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The singular Embry quartic moment problem
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Abstract. Given a collection of complex numbers γ ≡ {γij} (0 ≤ i+j ≤ 2n, |i−j| ≤ n)

with γ00 > 0 and γji = γ̄ij , we consider the moment problem for γ in the case of n = 2,

which is refered to Embry quartic moment problem. In this note we give a solution for

the singular case.

Key words: truncated complex moment problem, representing measure, quartic moment
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1. Introduction and Preliminaries

In [8, Proposition 2.8], it was shown that Bram-Halmos’ characteriza-
tion for subnormality of a cyclic operator induces moment matrices M(n)
which were studied in [3] and [4]. As a parallel study, in [8, Proposition 2.8]
they obtained matrices E(n) corresponding to the Embry’s characterization
of such operator.

For n ∈ N, let m = m(n) := ([n/2]+1)([(n+1)/2]+1). For A ∈Mm(C)
(the algebra of m×m complex matrices), we denote the successive rows and
columns according to the following ordering:

1︸︷︷︸
(1)

, Z︸︷︷︸
(1)

, Z2, Z̄Z︸ ︷︷ ︸
(2)

, Z3, Z̄Z2

︸ ︷︷ ︸
(2)

, Z4, Z̄Z3, Z̄2Z2

︸ ︷︷ ︸
(3)

, . . . (1.1)

For a collection of complex numbers

γ ≡ {γij} (0 ≤ i + j ≤ 2n, |i− j| ≤ n)

with γ00 > 0 and γji = γ̄ij , (1.2)

we define the moment matrix E(n) ≡ E(n)(γ) in Mm(C) as follows:

E(n)(k, l)(i, j) := γl+i, j+k.
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For example, if n = 2, i.e.,

γ : γ00, γ01, γ10, γ02, γ11, γ20, γ12, γ21, γ13, γ22, γ31,

then we obtain the moment matrix

1 Z Z2 Z̄Z

E(2) =




γ00 γ01 γ02 γ11

γ10 γ11 γ12 γ21

γ20 γ21 γ22 γ31

γ11 γ12 γ13 γ22




.

We consider a collection of complex numbers γ as in (1.2). The (Embry)
truncated complex moment problem entails finding a positive Borel measure
µ supported in the complex plane C such that

γij =
∫

z̄izjdµ(z) (0 ≤ i + j ≤ 2n, |i− j| ≤ n);

µ is called a representing measure for γ.
The Embry quadratic moment problem, that is for n = 1, was solved

completely (see [9]). In this paper, we solve the singular quartic moment
problem of E(2) according to its ranks. According to [8, Proposition 3.10],
we must characterize the double flat extension E(4).

Some of the calculations in this article were obtained throughout com-
puter experiments using the software tool Mathematica [10].

2. Solution of The Singular Case

Assume that E(2) is positive and let r := rankE(2). Then obviously
1 ≤ r ≤ 4. The singular case is of det E(2) = 0, i.e., r = 1, 2 and 3.

2.1. The case of r = 1
By a direct computation, we have the following proposition.

Proposition 2.1 Assume that E(2) ≥ 0 and r = 1. Then there exists the
unique flat extension E(3) of E(2). Therefore γ admits the unique 1-atomic
representing measure µ = γ00δγ01/γ00

.
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Example 2.2 Let us consider a matrix

E(2) =




1 1 + i 2i 2
1− i 2 2 + 2i 2− 2i

−2i 2− 2i 4 −4i

2 2 + 2i 4i 4


 .

E(2) is positive with rankE(2) = 1. The representing measure is δ1+i.

2.2. The case of r = 2
Assume that rank E(2) = 2. Then

Z2 = α1 + βZ and Z̄Z = α′1 + β′Z, (2.1)

for some complex numbers α, β, α′, β′. By a direct computation, we have

α =−γ01γ12 − γ02γ11

γ00γ11 − γ10γ01
, β =

γ00γ12 − γ10γ02

γ00γ11 − γ10γ01
,

α′ =− γ01γ21 − γ2
11

γ00γ11 − γ10γ01
, β′ =

γ00γ21 − γ10γ11

γ00γ11 − γ10γ01
.

Proposition 2.3 Assume that E(2) ≥ 0 and r = 2. If

ᾱγ12 + β̄γ22 = α′γ21 + β′γ22, (2.2)

then there exists a unique flat extension E(3) of E(2). Therefore, γ admits
unique 2-atomic representing measure µ = ρ0δz0 + ρ1δz1, the two atoms
z0, z1 are the roots of

z2 − (α + βz) = 0, (2.3)

and the densities are

ρ0 =
γ01 − γ00z1

z0 − z1
and ρ1 =

z0γ00 − γ01

z0 − z1
.

Proof. By (2.1), we have

Z3 = αZ + βZ2 and Z̄Z2 = α′Z + β′Z2. (2.4)

Let us take γ32 := ᾱγ12 + β̄γ22 (or = α′γ21 + β′γ22). Then

αγ31 + βγ32 = α(α′γ20 + β′γ21) + β(α′γ21 + β′γ22)

= α′(αγ20 + βγ21) + β′(αγ21 + βγ22)

= α′γ22 + β′γ23.
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Since E(2) admits a flat extension E(3) if and only if

αγ31 + βγ32 = α′γ22 + β′γ23, (2.5)

E(2) admits a flat extension E(3). The remaining parts follow from [8,
Theorem 3.9]. ¤

Notice that the flat extension E(3) of E(2) can be written as

A =




γ00 γ01 γ02 γ11 γ03 γ12

γ10 γ11 γ12 γ21 γ13 γ22

γ20 γ21 γ22 γ31 γ23 γ32

γ11 γ12 γ13 γ22 γ14 γ23

γ30 γ31 γ32 γ41 γ33 γ42

γ21 γ22 γ23 γ32 γ24 γ33




with

γ03 = αγ01 + βγ02, γ23 = αγ21 + βγ22, γ14 = αγ12 + βγ13, (2.6)

γ33 = αγ31 + βγ32, and γ24 = αγ22 + βγ23,

which can be used in the following example.

Example 2.4 Let us consider a positive matrix

E(2) =




1 i −2 2
−i 2 0 0
−2 0 8 −8
2 0 −8 8




with E(2) = 2. By a simple computation we have α = −4, β = −2i, α′ = 4,
and β′ = 2i, so that (2.2) may hold. By (2.7), we have γ03 = 0, γ23 = −16i,
γ14 = 16i, γ33 = 64, γ24 = −64. Thus, the flat extension of E(2) is

A =




1 i −2 2 0 0
−i 2 0 0 −8 8
−2 0 8 −8 −16i 16i

2 0 −8 8 16i −16i

0 −8 16i −16i 64 −64
0 8 −16i 16i −64 64




.
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According to Proposition 2.3, we obtain the representing measure

µ =
(

1
5

√
5 +

1
2

)
δ(
√

5−1)i +
(
−1

5

√
5 +

1
2

)
δ−(

√
5+1)i.

2.3. The case of r = 3
For a positive n × n matrix A, let us denote by [A]k the compression

of A to the first k rows and columns. We denote by Mij the determinant
of the cofactor of E(2) with respect to (i, j) and ∆d = det([E(2)]d), for
d = 1, 2, 3, and 4.

We now assume that rank E(2) = 3. Then there exist a0, a1, a2 in C
such that

Z̄Z = a01 + a1Z + a2Z
2. (2.7)

In fact,

a0 =
M41

∆3
, a1 = −M42

∆3
, a2 =

M43

∆3
.

To establish a flat extension E(3), we should choose suitable γ23. By (2.7)
we have

Z̄Z2 = a0Z + a1Z
2 + a2Z

3. (2.8)

Let us take

γ23 := a0γ12 + a1γ13 + a2γ14. (2.9)

Since {1 , Z, Z2, Z3} is linearly dependent, we have

Z3 = b01 + b1Z + b2Z
2, for some bi ∈ C. (2.10)

Then

b0 =
1

∆3
·

∣∣∣∣∣∣∣

γ03 γ01 γ02

γ13 γ11 γ12

γ23 γ21 γ22

∣∣∣∣∣∣∣
,

b1 =
1

∆3
·

∣∣∣∣∣∣∣

γ00 γ03 γ02

γ10 γ13 γ12

γ20 γ23 γ22

∣∣∣∣∣∣∣
,
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and

b2 =
1

∆3
·

∣∣∣∣∣∣∣

γ00 γ01 γ03

γ10 γ11 γ13

γ20 γ21 γ23

∣∣∣∣∣∣∣
.

Define

γ14 := b0γ11 + b1γ12 + b2γ13. (2.11)

Note that γ23 is determined by γ14. The following lemma is useful to estab-
lish Algorithm.

Lemma 2.5 If ∆3 6= |M34|, then we can take the unique γ23 ∈ C satisfying
(2.9) and (2.11).

Proof. Let us consider γ23 in (2.9). Then we have

γ23 = a0γ12 + a1γ13 + a2γ14

= a0γ12 + a1γ13 + a2(b0γ11 + b1γ12 + b2γ13),

and thus

∆2
3γ23 = M43M34γ23 + Ω(= |M34|2γ23 + Ω),

where

Ω = ∆2
3(a0γ12 + a1γ13)

+ M43γ11

(
−

∣∣∣∣
γ01 γ02

γ21 γ22

∣∣∣∣ γ13 +
∣∣∣∣
γ11 γ12

γ21 γ22

∣∣∣∣ γ03

)

+ M43γ12

(∣∣∣∣
γ00 γ02

γ20 γ22

∣∣∣∣ γ13 −
∣∣∣∣
γ10 γ12

γ20 γ22

∣∣∣∣ γ03

)

+ M43γ13

(
−

∣∣∣∣
γ00 γ01

γ20 γ21

∣∣∣∣ γ13 +
∣∣∣∣
γ10 γ11

γ20 γ21

∣∣∣∣ γ03

)
.

Since Ω does not have γ23 term and ∆3 6= |M34|, we may choose the unique
datum γ23. ¤

Lemma 2.6 E(2) has a flat extension of E(3) if and only if we may take
γ03 satisfying

b0γ30 + b1γ31 + b2γ32 = a0γ22 + a1γ23 + a2γ24, (2.12)

such that γ23 satisfies (2.9) and (2.11).
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Proof. Compare the columns of the flat extension E(3) of E(2). ¤

Algorithm 2.7
(I) Determine γ23 by Lemma 2.5;
(II) Calculate b0, b1 and b2;
(III) Define γ14, γ24 as

γ14 := b0γ11 + b1γ12 + b2γ13 (2.13a)

γ24 := b0γ21 + b1γ22 + b2γ23; (2.13b)

(IV) Solve the equation (2.12) with respect to γ03. If it has a solution, then
go to the next step;

(V) Define γ33 as

γ33 := b0γ30 + b1γ31 + b2γ32, or := a0γ22 + a1γ23 + a2γ24. (2.14)

(VI) Obtain a flat extension E(3) of E(2).

Example 2.8 Let us consider a positive matrix

E(2) =




1 0 i 2
0 2 0 0
−i 0 4 −2i

2 0 2i 4


 .

with rankE(2) = 3. Note that Z̄Z = 21 . By Lemma 2.5, we may take
γ23 := 0. Then we can obtain b0 = (4/3)γ03, b1 = i, b2 = (1/3)iγ03.
Substituting them to (2.12), we have |γ03| = 3/

√
2. From (2.13a), (2.13b)

and (2.14) we have γ14 = 2γ03, γ24 = 4i, γ33 = 8. Thus we can obtain the
flat extension E(3) of E(2) as follows

F =




1 0 i 2 γ03 0
0 2 0 0 2i 4
−i 0 4 −2i 0 0
2 0 2i 4 2γ03 0

γ30 −2i 0 2γ30 8 −4i

0 4 0 0 4i 8




.

We can easily check that det([F ]4) = det([F ]5) = det F = 0. (To be contin-
ued in Example 2.12.)
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Next we consider the double flat extension. Since

Z4 = b0Z + b1Z
2 + b2Z

3, (2.15)

Z̄Z3 = a0Z
2 + a1Z

3 + a2Z
4,

Z̄2Z2 = a0Z̄Z + a1Z̄Z2 + a2Z̄Z3,

we may define

γ34 := b0γ31 + b1γ32 + b2γ33, (2.16a)

γ35 := b0γ32 + b1γ33 + b2γ34. (2.16b)

Hence by comparing columns of E(4) we have the following lemma.

Lemma 2.9 E(2) has a double flat extension E(4) if and only if γ03 sat-
isfies (2.12) in Lemma 2.6 and

b0γ41 + b1γ42 + b2γ43 = a0γ33 + a1γ34 + a2γ35. (2.17)

Algorithm 2.10 (continued)
(VII) Define γ34 as (2.16a) and then γ35 as (2.16b);
(VIII) Solve the equation (2.17) with respect to γ03, i.e., γ03 satisfies both

(2.12) and (2.17). If we may take a required γ03, then go to the next
step;

(IX) Define γ04, γ15, γ25, γ44 and γ26 as

γ04 : = b0γ01 + b1γ02 + b2γ03,

γ15 : = b0γ12 + b1γ13 + b2γ14,

γ25 : = b0γ22 + b1γ23 + b2γ24,

γ44 : = b0γ41 + b1γ42 + b2γ43,

γ26 : = b0γ23 + b1γ24 + b2γ25;

(X) Obtain a double flat extension E(4) of E(2).

From Lemma 2.6 and Lemma 2.9, we have the following theorem.

Theorem 2.11 Assume that E(2) is positive and r = 3. Then γ admits
a 3-atomic representing measure if and only if we may take γ03 satisfying
(2.12) in Lemma 2.6 and (2.17) in Lemma 2.9.

Example 2.12 (Example 2.8 revisited) By (2.16a) and (2.16b), we have
γ34 = 0, γ35 = 8i. Then the equation (2.17) is 2|γ03|2 = 9, and so γ03 with
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|γ03| = 3/
√

2 satisfies both (2.12) and (2.17). Now we define γ04 = −1 +
(i/3γ03)γ03, γ15 = 2γ04, γ25 = 4γ03, γ44 = 16, γ26 = 2. Thus the double flat
extension of E(2) is

(
E(2) B

B∗ C

)
,

where

B =




γ03 0 −1 + i/3γ03γ03 2i 4
2i 4 2γ03 0 0
0 0 4i 8 −4i

2γ03 0 1 4i 8




and

C =




8 −4i 0 0 4γ30

4i 8 4γ03 0 0
0 4γ30 16 −8i 2
0 0 8i 16 −8i

4γ03 0 2 8i 16




.

Since |γ03|2 = 9/2, if we choose γ03 = (3/2)(1− i), then the three atoms are

z0 =
3 +

√
7

4
+

3−√7
4

i, z1 =
3−√7

4
+

3 +
√

7
4

i, and z2 =−1− i.

From the Vandermonde equation



1 1 1
z0 z1 z2

z2
0 z2

1 z2
2







ρ0

ρ1

ρ2


 =




γ00

γ01

γ02


 ,

we obtain the densities ρ0 = 2/7, ρ1 = 2/7, ρ2 = 3/7. Hence the 3-atomic
representing measure is

µ =
2
7
δ(3+

√
7)/4+{(3−√7)/4}i +

2
7
δ(3−√7)/4+{(3+√7)/4}i +

3
7
δ−1−i.

We close this section as a special case of Z̄Z = 1 .

Lemma 2.13 The equation A|z|2 + 2 Re(Cz) = B, (A > 0, C ∈ C,
B ∈ R) has a solution if and only if AB + |C|2 ≥ 0.
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Proof. Observe that

A|z|2 + 2Re(Cz) = B ⇐⇒
∣∣∣∣z̄ +

C

A

∣∣∣∣
2

=
AB + |C|2

A2
,

for A > 0, C ∈ C, B ∈ R. ¤

Proposition 2.14 Assume that E(2) ≥ 0 and r = 3. If Z̄Z = 1 , then
there exists a 3-atomic representing measure for γ.

Proof. Since Z̄Z = 1 , we have γ00 = γ11 = γ22, γ10 = γ21 and γ31 = γ20.
So we put a := γ00 = γ11 = γ22, x := γ10 = γ21, and u := γ31 = γ20. Then

E(2) =




a y v a

x a y x

u x a u

a y v a


 with y = x̄, v = ū, a > 0.

In this case, ∆3 = a3−2ayx+vx2 +uy2−uva > 0. Moreover, the equalities
(2.12) and (2.17) are same. By (2.9), we have γ23 = y. Set z := γ30 again.
Then the equation (2.12) is

A|z|2 + 2Re(Cz) = B, (2.18)

where

A = a2 − yx,

B = a4 − 3a2yx + 2avx2 + 2auy2 − 2uva2 + v2u2 + y2x2 − 2yuvx,

C = − 2xua + u2y + x3.

Since AB + |C|2 = ∆2
3 > 0, by Lemma 2.13, the equation (2.18) has a

solution. Thus γ admits a 3-atomic representing measure. ¤

Example 2.15 Let us consider a matrix

E(2) =




1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1


 .

Then obviously E(2) is positive, r = 3, and Z̄Z = 1 . Note γ23 = 0. If
we take γ03 satisfying |γ03| = 1, then it is the solution of (2.12) and (2.17).
Hence E(2) has double flat extension E(4). Since Z3 = γ031 , the three
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atoms are the roots of z3 = γ03. Thus we have that
(a) if γ03 = i, then the representing measure is

µ =
1
3
(δ1/2i−(1/2)

√
3 + δ1/2i+(1/2)

√
3 + δ−i);

(b) if γ03 = 1, then the representing measure is

µ =
1
3
(δ1 + δ−1/2+(1/2)i

√
3 + δ−1/2−(1/2)i

√
3);

(c) if γ03 = −i, then the representing measure is

µ =
1
3
(δ−1/2i+(1/2)

√
3 + δ−1/2i−(1/2)

√
3 + δi);

(d) if γ03 = −1, then the representing measure is

µ =
1
3
(δ−1 + δ1/2+(1/2)i

√
3 + δ1/2−(1/2)i

√
3).
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