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Momentum operators with a winding gauge potential
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Abstract. Considered is a quantum system of N (> 2) charged particles moving in
the plane R? under the influence of a perpendicular magnetic field concenrated on the
positions where the particle exsists. The gauge potential which gives this magnetic field
is called a winding gauge potential. Properties of the momentum operators with a wind-
ing gauge potential are investigated. The momentum operators with a winding gauge
potential are represented by the fibre direct integral of Arai’s momentum operators [1].
Using this fibre direct integral decomposition, commutation properties of the momentum
operators are investigated. A notion of local quantization of the magnetic flux is intro-
duced to characterize the strong commutativity of the momentum operators. Aspects of
the representation of the canonical commutation relations (CCR) are discussed. There is
an interesting relation between the representation of the CCR with respect to this system
and Arai’s representation. Some applications of those results are also discussed.

Key words: momentum operators with a winding gauge potential, strong commutativity,
representation of the CCR.

1. Introduction

In Ref. [1, 2, 3, 4], A. Arai investigated commutation properties of two
dimensional momentum operators with a strongly singular gauge potential.
In those papers, he showed some interesting results. Especially, there exsists
a beautiful relation between representations of the canonical commutation
relations (CCR) and the local quantization of the magnetic flux.

The main aim of this paper is to analyze a quantum system of N (> 2)
particles moving in R? under the influence of a perpendicular magnetic field
concenrated on the positions where the particle exsists. The gauge potential
which gives this magnetic field is said to be a winding gauge potential, and
is strongly singular. We note that R.B. Laughlin et al. [5, 6] discussed
this system in connection with the fractional statics gas (their discussions
in [5, 6] are heuristic). Hence, to investigate this sytem is also important
from a physical point of view.

We show that the momentum operators with a winding gauge poten-
tial can be represented as the direct integral of Arai’s momentum operator.
In this sense, our result is a natural extension of Arai’s work [1, 2, 3, 4].
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It is also important whether the magnetic flux is locally quantized or not.
Indeed, we see that the local quantization of the magnetic flux is closely con-
nected with the Schrodinger representation of the CCR’s. As an application
of those results, we study a class of Schrodinger operators with a winding
gauge potential. Moreover, there are some other important properties about
this system. In particular, we see that there is an interesting correspondence
between bosons and fermions, so called the statistical transformation.

The outline of the present paper is as follows. In Section 2, we introduce
a winding gauge potential and show the self-adjointness of the momentum
operators with a winding gauge potential. We also investigate the com-
mutation relations (in the strong sense) of the momentum operators with
a winding gauge potential. To do this, we express the momentum operators
as direct integrals of Arai’s momentum operator. By using this expression,
we prove that the momentum operators strongly commute if and only if
the magnetic flux is locally quantized. In Section 3, we apply the preced-
ing results to the theory of reperesentaion of the CCR. We show that the
momentum operators with a winding gauge potential and the position op-
erators fulfills the Weyl relation if and only if the magnetic flux is locally
quantized. Furthermore, we discuss a relation between direct integral repre-
sentation of Arai’s representation of the CCR and our system. In Section 4,
we define the Hamiltonian with a winding gauge potential and investigate
the properties of this Hamiltonian. We note that formal discussion of this
Hamiltonian is found in Ref. [5, 6]. Moreover, we introduce the statistical
transformation and disscus some applications. This transformation gives
the correspondence between bosons and fermions, and comes from the two
dimensionality of the sytem.

2. Momentum operators with a winding gauge potential

2.1. Definition of the momentum operators with a winding gauge
potential
We consider a quantum system of N (> 2) charged particles with charge
g € R\ {0}, where each particle feels a perpendicular magnetic field B;
(j =1,...,N) given by a real distribution of the form

Bj(rla"'arN) = 725(1‘1 _rj)a ry,...,ry € R27 ry = (xjvyj)7
i#]
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where v € R and §(r) is the Dirac’s delta distribution. Gauge potentials A;
(j =1,...,N) of the magnetic field B; are defined to be R%-valued functions
Aj = (Ajl,Ajz) on the domain

My = {(rn o) € B [n 1y (6 £9))
such that
Bj = ijAjQ — DyjAjl

in the sense of distribution on R?V, where D, ; and Dy denote the distri-
butional partial differential operators in x; and y;, respectively.
We denote by A; (j =1,...,N) the 2 dimensional Laplacian

Aj:=D; +Dj .
Using the well-known formula
Ajloglrj —ry| = 2m0(x; —rx) (kK # j),

we see that the distribution

ON(ri,...,rN) = Z %log r; — 1l
1<J

satisfies
Ajpn(ri,...,rN) = Bj(ri,...,rN).

From this fact, we can take as a gauge potential of the magnetic field
Aj = (Aj1, Aj2) = (=Dy,¢n, Dz;0n), j=1,...,N.

Explicitely, we have
Yi — Yi
A]’l(rl,..., = Z |r:_ r]’|2’ (1)

a:j—atZ

Ajg(rl,..., Z |I'Z—I']’2 (2)

Definition 2.1 The gauge potential A; = (4;1,Aj2) (j =1,...N) given
by (1) and (2) is called the winding gauge potential.

We use a system of units where the light speed ¢ and the Planck
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constant A are equal to 1. Let
bj1 = —ingj, pj2 = —iDyj (j:L...,N),

in L2(R?Y). The momentum operator P; = (Pj1, Pj2) with the gauge po-
tential A; is defined by

Pjo :=pja —qAja, (G =1,...,N, a=1,2)
in L2(R?V) with domain dom(Pj,) = dom(pja) N dom(A;q).

Remark 2.2 We note that almost all discussions in this paper can be
extended to following more general case:

Bj(r1,...,t5) =Y yiyd(ri—r;), (r1,...,r; €R?), (3)
i7j
where v;; € R (4,5 = 1,...,N, @ # j), vij = 7j- But to simplify our
discussions, we only consider the case v;; =~ (i, j =1,...,N).

2.2. Self-adjointness
Let

SfN) :{(r177rN)€R2N|rZ:(xlayl)€R2a yl#y] (1’#])}7
SQ(N) ::{(rh...,rN)ERQN|ri:(xi,yi)€]R2, I‘i#.%j (275])}
and

wjl(rl, R 7I‘N) = _lZArCtan<u)7

27 it Yi —Yi
_ Yi — Y
Pja(r, ..., rN) = o ;Arctan<w>.
i#]

Then it is easy to check that ;o € COO(S&N)) and
Ajl = ijlbjl on S£N), (4)
Ajp = Dy,tbjz on S5, (5)

Theorem 2.3 For each j = 1,...,N and o = 1, 2, Pj, is essentially
self-adjoint on C“(S&N)).
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Proof.  Since 9jo € C™ (S&N)), el%%je ig a unitary operator such that

e 0o (SIV)) = (8.

«

By (4) and (5), we have

Pjo = eiqwj“pjae*iqwja on Cé’o(S(N)).

e

On the other hand, it is easy to see that pj, is essentially self-adjoint on
CSO(S((XN)). Hence we have the desired result. O

2.3. Commutation relations of the momentum operators with
the winding gauge potential
For r = (x,y) € R?, 5, t € R, we introduce a path C(r;s,t) which is
the rectangular curve:

r—r+(s,0) —>r+(s,t) >r+(0,t) —>r.
Let D(r;s,t) be the interior of C(r;s,t) and
1 >0
€(s) == (s 20) .
-1 (s<0)
We denote the closure of Pj, by Fja

Theorem 2.4 For each s,t €R and j, k=1,...,N, we have
(i) eisPin gitPiz — exp(—iqé(sét)) ot Pr2 eisﬁjl;

J
(11) eisf]-a eitﬁ;m — eitﬁm eisfja (Oé — 1’ 2)7
where, for each (r1,...,rn) € RN with r; = (z;,v;) € R?, we define
(1)575]’:) (rl, s ,I'N)
_ ’ye(s)e(t)#{i ‘ 1#£k, 1; € D(rk;s,t)} (j=k)
76(3>6(t)#{(j7 k) ‘ (xkvyj) € D((xjayk); Sat)} (] 7é k) ’

(#A means the cardinality of the set A).

Definition 2.5 ([1]) We say that the magnetic flux associated with the
winding gauge potential is locally quantized if @;s,;t)

tion for all s,t € R.

is a 2wZ/q-valued func-

Corollary 2.6 The momentum operators Pj, strongly commute to each
other if ond only if v/0y € Z, where 0y := 27/q the flux quanta, equivalently,
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the magnetic flux associated with the winding gauge potential is locally quan-
tized.

To prove Theorem 3.2, we need some preparations. Let
RN =R? x --- x R%,,

where each R? (i = 1,...,N) is a copy of R%. For each j, k=1,..., N, we
define

Y

jk =

R%xn-x@xu‘xﬂk?\, =k

where ]1/%:2 indicates the omission of ]R?.

Let wjg := (ag,..., Aj_1, 841, ,Ak—1,Akt1,--- ,ay) € ij (if j =k,
then Wjj is given by Wjj = (al, PP : VI PR : VNI ,aN) S ij). Then we de-
fine the multiplication operators /Nlla(wjk) on LQ(]R? xR2) 1 =j, kif (j # k)
and A, (wj;) on LZ(R?) by

Ao (wji) (rj,T1)

= Apa(ar,...,aj-1,Tj,8j41, ..., k1, Tk, A1, - - -, AN)
(l=74,k, j#k),
Ajalwjs)(r;)
= Ajo(a,...,a;-1,rj,841,...,an),

respectively. We set

 [P®KRY) (K
= {LQ(R%) G=h)

Then relative to the direct integral decomposition
52}
LQGR”V):(/) Hjr dwik, (6)
we can represent the multiplication operators Ajo, Arq as

® ®
Aja =/ Ajo(wjk) dwjr,  Apa =/ Ao (wjr) dwjg. (7)
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On the other hand, we set
ﬁil = _iDzia ]322 = _iDyi (Z = j, k)

acting in H;r, where we also denote the distributional partial differential
operators in x; and y; acting in H;; by D, and Dy,. Then p;, (i = j, k,
a =1, 2) is a self-adjoint operator. Moreover, it is clear that

® ®
Dja = / Dja dwjk,  Pra = / Dka dwji (8)
ij ij
fora =1, 2.
For each wj € €}, we define
Pjo(wjk) = Pja — ¢Ajalwjr),
dom(Pja(wjk)) := dom(pja) N dom(Aja(wjk))
and
Pka(wjk) ‘= Pka — qulka(wjk)’
dom(Prq (wj)) := dom(prq) N dom([lka(wjk)).

Remark 2.7 If j = k, then the operator Pj,(wj;) is called Arai’s momen-
tum operator ([1]).

Now, we have a following useful lemma.

Lemma 2.8 Let Pjo(wji) and Pyo(wji) be as above. Then, for all wj, €
Qi and o = 1, 2, Pjo(wji) and Pyo(wji) are essentially self-adjoint.

Proof. 1f j = k, then we can apply [1, Theorem 3.2]. Hence we only prove
the assertion in the case j # k. For each wj, = (ai,...,aj-1,aj41,...,
ag_1,8541,---,an) € L (2 = (a1, ai2) € R?), let

N
5](1 )(wjk) = {(rj,1) €R X R} | yj # y, ¥j # aiz,
(i=1,c0sdyeeer ks N}

We introduce the function lﬁjl(wjk) on R? x R? by

i1 (wie) (rj, rr)

::wjl(al,...,rj,...,rk,...,aN)
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= —%{Arctan( — ) Z Arctan( —ai ) }

Yj — a2

for each (rj,ry) € gﬁv)(wjk) Then it is easy to check that ;i (wjx) €
O (85" (wir) and

= N
D:pjwﬂ(wjk)(rj,rk) = Aji(wik)(rj,re)  ((rj,r8) € 53(1 )(ij))-
Hence el9%51 (@) is a unitary operator such that

i) 03 (S (wyp,)) = C5° (S0 (wjn))

and

P (wjk) = 9P (k) 5. o100 (wjik)

on Cgo(gﬁv) (wjk)). Since pj; is essentially self-adjoint on Cgo(gﬁv) (wik))
we have the desired result. By the similar way, we can prove the assertions
about sz(wjk), Pkl(wjk) and Pkg(wjk). O

We denote the closure of Pjo(wjr) (resp. Pra(wjkr)) by Pja(wjk)
(resp. Pra(wjk))-

To state the next result, we introduce some basic definitions of operator-
valued measurable mappings. Let (A,u) be a measure space and X be
a Hilbert space. We denote the set of bounded operators on X by B(X)
and the set of linear operators on X’ by £(X'). For a self-adjoint operator T,
we denote its spectral measure by Er(J), where J € B! (the Borel field
of R).

For a B(X)-valued mapping B: A 3 A\ — B(\) € B(X), we say that
the mapping A — B(\) is measurable if the mapping A — (¢, B(\)¢)x is
measurable for each ¢ € X.

Let A: A 3 X — A(N) € L(X) be a L(X)-valued mapping. We call
that the mapping A — A(M\) is self-adjoint mapping if A(\) is self-adjoint
for pu-a.e. .

Let A — A()) be a self-adjoint mapping. If the B(X)-valued mapping
A — Ey\(J) is measurable for each J € B!, we say that the mapping
A — A(N) is measurable. For a measurable self-adjoint mapping A — A(\),
we can define a self-adjoint operator acting in [ XB X du(N) by
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@
dom(A) := {\If € / Hdu(A) | ¥(N) € dom(A(N)) prae. A,

A — A(N)WP()N) is measurable,

/||A M2 du(y) < oo},

(AT)(N) = U(A) p-ae. A\, U e dom(A).

The operator A is said to be the direct integral of A(\) and written by

®

A= / AN ().
A

More details on these objects, see Appendix A.

Proposition 2.9 For each j, k=1,...,N, a =1, 2, the mapping wj, —

Pio(wji) (i = j, k, a =1, 2) is a measurable self-adjoint mapping and

. ® _ & _
Pjq =/ Pjo(wjk) dwjk,  Pra :/ Pro(wjr) dwjg.

Proof. By Theorem 2.3 and Lemma 2.8, Pj, and Pj,(wji) are essentially
self-adjoint. Combing this with (7) and (8), we have the desired result by
Theorem A.7. 0

Proof of Theorem 2.4. By Propostion 2.9, we have

PR @ PR—
exp(itPy) = /Q exp(itPo(wjk)) dwjr (I =3, k)
ik

for each t € R. Hence it suffices to disscus the commutation relations in the
theorem at each fibre.
If j = k, then we can apply [1, Theorem 2.1] and obtain

exp(isPj1(wj;)) exp(it P2 (wjj))
= exp(—ig®};" (wy;)) exp(itPre(wyy)) exp(isPy1(wy;)),
where @;fjit) (wjj) is a multiplication operator defined by

(I);Sjt)(wjj)( J)
= ye(s #{Z’Z#% WJJ()GD(rj?Svt)}’
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where w;; = (wj;(1),...,w;;(IN — 1)) € Q;;. Hence we have the desired
result in this case.

Next we prove the assertion in the case j # k. We can apply the Trotter
product formula (e.g., [8, Theorem VIII 31]) to each P (wjx) (I = j, k) to
obtain

exp(it Pia (W)
= s-lim (exp(itpra /n) exp(—itq A (wj)/n))" (1= j, k)
for each t € R. Using the fact that
(e"™Pi1W)(rj,vy) = U(r; + (,0), 1)) ae. (rj, ;) € ]R? x R%, s € R,
we can show that
(exp(it Py (wji)) W) (rj, ri)
= exp <—iq /Ot Ajy(win)(rj + (2,0), 1) dxé) U(r; + (¢,0),ry)
for a.e. (rj,ry) € ]R? x R? and each ¥ € Lz(Rg x R?). Similarly we have
(exp(it Prz(w;jk)) W) (x;, 1k)

= exp (—iq/o flkg(wjk)(rj,rk +(0,95)) dy;) U(rj,ry + (0,1))

for a.e. (rj,ry) € RJQ- x R? and each ¥ € L2(]R§ x R?). Using these formulas,
we obtain

exp(isPj1 (wjk)) exp(it Pra(wjk))

= exp(—ig® 3 (wji)) exp(itPra(wsi)) exp(is Py (wjk)),

where

t
+/ AkQ(w]k)(rj + (870)7 ry + (07 y;c)) dy;ﬁl
0

t
- / Apo(win)(xj, v + (0, 4)) Ayl
0
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- / Ajr(w)(x + (2 0).p + (0,1)) da
0

for a.e. (rj,ry) € RJZ x RZ. To calculate q)§f,;t) (wjk), we introduce some
notations:

Y Yk

e xk_mj
Com ]r] — rk\Q’

a]k2(r]’rk) 27r|r — /2
j

ajk (T, T)) =

wjk

byt () (25,13 : Ee—r
J J

|2’
z;ﬁ] k

Ly e
w2 |rk’ - w]k |2
where we use the notations w;,=(w;x(1),... ,um, e ,m,. Lwik(N))e
Qiky wik(i) = (wjk(i)1,w;k(i)2) ER?. Then it is clear that
Aji(wik) = ajrg +bjri(wik)s  Aga(wjn) = ajka + bk 2(wjk).
Next, we introduce the new coordinate:
vk = (T, Yj), Tk = (75, Yk)

for each r; = (xj,y;) € Rjz, rp = (xg,yx) € Ri. Then we can regard aji o
(o =1, 2) as the function with two variables r;j, Tji:

CNij@(I'jk,fjk) = ajk@(rj, I‘k), a=1,2.

On the one hand, we have

S t
/ ajk,1(rj + (25,0), 1) das + / ajk,2(r; + (5,0), 15+ (0,95)) dyy,
0 0
t S
- / a2 (rj,rr 4 (0,y5)) dyj, —/ ajr(rj + (25,0), 1+ (0,1)) da)
0 0
S L AR A CHE TR )
C(l‘]k,s t)
:/ (Dyrajk,1 — Dy djr2) ATy, (by Green’s theorem)
D(fjk;s,t) ! §

:_76 #{ ]7 )‘rjkED(fjkVS?t)}v

where we use the fact

Da; a1 (v, Tjk) = Dy, Gk 2(rjk, Tik) = —70(rje — k).
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On the other hand, we obtain
/08 bjk,1(wik)(rj + (25, 0),14) daf
+ /Ot bjk2(wjr)(rj + (s,0), v, + (0,v5)) dyz,
- () (e + (0,54)) o

= [ bl + @5 0)m + (0.0) )
=0.
Combining these facts, we have
B3 ) (1) = —e()e (4G, 1) | 13 € Dl 5,0},

Therefore we have the assertion about Pji, Pra. By a similar way, we have
the assertions about Fjl, Py and ?jg, Ppo. O

3. Representation of the CCR

3.1. Schrodinger representation and local quantization of the
magnetic flux
Let H be a Hilbert space, D be a dense subspace of H and {p;, ¢; };?:1
be a set of self-adjoint operators on H. The set

mi={H, D, {p;,q;}_1}

is called a representation of the CCR with n degree of freedom on D if it
satisfies
(i) dom(p;), dom(g;) CD (j =1,...,n);
(i) pyDCD,¢DCD(j=1,...,n);
(iii) {pj,qj}j=; satisfy the canonical commutation relations (CCR) on D:

[pj, akl = —i6;x9,
for all ¥ in D.
We often write D(7) for D. Our main aim of this section is to investigate the

momentum operators with the winding gauge potential from the viewpoint
of the representation of the CCR.
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For a representation of the CCR 7 := {H, D, {pj,q; }?:1 }, we introduce
the strong commutant of 7 as follows:

(m),:={T € B(H) | TD C D, pjT$ =Tp;¢,
¢;T¢ = Tqjp, €D, j=1,...,n},

where we denote the set of all bounded operators on ‘H by B(H). We say
that 7 is ¢rreducible if (). = CI.

Proposition 3.1 Let Qj1, Qj2 (j =1,...,N) be the multiplication oper-
ators by the coordinate functions x; and y;, respectively. Then

TA = {LQ(R2N)7CSO(MN)7 {Fjaana ‘ ] = 17 . '7N7 o = ]‘7 2}}
is an irreducible representation of the CCR of 2N degree of freedom.

Proof. 1t is not difficult to show that m, is a representation of the CCR.
So we only prove the irrudicibility of 4.
Let T be an element in (74),. Then, for each ¢ € C§°(My), we have

TQja¢ = QjaTﬁb (] = 1,. Loy, 6 = 1,2).

Since each @)}, is essentially self-adjoint on C§°(My ), we can conclude that
TQjo C QjoT. Hence, we obtain

r]ﬂeistoé — eistoéCZv
for all s € R. Therefore, there exists a function F € L>(R?V) such that
Té = Fo

for each ¢ € L2(R*Y). Since T' commutes with Pj, on C§°(My), T also
commutes with pj, on C§°(My). Hence we have

eiSpjo‘T — Teispja
for all s € R. Since e*Pi~ is the translation, we can conclude that F is
constant almost everywhere. O
As for the CCRs in the Weyl form, we have the following result.

Theorem 3.2 The set {?jm Qja ! j=1,....N, a= 1,2} of self-adjoint
operators fullfills the Weyl relations if and only if v/6y € Z, i.e., the mag-
netic flux is locally quantized.
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Proof. 1In a similar way to the proof of Theorem 2.4, we can prove

exp(isQja) exp(it Prg) = exp(—istd;r0as) exp(it Prg) exp(isQja)

for all s,t € R, 5,k =1,...,N, o, = 1,2. Combining these facts with
Theorem 2.4, we have the desired assertion. O

Let m = {Hm, D(m1), {Pr1js qmj}?zl} and g = {HM, D(ms),
{Prajs qmj}?zl} be representations of the CCR of n degree of freedom. If
there exists a unitary operator U from H,, onto Hr, such that

Up7r1 Ur = DPras UQWl U = Qras

for each j = 1,...,n, then we say that m; and mo are unitarily equivalent.

To state a corollary of the above theorem, we need some notations. Let
Pja be the free momentum operators defined in the preveous section. Then
it is not difficult to check that pj., @ are self-adjoint and satisfy the CCR
on C§°(My). Hence

TS = {L2(R2N)7CSO(MN)7 {pjomQja ‘ ] = 1a s 7N7 a = 172}}

is an irreducible representation of the CCR. g is said to be the Schridinger
representation on C§°(Mn).

Corollary 3.3 7y is unitarily equivalent to ws if and only if v/6y € Z.
Furtheremore, the unitary operator which gives this unitary equivalence has
the follwing formula:

Un(60,7) = exp (ielnN>7
nN(rla"'v ZIO

where z, = x + iyx. That s, for eachj=1,...,N, a=1,2,
UN (00, 7)PjaUn (00,7)" = Pja,  Un(00,7)QjaUn(00,7)" = Qja-

Proof. The first half immediately follows from Proposition 3.1, Theo-
rem 3.2 and [8, Theorem VIII 14].
Note that ny is real valued. Indeed, since

‘ k_zj‘

25 — 25 = |2k — 2 |elf(zk:2)
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where ‘9Zk7zg' is a real valued function defined by

1 2k — 2

0(z, 2;) = - log —~—"L

(k? _]) 1 g’Zk;—Z]”
we can conclude that

N (re, . oey) = Y0z — )
1<j

is also real valued. Thus ¢V is a unitary operator. It is easy to see that
elfonn CgO(SfN)) = Cgo(Sl(N)). By a direct calculation, we can check that

2 N
Dy nn(ri,...,rN) = 7Ak1(r1, corN),  (r1,...,TN) € Sf ).
Hence we have

el1/00m o0/ = Py on Cgo(STY).

By a similar way, we can show the assertion about Pgs. O

3.2. Fibre direct integral representation of the CCR and Arai’s
representation
For each subset I C {1,..., N}, we introduce

ma(l) == {LQ(RQN),CSO(MNL (P Qi | i€ 1, a=1, 2}}.

Then it is clear that w4 () is a representation of the CCR of 2 x #1I degree
of freedom (#I means the cardinality of the set I). In this subsection, we
derive the direct integral decomposition of 7a([).

Let I = {i1,...,ig} C{1l,...,N} (i1 < ip < --- < i) be fixed. Then
we introduce

Qr ::R%x‘--x@% x - x R2 X - x R%,

R*(I) :=RZ x - x R?.
For each wr = (a1,...,a;,,...,a,...,an) € Qr, we define the multiplica-
tion operator Ao (wy) (i € I) on L?(R%*(I)) by

Am(wj)(ril,. . .,I'Z'k) = Am(al, ce . ,I'il, ce . ,I'Z'k, .. .,aN).
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Relative to the direct integral decomposition
®
Hmﬂﬁ—/<ﬁﬁﬂnmw,
Qr
it is not difficult to see that
o _ ®
Aia = / Ajo(wr) dwr,  pia = / Pia dwy
Q[ QI

for each v =1, 2, ¢ € I, where we denote the self-adjoint operators —iD,,,
—iD,, (i € I) acting in L?(R?*(I)) by pi1 and p;2, respectively. For each
wr € Qj, we define

Pia(wr) = Pia — qAia(wr),
dom(P;q (wr)) := dom(pia) N dom (A (wr)).

Then, by a similar way to the proof of Lemma 2.8, we can prove that for
each wy € Qy, Pio(wy) is essentially self-adjoint and measurable. Moreover,

PR 697
P, = / Po(wr)dwr (iel, a=1,2), 9)
Qr

where we denote the closure of Py, (wr) by Pig(wy).
Let I = {i1,...,ix} (k < N) be a subset of {1,...,N}. For each w =
(ai,...,an—k) € QI), we introduce

My (w) = {(ril,...,rik) e M, ‘ r;, #a;
(m=1,....k, j=1,...,N —k)}.
The following proposition can be easily proven.
Proposition 3.4 For each w € Qy,
mh(w) = {LAR(1), C* (M (@), {Pia@), Quia [ i€ T, a=1,2}}
is a representation of the CCR of #1 x 2 degree of freedom.
Remark 3.5 If #I = 1, then 7f (w) is called Arai’s representation [1].

Let K = [ /? Hdp(A) be the direct intgral of H over a measure space
(A, ). Suppose that

™= {K7D7{pi7qi|i:]‘7"'7N}}
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be a representation of the CCR of N degree of freedom. If for p-a.e. A € A,
there exsists a representation of the CCR of IV degree of freedom

™ = {H,DA;{pj()\)7Qj(A) ‘.7: 177N}}

such that
(i) for each j =1,..., N, the self-adjoint mappings A € A — p;(A), g;(N)
are measurable and

D &)
Dy = /A pi (N du(Y), g = /A (V) du(y),

(ii) for all U € D, ¥(A) € Dy p-a.e.,
then we say that 7 is decomposable or direct integal of {mx}rca and write

= /j o dp(A).

Theorem 3.6 Let my be the representation of the CCR defined in the
preceeding subsection. Then, for each I C {1,..., N}, we have

(&3]
(D) = /Q ! (wr) dwr.

Especially, if #1 = 1, then wa(I) is a direct integral of Arai’s representations
{7} (@)}weq, -
Proof. By using (9), we can easily prove this theorem. O

Theorem 3.7 Let I be a subset of {1,...,N}. Suppose that w, ' € Q.
Then we have the following:
(i) If the magnetic flux is locally quantized, then i (w) and 7i(w') are
unitarily equivalent to each other for all w, W' € Q.
(ii) If the magnetic fluz is not locally quantized, then wk(w) and 7l (W)
are unitarily equivalent if and only if w = w'.

Proof.  We will prove this theorem for the case N =2, I = {1}. To extend
the proof for this simple case to the proof for more general case is not
difficult. In this simple case, it is clear that p1; = —iDy, p12 = —iD, and

YT w1

An@)) = —goi— 5 An@)) = 5o,

27 [r — w|?’

where r = (z,y) € R, w = (w1,w2) € Q = R3. Hence, 7} (w) is Arai’s
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representation.

(i) If the magnetic flux is locally quantized, then applying [1, Theo-
rem 4.2], 7l (w) is unitarily equivalent to the Schrédinger representation.
Thus we have the desired result.

(ii) If w = ', then it is clear that 74 (w) and 71 (w') are unitarily

equivalent. Conversely, for w, W’ € Q, w # W, assume that ﬂé(w) and

7l (W) are unitarily equivalent to each other. Then there exists a unitary

operator U satisfying
UPpo(w)U ™ = Py (W), (10)
UQiaU ™' = Qia (11)
for each o = 1, 2. It follows from (11) that, for each F € L>®(R?),
UFU'=F.
Combing this with (10), we have
Up1aU~! = qA1a(w) = p1a — A1 ().
Using this equation, it is not hard to prove that
UptaU ™" = pia — q(A1a(w') — A1a(w)). (12)

We denote the R.H.S. of equation (12) by Pia(w,w’). It is clear that
{Up1aU ™1, Q14 | @ = 1,2} satisfies the Weyl relations. On the other hand,
applying [1, Theorem 2.1], we obtain

eisﬁl 1(w,w’) eitﬁlg (w,w) —ig®s ¢ (w,w') eitﬁlg (w,w) eisfl 1(ww)

for all s, t € R, where
e(s)e(t)y (w¢ D(r;s,t), w' € D(r;s,t))
Pyt (w,)(r) =< —e(s)e(t)y (w e D(r;s,t), ' ¢ D(r;s,t)) .
0 (otherwise)

Since the magnetic flux is not locally quantized, {Pq(w,w’), Q1o | @ = 1,2}
does not satisfy the Weyl relations. Hence we have a contradiction. O

Remark 3.8 Suppose that the magnetic flux is not locally quantized.
Then, by Theorem 3.7 (ii), we can conclude that there exist uncountably
many representations of the CCR which are inequivalent to each other.
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Corollary 3.9 Suppose that the magnetic flux is not locally quantized.
Then, for each subset I C {1,..., N}, wa(I) is a direct integral of mutually
inequivalent representations of the CCR.

4. Applications

4.1. Schrodinger operators for systems with the winding gauge
potential
Let V(ry,...,ry) be a real valued Borel measurable function on R?%.
Here, we investigate the Schrodinger operator on L?(R?*V) defined by

H_gél(_i Zh‘ —1“1c|2)2
N 2
+;<—i - Z|r —rkl2> +V(ry,...,rN).

For this purpose, we introduce an operator Hy defined by
HO = —A+ ‘/,

where A is the 2N dimensional Laplacian.
We assume the following conditions:
(A.1) Hy is essentially self-adjoint.
(A.Q) ’)//90 € 7.

Theorem 4.1  Under the assumption (A.1) and (A.2), we have the follow-
mng.
(i) H is essentially self-adjoint.
(ii) o(H) = o(Hp), where o(A) denots the spectrum of the linear opera-
tor A.
(iii) op(H) = op(Hp), where o,(A) denotes the point spectrum of A. Es-
pecially, if E € op(Hp), then

ker(H — E)= {H,Kj(zk — 2 )% 2 — 25|00 | W € ker(Hy — E)}.

Proof. (i) The Hamiltonian H can be expressed as

N
H=> Pi+V,
j=1
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where IP; := (Pj1, Pj2). Hence, by Cororally 3.3, we have
H = Un(00,7)HoUn (b0, 7)"
on dom(H). Hence
H = Un(60,7)HoUn (60,7)"- (13)

Since Hy is self-adjoint, it follows that H is self-adjoint. Parts (ii) and (iii)
follow from (13). O

4.2. Statistical transformation
Throughout this subsection, we assume the following condition:

L e (14)
to

Under this condition, the representation of the CCR
TA = {L2(R2N)7080(MN)7 {ﬁjaana } ] = 1a .. 'aNa a = 1a2}}

is unitarily equivalent to the Schrédinger representation wg by Cororally 3.3.
Hence, the system satisfying (14) seems to be trivial at first glance. But

there are some interesting structures in this system.
Let H := L?(R?). For each N > 2, it is well-known that L?(R?Y) =
®@NH. We introduce the following closed subspaces of @V H:

ONH = Sy(®VH),
NH = An(@VH),

where we denote by Sy (resp. Ay) the symmetrizer (resp. the antisym-
metrizer) on @VH.

Proposition 4.2 Suppose that the condtion (14) is satisfied. Then we
have
(i) if v/6o is even, then

Un(60,7)Sn = SnUn(00,7), Un(00,7)An = ANUn(60,7);
(il) if v/6p is odd, then
Un(60,7)ANn = SNUn(00,7).

Hence, the unitary operator Un(0y,7y) gives a natural correspondence
between @NH and @NH.
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Proof. Let Sy be the group of permutations of a set of cardinality N. For
each ¢1,...,¢0n € H and o € Sy, we define

Uspr1 @ -+ @ ON = Pg(1) @ -+ @ Pg(n)-

Then it is easy to see that U, can be extended to a unitary operator on
®@NH. We denote it by the same symbol U,.
For each (rq,...,ry) € My, we have

Zi — Zj§ /%
Un(00,7)(r1,--.,rNn) =[] <> :

|21 — 7]

Hence if v/6y is even, then for each ® € C§°(My), we have

Un(60,7)Us® = UsUn (00,7)®.
Since C§°(My) is dense in ®VH, we obtain

Un (60, 7)Us = UsUn (b0, 7)-
On the other hand, if v/6y is odd, we can easily check that

Un(00,7)Us = sgn(o)UsUn (60, 7).
From these facts, we have the desired results. [l

Let A be a self-adjoint operator acting in ®VH. We denote the pure
point spectrum of A by o,(A). Then we introduce the closed subspaces of
@NH by

H(A) = P ker(A-))

A€ap(4)
and
Hs(A) := SNH(A), Has(A) := ANH(A).
It is clear that

Ho(A)= P kers(A-N),

Aeop(A)

Has(A) = P keras(4 - N),
AEaop(A)

where kerg(A — A) := Sy ker(A — \) and keryg(A — A) := Ay ker(A — N).
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Proposition 4.3 Let H and Hy be the Schrédinger operators defined in
the preceding subsection. Suppose that the conditions (A.1) are satisfied.
Moreover, if 6/~ is odd, we have the following.

(i) For each X € o, (Hy),

kers(H — \) = Un (0o, ) keras(Hog — N,
keras(ﬁ - A) = UN(907 ’y) kers(ﬁo — )\)

(ii) Hy(H) = Un(60,7)Has(Ho),
Has(ﬁ) = UN(H(]a V)HS(FO)

Proof. These are simple applications of Theorem 4.1 and Proposition 4.2.
O

A. Decomposable self-adjoint operators

In this appendix, we summarize some basic properties of decomposable
self-adjoint operators.

Let (A, ) be a measure space and H be a Hilbert space. We denote the
set of bounded operators on H by B(H) and the set of linear operators on H
by L(H). It is clear that B(H) C L(H). For a self-adjoint operator T', we
denote its spectral measure by Er(J), where J € B! (the Borel field of R).

For a B(H)-valued mapping B: A 5 A\ — B(\) € B(H), we say that
the mapping A — B(\) is measurable if the mapping A — (¢, B(A\)p)y is
measurable for each ¢ € H.

Let A: A > X — A(\) € L(H) be a L(H)-valued mapping. We call
that the mapping A — A()\) is self-adjoint mapping if A(\) is self-adjoint
for p-a.e. .

Definition A.1 Let A — A(\) be a self-adjoint mapping.  If the
B(H)-valued mapping A — E4(,)(J) is measurable for each J € B!, we
say that the mapping A — A(X) is measurable.

Lemma A.2 Suppose that A — A(\) is a measurable self-adjoint map-
ping. Then, for each F € L>®(R), the B(H)-valued mapping A — F(A(N))
is measurable, where F(A(X)) is given by the operational calculas.

Proof. Since we can easily prove the assertion for characteristic functions,
we have the desired result. O
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Theorem A.3 Suppose that A\ — A(X) is a self-adjoint mapping. Then
the following three statements are equivalent to each other:
(i) A — A()N) is measurable.
(i) X — e is o B(H)-valued measurable mapping for each t € R.
(iii) A — R.(A(N\)) is a B(H)-valued measurable mapping for each z €
C\ R, where R,(T) = (T — 2)~%.

Proof. (i)=-(ii): Use Lemma A.2.
(ii)=-(iii): Use the following well-known formula:

_i fOOO elsAN) g—isz 4 g (Imz < 0)

1f£)oo eisA(/\)e—isz ds (Im z> 0)

R.(A(N)) = { :

(iii)=(i): By Stone’s formula, the mapping A\ — E4(\((a,b)) is mea-
surable for each a, b € R, a < b. Hence, by the limiting argument, we can
conclude (i). O

Theorem A.4 Suppose that A\ — A(X) is a self-adjoint mapping. Then
the following three statements are equivalent to each other:
(i) A — A()N) is measurable.
(i) X — 4N s a B(H)-valued measurable mapping.
(iii) X — Ri(A(X)) is a B(H)-valued measurable mapping.

Proof. Theorem A.3 (ii)=-(ii): Clear.

(ii)=Theorem A.3 (ii): For each t € Q, we can easily show that the
mapping A — e#4(Y) is measurable. Hence, we can extend the measurability
of ) (t € Q) to that of AN (¢ € R) by the strong continuity of 4
in s € R.

Theorem A.3 (iii)=-(iii): Clear.

(iii)=Theorem A.3 (iii): For each z€C\R such that |z—i|-||Ri(A(N))| <
1, it is well-known that

o0
R-(A() =) _(i—2)"Ri(A(N)
n=0
in operator norm topology. Hence, for such z, the mapping A — R,(A())) is

measurable. Repeating this argument, we can conclude Theorem A.3 (iii).
O

Let A — A(\) be a measurable self-adjoint mapping. Then we define
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an operator A acting in fiB Hdu(N) by
dom(A)

- {xp e /A  rdu() ' WA € dom(A(N)) p-ae. A,

A— A(N)W()) is measurable, /AHA()\)\IJ()\)H% dp(N) < oo},

(A¥)(A)
=ANY(N) p-ae. A, Wedom(A).

Definition A.5 The operator A is said to be the direct integral of A(\)
and written by

b
A:/A AN dp(N).

Proposition A.6 Suppose that X — A()\) is measurable self-adjoint map-
ping. Then, the operator fﬁB A(N) du(N) is self-ajoint.

Proof.  See [9, Theorem XIII. 85]. O

Theorem A.7 Suppose that A — A(X) and A\ — B(\) are measurable
self-adjoint mappings. Let

S2} @
A:/A AN dp(N), B:/ B\ du(N).

A
Suppose that C(\) == A(N\) + B()) is essentially self-ajoint for p-a.e. \.
Then we have the following:
(i) A — C(A) is a measurable self-adjoint mapping.

(ii) Let C := fXB C(N)du(X). If A+ B is essentially self-adjoint, then
C=A+DB.

Proof. (i) By Trotter’s product formula, we have

eitﬁ — slim ( oltAN)/N it B(X) /N) N ‘
N—o0

Since \ — eltAN/NItB)/N ig o B(H)-valued measurable mapping, we have
the desired result.
(ii) For each ¥ € dom(A) Ndom(B), we have

ICN)TN7 < 2(IAN TN, + IBOVEWIIZ)  p-ace. A
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Hence, we obtain
[CO[* < 2(|][ AP + || B¥|]?) < oo,
i.e., dom(A) Ndom(B) C dom(C). Moreover,

(CU)(A) = CA)T(A) = ANTA) + BTN

for p-a.e. A\. Thus we conclude that C' O A+ B. Since C, A+ B are self-
adjoint, we have the desired result. Il

Corollary A.8 Suppose that A — A(\) and A — B(\) are measurable
self-adjoint mappings. Let

@ (3]
A= /A AN du(\), B = /A B du(\).

If A and B strongly commute, then C(\) = A(X) + B(\) is essentially self-
adjoint for p-a.e. A and A\ — C(\) is a measurable self-adjoint mapping.
Moreover

/®CWdM(A) = A+ B.
A

Proof. Since A and B strongly commute, A 4+ B is essentially self-adjoint.
On the other hand, we can easily check that A(A) and B(\) strongly com-
mute p-a.e. A. Hence, C'(\) is essentially self-adjoint for u-a.e. A. Combining
these facts with Theorem A.7, we have the desired result. O
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