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On the Lojasiewicz exponent

Zbigniew JELONEK

(Received November 18, 2004)

Abstract. Let K be an algebraically closed field and let X C K! be an n-dimensional
affine variety of degree D. We give a sharp estimation of the degree of the set of non-
properness for generically-finite separable and dominant mapping f = (f1, ..., fn): X —
K"™. We show that such a mapping must be finite, provided it has a sufficiently large geo-
metric degree. Moreover, we estimate the Lojasiewicz exponent at infinity of a polynomial
mapping f: X — K™ with a finite number of zeroes.
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1. Introduction

Let K be an algebraically closed field and let X C K! be an affine
n-dimensional variety over K. Let f: X — K" be a generically-finite dom-
inant polynomial mapping. We say that f is finite at a point y € K", if
there exists a Zariski open neighborhood U of y such that the mapping
resy—1(y) f1 f71(U) — U is finite.

The set Sy of points at which the mapping f is not finite, plays a fun-
damental role in the study of generically-finite morphisms of affine varieties
(see [3], [4]). We say that the set Sy is the set of non-properness of the
mapping f. In the first part of this paper we study the set Sy. Assume that
X is of degree D, and f = (f1, ..., fn): X — K" is a generically-finite sep-
arable and dominant mapping. We show that the set Sy is a hypersurface
and

D(ITi, deg fi) — u(f)

deg S¢ < -
o= ming <;<, deg f;

where p(f) is the geometric degree of f. We show also that this estimation
is sharp. Moreover, we prove that such a mapping must be finite provided
it has a sufficiently large geometric degree.

Now assume that f = (f1, ..., fm): X — K™ is a polynomial mapping
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with a finite set (possibly empty) of zeroes. Assume that deg f; = d; and
dy >dg > -+ >dy. Let | - |, be any non-trivial absolute value on the field
K and for a = (ay, ..., an) € K™ define |lal|, = max!", |a;|,. Recall that
the Lojasiewicz exponent e(f) of the mapping f at infinity is the number:

e(f) = sup{a: there is a constant C' > 0:
1f @l > Cllalls, for = € X and [jally > 0},

For X = C™ with the Euclidean norm, the estimation of the Lojasiewicz
exponent has been done in [1], [6], [2]. For a sequence dy > dy > --- >
dm > 0, put N(di, ..., dm;n) = [[12,di for m < n, N(di, ..., dn;n) =
(I di)dy, for m > n > 1 and N(dy, ..., dm;n) = dpy, for m > n = 1.

They have proved that if f = (f1, ..., fm) has only finitely many zeros on
C™, then:
e(f) > dp = N(dr, .., din) + Y palf),
f(a)=0

where p,(f) stands for the local multiplicity of the mapping f at a point
a € C™ (see Definition 5.3). We generalize this result (using a quite different
method) on every affine variety X C C! and every non-trivial absolute value
| - |,. We show that, if X ¢ C' is an affine n-dimensional variety of degree

D and f = (f1, ..., fm) has only finitely many zeros on X, then we have
e(f) > dm — DN(dy, ..., dmin) + Y ptalf),
f(a)=0

and this estimation is sharp. Here pq(f) stands for the local multiplicity
of the mapping f|x at a point a (see Definition 5.3). In particular our
result (Theorem 5.6) generalizes Proposition 1.10 from [6] and Theorem 7.3
from [2]. Moreover, in the general case (of arbitrary field K) we prove
(Theorem 5.2) that:

e(f)zdm_DN(dh?dman)—i_Va

where v is the number of zeroes of f. We use here the methods from our
recent paper [5]. We include proofs of most results which we use and thus
our exposition is self-contained.
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2. Terminology

We assume that K is an algebraically closed field. If X C K! is an affine
variety of codimension k, then by deg X we mean the number of common
points of X and sufficiently general linear subspace M of dimension k. In
particular if X = K!, then deg X = 1.

If X ¢ K!is an affine variety and g € K[X] is a regular function, then
we put

degg = min{degG: G € K[x1, ..., 7] and G|x = g}.

If f: X — Y is a polynomial generically-finite mapping of affine va-
rieties, then we define the geometric degree of f, denoted u(f), to be the
number [K(X): f*K(Y)]. If the mapping f is separable, then it is well-
known that the p(f) is equal to the number of points in a generic fiber of

f.

3. Perron Theorem

We start with the following important Generalized Perron Theorem (see
[5] and [10]).

Theorem 3.1 (Generalized Perron Theorem) Let L be a field and let
X C ¥ be an affine variety of dimension n and of degree D. Assume that
Q1, .., Quni1 € L[X] are non-constant regular functions with deg Q; = d;.
If the mapping Q = (Q1, ..., Qni1): X — L1 is generically finite, then
there exists a non-zero polynomial W (T, ..., Th41) € L[Th, ..., Thi1] such
that

8) W(Q1, ..., Qui1) =0 on X,

b) degW(T{*, T52, ..., Tpp®+') < D[} d;.

Proof. We sketch the proof. Without loss of generality we can assume that
the field L is algebraically closed. Let X = {(z, w) € X x L"*!: Q;(z) =
wfi—kwi} (if d; = 1 we take Q;(z) = w;). Let W be an irreducible polynomial
such that W(Q1, ..., Qnt+1) = 0 and take P(Ty, ..., Thy1) = I/V(Tld1 +
Ty, ..., T 4 Tpiy). Let Y = {w € L™: P(w) = 0}.

Since the polynomial W is reduced it is not difficult to check that the
polynomial P is also reduced. In particular we have deg Y = deg P. The

sets X, Y are affine sets of pure dimension n. Now consider the mapping
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X3, w) —weY.

It is easy to see that 7 is a dominant generically finite mapping. Conse-
quently

degmdegY < deg X.
By the Bezout Theorem we have deg X < DH;lel d;. This finishes the

proof. O

4. The set Sy for polynomial mappings

Let K be an algebraically closed field and let X, Y be affine varieties
over K. Recall the following (see [3], [4]):

Definition 4.1 Let f: X — Y be a generically-finite dominant polyno-
mial mapping of affine varieties. We say that f is finite at a point y € Y,
if there exists a Zariski open neighborhood U of y such that the mapping
ves -1y f: f71(U) — U is finite.

It is well-known that the set Sy of points at which the mapping f is not
finite, is either empty or it is a hypersurface (see [3], [4] and Theorem 4.2).
We say that the set Sy is the set of non-properness of the mapping f.

Let X C K be an affine variety of dimension n. In this section we give a
sharp estimation of the degree of the hypersurface Sy for a generically-finite
separable and dominant polynomial mapping f = (f1, ..., fn): X — K™
As a corollary, we show that if the geometric degree p(f) of the mapping
f is sufficiently large (relatively to the degree of X and the degrees of
polynomials f;), then the mapping f must be finite.

First we recall our result about the set Sy (see [3], [4]). Let X be an
affine n-dimensional variety and let f: X — K" be a dominant, generically-
finite polynomial mapping. We have:

Theorem 4.2 Let f: X — K" be a dominant generically finite polyno-
mial map and let k(f1, ..., fn) C K(X) be the induced field extension. Let
K[X] =K]g1, ..., gr] and

n;
£+ Y a (Tt =0,
k=1
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where the a}; € K(f1, ..., fn) are rational functions, be the minimal equa-
tion of g; over K(f1, ..., fn). Let S denote the union of poles of all func-
tions al.. Then f is finite at a point y if and only if y € K\ S.

Proof. = It is enough to prove that the mapping
fr X\ fHS) =K\ S

is finite. If S is the empty set, then K[fi, ..., fu] C Klg1, ..., gr] is an
integral extension and the mapping f is finite. Otherwise S, and hence
f7Y(S) is a hypersurface. Let S = {z: A(z) = 0} for some polynomial
A Let V.= X\ f1(9) and let W = K*\ S. Then V, W are affine
varieties and K[V] = K[g1, ..., ¢-][(A(f)7'], KW] = K[z, ..., z,)[A71].
Hence f,KW]=K][f1, ..., fu][(A(f)"']. Since all functions ai are regular
in W we conclude that elements g; are integral over f.K[W]. Of course
a polynomial A(f)~! is also integral, and we get the integral extension
LK[W] Cc K[V].
< The following lemma is well-known:

Lemma 4.3 Let A, B be integral domains, B = Alg1, ..., gn] such that
the quotient field By (of B) is finite field extension of the quotient field Ay
(of A). Assume that A is a normal ring.

The ring B is a finite A-module if and only if the following condition
holds: if P; € Ap[t] is the minimal monic polynomial of g; over Ay, then
P EA[t],i:1, cee, M.

Now let f be finite over x € K”. It means that there is a affine neigh-
borhood U of y such that the mapping res;—1 () f: f~YU) — U is finite.
Of course, we can assume that U = K"\ {z: A(xz) = 0}, where A is a poly-
nomial. By the assumption, the ring K[f~1(U)] = Kg1, - .-, ¢-][(A(f)™}]
is integral over the ring f.K[U] = K[f1, ..., fa][(A(f)"!]. By Lemma 4.3
we have, that the coefficients a},(f) of polynomials

n;
> ap (T i=1,.,m
k=1

belong to the ring K[f1, ..., fu][(A(f))™!]. Hence
a}; € Klx1, ..., ) [(A(z)) 7Y

and consequently they are regular in U. Thus U C K"\ S. (]
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Corollary 4.4 Let X be an affine n-dimensional variety and let f =
(f1, -+, fn): X — K" be a generically finite mapping. Let S be a set of
non-properness of the mapping f. Then for every polynomial G € K[X], if
Wea(Ty, ..., To, t) =350 _gai(T)t5=" € K[T, t] is irreducible and

WG(fl) ey fna G) - 07
then
{T: ao(T) = 0} C S.

Proof. Observe that the mapping f: X\ f~(S) — K"\ S, is finite. More-
over, K[K™ \ S] = K[z1, ..., @y]n, where h is the reduced equation of S.
Now Corollary 4.4 follows directly from Lemma 4.3 g

Corollary 4.5 Let X C K! be an affine n—dimensional variety and let
f: X — K" be a dominant generically finite and separable polynomial map-
ping. Assume that p € K[z1, ..., x| and that

o
Pp(f7 p) = Zak’(f)py_k = 07
k=0

(where ar(T) € K[T1, ..., Ty]) is the minimal irreducible equation of p over
K[f1, ..., fu]. Then there is a linear form p, such that
a) = p(f),

b) Sy ={T €K": ao(T) = 0}.

Proof. Fort e Klet ay = Zé:o t'z;. Let S; denote the set of poles of coef-
ficients of the minimal equation of oy over K(fi, ..., f,). By Theorem 4.2
we have S; C Sy. Since the hypersurface Sy has only finite number of irre-
ducible components, we have (by the Dirichlet box principle) that there is
an infinite subset 7' C K, such that if ¢, t’ € T then S; = Sy.

Since the extension K(f) C K(X) is separable, we have that there are
a finite number of fields between K(f) and K(X). In particular, we can
assume that for ¢, ' € T we have K(f)(ay) = K(f)(ay).

Take t1, ..., % € T, where t; # t; for © # j. It is easy to check that
linear forms ay,, i =1, ..., [ generates the algebra K[X]. By Theorem 4.2,
we have Sy = ngl St,. Since S, = Si; we have in fact that Sy = 5y,.
Moreover, since K(f)(at) = K(f)(ay) for t € T, we obtain that K(f)(a:) =
K(X). In particular if we take p = oy (where t € T'), we have u = pu(f) and
S ={T € K": ap(T) = 0}. O
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The following result gives a (sharp) estimation of the degree of the set
Sy
Theorem 4.6 Let X C K be an affine n-dimensional variety of degree
D and let f = (f1, ..., fn): X — K" be a generically finite dominant and

separable mapping. Then the set Sy of non-properness of the mapping f is
a hypersurface (or the empty set) and

D(IT;-, deg fi) — u(f)

ming <;<, deg f;

deg Sy <

)

where p(f) is the geometric degree of f.
Proof. Let p be a linear form as in Corollary 4.5. Consider the mapping
©: X 32— (fi(z), ., ful2), p(x)) € K"

Let deg f; = d;. By the Generalized Perron Theorem (Theorem 3.1) there
exists a non-zero polynomial W(T, ..., T,,Y) € K[Ty, ..., T,,, Y] such
that

a) W(f1, ..., fn, p) =0o0n X,

b) degW(T{*, T52, ..., Td, Y) < D}, d;.

Let
o
P =Y an(fpt =0,
k=0
where the a € K[f1, ..., fu], be the minimal irreducible equation of p over
K[f1, ..., fn]. By the minimality of P, we have

PP(T7 Y)’W(T7 Y)7
in particular deg P,(T{", 752, ..., T,%*, Y) < DI[}_, d;. Thus
n
degao(T{*, 152, ..., T,")Y*"V) < D] d;.
j=1

This means that

degao(T™, T2, ..., T,%) < Dde — u(f)-
j=1

Clearly deg ao(Tldl, T2dQ, R Tndn) > (minj<i<n, d;)(degag). Finally by Cor-
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ollary 4.5 we have

D(ITizy deg fi) — n(f).

ming <;<, deg f;

deg Sy <

g

Corollary 4.7 Let X C K! be an affine n-dimensional variety of degree
D andlet f = (f1, ..., fn): X — K" be a generically finite, separable and
dominant mapping. If

u(f) > D(H deg fi) — min deg fi,

i=1

then the mapping f is finite.

Example 4.8 Letn > 2andset ', = {(x1, ..., z,) € K": [[L; 2 = 1}.
Take f: 'y 3 (w1, ..., zn) — (z1, ..., 2p_1) € KP 7L It is easy to see that
n—1
degl'y =n and Sy = U{:p z; =0}
i=1

Thus deg Sy = n — 1. On the other hand deg f; = 1 and pu(f) = 1. Hence

n
D(Hdegfi) —u(f) =n—1=deg$;.
i=1
This means that our estimation is sharp.

5. On the Lojasiewicz exponent
We begin with the folowing important fact (see also [5]):

Theorem 5.1 Let K be an algebraically closed field and take m < n. Let
fis ooy fm €K[z1, ..., 1] be polynomials with deg f; = d; and let X C K
be an affine algebraic n-dimensional variety of degree D. Assume that the
set V(f1, ..., fm) N X is finite. If we take a sufficiently general system of
coordinates (z1, ..., x1), then there exist polynomials g;; € Klzq, ..., x]
and non-zero polynomials ¢;(x;) € K[x;], such that

a) deggijfj < DN(dl, ey dm; TL),

b)  i(zi) = >0, gijfj for everyi=1,...,1 (on X).
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Proof. Let V(f1, ..., fm) ={a1, ..., ar}. The mapping
D: X xK > (x,2) = (x, fi(x)z, ..., fm(x)z) e K x K™

is a (non-closed) embedding outside the set {ai, ..., a,} x K. Take I' =
c(®(X x K)). Let s =1+ m and 7: I' — K"*! be a generic projection of
the form

s s s
TI'.XB(CEh ...,LL’S)—> ( a1;Tj, a2;iTj, « .., anjxj> e K",
J=1 J=2 j=n

Hence 7 is a finite mapping. Define ¥ := 7w o ®(z, z). We have

m m
= (Z ifiz+0(@), > i fiz 4 (@), ln+1($))
j=1 j=n
= (V(z,2), ..., Uppa(z, 2)),
where [y, ..., l,+1 are generic linear forms. In particular we can assume

that [,,41 is a variable 1 in a generic system of coordinates.

Apply the Generalized Perron Theorem to L. = K(z), polynomials
Uy, ..., ¥yp4q € L[z] and to the variety X considered over L. Thus there
exists a non-zero polynomial W(Ty, ..., Ty,+1) € L[Th, ..., Tj4+1] such that
W(‘l’l, cey \I]n—i-l) =0 on X, and

n
degW(T{*, T52, ..., Tpa™+) < D[ d;-
7j=1

Since coefficients of a polynomial W are in K(z), we obtain that there is a
non-zero polynomial W € K[Ty, ..., Thy1, Y], such that
a) W(Wi(x,z), ..., Ynii(z, 2), 2) =0,
b) degy W(Tldl, TQdQ, oy Tyt ™1, Y)Y < D H?Zl d;, where degy denotes
the degree with respect to variables T'= (T3, ..., Tyt1).

Note that the mapping ¥ = (¥y, ..., ¥, 41): X x K — K" is finite
outside the set U§:1{T € K": Ty41 = aj1}, where aj is the first coordinate
of a; (recall that we consider a generic system of coordinates in which z; =
ln+1!). In particular the set of non-properness of the mapping W is contained
in the hypersurface S = {T € K"*': [7_ (T41 — aj1) = 0}.

Since the mapping ¥ = (U1, ..., ¥, 1): X x K — K" is finite out-
side S, for every polynomial G € K|z1, ..., x,, z] there is a minimal poly-
nomial Pg(T,Y) € K[T1, ..., Th4+1][Y], such that Pg(¥y, ..., i1, G) =
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Yoo bW, ., WU, 1)G*% = 0 and the coefficient by satisfies {T': bo(T) =
0} C S (see Corollary 4.4).
Take here G = z. By the minimality of P,, we have

P.(T, Y)|W(T,Y),

in particular degy P:(T{", T5?, ..., Tppa™*', z) < DI[}_ d;. Let N be
the degree of P, with respect to Y. Add all terms of the form zVQ(z)
which occur in the expression P,(Wq, ..., U, 41, 2). It is easy to see that Q

must be either equal to by(x1) or must be of a form f*--- f5» P(x), where
>-si > 0anddeg fi' -+ fi" P(x) < D[]}_; dj. Thus we have the equality
bo(x1) + X figi = 0, where deg figi < D[[}_; d;. Take ¢1 = by. By the
construction the polynomial ¢; has zeroes only in ay1, ..., Gr1.

Further, since the form l,11 was generic, we can find n forms of this
type which are linearly independent. Hence in a similar way as above we
can construct polynomials ¢;(x;), ¢ =2, ..., [ as in b). O

Now we are in a position to prove:

Theorem 5.2 Let K be an algebraically closed field with a non-trivial ab-
solute value | —|,: K — R. Let X C K! be an affine n-dimensional variety of

degree D. Assume that fi, ..., fm € K[z1, ..., x;] have only finite number
v (possibly v = 0) of zeros on X. Let d; = deg f; (where dy > dy > --- >
dpm >0). Put f =(f1, ..., fm). Then there is a constant C > 0, such that
forxe X

1@l = Cllafjdre =PV ooty
if ||zl is sufficiently large.

Proof. Take a general linear combination:
m
Flzfl,Fi:Z%jfj,i:Z .oy, (or Fy = fp, forn=1).
j=i

Since the number of zeroes of Fy, ..., F,, is finite and greater or equal to
v, we can assume that m < n. We can also assume that f; = F;. Now
Theorem 5.2 is a consequence of the Elimination Theorem (Theorem 5.1).
Indeed, we can assume that the system of coordinates is sufficiently generic
and there exist polynomials g;; € K[z, ..., 2;] and polynomials ¢;(z;) €
K[z;], such that
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a) deggijfj < DN(di, ..., dm;n),

b)  ¢i(x:) =220, 9ii ks
Observe that we have deg ¢; > v (we can assume that all zeroes of fy, ..., fn
have all different coordinates!). Further, if G(z1, ..., 2;) € K[zy, ..., x7] is
a polynomial of degree at most d, then

G ()] < Cllally

for large ||z||,. On the other hand if ¢(¢) is a polynomial of one variable ¢
of degree at least v, then |¢(t)|, > C'|t|Y for large |t|,. In particular from
b) we get

DN(dy,...,dm;n)—dm
Allz|| PN dmim)=dm | f ()| > Bl
and consequently

1 (@)llo = Cllaffgm PN dmin)

for ||z||, sufficiently large. O

Now we can prove our main result. First we introduce the notion of a
local multiplicity:

Definition 5.3 Let X C C! be an affine variety and let f: X — C™ be
a polynomial mapping. Assume that the fiber f~1(0) is finite and non-
empty and let a € f71(0). Let Y = cl(f(X)) and let Yo = Ué‘:1 Y; be a
decomposition of the analytic germ of Y at 0 into irreducible components.
We define the local multiplicity of the mapping f at the point a, denoted
ta(f), to be the number of points in U N (Ué-:1 f~1(y;)), where U is a
sufficiently small neighborhood of a (in the classical topology) and y; € Y;
are sufficiently general points.

Remark 5.4 If m = dim X, then u,(f) is the standard multiplicity, see
e.g., [9].

We need also the following;:

Lemma 5.5 Let A C C! be a polydisc and let Y C A be an analytic set of
pure dimension n. Let Fi,: Y — C" k=1, 2, ... be holomorphic mappings
and assume that Fy converges to F' almost uniformly on Y. If the fiber

F~Y0) is finite and non-empty, then there exists a number ko and an open
neighborhood U of 0 and an open neighborhood V' of F~1(0) such that all
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mappings
Fe: VNE N U) - U, k> ko,
are proper. Moreover, we can take V and U as small as we want.

Proof. Let V be a relatively compact neighborhood of F~1(0). Let U; be
a ball around 0 of radius 1/i. Assume that Lemma does not hold. Then
for every ¢ we find an arbitrary large number n; such that the mapping
F,,:Vn Fn_il(Ui) — U; is not proper. Since V is compact, this means that
the set (V'\ V)N F,.}(U;) is not empty, e.g., it contains a point z; € V'\ V.
Hence we have a sequence of points z; € V\V, such that F,,,(z;) € U;. Since
the set V \ V is compact, we can assume that the sequence z;, i =1, 2, ...
has a limit zg in V\ V. Moreover, we can assume that nqy <ng <ng < ---
Now we have 0 = lim F},, (v;) = F(x0). Thus 7o € F~1(0). Since x¢ ¢ V, it
is a contradiction. g

Finally we have our main result:

Theorem 5.6 Let X C C! be an affine n-dimensional variety of degree D.
Let | —|,: C — R be a non-trivial absolute value. Assume that f1, ..., fm €
Clz1, ..., x1] have only finite set (possibly empty) of zeros on X. Let d; =
deg fi (where dy > dy > -+ > dy, > 0) and put f = (f1, ..., fm). Then
there is a constant C' > 0, such that for x € X

1£ @)l > Cally =PVt sz e,

if |||y is sufficiently large.

Proof. Taking a general linear combination as before, it is not difficult to
check that we can assume m < n. If m < n, then V(f1, ..., fin) = 0 and
Theorem 5.6 follows directly from Theorem 5.2. Hence we can assume that
m=nand V(fi, ..., fn) # 0.

Arguing as in the proof of Theorem 5.2, we see that it is enough to
prove that deg ¢; > >~ (1o Ha(f) (the notation is as in Theorem 5.2). Let
V(fi, ..., fn) ={a1, ..., ar} and let a; = (a1, ..., ai).

Consider polynomials ¢; as in Theorem 5.1. Take ¢1 = ¢. From the
proof of Theorem 5.1 we have the equality:

P(21)2° + Zaj<Z'71jsz +h(z), ...,
=1 =1
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Z’ynjsz + I (), xl)zsfj =0, (5.1)

j=n

where a; € K[T1, ..., Ty41]. In particular
o(a1) = —(Z a;(Fy(2)z + (), ..., Fo(z)z +1n(2), azl)z_j>,(5.2)
j=1

where F; = Z;L:Z 'Yijfj- Take Ej(T) = CLj(Tl, ceey Tn+1)—a]’(0, ., 0, Tn+1)
and Y1, 2) = ijl a;j(0, ..., 0, z1)2°7. We have

é(a1) + W”le) _ —(Zaj(m(z)z (), ...,
j=1

Fo(@)z + (), xl)z_j), (5.3)

where @;(0, ..., 0, z1) = 0 and (21, 2)/2° tends to 0 almost uniformly,
when |z| tends to the infinity.

Let z; — o0o. From the proof of Theorem 5.1 it follows that we can
modify the linear forms I; by adding any constant ¢; i.e., without any change
we can consider [; + ¢; as a new ;. Take ¢ = (ci, ..., ¢,) in this way that
c is a regular value of every mapping F,, = zx(F1 + 1 /2k, ..., Fn+1n/2k).
Such a ¢ does exist, because a countable union of hypersurfaces in C" is a
nowhere dense subset of C". Now change [; by I; + ¢;. Thus for every k we
have that F, have only smooth simple zeroes.

Let A(ai, r) be a polydisc around the point a; such that the point a;
is the unique zero of the mapping F' = (Fi, ..., Fy,) in A(ay, r). Take Fj, =
F., /z; and use Lemma 5.5 to the sequence Fy, and Y = X NA(a, r). Hence
we have a neighborhood V of a; and a neighborhood U of 0, such that
Fp: VNFE, Y(U) — U are proper mappings. We can assume that V is so
small that (VN F~1(c)) = pa, (F) = pa, (f) for generic small ¢ € U. In fact
we can choose ¢ € U such that the fiber F~!(c) consists of smooth points of
X and §(VNEF7Y(c)) = pa, (F) and (VN F, '(c)) = 4(V N F, 1 (0)) for large
k (note that Fj, has only smooth simple zeroes). Let G C VN (X \ Sing(X))
be a small open neighborhood of F~!(c). By the Rouche Theorem for large
k mappings Fr — ¢ and F' — ¢ have the same number of zeroes in GG. This
means that Fj, has at least pgq, (F) = pq, (f) different zeroes in V. Since

F., = zF}, we have that F,, also have at least p,, (f) different zeroes in
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V.

Let 7: C™ > (x1, ..., m) — x1 € C be a projection. Let S be a small
disc around a1; which contains w(V). Note that for |z| > 0, we have by the
Rouche Theorem that the polynomial ¢(x1) has in S the same number of
zeroes (equal to pq,, (¢)) as the polynomial ¢(x1) + 1(x1, 2)/25.

Since the coordinates are generic, we have by (5.3), that for a large k
a polynomial ¢(x1) + (1, 21)/ 2}, has at least juq, (f) different zeroes in S.
Thus pig,, (@) > pa, (f). In the same way we have that ¢ has multiplicity
ta;, (@) > g, (f) at every point a;;. Thus deg ¢ > Zf(a):[) o (f). Similarly
deg ¢; > Zf(a):() o (f) for every i. O

Example 5.7 We show that Theorem 5.6 is sharp, i.e., for every D, dy, ...,
dy, (where dy > dy - -+ > d,, > 0), there exists an n-dimensional affine vari-
ety X C K of degree D and polynomials f; € K[X] of degrees d, ..., dm
such that e((f1, ..., fm)) = dmn—DN(dy, ..., dmin)+3_ (4= Ha([). More-
over, we show this for mappings with non-empty fiber f=1(0) as well as for
mappings with empty fiber f~1(0).
a) First we consider the case f~1(0) # 0. Then m > n. Take X =
{z e Cl: 3 ajx; = 2P}, where a; € C are sufficiently general
numbers. Let

d dp—
f: X3z, ..., Ty, Tpt1) — (a:11 -1, ...,y =1,
(:Eim - 1)mﬁ"_dm, R (:vgm - 1):U;ilm*1_dm, mg’” — 1) eCcm™.

It is easy to see that DN (dy, ..., dp;n) = Zf(a):() ta(f) and conse-
quently

e(f) =dm =dm — DN(d1, ..., dm;n) + > pa(f).
f(a)=0

(we left details to the reader).
b) Now we consider the case f~1(0) = ). We modify Kollar’'s Exam-
ple 2.3 from [6]. Take X = {z € C"*': 2,227 = 1}. For m <

dn_1—1 dn_
s < nset fs = x‘fs. Further take f,_1 = z12,"7'  — 23", fa2 =
xgxifll — ng, o = azn_leiﬂ:ll — xgl. Clearly deg f; = d;. Put

f=(f1, ..., fm). It is easy to check that f~(0) = ) and
e(f)=dm —DN(dy, ..., dn;n)
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(we left details to the reader).
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