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The singular Embry quartic moment problem

Chunji L1
(Received March 10, 2004; Revised June 4, 2004)

Abstract. Given a collection of complex numbers v = {v;;} (0 <i+5 < 2n, [i—j| < n)
with 00 > 0 and v;; = %;j, we consider the moment problem for v in the case of n = 2,
which is refered to Embry quartic moment problem. In this note we give a solution for
the singular case.
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1. Introduction and Preliminaries

In [8, Proposition 2.8], it was shown that Bram-Halmos’ characteriza-
tion for subnormality of a cyclic operator induces moment matrices M (n)
which were studied in [3] and [4]. As a parallel study, in [8, Proposition 2.8]
they obtained matrices E(n) corresponding to the Embry’s characterization
of such operator.

Forn € N, let m = m(n) := ([n/2]4+1)([(n+1)/2]+1). For A € M,,(C)
(the algebra of m x m complex matrices), we denote the successive rows and
columns according to the following ordering:

1, Z ,7% 27, 2% 22% 74, 223, 2% 72, ... (1.1)
~N~ N~ e —m —— — ,  —,
(EORNCY (2) 2) (3)

For a collection of complex numbers
v={w} (0<i+i<2n li—jl<n)
with ypp > 0 and 7;; = ¥, (1.2)
we define the moment matrix E(n) = E(n)(y) in M,,(C) as follows:

E(n)(k,1)G, j) *= Viti, j+k-
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For example, if n = 2, i.e.,

Y+: 7005 Y01, Y105 Y02, Y11, V20, Y12, V21, V13, Y22, V31,
then we obtain the moment matrix
1 Z VARAA
Yoo  Yor  7Yo2 11
Y0 Y11 Y12 721

Y20 Y21 Y22 731
71 Y12 Y13 Y22

E(2) =

We consider a collection of complex numbers 7 as in (1.2). The (Embry)
truncated complex moment problem entails finding a positive Borel measure
1 supported in the complex plane C such that

%’jZ/ZiZjd,U(Z) (0<i+j<2n, |i—jl<n)

w is called a representing measure for ~.

The Embry quadratic moment problem, that is for n = 1, was solved
completely (see [9]). In this paper, we solve the singular quartic moment
problem of F(2) according to its ranks. According to [8, Proposition 3.10],
we must characterize the double flat extension F(4).

Some of the calculations in this article were obtained throughout com-
puter experiments using the software tool Mathematica [10].

2. Solution of The Singular Case

Assume that F(2) is positive and let r := rank E(2). Then obviously
1 < r < 4. The singular case is of det F(2) =0, i.e., r =1, 2 and 3.

2.1. Thecaseof r =1
By a direct computation, we have the following proposition.

Proposition 2.1  Assume that E(2) > 0 and r = 1. Then there exists the
unique flat extension E(3) of E(2). Therefore v admits the unique 1-atomic

representing measure {1 = Y000y, /oo -
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Example 2.2 Let us consider a matrix

1 141 21 2
1—1 2 2421 2—2
E(2): ‘1 4 + 22 ‘z
-2t 2-—23 4 —43
2 2+ 2 43 4

E(2) is positive with rank E(2) = 1. The representing measure is 0;4;.

2.2. The case of r = 2
Assume that rank F(2) = 2. Then

Z’=al+BZ and ZZ=d1+052Z, (2.1)

for some complex numbers «, 3, o/, §'. By a direct computation, we have

_ o112 — 702711 = 700712 — 710702

700711 — Y10701 ’ 700711 — 10701 ’
o = — To1721 — ’7%1 g = 700721 — 710711
Y0011 — Y10701 ’ 7007711 — Y10701

Proposition 2.3 Assume that E(2) >0 and r = 2. If

aviz + By = &/yo1 + 'y22, (2.2)

then there ezists a unique flat extension E(3) of E(2). Therefore, v admits
unique 2-atomic representing measure [ = pod, + P10z, the two atoms
20, z1 are the roots of

22— (a+ fz) =0, (2.3)
and the densities are
__ 701 — Y0021 __ 20700 — 7o1
p=—"7"7— and p=——"7-—.
20 — 21 20 — 21
Proof. By (2.1), we have
Z3=aZ+p2% and ZZ?=d'Z+ 77 (2.4)

Let us take y32 := @y12 + By22 (or = &’y21 + 3'v22). Then

ays1 + Byse = a(d/y20 + B'v21) + B(a/v21 + 3'v22)
= o/ (ay20 + B721) + B (21 + By22)
=a’y29 + ' 23.
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Since E(2) admits a flat extension F(3) if and only if

ays31 + Bys2 = 'y22 + 8723, (2.5)

E(2) admits a flat extension E(3). The remaining parts follow from [8,
Theorem 3.9]. O

Notice that the flat extension E(3) of E(2) can be written as

Yoo Yo Y02 Y11 Y03 712
Y10 Y11 Y12 %21 Y13 722
A= Y20 0 Y21 Y22 Y31 Y23 Y32
Yiro Y12 Y13 Y22 Y14 723
Y30 Y31 Y32 Y41 Y33 42
Y21 722 Y23 Y32 Y24 733

with
Y03 = Y01 + By02, Y23 = a1 + Bye2, Y4 = aviz + Bz, (2.6)
Y33 = ays1 + Bys2, and 24 = a2 + B23,

which can be used in the following example.

Example 2.4 Let us consider a positive matrix

1 71 =2 2

— 2 0 0
E@)=|"!

-2 0 8 =8

2 0 -8 8

with E(2) = 2. By a simple computation we have a = —4, 3 = —2i, o/ =4,
and ' = 24, so that (2.2) may hold. By (2.7), we have yo3 = 0, 723 = —164,
14 = 16i, 33 = 64, 794 = —64. Thus, the flat extension of E(2) is

1 7 -2 2 0 0

- 2 0 0 -8 8
A -2 0 8 -8 —16¢ 161

2 0 -8 8 16:  —16¢

0 -8 16: —16¢ 64 —64
0 8 —16¢ 16¢ —64 64
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According to Proposition 2.3, we obtain the representing measure

1 1 1 1
n= <5\/5+ 2) 5(\/571)1 + <—5\/5+ 2)5(\/5+1)i‘

2.3. The case of r = 3

For a positive n x n matrix A, let us denote by [A]; the compression
of A to the first £ rows and columns. We denote by M;; the determinant
of the cofactor of E(2) with respect to (i, j) and Ay = det([E(2)]q), for
d=1, 2, 3, and 4.

We now assume that rank FE(2) = 3. Then there exist ag, a1, ag in C
such that

Z7Z =agl +a1Z + apy Z°. (2.7)
In fact,

g = Ma o o M Mg

0 AS , d1 AS , U2 AS .

To establish a flat extension E(3), we should choose suitable v23. By (2.7)
we have

Z27% = aoZ + a1 Z* + as Z3. (2.8)
Let us take
Y23 1= apy12 + @113 + asY14- (2.9)

Since {1, Z, Z2, Z3} is linearly dependent, we have

Z3 =bol +b1Z + by Z%, for some b; € C. (2.10)
Then
1 Y03  7Yo1r 702
bp= — -
0 As Y13 Y11 V12|,
Y23 Y21 722
1 Y00 Y03 702
by = — - ,
1 As Y10 Y13 Y12
Y20 Y23 722
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and
1 Y00 701 703
bQ:Aig. Y0 Y1 73| -
Y20 Y21 723
Define
Y14 := boy11 + bivi2 + bay13. (2.11)

Note that 23 is determined by ~14. The following lemma is useful to estab-
lish Algorithm.

Lemma 2.5 If Ag # |Msy|, then we can take the unique o3 € C satisfying
(2.9) and (2.11).

Proof. Let us consider 723 in (2.9). Then we have

Y23 = apy12 + a1y13 + asy14
= apy12 + a1713 + a2(boyi1 + biviz + bayi3),

and thus
Alvyoz = MyzMsgyoz + Q= |Mza|*y23 + Q),
where

Q= A3(aovi2 + a1713)

+ Mz <_ Yo1 702 Y1 Y12 703)
Y21 V22 Y21 Y22
+ Muzyie < Y00 702 |70 712 703)
Y20 722 Y20 V22
+ Muzmis < 700 Y01 + 710 711 %3) .
Y20 721 Y20 V21

Since 2 does not have 23 term and Az # |Ms4|, we may choose the unique
datum ~o3. O

Lemma 2.6 FE(2) has a flat extension of E(3) if and only if we may take
Yo3 satisfying

boyso + b1y31 + bayse = apy22 + a1y23 + azveu, (2.12)
such that a3 satisfies (2.9) and (2.11).
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Proof. Compare the columns of the flat extension E(3) of E(2). O

Algorithm 2.7

(I)  Determine 23 by Lemma 2.5;
(IT) Calculate by, by and be;

(III) Define 714, Y24 as

Y14 = boy11 + biyi2 + bamis (2.13a)
Y24 1= boy21 + biyze + bavas; (2.13b)

(IV) Solve the equation (2.12) with respect to vp3. If it has a solution, then
go to the next step;
(V) Define ~33 as

733 1= boyso + b1731 + bayz2, or = agye2 + a1yes + azys.  (2.14)
(VI) Obtain a flat extension F(3) of E(2).

Example 2.8 Let us consider a positive matrix

1 0 ¢ 2
0 2 0 O
E(2) =
2) - 0 4 =24
2 0 20 4

with rank £(2) = 3. Note that ZZ = 21. By Lemma 2.5, we may take
723 = 0. Then we can obtain by = (4/3)y03, b1 = i, ba = (1/3)iv03.
Substituting them to (2.12), we have |yo3| = 3/v/2. From (2.13a), (2.13b)
and (2.14) we have y14 = 2703, 724 = 4i, 733 = 8. Thus we can obtain the
flat extension E(3) of E(2) as follows

1 0 i 2 4 O
0 2 0 0 21 4
r_ —1 0 4. —21 0 0
2 0 2i 4 2y 0

Y30 —2¢ 0 2v3g 8 —4u
0 4 0 0 44 8

We can easily check that det([F]4) = det([F]5) = det F = 0. (To be contin-
ued in Example 2.12.)
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Next we consider the double flat extension. Since
ZY=boZ + b1 Z% + by 23, (2.15)
273 =ayZ% + a1 Z°% + ax Z*,
P72 =a0Z7 + aZ72* + an 2 73,
we may define
Y34 := boys1 + b17y32 + b2yss, (2.16a)
Y35 = boys2 + b1y33 + baysa. (2.16b)
Hence by comparing columns of E(4) we have the following lemma.

Lemma 2.9 FE(2) has a double flat extension E(4) if and only if vo3 sat-
isfies (2.12) in Lemma 2.6 and

boya1 + bivaz + bayaz = aoy3z + a1y34 + a273s. (2.17)

Algorithm 2.10 (continued)

(VII) Define 734 as (2.16a) and then 35 as (2.16b);

(VIII) Solve the equation (2.17) with respect to o3, i.e., 703 satisfies both
(2.12) and (2.17). If we may take a required ~p3, then go to the next
step;

(IX)  Define o4, Y15, Y25, 744 and 726 as
Yo4: = bovo1 + b1702 + 2703,
7151 = boyi2 + biy1z + bavi4,
Y251 = boy22 + b1y2s + bayod,
Yag: = boyar + biyaz + bayas,
Y26 = bov23 + b1724 + bayes;

(X)  Obtain a double flat extension E(4) of E(2).

From Lemma 2.6 and Lemma 2.9, we have the following theorem.

Theorem 2.11 Assume that E(2) is positive and r = 3. Then v admits
a 3-atomic representing measure if and only if we may take o3 satisfying
(2.12) in Lemma 2.6 and (2.17) in Lemma 2.9.

Example 2.12 (Example 2.8 revisited) By (2.16a) and (2.16b), we have
y34 = 0, 735 = 8i. Then the equation (2.17) is 2|vo3/|?> = 9, and so g3 with
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03] = 3/v/2 satisfies both (2.12) and (2.17). Now we define yo4 = —1 +

(1/3703)703, Y15 = 2704, Y25 = 4703, 744 = 16, 26 = 2. Thus the double flat
extension of E(2) is

E(2) B
B* C)’

where
Y3 0 =1+ i/3703703 2t 4
0 O 43 8 —4i
2703 0O 1 4i 8
and

8 —44 0 0 4’)/30

4i 8 4y3 0 0

C=| 0 4y 16 -8 2
0 0 8 16 —8i

dves O 2 8 16

Since |y03|? = 9/2, if we choose yp3 = (3/2)(1 —1), then the three atoms are

3+VT  3-VT, 3—VT  3+VT, .
= + 1 1, 21 = 1 + 1 i, and z0 = —1 — 1.

From the Vandermonde equation

20

11 1 Po Y00
20 Z1 22 pL| = |1 ]
% 2 4 P2 702

we obtain the densities pg = 2/7, p1 = 2/7, pa = 3/7. Hence the 3-atomic
representing measure is

2 2 3
K= 75(3+ﬁ)/4+{(3—\ﬁ)/4}i + 75(3—\ﬁ)/4+{(3+ﬁ)/4}¢ + 75—1—1’-

We close this section as a special case of ZZ = 1.

Lemma 2.13 The equation Alz|?> + 2Re(Cz2) = B, (A > 0,C € C,
B € R) has a solution if and only if AB + |C|*> > 0.
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Proof. Observe that

C|? AB+|C)?
i+ —| =—m—

A A2 ’
for A>0,CeC, BeR. O

Alz]*> + 2Re(Cz) = B «—=

Proposition 2.14 Assume that E(2) > 0 andr = 3. If ZZ = 1, then
there exists a 3-atomic representing measure for ~y.

Proof. Since ZZ = 1, we have y00 = Y11 = Y22, Y10 = Y21 and Y31 = 7Y20.
So we put a =750 = Y11 = Y22, T = Y10 = V21, and u := Y31 = 720- Then

Y

E(2) = :: with y=2, v=1a, a> 0.

Y

[SEEESEEE SRS
S Qe e
SEESEES S

In this case, Az = a® — 2ayx +vr? +uy? —uva > 0. Moreover, the equalities
(2.12) and (2.17) are same. By (2.9), we have v23 = y. Set z := 730 again.
Then the equation (2.12) is

Alz]* + 2Re(C2) = B, (2.18)
where
A=a®—yz,

B =a*— 3d%yx + 2avaz? + 2auy® — 2uva® + v*u? + y?2? — 2yuve,
C= —2zua + u’y + 2°.

Since AB + |C|> = A2 > 0, by Lemma 2.13, the equation (2.18) has a
solution. Thus v admits a 3-atomic representing measure. g

Example 2.15 Let us consider a matrix
0
E(2) =

o R O O
_ o O =

1
0
0
1

O O =

Then obviously F(2) is positive, r = 3, and ZZ = 1. Note y93 = 0. If
we take o3 satisfying |yo3| = 1, then it is the solution of (2.12) and (2.17).
Hence E(2) has double flat extension E(4). Since Z3 = 431, the three
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atoms are the roots of 2% = 7p3. Thus we have that
(a) if 93 = 4, then the representing measure is

1
K= 5(51/21—(1/2)\/3 + 51/2i+(1/2)\/§ +0-4);

(b) if 403 = 1, then the representing measure is

1
= 5(51 + 671/2+(1/2)i\/§ + 571/27(1/2)1\/5)5
(¢) if y93 = —i, then the representing measure is

1
p= 5(5_1/2¢+(1/2)\/§ +0_19i—(1/2)v3 T 0i);

(d) if y93 = —1, then the representing measure is

1
w= 30140124 1720yt O1/2-(12)iv3):
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