)

where aj ∈ K[T1, . . . , Tn+1]. In particular

φ(x1) =−
( s∑

j=1

aj(F1(x)z+ l1(x), . . . , Fn(x)z+ ln(x), x1)z−j
)
,(5.2)

where Fi =
∑n

j=i γijfj . Take aj(T ) = aj(T1, . . . , Tn+1)−aj(0, . . . , 0, Tn+1)
and ψ(x1, z) =

∑s
j=1 aj(0, . . . , 0, x1)zs−j . We have

φ(x1) +
ψ(x1, z)

zs
= −

( s∑

j=1

aj(F1(x)z + l1(x), . . . ,

Fn(x)z + ln(x), x1)z−j
)
, (5.3)

where aj(0, . . . , 0, x1) ≡ 0 and ψ(x1, z)/zs tends to 0 almost uniformly,
when |z| tends to the infinity.

Let zi → ∞. From the proof of Theorem 5.1 it follows that we can
modify the linear forms li by adding any constant ci i.e., without any change
we can consider li + ci as a new li. Take c = (c1, . . . , cn) in this way that
c is a regular value of every mapping Fzk

= zk(F1 + l1/zk, . . . , Fn + ln/zk).
Such a c does exist, because a countable union of hypersurfaces in Cn is a
nowhere dense subset of Cn. Now change li by li + ci. Thus for every k we
have that Fzk

have only smooth simple zeroes.
Let ∆(a1, r) be a polydisc around the point a1 such that the point a1

is the unique zero of the mapping F = (F1, . . . , Fn) in ∆(a1, r). Take Fk =
Fzk

/zk and use Lemma 5.5 to the sequence Fk and Y = X ∩∆(a, r). Hence
we have a neighborhood V of a1 and a neighborhood U of 0, such that
Fk : V ∩ F−1

k (U) → U are proper mappings. We can assume that V is so
small that ](V ∩F−1(c)) = µa1(F ) = µa1(f) for generic small c ∈ U . In fact
we can choose c ∈ U such that the fiber F−1(c) consists of smooth points of
X and ](V ∩F−1(c)) = µa1(F ) and ](V ∩F−1

k (c)) = ](V ∩F−1
k (0)) for large

k (note that Fk has only smooth simple zeroes). Let G ⊂ V ∩ (X \Sing(X))
be a small open neighborhood of F−1(c). By the Rouche Theorem for large
k mappings Fk − c and F − c have the same number of zeroes in G. This
means that Fk has at least µa1(F ) = µa1(f) different zeroes in V . Since
Fzk

= zkFk, we have that Fzk
also have at least µa1(f) different zeroes in
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V .
Let π : Cm 3 (x1, . . . , xm) → x1 ∈ C be a projection. Let S be a small

disc around a11 which contains π(V ). Note that for |z| À 0, we have by the
Rouche Theorem that the polynomial φ(x1) has in S the same number of
zeroes (equal to µa11(φ)) as the polynomial φ(x1) + ψ(x1, z)/zs.

Since the coordinates are generic, we have by (5.3), that for a large k
a polynomial φ(x1) +ψ(x1, zk)/zs

k has at least µa1(f) different zeroes in S.
Thus µa11(φ) ≥ µa1(f). In the same way we have that φ has multiplicity
µai1(φ) ≥ µai(f) at every point ai1. Thus deg φ ≥ ∑

f(a)=0 µa(f). Similarly
deg φi ≥

∑
f(a)=0 µa(f) for every i. ¤

Example 5.7 We show that Theorem 5.6 is sharp, i.e., for every D, d1, . . .,
dm (where d1 ≥ d2 · · · ≥ dm > 0), there exists an n-dimensional affine vari-
ety X ⊂ Kl of degree D and polynomials fi ∈ K[X] of degrees d1, . . . , dm

such that e((f1, . . . , fm)) = dm−DN(d1, . . . , dm;n)+
∑

f(a)=0 µa(f). More-
over, we show this for mappings with non-empty fiber f−1(0) as well as for
mappings with empty fiber f−1(0).
a) First we consider the case f−1(0) 6= ∅. Then m ≥ n. Take X =

{x ∈ Cn+1 :
∑n

i=1 aixi = xD
n+1}, where ai ∈ C are sufficiently general

numbers. Let

f : X 3 (x1, . . . , xn, xn+1) →
(
xd1

1 − 1, . . . , xn−1
dn−1 − 1,

(xdm
n − 1)xdn−dm

n , . . . , (xdm
n − 1)xdm−1−dm

n , xdm
n − 1

)
∈ Cm.

It is easy to see that DN(d1, . . . , dm;n) =
∑

f(a)=0 µa(f) and conse-
quently

e(f) = dm = dm −DN(d1, . . . , dm;n) +
∑

f(a)=0

µa(f).

(we left details to the reader).
b) Now we consider the case f−1(0) = ∅. We modify Kollár’s Exam-

ple 2.3 from [6]. Take X = {x ∈ Cn+1 : xnx
D−1
n+1 = 1}. For m ≤

s ≤ n set fs = xds
1 . Further take fn−1 = x1x

dn−1−1
n+1 − x

dn−1

2 , fn−2 =
x2x

d2−1
n+1 − xd2

3 , . . . , f1 = xn−1x
d1−1
n+1 − xd1

n . Clearly deg fi = di. Put
f = (f1, . . . , fm). It is easy to check that f−1(0) = ∅ and

e(f) = dm −DN(d1, . . . , dm;n)
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(we left details to the reader).
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