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Local well-posedness and smoothing effects of strong
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Abstract. In this paper, we study the existence and the regularity of local strong

solutions for the Cauchy problem of nonlinear Schrödinger equations with time-dependent

potentials and magnetic fields. We consider these equations when the nonlinear term is

the critical and/or power type which is, for example, equal to λ|u|p−1u with some 1 ≤
p < ∞, λ ∈ C. We prove local well-posedness of strong solutions under the additional

assumption 1 ≤ p < ∞ for space dimension n = 4, 1 ≤ p ≤ 1 + 4/(n− 4) for n ≥ 5, and

local smoothing effects of it under the additional assumption 1 ≤ p ≤ 1 + 2/(n− 4) when

n ≥ 5 without any restrictions on n.

Key words: nonlinear Schrödinger equations with time-dependent potentials and magnetic

fields, well-posedeness of the Cauchy problem with the subcritical/critical power, local

smoothing effects.

1. Introduction

We study local well-posedness and smoothing effects of the following
nonlinear Schrödinger equation with magnetic fields:

i∂tu =
1
2

n∑

j=1

(−i∂j −Aj(t, x))2u+ V (t, x)u+ F (u),

(t, x) ∈ R×Rn,

(1.1)

u(0, x) = φ(x), x ∈ Rn, (1.2)

where u is a complex valued unknown function on R×Rn, the initial data φ
is a complex valued given function on Rn, the components of the vector
potential Aj (j = 1, . . . , n) are real valued given functions on R×Rn, the
linear scalar potential V is a real valued given function on R × Rn, and
the nonlinear function F is a complex valued given function on C. We can
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find this type equation, for example, in the Maxwell Schrödinger equations,
which are the classical approximation to the quantum field equations for an
electrodynamical nonrelativistic many body system (see, e.g., Shimomura
[19] and Tsutsumi [26, 27]).

We will construct the strong solutions by using the contraction methods.
For (1.1), the corresponding time-dependent linear Schrödinger equation is
as follows:

i∂tu = H(t)u, (LS)

where

H(t) =
1
2

n∑

j=1

(−i∂j −Aj(t, ·))2 + V (t, ·)

= −1
2
∆ + iA(t, ·) · ∇+

i

2
∇ ·A(t, ·) +

1
2
|A(t, ·)|2 + V (t, ·)

(1.3)

is time-dependent Schrödinger operator acting in L2(Rn). In [31], Yajima
constructed the fundamental solution generated by this Hamiltonian as an
extension of Fujiwara’s results [4, 5]. We will solve the integral equation
corresponding to (1.1)–(1.2) by using some properties of the propagator to
this Hamiltonian. In what follows, we set

Ṽ (t) =
i

2
∇ ·A(t) +

1
2
|A(t)|2 + V (t).

The Cauchy problem for nonlinear Schrödinger equations with sub-
critical and/or critical power nonlinearities and linear potentials or mag-
netic fields has been investigated by many authors. (see also [3, 1, 6, 7, 10,
11, 12, 16, 24, 25] and references therein). Especially, de Bouard [3] studied
on (1.1)–(1.2) with A and V independent of t (cf. Remark 1.7), the first au-
thor [16] studied well-posedness of weak solution to (1.1)–(1.2) with A and V
depending on t. For the proof of well-posedness for nonlinear Schrödinger
equations, we usually employ the Strichartz estimate, which is an estimate
on a space-time integral of solutions to the linear problem. For the free
Schrödinger group, this was proved by Strichartz [23] (see also [7, 11, 29]).
It is well-known that this estimate also holds for A = 0 and V 6= 0 with
some conditions (cf. [8, 11, 13]). In this paper, we use the Strichartz estimate
with A 6= 0 and V 6= 0 which is obtained by Yajima [31] (Lemma 2.5). We
also use so-called the endpoint Strichartz estimates obtained by Keel and
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Tao [14].
On the other hand, solutions of the Schrödinger type equations have

smoothing effects, that is, the solution is smoother than the initial data for
almost all time t. For the free Schrödinger group, Sjölin [20] has proved the
following inequality to exhibit this property

∫

R

∫

Rn

|ϕ(t, x)(1−∆)1/4eit∆f |2dx dt ≤ C‖f‖2
L2 ,

f ∈ L2, ϕ ∈ C∞0 (Rn+1)

(cf. [2, 28]). Yajima [30] has proved it for the equation (LS), which we
will quote as Lemma 4.1 below. Recently, Yajima and Zhang [32, 33] have
proved this property for (LS) and well-posedness for (1.1)–(1.2), when A = 0
and V is superquadratic at infinity. When 1 ≤ n ≤ 7, the first author [15]
and Sjölin [21] showed this property for the strong solutions to (1.1)–(1.2)
with A = V = 0. We will prove the smoothing effects of the strong solu-
tions to (1.1)–(1.2) with scalar potentials and magnetic fields for all space
dimensions, time-locally. This property for the weak solutions to (1.1)–(1.2)
with potentials and magnetic fields was studied in the previous paper [16]
(cf. [22] for the case A = V = 0).

We make the following assumptions on the vector potential and the
scalar potential, which are introduced by Yajima [30, 31].

Assumption (A) For j = 1, . . . , n, Aj is a continuous function of (t, x) ∈
R×Rn and a C∞ class function of x for each t. ∂α

xAj is a C1 class function
of (t, x) ∈ R×Rn for any multi-index α. A satisfies for |α| ≥ 1,

|∂α
xBjk(t, x)| ≤ Cα〈x〉−1−ε,

|∂α
xA(t, x)|+ |∂t∂

α
xA(t, x)| ≤ Cα

with some ε > 0, where A(t, x) = (A1(t, x), . . . , An(t, x)), Bjk(t, x) =
∂jAk(t, x)− ∂kAj(t, x).

Assumption (V) V is a continuous function of (t, x) ∈ R × Rn and
a C∞ class function of x for each t. ∂α

xV is a continuous function of (t, x) ∈
R×Rn for any multi-index α. V satisfies

|∂α
xV (t, x)| ≤ Cα

for |α| ≥ 2.
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We also assume the following assumptions on the nonlinear function F .
(cf. [10, 11])

Assumption (F1) F ∈ C1(C,C) in the real sense with F (0) = 0.

Let F ∈ C1(C,C). For z ∈ C, we define the linear operator F ′(z) on C
by

F ′(z)ω = ∂zF (z)ω + ∂z̄F (z)ω̄, for ω ∈ C,

where ∂z = (1/2)(∂ξ − i∂η) and ∂z̄ = (1/2)(∂ξ + i∂η) with z = ξ + iη,
ξ, η ∈ R.

Assumption (F2) There exists M > 0 such that for |z| > 1,

|F ′(z)| ≡ max{|∂zF (z)|, |∂z̄F (z)|} ≤M |z|p−1

with some 1 ≤ p <∞.

We introduce the following function spaces. We set for k = 0, 1, . . . ,

Σ(k) = {f ∈ L2 : ‖f‖Σ(k) <∞},
‖f‖Σ(k) =

∑

|α+β|≤k
|α|, |β|≥0

‖xα∂β
xf‖2,

and let Σ(−k) be the dual space of Σ(k). Then Σ(k) is a Banach space with
the norm ‖ · ‖Σ(k).

Definition We call the components (q, r) an admissible pair if they satisfy

2
r

= n

(
1
2
− 1
q

)
, (1.4)

and




2 ≤ q ≤ ∞ if n = 1,

2 ≤ q <∞ if n = 2,

2 ≤ q ≤ 2n/(n− 2) if n ≥ 3.

Let

XT =
⋂

(q,r)

Lr(IT , Lq), X̄T = XT ∩ C(IT , L2), (1.5)
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where (q, r) is every admissible pair and IT = [0, T ].

Remark 1.1 For this definition, we take the results of Keel and Tao [14]
into consideration.

We state the main results of this paper.

Theorem 1 Suppose that Assumptions (A), (V) and (F1) are satisfied.
In addition, suppose that Assumption (F2) with 1 ≤ p < ∞ if n = 4, with
1 ≤ p ≤ 1 + 4/(n − 4) if n ≥ 5 is satisfied. Let φ ∈ Σ(2), in addition
with ‖φ‖Σ(2) sufficiently small if n ≥ 5 and p = 1 + 4/(n − 4). Then
there exists T > 0 depending only on ‖φ‖Σ(2) such that (1.1)–(1.2) has
a unique solution u in C(IT ,Σ(2)). Furthermore ∂tu ∈ X̄T , in particular
u ∈ C(IT ,Σ(2))∩C1(IT , L2). Moreover this solution depends on the initial
datum continuously. Namely if φm → φ as m → ∞ in Σ(2), then the
coresponding solution um ∈ C(IT0 ,Σ(2)) to the datum φm converges to u in
C(IT0 ,Σ(2)), where T0 > 0 depends only on ‖φ‖Σ(2).

Theorem 2 Suppose that Assumptions (A), (V) and (F1) are satisfied.
In addition, suppose that Assumption (F2) with 1 ≤ p < ∞ if n = 4, with
1 ≤ p ≤ 1+2/(n−4) if n ≥ 5 is satisfied. Let u be the solution of (1.1)–(1.2)
obtained in Theorem 1. Then for µ > 1/2,

∫

IT

‖〈x〉−µ−5/2〈Dx〉5/2u(t)‖2
2 dt <∞,

where 〈Dx〉 = (I −∆)1/2.

Remark 1.2 When n ≥ 5, we prove local well-posedness of (1.1)–(1.2) un-
der the assumption 1 ≤ p ≤ 1+4/(n−4). On the other hand, we obtain local
smoothing effects only in the case of 1 ≤ p ≤ 1 + 2/(n− 4), because for the
solution u of (1.1)–(1.2) we have only the fact that the nonlinear term F (u),
the time derivative ∂tF (u), |x|2F (u) and xj∂kF (u), j, k = 1, . . . , n, belong
to L1(IT ;L2(Rn)) by the Sobolev embedding theorem (see Lemma 4.2).

Remark 1.3 For our solution u, we have no information on ∂α
xu, |α| = 2,

except ∆u ∈ L∞(IT ;L2) (cf. [1, 11, 12]).

Remark 1.4 If A ≡ 0 then for n ≥ 5 and F (u) = |u|p−1u with p = 1 +
4/(n − 4), we don’t need the assumption on the size of the initial datum.
(cf. [1]).
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Remark 1.5 Following the argument below, we can construct Σ(k)-solu-
tion with positive integer k. In fact, for, e.g., F (u) = M1|u|[(k+1)/2]−1u +
M2|u|4/(n−2k)u with n > 2k and [(k + 1)/2] − 1 < 4/(n − 2k), we may use
the contraction arguement in the following Banach space:

X = {u ∈ C(IT ,Hk) |xα∂l
t∂

β
xu ∈ Lr(IT ;Lq), |α|+ 2l + |β| = k,

|α| = 0, 1, . . . , k, l = 0, 1, . . . , [k/2],

|β| = 0, . . . , k − 2[k/2]}
where (q, r) is the admissible pair with 1/q = (k− 1)/k+1/(k2p−k2 +2k).
We note that Σ(k) ⊂ Lkp−k+2 and k − 2[k/2] = 0 or 1. In this paper,
we treat the case of k = 2, especially. Because when we regard (1.1) as
L2-valued ordinary differential equation, Σ(2) is included in D(H(t)), the
space corresponding to the strong solution to (1.1).

Remark 1.6 In fact the fundamental solution of (LS) can be constructed
for the scalar potentials with singularities under the suitable conditions (see
Theorem 7 in Yajima [31]). Thus using this property, we can show the local
well-posedness of (1.1)–(1.2) for these scalar potentials with singularities.
But since we do not have the local smoothing property of the propagator
of (LS) for singular potentials even when A = F = 0, we need to assume
the continuity for the scalar potentials to prove the local smoothing effects
of (1.1)–(1.2).

Remark 1.7 When A and V are independent of t, that is, H(t) = H, it is
rather easy to prove Theorem 1 because ∂t is commutable with H. If V sat-
isfies the some growth conditions, which are weaker than Assumption (V),
then H defined on C∞0 is essentially self-adjoint in L2(Rn) (see [9] and,
e.g., pp. 199 in [18]). Thus we can prove theorems by using e−itH̄ instead of
U(t, 0), where H̄ is the self-adjoint realization of H. (cf. [3]).

Notations Let Lq(Rn) =
{
ψ : ‖ψ‖q =

(∫
Rn |ψ(x)|q dx)1/q

< ∞}
for 1 ≤

q < ∞, and let L∞(Rn) =
{
ψ : ‖ψ‖∞ = ess supx∈Rn |ψ(x)| < ∞}

. Let the
Sobolev space Hk(Rn) =

{
ψ : ‖ψ‖Hk =

∑
|α|≤k ‖∂αψ‖2 < ∞}

, for positive
integer k. For simplicity, we denote the space Lq(Rn) by Lq and the space
Hk(Rn) by Hk, respectively. For a Banach space X and an interval IT =
[0, T ], let C(IT , X) be the set of X-valued strongly continuous functions
on IT , and let Lq(IT , X) be the set of X-valued Lq-functions on IT . We put
Lr

T (X) = Lr(IT , X) with the norm
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‖f‖Lr
T (X) =

(∫

IT

‖f(t, ·)‖r
X dt

)1/r

, 1 ≤ r <∞,

‖f‖L∞T (X) = ess supt∈IT
‖f(t, ·)‖X .

We denote the set of rapidly decreasing functions on Rn by S(Rn). We
denote various constants by C, M and so forth. They may differ from line
to line, when it does not cause any confusion.

We use the following symbols:

∂t =
∂

∂t
, ∂k =

∂

∂xk
for k = 1, . . . , n,

∂α
x = ∂α1

1 · · · ∂αn
n , xα = xα1

1 · · ·xαn
n

for any multi-index α = (α1, . . . , αn),

∇ = (∂1, . . . , ∂n), ∆ = ∂2
1 + · · ·+ ∂2

n,

〈x〉 = (1 + |x|2)1/2,

a ∨ b = max{a, b}.
Outline of this paper is as follows. In Section 2, we introduce some

results of (LS) obtained in Yajima [31]. In Section 3, we prove Theorem 1,
that is, the local well-posedness of the strong solutions to (1.1)–(1.2) by the
contraction argument in the suitable function spaces. In Section 4, we prove
Theorem 2, that is, the local smoothing effects of the strong solutions to
(1.1)–(1.2) by using the smoothing property of (LS) obtained in Yajima [30].

2. Preliminaries

We introduce some results for the linear equation (LS) in Yajima [31].

Lemma 2.1 (Yajima [31]) Assume Assumptions (A) and (V). Then there
exists a unique propagator {U(t, s)}t, s∈R for (LS) satisfying the following
properties:
1. For any t 6= s, U(t, s) maps S(Rn) into S(Rn) continuously and ex-

tends a unitary operator in L2(Rn) which satisfies U(t, r)U(r, s) =
U(t, s).

2. For ψ ∈ Σ(2), U(·, ·)ψ ∈ C(R2,Σ(2)) ∩ C1(R2, L2), and the following
equations hold:

i∂tU(t, s)ψ = H(t)U(t, s)ψ,

i∂sU(t, s)ψ = −U(t, s)H(s)ψ.
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Furthermore there exists T̃ > 0 such that for 0 < |t− s| < T̃ , U(t, s) can be
represented as in the form of oscillatory integral

(U(t, s)f)(x) = (2πi(t− s))−n/2

∫

Rn

eiS(t,s,x,y)b(t, s, x, y)f(y) dy.

Then {U(t, s) : |t − s| < T̃ , t, s ∈ R} is strongly continuous in L2(Rn).
Here S(t, s, x, y) and b(t, s, x, y) are uniquely determined functions satisfy
some properties.

The following lemma is the Lp-Lq estimate for U(t, s).

Lemma 2.2 (Yajima [31]) Let T̃ be the same constant as in Lemma 2.1.
For any 2 ≤ q ≤ ∞ and for 0 < |t − s| < T̃ , t 6= s, there exists a constant
C = C(n, q) such that

‖U(t, s)f‖q ≤ C|t− s|−n(1/2−1/q)‖f‖q′ ,

where q′ is the dual of q.

We define linear operators U and G as follows:

(Uφ)(t) = U(t, 0)φ, t ∈ R,

(Gf)(t) =
∫ t

0
U(t, s)f(s) ds, t ∈ R.

These operators have the following properties (see Yajima [30], [31]).
Let I be a compact sub-interval of [0, T̃ ].

Lemma 2.3 U is a bounded operator from L2 into C(I, L2)∩AC(I,Σ(−2))
satisfying

i∂tUφ = H(t)Uφ

for φ ∈ L2 and a.e. t ∈ I in Σ(−2), where AC(I,Σ(−2)) is the class of
Σ(−2)-valued absolutely continuous functions.

Lemma 2.4 If f ∈ L1(I, L2), then Gf ∈ C(I, L2) ∩ AC(I,Σ(−2)) and it
follows that

i∂tGf = H(t)Gf + if

for a.e. t ∈ I in Σ(−2).



Strong solutions for nonlinear Schrödinger equations 45

The following Strichartz estimates are obtained in Yajima [31]. Let
IT = [0, T ] ⊂ [0, T̃ ].

Lemma 2.5 Assume that the components (qi, ri) are arbitrary admissible
pairs, where i = ∅, 1, 2, and let (q′i, r

′
i) be dual of (qi, ri), namely 1/qi +

1/q′i = 1 and 1/ri + 1/r′i = 1. Then U is a bounded operator from L2 into
Lr

T (Lq), and G is a bounded operator from L
r′2
T (Lq′2) into Lr1

T (Lq1), with the
bounds independent of T . Namely, there exist C, C ′ > 0 independent of T
such that

‖Uφ‖Lr
T (Lq) ≤ C‖φ‖2,

‖Gf‖L
r1
T (Lq1 ) ≤ C ′‖f‖

L
r′2
T (Lq′2 )

.

Furthermore, Uφ ∈ C(IT , L2) and Gf ∈ C(IT , L2) for any φ ∈ L2 and
f ∈ Lr′2

T (Lq′2).

Remark 2.1 We can obtain the endpoint estimates of U(t, s) by the same
argument as in [14]. We remark that these estimates hold locally in time.

Remark 2.2 Under Assumptions (A) and (V), it is easily seen that there
exists C > 0, depending on T̃ , such that

|A(t, x)| ≤ C〈x〉,
|V (t, x)| ≤ C〈x〉2,
|∂xV (t, x)| ≤ C〈x〉

for any t ∈ I and x ∈ Rn. Then we have

|∂α
x Ṽ (t, x)| ≤ C〈x〉

for any t ∈ I, x ∈ Rn and |α| ≥ 1.

Remark 2.3 Under Assumptions (F1) and (F2), it is easily seen that
F can be decomposed in the form

F = F1 + F2, F1, F2 ∈ C1(C,C), F1(0) = F2(0) = 0,

|F1(z)| ≤M1|z|, |F ′1(z)| ≤M1,

|F2(z)| ≤M2|z|p, |F ′2(z)| ≤M2|z|p−1

for z ∈ C (see Kato [11]).
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3. Proof of Theorem 1

We only prove the case n ≥ 4. The lower dimension cases are much
simple and we omit them. We note that 1 ≤ p < ∞ if n = 4, 1 ≤ p ≤ 1 +
4/(n− 4) if n ≥ 5.

Let IT = [0, T ] for 0 < T ≤ T̃ , where T̃ is introduced in Lemma 2.2.
And set l = (n/4)(1− 1/p) so that 0 ≤ l ≤ 1, γ = 2/l and ρ = 4p/(p+ 1).
We introduce the following function spaces and their norms.

XT = L∞T (L2) ∩ Lγ
T (Lρ),

‖u‖XT
= ‖u‖L∞T (L2) ∨ ‖u‖Lγ

T (Lρ),

X ′
T = L1

T (L2) + Lγ′
T (Lρ′),

‖v‖X′
T

= inf
{‖v1‖L1

T (L2) + ‖v2‖Lγ′
T (Lρ′ )

: v = v1 + v2
}
,

X̄T = C(IT , L2) ∩ Lγ
T (Lρ),

where ρ′ and γ′ are the dual of ρ and γ, respectively, namely ρ′ = 4p/(3p−1)
and γ′ = 2/(2− l). We note that XT and X ′

T are Banach spaces.

Remark 3.1 The pairs (2,∞) and (ρ, γ) are admissible.

We define the function space ZT as follows:

ZT = {u : ‖u‖ZT
<∞},

Z̄T = {u ∈ ZT : u ∈ C(IT ,Σ(2)), ∂tu ∈ C(IT , L2)},
where

‖u‖ZT
= ‖u‖L∞T (L2) ∨ ‖∆u‖L∞T (L2) ∨

( n∑

j, k=1

‖xj∂ku‖XT

)

∨ ‖|x|2u‖XT
∨ ‖∂tu‖XT

.

Then ZT is a Banach space.

Remark 3.2 Since 1 ≤ p <∞ if n = 4 and 1 ≤ p ≤ 1+4/(n−4) if n ≥ 5,
it follows from the Sobolev embedding theorem that

Σ(2) ↪→ H2 ↪→ H2l ↪→ L2p. (3.1)

Recall that l = (n/4)(1− 1/p)
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Lemma 3.1 Let φ ∈ S(Rn), f ∈ S(Rn+1), and let v = Uφ− iGf . Then

∂2
kv = U(∂2

kφ)− iG[(∂2
kṼ )v + 2(∂kṼ )∂kv

+ i∂2
kA · ∇v + 2i∂kA · ∂k∇v + ∂2

kf ],
(3.2)

xj∂kv = U(xj∂kφ)− iG[xj(∂kṼ )v + ixj∂kA · ∇v
+ (∂j − iAj)∂kv + xj∂kf ],

(3.3)

xk
2v = U(xk

2φ)− iG[2xk(∂k − iAk)v + v + xk
2f ]. (3.4)

Proof. We differentiate the equation v = Uφ− iGf . Then we have

i∂tv = H(t)v + f

and hence,

i∂t(x2
kv) = x2

kH(t)v + x2
kf

= H(t)(x2
kv)− [H(t), x2

k]v + x2
kf

= H(t)(x2
kv) + 2xk(∂k − iAk)v + v + x2

kf.

Noting that (x2
kv)(0) = x2

kφ, we have (3.4). In a similar way, we can
prove (3.2) and (3.3). ¤

Lemma 3.2 If T > 0 is sufficiently small, U is a bounded operator from
Σ(2) into ZT , with the bound independent of T . Namely, if T > 0 is
sufficiently small, there exists C1 > 0 independent of T such that

‖Uφ‖ZT
≤ C1‖φ‖Σ(2). (3.5)

Furthermore, Uφ ∈ Z̄T for any φ ∈ Σ(2).

Proof. We first assume φ ∈ S(Rn). By Lemma 2.5, we have

‖Uφ‖L∞T (L2) ≤ c‖φ‖2. (3.6)

By the application of Lemma 2.5 to the equalities in Lemma 3.1, we have
the following estimates

‖∆Uφ‖XT

≤
∥∥∥∥U(∆φ)− iG

[
(∆Ṽ )Uφ+ 2(∇Ṽ ) · (∇Uφ)

+ 2i
n∑

k=1

(∂kA) · (∇∂kUφ) + i(∆A) · (∇Uφ)
]∥∥∥∥

XT
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≤ c‖∆φ‖2 + c

∥∥∥∥(∆Ṽ )Uφ+ 2(∇Ṽ ) · (∇Uφ)

+ 2i
n∑

k=1

(∂kA) · (∇∂kUφ) + i(∆A) · (∇Uφ)
∥∥∥∥

L1
T (L2)

≤ c‖∆φ‖2 + cT
(‖〈x〉Uφ‖L∞T (L2) + ‖〈x〉∇Uφ‖L∞T (L2)

+ ‖∆Uφ‖L∞T (L2) + ‖∇Uφ‖L∞T (L2)

)

≤ c‖∆φ‖2 + cT

(
‖Uφ‖L∞T (L2) + ‖|x|2Uφ‖L∞T (L2)

+
n∑

j, k=1

‖xj∂kUφ‖L∞T (L2) + ‖∆Uφ‖L∞T (L2)

)
,

‖xj∂kUφ‖XT

≤ ‖U(xj∂kφ)− iG[ixj(∂kA) · ∇Uφ
+ (∂j − iAj)∂kUφ+ xj(∂kṼ )Uφ]‖XT

≤ c‖xj∂kφ‖2 + cT‖ixj(∂kA) · ∇Uφ
+ (∂j − iAj)∂kUφ+ xj(∂kṼ )Uφ‖L1

T (L2)

≤ c‖xj∂kφ‖2 + cT
(‖xj∇Uφ‖L∞T (L2) + ‖∆Uφ‖L∞T (L2)

+ ‖〈x〉∂kUφ‖L∞T (L2) + ‖xj〈x〉Uφ‖L∞T (L2)

≤ c‖xj∂kφ‖2 + cT

(
‖Uφ‖L∞T (L2) +

n∑

j, k=1

‖xj∂kUφ‖L∞T (L2)

+ ‖|x|2Uφ‖L∞T (L2) + ‖∆Uφ‖L∞T (L2)

)

and

‖|x|2Uφ‖XT

≤
∥∥∥∥U(|x|2φ)− iG

[ n∑

k=1

{2xk(∂k − iAk)Uφ}+ nUφ

]∥∥∥∥
XT

≤ c‖|x|2φ‖2 + c

∥∥∥∥
n∑

k=1

{2xk(∂k − iAk)Uφ}+ nUφ

∥∥∥∥
L1

T (L2)

≤ c‖|x|φ‖2 + cT
(‖x · ∇Uφ‖L∞T (L2)
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+ ‖|x|2Uφ‖L∞T (L2) + ‖Uφ‖L∞T (L2)

)

≤ c‖|x|φ‖2 + cT

( n∑

j, k=1

‖xj∂kUφ‖L∞T (L2)

+ ‖|x|2Uφ‖L∞T (L2) + ‖Uφ‖L∞T (L2)

)
.

We have used Remark 2.2. By Lemmas 2.3 and 2.5, we obtain

‖∂tUφ‖XT

≤ ‖H(t)Uφ‖XT

≤ c

(
‖Uφ‖XT

+ ‖|x|2Uφ‖XT
+

n∑

j, k=1

‖xj∂kUφ‖XT
+ ‖∆Uφ‖XT

)
.

From the above estimates, it follows that

‖Uφ‖ZT
≤ c‖φ‖Σ(2) + cT‖Uφ‖ZT

.

Therefore, if T > 0 is small enough, (3.5) holds for φ ∈ S(Rn). By the
density argument, we see that if T > 0 is small enough, (3.5) holds for
any φ ∈ Σ(2). Actually, Uφ ∈ Z̄T for any φ ∈ Σ(2). This follows from
Lemmas 2.3 and 2.5 immediately. ¤

Remark 3.3 According to the proof of Lemma 3.2, we see that ∆Uφ ∈
XT for any φ ∈ Σ(2).

Recall that (Gf)(t) =
∫ t
0 U(t, s)f(s)ds, t ∈ R.

Lemma 3.3 Let f ∈ L∞T (L2) and ∂tf , |x|2f , xj∂kf ∈ X ′
T for j, k =

1, . . . , n. Assume that T > 0 is sufficiently small and that f(0) ∈ L2 exists.
Then Gf ∈ ZT . Furthermore there exists C2 > 0 independent of T such that

‖Gf‖ZT
≤ C2

(
‖f‖L∞T (L2) + ‖|x|2f‖X′

T
+

n∑

j, k=1

‖xj∂kf‖X′
T

+ ‖∂tf‖X′
T

)
. (3.7)

In particular, if f ∈ C(IT , L2), then Gf ∈ Z̄T .

Proof. First we assume that f ∈ S(Rn+1). By Lemma 2.5, we have

‖Gf‖L∞T (L2) ≤ c‖f‖L1
T (L2)
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and that Gf ∈ C(IT , L2). By the application of Lemma 2.5 to the equalities
in Lemma 3.1, we have the following estimates

‖xj∂kGf‖XT

≤
∥∥G[

xj(∂kṼ )Gf+ ixj∂kA ·∇Gf+(∂j− iAj)∂kGf+xj∂kf
]∥∥

XT

≤cT
(
‖Gf‖L∞T (L2) +‖|x|2Gf‖L∞T (L2) +

n∑

j,k=1

‖xj∂kGf‖L∞T (L2)

+‖∆Gf‖L∞T (L2)

)
+c‖xj∂kf‖X′

T

and

‖|x|2Gf‖XT

≤
∥∥∥∥G

[ n∑

k=1

{2xk(∂k − iAk)Gf}+ nGf + |x|2f
]∥∥∥∥

XT

≤ cT

(
‖Gf‖L∞T (L2) +

n∑

j, k=1

‖xj∂kGf‖L∞T (L2) + ‖|x|2Gf‖L∞T (L2)

)

+ c‖|x|2f‖X′
T
.

We have used Remark 2.2. Recall that Ṽ (t, x) = (i/2)∇ ·A(t, x) +
(1/2)|A(t, x)|2 + V (t, x), (t, x) ∈ R×Rn. Since

∂tGf = G∂tf + Uf(0) +
i

2
(∆Gf −G∆f)

−G{(A · ∇ − iṼ )f}+ (A · ∇ − iṼ )Gf,
(3.8)

and, from (3.2),

∆Gf −G∆f

= −iG
[
(∆Ṽ )Gf + i(∆A) · ∇Gf

+ 2(∇Ṽ ) · ∇Gf + 2i
n∑

j, k=1

(∂jAk)∂jkGf

]
,

(3.9)

it follows from Lemma 2.5 that

‖∂tGf‖XT
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≤ c

(
‖∂tf‖X′

T
+ ‖f‖L1

T (L2) + ‖f(0)‖2 + ‖|x|2f‖X′
T

+
n∑

j, k=1

‖xj∂kf‖X′
T

+ ‖|x|2Gf‖XT
+

n∑

j, k=1

‖xj∂kGf‖XT

)

+ cT‖∆Gf‖L∞T (L2).

By (1.3), Lemmas 2.4 and 2.5, we have

‖∆Gf‖L∞T (L2)

≤
∥∥2∂tGf − 2A · ∇Gf + 2iṼ Gf + 2if

∥∥
L∞T (L2)

≤ c

( n∑

j, k=1

‖xj∂kGf‖L∞T (L2) + ‖|x|2Gf‖L∞T (L2)

+ ‖∂tf‖X′
T

+ ‖f‖L1
T (L2) + ‖f(0)‖2 + ‖|x|2f‖X′

T

+
n∑

j, k=1

‖xj∂kf‖X′
T

+ ‖f‖L∞T (L2)

)
+ cT‖∆Gf‖L∞T (L2)

and hence for T > 0 sufficiently small,

‖∆Gf‖L∞T (L2)

≤ c

( n∑

j, k=1

‖xj∂kGf‖L∞T (L2) + ‖|x|2Gf‖L∞T (L2) + ‖∂tf‖X′
T

+ ‖f‖L1
T (L2) + ‖f(0)‖2 + ‖|x|2f‖X′

T
+

n∑

j, k=1

‖xj∂kf‖X′
T

+ ‖f‖L∞T (L2)

)
.

From the above estimates, we have

‖Gf‖ZT
≤ c

(
‖f‖L1

T (L2) + ‖f(0)‖2 + ‖f‖L∞T (L2) + ‖|x|2f‖X′
T

+
n∑

j, k=1

‖xj∂kf‖X′
T

+ ‖∂tf‖X′
T

)
+ cT‖Gf‖ZT

.

Therefore, if T > 0 is sufficiently small,
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‖Gf‖ZT
≤ c

(
‖f‖L1

T (L2) + ‖f(0)‖2 + ‖f‖L∞T (L2)

+ ‖|x|2f‖X′
T

+
n∑

j, k=1

‖xj∂kf‖X′
T

+ ‖∂tf‖X′
T

) (3.10)

for f ∈ S(Rn+1). By the density argument, (3.10) holds for any f sat-
isfying the assumptions of this lemma. Since ‖f‖L1

T (L2) ≤ T‖f‖L∞T (L2),
‖f(0)‖2 ≤ ‖f‖L∞T (L2), this implies (3.7) for T > 0 sufficiently small. In view
of Lemma 2.5 and (3.8), it is easy to see that ∂tGf ∈ C(IT , L2). Therefore
we see that Gf ∈ Z̄T if in addition f ∈ C(IT , L2). ¤

Remark 3.4 Note that ∆Gf does not always belong to the auxiliary
space Lγ

T (Lρ) for f satisfying the assumptions of Lemma 3.3. On the other
hand, for Σ(1)-solution u, ∇GF (u) belongs to the auxiliary space (cf. [16]).

To estimate the nonlinear term, we need the following two lemmas in
Kato [11].

Lemma 3.4 F maps L2p into L2 continuously, and maps any bounded set
of L2p into a bounded set of L2.

Let θ = 1− l. Recall that l = (n/4)(1− 1/p).

Lemma 3.5 There exists C > 0 independent of T such that

‖u(t)− u(s)‖2 ≤ C|t− s| ‖u‖ZT
,

‖u(t)− u(s)‖2p ≤ C|t− s|θ‖u‖ZT

for any u ∈ ZT and t, s ∈ IT .

We prove Theorem 1 by the contraction mapping argument. We
introduce the following integral equation

u(t) = (Uφ)(t)− i(GF (u))(t). (3.11)

We define the operator

K(u) = Uφ− iGF (u)

and the ball in ZT

BT,R = {u ∈ ZT : ‖u‖ZT
≤ R, u(0) = φ}

for T, R > 0.
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Remark 3.5 BT,R is a complete metric space in XT metric. We can prove
this property following, e.g., the proof of Proposition 6.6 in Kato [11].

Recall that we prove the case of n ≥ 4.

Proposition 3.1 Let φ ∈ Σ(2). Suppose that F (u) satisfies Assump-
tions (F1) and (F2) with 1 ≤ p < 1 + 4/(n− 4). K maps BT,R into BT,R if
R is sufficiently large and T is sufficiently small, depending only on ‖φ‖Σ(2).

Proof. Let u ∈ BT,R. By the Hölder inequality and (3.1), we have

‖|x|2F (u)‖X′
T
≤M1‖|x|2u‖L1

T (L2)+M2‖|x|2|u|p‖Lγ′
T (Lρ′ )

≤M1T‖|x|2u‖L∞T (L2)+M2T
θ‖|x|2|u|p‖Lγ

T (Lρ′ )

≤M1T‖|x|2u‖L∞T (L2)+M2T
θ‖|x|2u‖Lγ

T (Lρ)‖u‖p−1
L∞T (L2p)

≤M1T‖u‖ZT
+cM2T

θ‖u‖p
ZT
.

We have used 1/γ′ − 1/γ = θ > 0 and (p − 1)/2p + 1/ρ = 1/ρ′. Similarly
we have

‖xj∂kF (u)‖X′
T
≤M1T‖u‖ZT

+ cM2T
θ‖u‖p

ZT
,

‖∂tF (u)‖X′
T
≤M1T‖u‖ZT

+ cM2T
θ‖u‖p

ZT
.

By Remark 2.3, we have for z1, z2 ∈ C,

|F1(z1)− F1(z2)| ≤M1|z1 − z2|,
|F2(z1)− F2(z2)| ≤M2|z1 − z2|(|z1|p−1 + |z2|p−1).

From Lemma 3.5, (3.1) and the Hölder inequality, we have

‖F1(u(t))− F1(u(s))‖2 ≤M1‖u(t)− u(s)‖2

≤ cM1|t− s| ‖u‖ZT

(3.12)

and

‖F2(u(t))−F2(u(s))‖2≤M2‖|u(t)−u(s)|(|u(t)|p−1 + |u(s)|p−1)‖2

≤M2‖u(t)−u(s)‖2p(‖u(t)‖p−1
2p +‖u(s)‖p−1

2p )

≤cM2|t−s|θ‖u‖p
ZT

(3.13)
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for any t, s ∈ IT . Therefore from Lemma 3.4, we obtain

‖F (u)‖L∞T (L2) ≤ ‖F (φ)‖L∞T (L2) + ‖F (u)− F (φ)‖L∞T (L2)

≤ c‖φ‖Σ(2) + cM1T‖u‖ZT
+ cM2T

θ‖u‖p
ZT
,

(3.14)

where u(0) = φ. From these estimates, if T > 0 is small enough, we can
apply Lemma 3.3 with f = F (u). Then we have

‖GF (u)‖ZT
≤ c‖φ‖Σ(2) + cM1T‖u‖ZT

+ cM2T
θ‖u‖p

ZT

for T sufficiently small. By Lemma 3.2, we see that if T > 0 is small enough,

‖K(u)‖ZT
≤ c‖φ‖Σ(2) + cM1T‖u‖ZT

+ cM2T
θ‖u‖p

ZT
. (3.15)

The fact u ∈ BT,R implies

‖K(u)‖ZT
≤ c‖φ‖Σ(2) + cM1TR+ cM2T

θRp.

Hence we can choose R > 0 sufficiently large and T > 0 sufficiently small
so that

c‖φ‖Σ(2) + cM1TR+ cM2T
θRp ≤ R.

It follows from (3.15) that

‖K(u)‖ZT
≤ R. ¤

Proposition 3.2 Suppose that F (u) satisfies Assumptions (F1) and (F2)
with 1 ≤ p < 1 + 4/(n − 4). If R is sufficiently large and T is sufficiently
small, K maps BT,R onto itself and it is contraction in the metric of XT

over BT,R, where R and T depend only on ‖φ‖Σ(2).

Proof. Let u, v ∈ BT,R. By the definition of K, we see

K(u)−K(v) = −i(GF (u)−GF (v)).

Then as in the proof of Proposition 3.1, we have

‖K(u)−K(v)‖XT
≤ (cM1T + cM2T

θRp−1)‖u− v‖XT
. (3.16)

We can choose R sufficiently large and T sufficiently small, depending only
on ‖φ‖Σ(2), so that

cM1T + cM2T
θRp−1 ≤ 1

2
.
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The proof of this proposition completes. ¤

Now we prove Theorem 1.

Proof of Theorem 1. First we consider the subcritical case, that is, we
assume that n ≥ 4 and that 1 ≤ p < 1 + 4/(n− 4). We show the existence
result. By Remark 3.5, Propositions 3.1 and 3.2, if R is sufficiently large
and T is sufficiently small, K has a unique fixed point u in BT,R. Namely,
u is a unique solution of (3.11) in BT,R. By (3.12) and (3.13), we see
that F (u) ∈ C(IT , L2). Therefore u ∈ Z̄T follows from Lemmas 3.2 and 3.3.
Since F (u) ∈ C(IT , L2), u is a solution of (1.1)–(1.2) by Lemmas 2.3 and 2.4.

We next prove the uniqueness of the solution. Let u, v ∈ C(IT ,Σ(2))
be solutions of (1.1) with u(0) = v(0) = φ. Then u, v satisfy the integral
equation (3.11). Therefore, as in the proof of Proposition 3.2,

‖u− v‖XT
= ‖GF (u)−GF (v)‖XT

≤ {
cM1T + cM2T

θ
(‖u‖p−1

L∞T (Σ(2)) + ‖v‖p−1
L∞T (Σ(2))

)}‖u− v‖XT
.

We can choose T > 0 sufficiently small, depending only on ‖φ‖Σ(2), so that

cM1T + cM2T
θ
(‖u‖p−1

L∞T (Σ(2)) + ‖v‖p−1
L∞T (Σ(2))

) ≤ 1
2
.

Hence, if T > 0 sufficiently small, we have

‖u− v‖XT
= 0.

We next show that ∂tu ∈ X̄T . From (3.8), we note that

i∂tu = H(t)Uφ+ i∂tGF (u)

= H(t)Uφ+ iG∂tF (u)− iUF (φ)− 1
2
(∆GF (u)−G∆F (u))

+G{(A · ∇ − iṼ )F (u)} − (A · ∇ − iṼ )GF (u). (3.17)

Since terms in RHS of (3.17) except the 1st, the 4th and the last terms are
images of U or G, they are in XT . For any (q, r) satisfying (1.4), we can see
that, in the exactly same way as the proof of (3.5), (3.7),

‖H(t)Uφ‖Lr
T (Lq) ≤ c‖φ‖Σ(2),

and that

‖∆GF (u)−G∆F (u)‖Lr
T (Lq), ‖(A · ∇ − iṼ )GF (u)‖Lr

T (Lq)
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≤ C

(
‖F (u)‖L∞T (L2) + ‖|x|2F (u)‖X′

T
+

n∑

j, k=1

‖xj∂kF (u)‖X′
T

+ ‖∂tF (u)‖X′
T

)
.

We have used Lemma 2.5 for the estimate of the first and the last terms,
and (3.9) for that of the 4th term, respectively. Thus we obtain ∂tu ∈ XT .
Since u ∈ Z̄T , we have ∂tu ∈ X̄T .

Finally we show the continuous dependence on the initial datum.
Assume that φ ∈ Σ(2) and that u ∈ C(IT0 ,Σ(2)) is a solution of (1.1)
with u(0) = φ. We also assume that φm ∈ Σ(2) for m = 1, 2, . . . , and
that φm → φ as m→∞ in Σ(2). By standard continuation argument, it is
sufficient to prove that um → u in ZT for T > 0 sufficiently small depending
only on ‖φ‖Σ(2). Let

Km(v) = Uφm − iGF (v)

for m = 1, 2, . . . . By the same argument as above, we can show that if
T > 0 is sufficiently small and R > 0 is sufficiently large, depending only
on ‖φ‖Σ(2), u is a unique fixed point of K in BT,R, and Km has a unique
fixed point um in BT,R for m sufficiently large. Then um is a unique solution
of (1.1) in C(IT ,Σ(2)) with um(0) = φm. As in the proof of Proposition 3.2,
we see that

‖um − u‖XT
= ‖Km(um)−K(u)‖XT

≤ ‖Uφm − Uφ‖XT
+ ‖GF (um)−GF (u)‖XT

≤ c‖φm − φ‖2 + (cM1T + cM2T
θRp−1)‖um − u‖XT

.

This implies that if T > 0 is small enough,

‖um − u‖XT
≤ c‖φm − φ‖Σ(2).

We obtain that um → u in XT ⊂ L∞T (L2). On the other hand, since
‖um(t)‖H2 ≤ ‖um‖ZT

≤ R, it follows that um → u in L∞T (H2l) for any
l < 1. By Lemmas 3.2 and 3.3, we see that

‖um − u‖ZT

≤ c‖φm − φ‖Σ(2)

+ c

(
‖F (um)− F (u)‖L∞T (L2) + ‖|x|2(F (um)− F (u))‖X′

T
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+
n∑

j, k=1

‖F ′(um)xj∂k(um − u)‖X′
T

+
n∑

j, k=1

‖(F ′(um)− F ′(u))xj∂ku‖X′
T

+ ‖F ′(um)(∂tum − ∂tu)‖X′
T

+ ‖(F ′(um)− F ′(u))∂tu‖X′
T

)
.

As in the proof of Proposition 3.1, we have

‖F (um)−F (u)‖L∞T (L2)≤C‖um−u‖ZT
,

‖|x|2(F (um)−F (u))‖X′
T
≤M1T‖|x|2(um−u)‖L∞T (L2)

+M2T
θRp−1‖|x|2(um−u)‖Lγ

T (Lρ)

≤(M1T +M2T
θRp−1)‖|x|2(um−u)‖XT

,

‖F ′(um)xj∂k(um−u)‖X′
T
≤(M1T +M2T

θRp−1)‖xj∂k(um−u)‖XT
,

‖F ′(um)(∂tum−∂tu)‖X′
T
≤(M1T +M2T

θRp−1)‖∂tum−∂tu‖XT
.

It remains to prove

(F ′(um)− F ′(u))∂tu→ 0, (3.18)

(F ′(um)− F ′(u))xj∂ku→ 0, (3.19)

as m→∞ in X ′
T . By Lemma 2.5 and the Hölder inequality, it is easily seen

‖(F ′(um)−F ′(u))∂tu‖X′
T

≤‖(F ′1(um)−F ′1(u))∂tu‖L1
T (L2) + ‖(F ′2(um)−F ′2(u))∂tu‖Lγ′

T (Lρ′ )

≤T‖(F ′1(um)−F ′1(u))∂tu‖L∞T (L2)

+T θ‖(F ′2(um)−F ′2(u))‖L∞T
(
L2p/(p−1)

)‖∂tu‖XT
.

Then noting Remark 2.3, we see that

‖(F ′1(um)− F ′1(u))∂tu‖L∞T (L2) → 0,

asm→∞, by Remark 4.3 in Kato [11], the dominated convergence theorem
and the fact ∂tu ∈ XT ⊂ L∞T (L2), and by Lemma 4.2 in Kato [11] and the
fact that um → u in L∞T (H2l) for any l < 1, we have

‖F ′2(un)− F ′2(u)‖L∞T
(
L2p/(p−1)

) → 0,
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asm→∞. These imply (3.18). Similarly, we can prove (3.19) since xj∂ku ∈
XT ⊂ L∞T (L2).

In the critical case, namely, when n ≥ 5 and p = 1+4/(n− 4), we have
θ = 0. If C1‖φ‖Σ(2) < δ for C1 > 0 appeared in Lemma 3.2 and sufficiently
small δ > 0, then for R > 0 satisfying cM2R

p−1 < 1/2 and T > 0 depending
only on δ, we have

δ + cM1TR+ cM2R
p ≤ R.

Thus for these R and T , the assertions in Propositions 3.1 and 3.2 hold, and
we have K has a unique fixed point u in BT,R. We can prove the remained
parts in the same way as above. We remark that um → u in L∞T (H2) in
this case. We omit the details. ¤

4. Proof of Theorem 2

Before the proof of Theorem 2, We introduce the following results of
Yajima [30].

Lemma 4.1 (Yajima [30]) Assume Assumptions (A) and (V). Let T > 0
be sufficiently small, µ > 1/2 and ρ > 0. There exists a constant C > 0,
depending on µ and ρ, such that for s ∈ R and f ∈ S(Rn)

∫ s+T

s−T
‖〈x〉−µ−ρ〈Dx〉ρU(t, s)f‖2

2 dt ≤ C‖〈Dx〉ρ−1/2f‖2
2.

Using Lemma 4.1, we prove Theorem 2.

Proof of Theorem 2. By (3.11), (1.3), Lemma 2.4 and (3.8), we have

〈x〉−µ−5/2〈Dx〉5/2u

= 〈x〉−µ−5/2〈Dx〉5/2Uφ− i〈x〉−µ−5/2〈Dx〉5/2GF (u)

= 〈x〉−µ−5/2〈Dx〉5/2Uφ+ 2〈x〉−µ−5/2〈Dx〉1/2UF (φ)

+ 2〈x〉−µ−5/2〈Dx〉1/2G∂tF (u) (4.1)

+ i〈x〉−µ−5/2〈Dx〉1/2(∆GF (u)−G∆F (u))

− 〈x〉−µ−5/2〈Dx〉1/2G[2A · ∇F (u)− 2iṼ F (u) + iF (u)]

+ 2i〈x〉−µ−5/2〈Dx〉1/2F (u).

First we estimate the 1st and 2nd term in the RHS of (4.1). By Lemma 4.1,



Strong solutions for nonlinear Schrödinger equations 59

it is easily seen that
∫

IT

‖〈x〉−µ−5/2〈Dx〉5/2(Uφ)(t)‖2
2 dt ≤ c‖〈Dx〉2φ‖2

2 <∞,

∫

IT

‖〈x〉−µ−5/2〈Dx〉1/2(UF (φ))(t)‖2
2 dt ≤ c‖F (φ)‖2

2 <∞.

We have used (3.1) and Lemma 3.4 in the second estimate. To estimate
the 3rd, the 4th and the 5th terms in the RHS of (4.1), we need the following
lemma (cf. [2, 15, 16, 17, 21, 22]).

Lemma 4.2 For µ > 1/2, there exists C > 0, depending on µ such that
(∫

IT

‖〈x〉−µ−1/2〈Dx〉1/2(Gf)(t)‖2
2 dt

)1/2

≤ C‖f‖L1
T (L2),

Proof. Let g ∈ C∞0 (IT ×Rn). By Lemma 4.1 and the Schwarz inequality,
we obtain∣∣∣∣

∫

IT

(〈x〉−µ−1/2〈Dx〉1/2(Gf)(t), g(t)
)
dt

∣∣∣∣

≤
∫

IT

∫ t

0

∣∣(〈x〉−µ−1/2〈Dx〉1/2U(t, s)f(s), g(t)
)∣∣ ds dt

≤
∫

IT

∫

IT

‖〈x〉−µ−1/2〈Dx〉1/2U(t, s)f(s)‖2‖g(t)‖2 dt ds

≤
(∫

IT

(∫

IT

‖〈x〉−µ−1/2〈Dx〉1/2U(t, s)f(s)‖2
2 dt

)1/2

ds

)
‖g‖L2(IT×Rn)

≤c
(∫

IT

‖f(s)‖2 ds

)
‖g‖L2(IT×Rn),

where ( · , · ) is the L2(Rn) scalar product. By the duality argument, we
have this lemma. ¤

For the 4th term in the RHS of (4.1), we have
(∫

IT

∥∥〈x〉−µ−5/2〈Dx〉1/2
(
(∆GF (u))(t)− (G∆F (u))(t)

)∥∥2

2
dt

)1/2

≤ c

(
‖GF (u)‖L1

T (L2) ∨ ‖|x|2GF (u)‖L1
T (L2)
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∨
n∑

j, k=1

‖xj∂kGF (u)‖L1
T (L2) ∨ ‖∆GF (u)‖L1

T (L2)

)

≤ cT‖GF (u)‖ZT

≤ cT

(
‖F (u)‖L∞T (L2) + ‖|x|2F (u)‖X′

T
+

n∑

j, k=1

‖xj∂kF (u)‖X′
T

+ ‖∂tF (u)‖X′
T

)
.

Since u ∈ ZT , it is clear that the RHS of above inequality is finite.
According to Lemma 4.2, to estimate the L2(IT ×Rn)-norm of the 3rd

term in the RHS of (4.1), it is sufficient to show

∂tF (u) = F ′(u)∂tu ∈ L1
T (L2), (4.2)

and to estimate the L2(IT ×Rn)-norm of the 5th term in the RHS of (4.1),
it is enough to prove

F (u) ∈ L1
T (L2), (4.3)

|x|2F (u) ∈ L1
T (L2), (4.4)

xj∂kF (u) = F ′(u)(xj∂ku) ∈ L1
T (L2). (4.5)

On the other hand, to estimate the L2(IT ×Rn)-norm of the 6th term in
the RHS of (4.1), it is sufficient to prove

F (u) ∈ L2(IT ×Rn), (4.6)

∇F (u) = F ′(u)∇u ∈ L2(IT ×Rn). (4.7)

(4.3) and (4.6) follow from (3.14). We show (4.2). When n ≤ 3, since u ∈
C(IT ,Σ(2)) ↪→ L∞(IT ×Rn) and ∂tu ∈ L∞T (L2), we have ∂tF (u) ∈ L1

T (L2).
When n ≥ 4, since u ∈ L∞T (H2), we see that u ∈ L∞T (Lq) for 2 ≤ q < ∞
when n = 4 and for 2 ≤ q ≤ 2n/(n − 4) when n ≥ 5. For proving in the
case of n ≥ 5, we note that there exist the real constants a, b satisfying

p− 1
a

+
1
b

=
1
2
,

1
2
− 2
n
≤ 1
a
≤ 1

2
,

1
2
− 1
n
≤ 1
b
≤ 1

2
.

Therefore we obtain that, by the Hölder inequality and the fact ∂tu ∈ XT ,

‖F ′(u)∂tu‖L1
T (L2)
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≤ cM1T‖∂tu‖L∞T (L2) + cM2T
1/2‖|u|p−1∂tu‖L2(IT×Rn)

≤ cM1T‖∂tu‖L∞T (L2) + cM2T
1/2‖u‖p−1

L∞T (La)‖∂tu‖L2
T (Lb)

≤ cM1T‖∂tu‖L∞T (L2) + cM2T
1−1/r‖u‖p−1

L∞T (La)‖∂tu‖Lr
T (Lb)

<∞,

where r is a constant such that (b, r) is an admissible pair, and when n ≥ 5
we can estimate in the similar way. We have (4.2).

By (3.11), (3.4) and (3.3), we see that |x|2u and xj∂ku are represented
as the sum of the images of U or G. Thus |x|2u, xj∂ku ∈ XT . In the exactly
same way as the proof of (4.2), we can show (4.4) and (4.5).

We can also show (4.7) in the similar way to (4.2). Proof of Theorem 2
is completed. ¤
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