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Operators having commutants endowed
with cyclicity-preserving quasiaffinities
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Abstract. It is shown that there are commutant-cyclic vectors in the ranges of the
quasiaffinities belonging to the commutant of any isometry or any quasinormal operator
with a dominating unilateral shift part. This property ensures that the commutant-
multiplicity is constant in the quasisimilarity orbits of these operators.
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1. Introduction

Let H be a (nonzero, separable, complex) Hilbert space, and let L(H)
denote the C*-algebra of all (bounded, linear) operators acting on H. Given
a subalgebra A of L(H), containing the identity operator I, a nonempty
vector set G C H is called cyclic for A, if the vectors AG = {Ag: A€ A, g €
G} span the whole space: VAG = H. The minimum of the cardinalities |G|
of the sets G, cyclic for A, is called the multiplicity of A, and is denoted by
w(A). With an operator T' € L(H) two algebras can be naturally associated:
the algebra Ar := {p(T): p()) is a polynomial} generated by T, and the
commutant {T'} := {C € L(H): CT = TC} of T. The multiplicity of Ar is
called the multiplicity of the operator T, and is denoted by u(T') := pu(Ar).
The multiplicity of {T'}’ is called the commutant-multiplicity of T, and is
denoted by p/(T) := p({T}). A quick inspection in well-known classes of
operators convince the reader that while the multiplicity p(7") shows great
variety, the commutant is usually cyclic, that is /(7)) = 1. It was W.R.
Wogen who showed in [W] that the commutant-multiplicity p/(T") can be
also arbitrary. Even more, it turned out that, for any cardinal number
1 < n <Ry, the set C,(H) = {T € L(H): ¢/(T) = n} is norm-dense in the
operator space L(H), provided dim H = Rg (see [AFHV, Theorem 11.19]).
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The notion of quasisimilarity was introduced by B. Sz.-Nagy and C.
Foias in [NF1], and played important role in giving canonical models for sev-
eral classes of operators; see, e.g., [Be] or [DH]. We recall that a (bounded)
linear transformation X € L(Hi,Ha) is a quasiaffinity, if X is injective
and has dense range. The operator 71 € L(H1) is a quasiaffine transform
of the operator 75 € L(Hz), in notation: 71 < Tb, if the intertwining
set Z(Th, T2) := {C € L(Hi, Ha): CT1 = T»C} contains a quasiaffinity.
Finally, the operators 17 and 75 are quasisimilar, and we use the notation
Ty ~ Ty, if T1 < T and Ty < 71 hold simultaneously. It is an easy exercise to
show that quasisimilarity preserves the multiplicity of the operators. How-
ever, the analogous question, asking whether the commutant-multiplicity is
also a quasisimilarity invariant, proved to be very hard. This problem was
posed by D.A. Herrero in [He], and is still open.

In our previous papers [K1] and [K2] we gave partial answers to that
question verifying, among others, that the commutant-multiplicity is really
constant in the quasisimilarity orbits of normal operators, Cg-contractions
and weak contractions. We showed that all quasinormal operators are
commutant-cyclic, and completely settled the case when V is an isome-
try with a unilateral shift part of finite multiplicity. However, we were able
to prove only that p/(T) < 2if T' ~ V, when V is an arbitrary isometry. The
problem, whether p/(T") = 1 whenever T' ~ V, led to a question concerning
the range of bounded, analytic, operator-valued functions, which was left
open. In the present note we solve this question. Furthermore, focusing
on a relevant property of the commutant, we settle Herrero’s problem for a
large class of quasinormal operators, including all isometries.

The starting idea, how to attack the aformentioned question about
operator-valued functions, was communicated to us by Professor Katsu-
toshi Takahashi during our visit at Hokkaido University in 1996. We were
planning a joint research on that field, which was however prevented by
Takahashi’s tragically sudden death. I got to know Katsutoshi Takahashi
as a kind person living in a loving family. He was a brilliant mathemati-
cian, who should have proved yet many beautiful theorems. This paper is
dedicated to his memory.
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2. Commutants with cyclicity-preserving quasiaffinities

We say that the operator T' € L(H) has a commutant endowed with
strongly cyclicity-preserving quasiaffinities (shortly, T' has CSCQ), if the
set QG is cyclic for {T'}, whenever G C H is cyclic for {T} and @ € {T}
is a quasiaffinity. The following, weaker property will play more important
role in the sequel. We say that T has a commutant endowed with cyclicity-
preserving quasiaffinities (shortly, T' has CCQ), if for every quasiaffinity
Q € {T} there exists a set G C H such that |G| = p/(T) and QG is cyclic
for {T'}'.

It was shown in [K1] that if N € L(H) is a normal operator, then
@' (N) = 1, and a vector g € H is cyclic for the commutant {N} if and
only if g is separating for the bicommutant {N}". It is immediate that
any quasiaffinity @ € {N} transforms a vector g, separating for {N}”,
into a vector Qg, which is also separating for {N}"”. Therefore, all normal
operators have CSCQ. The same can be said about the Cyp-model operators
>, ®S(my), considered in [K1].

The relevance of the property, having CCQ, to Herrero’s problem is
shown by the following statement.

Proposition 1 LetT) € L(H1) and Ty € L(H2) be quasisimilar operators,
and let us assume that T1 has CCQ. Then

(i) w(Tz) < W/(T1), and

(i) w(T1) = W/ (To) if and only if T has also CCQ.

Proof. Let X € I(T1, Tz) and Y € Z(T3, T1) be quasiaffinities. Given any
quasiaffinity @ € {T»}, the product YQX € {T1} is also a quasiaffinity.
Since 71 has CCQ), there exists a set G1 C H; such that |G1| = p/(T1) and
YQXG is cyclic for {T1}. Taking into account that

H2=(XH1)_ = (X vV {C’YQXQl Ce {Tl}/})—
:\/{XCYQXglt Ce {Tl}/} C V{DQXgll De {TQ}/}
CH.’Z)
we infer that QGs is cyclic for {T2}, where Go = XG;. Since |Go| = |G1],
it follows that p/(T2) < p/(Ty). Furthermore, assuming u'(T%) = p/(Th), we

obtain that 75 has CCQ. In the opposite direction, supposing that 75 also
has CCQ, statement (i) readily yields that u/(71) = ¢/(T%). O

As an immediate consequence, we obtain that if the operator T is
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commutant-cyclic (that is, 4/ (T) = 1) and if T has CCQ, then all operators
in the quasisimilarity orbit of T" are commutant-cyclic and have CCQ. It
was shown in [K2| that quasinormal operators are commutant-cyclic. Thus,
in order to settle Herrero’s problem for the class of quasinormal operators,
it is sufficient to show that they have CCQ. In the subsequent sections we
verify this property first for all unilateral shifts, and then for a large class
of quasinormal operators.

3. Unilateral shifts

Given a Hilbert space &, let us consider the Hardy space H2(£). We
recall that H?() is the Hilbert space of those measurable functions f: T —
&, which are defined on the unit circle T = {z € C: |z| = 1}, are square-
integrable with respect to the normalized Lebesgue measure v on T, and
whose Fourier coefficients of negative indices are equal to zero. The inner
product on H?(£) is defined by (f1, f2) = [1(f1(2), f2(2))e dv(2). The
operator Sg € L(H?(£)) of multiplication by the identical function x(z) =
z is called a unilateral shift, its multiplicity is p(Sg) = dim €.

Given two Hilbert spaces £ and F, let H*(£, F) stand for the Banach
space of those measurable functions ©: T — L(&, F), whose norm [|0 || :=
esssup{]|©(z)||: z € T} is finite, and whose Fourier coefficients of negative
indices are equal to zero. The elements of H2(£) and H®(€, F) can be
extended to analytic functions on the open unit disc D := {z € C: |z| < 1}
via the Poisson formula or power series expansion, and they can be recovered
from these extensions taking nontangential limits. For further details the
reader is referred to [NF1, Chapter V] or [RR, Chapter 3.

Every transformation-valued function ® € H®(&, F) induces a linear
transformation ©, € L(H?(E), H*(F)), defined by (0. f)(2) := 0(2) f(2).
It is known that the commutant of Sg¢ can be identified with the Banach
algebra H*® (&, £); more precisely, the mapping 7: H*®(&, £) — {Sg}, 0 —
©. is an isometric algebra-isomorphism (see, e.g., [NF1, Lemma V.3.2]).

The simple unilateral shift S = S¢, acting on the scalar-valued Hardy
space H? = H?(C), is cyclic, and its cyclic vectors are precisely the outer
functions of H2. We recall that a nonzero function f € H? is called outer,
if the values of f on D are determined by the absolute value of f on T
according to the formula:
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1) = e [ 2 10g17(01av(0)) (=€ D)

where x € T. Since the commutant {S} = {6;: 60 € H*} is the closure
of Ag in the weak operator topology, it follows that the commutant-cyclic
vectors are also the outer functions. It is also well-known that every nonzero
function f € H? can be factored into the product f = fi f, where f; € H?
is an outer function and f» € H? is an inner function, which means that
|f2(z)] = 1 holds, for almost every z € T. Furthermore, this canonical
factorization is unique up to constant multiples of modulus one. We say
that an inner function u € H® divides a function f € H?, if there exists a
function v € H? such that f = uv. For any nonempty set ® C H?, let AD
stand for the greatest common inner divisor of the functions belonging to
®. This function always exists and is uniquely determined up to a constant
multiple of modulus one. In connection with the canonical factorization and
the arithmetic in the function space H® we refer to [Ho|, [NF1, Chapter 11]]
and [Be].

Let us consider again an arbitrary Hilbert space £, where 1 < dim€& <
No. With any function f € H?(£) and with any vector e € £, we can
associate the scalar-valued function f. € H?, defined by f.(2) := (f(2), e)e.
The inner factor of f is defined by [f]; := A{fe : e € £}. Finally, the
nonzero vector-valued function f € H%(E) is called outer, if its inner factor
[f]; is constant. It is clear that f is outer, when f, is an outer function for
some vector e € £. However, f can be outer in such a way too that f. is not
outer for every choice of e € £; see [K2, Remark 3.7]. Since by Beurling’s
theorem the nonzero invariant subspaces of S are of the form uwH?, where
uw € H* is an inner function, and taking into consideration the structure
of the commutant {Sg}’, it can be easily seen that u/(Sg) = 1, and that a
vector f € H?(&) is cyclic for {Sg}’ if and only if f is outer.

We remind the reader that an operator-valued function © € H®(E, F)
is called outer, if the transformation ©, € L(H?(£), H*(F)) has dense
range (see [NF1, Chapter V]).

After identifying the commutant-cyclic vectors and the operators with
dense ranges in the commutant, we are able to show that the unilateral shift
Se has CSCQ), provided the Hilbert space £ is finite dimensional.

Proposition 2 Let us assume that 1 < dim & < Ng. If f € H?(E) is outer
and © € H®(E, &) is outer, then Of € H2(E) is also outer.
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Proof. Though this statement has been already proved in [K1] (as Lemma
5.1), we give here a reorganized version of the short proof for the sake of
completeness, and in order to fix some notation.

Let n = dim&, and let us consider the matrix [©] of © with respect to
a fixed orthonormal basis {e;}}-; in £. We recall that [©] = [¥; ;], is an n-
by-n matrix over H*°, in notation: [©] € H°, which is defined by 9; ;(z) :=
(O(2)ej, ;). Let ©4 € H®(E, &) be the operator-valued function, whose
matrix [04] € H, with respect to the given basis, is the algebraic adjoint
of the matrix [©]. It is clear that 004 = 040 = (det ©)I¢, where det © :=
det[@]. (It can be shown that the definitions of ©4 and det © are actually
independent of the choice of the basis.) Since © is outer, it follows that
det © € H* is outer; see [NF1, Corollary V.6.3]. Taking into account that

(det ©)f = ©4(0f) € [0f,H*(E),

and that [(det ©) f]; = [f]; is constant, we infer that [© f]; must be constant,
that is, ©f is outer. O

The previous proof does not work if dim€& = Ny. In fact, it turned
out that Sg does not have CSCQ in the infinite-dimensional case; see the
example given in [K2, Remark 3.6]. We are going to show, however, that
Sg does have CCQ. To achieve this end we shall need some auxiliary results
connected with quasiequivalence of matrices over H*°. This concept was
introduced by E.A. Nordgren in [No], and was used also by B. Sz.-Nagy and
C. Foias establishing canonical models for certain classes of contractions; see
[NF2] and [Na]. We give the definition in terms of operator-valued functions
rather than matrices.

The functions ©; and Oy € H®(E, F) are called to be quasiequiva-
lent, if for every inner function w € H®°, there exist functions ¥;, ¥§ €
H>(F, F) and Vg, ¥§ € H*®(E, &) such that

U101 = 07V,
U 0§ = U0y = 1 Lr, UoU§ = WUy = ofolg,

where the nonzero functions 1, e € H* are prime to w:
M Aw=1yYs Aw=1.

It can be easily verified that quasiequivalence is an equivalence relation (i.e.,
it is reflexive, symmetric and transitive). The following lemma states that
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it preserves the outer function property.

Lemma 3 Let ©1, Oy € H®(E, F) be quasiequivalent functions. If ©1 is
outer, then so is Os.

Proof. Given any inner function w € H®, there exist nonzero functions
Uy, U¢ € HX(F, F), Uy, V5 € H®(E, &) and 91, 2 € H™ such that
U101 = O3¥s, U1 V¢ = Uy = )1 Ir, UaW§ = WGWy = ofpls and 11 Aw =
o Aw = 1. Exploiting these intertwining relations and the assumption that
© is outer, we obtain that

(
= (1(©1H*(£))7)™ = (W1 H*(F))~
D (NUSHA(F))™ = (Y1 H*(F))~

= [} H*(F).

Therefore, for the given inner function w there exists a nonzero function
11 € H* such that

(©:H%(E))™ D [h]:H*(F) and 1 Aw=1.

Applying this statement again, replacing w by [11];, we infer that there
exists a nonzero function ¢ € H® such that (€2H?2(&))™ D [W}]:H*(F)
and [Q,bll]z AN [’(ﬁl]z = 'Zp’l A [’(ﬂl]z = 1. Then

(©:H*(E)) D([n:i HA(F)) v ([l H?(F))
=([als A WAL B2 (F) = HA(F),
and so O3 is an outer function. O
The following lemma will play a crucial role in the proof of our theorem.

Lemma 4 Let©® € H®(E, F) be an outer function, and let us assume that
dimF = 2. Then, for every inner function w € H°, there exist nonzero
functions @ € H®(F, £) and 6 € H* such that

00 =0Ir and SAw=1.

Proof. Since © € H*®(&, F) is outer, it follows that ©(z) has dense range
for almost every z € T (see [NF1, Proposition V.2.4]), and so 2 < n :=
dim& < Ng. Let {e;}o<i<n be an orthonormal basis in &, let (fo, f1) be
an orthonormal basis in F, and let us consider the matrix [©] of © with
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respect to these bases. Applying [Na, Theorem 2] to the transpose of [©],
we obtain that there exists a function Oy € H*(E, F), quasiequivalent to
© and with matrix of the form

ou-[7 387

where €1, €2 € H® are inner functions. Since Og is outer by Lemma 3, it
follows that €1 = €2 = 1. Hence Oy is a constant coisometry from the space
£ onto the space F. The quasiequivalence of © and ©g yields the existence
of nonzero functions Ui, U¢ € H®(F, F), Uy, ¥ ¢ H®(E, £) and 91,
o € H* such that OUg = U10g, ¥V = ViU = o1 IF, UoWG = WU,y =
Pole and Y1 Aw = Y2 Aw = 1. Considering the functions ) := ¥,05¥¢ €
H>(F, £) and 6 := 91 € H*™, we conclude that

00 = QU050 = V100050 = U1 U$ = 617,
and so the proof is complete. O

Now, we are ready to prove our theorem, claiming the existence of
an outer function in each 2-dimensional section of the range of an operator-
valued outer function. To give the exact formulation we need some notation.
For any n € N, let Lat,, £ denote the set of all n-dimensional subspaces of
the Hilbert space £. Furthermore, for any subspace M of &, let Py €
L(&) stand for the orthogonal projection onto M. We note that Paq can
be considered also as a constant element of H*(&, £), and that (Py)+ €
L(H?(&)) is the orthogonal projection onto the subspace H2(M).

Theorem 5 If the function © € H®(E, &) is outer and 2 < dim & < Vg,
then, for every subspace M € Laty &, there exists a vector g € H?(E) such
that Py©Og is an outer function.

Proof. Let us give an arbitrary subspace M € Lats £, and let us consider
an orthonormal basis {e;}o<i<n in £, where n := dim&. Since

HY(M)=PpH*(€) = Prm(OH? ()™ = (PMOH?(£))”
=V{€iPM@€i: L EH™, 0<i< ’I’L},
we can find different indices & and [ such that the vectors (Pm©(z)e,
Py1O(2)e;) are linearly independent for all z in a set o C T of positive

Lebesgue measure. Let us consider the subspace N = V{eg, ¢;} € Lata &
and the function ©; € H®(N, M), defined by ©1(z) := P,O(z)|N. Given
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an orthonormal basis (€], €5) in M, as well, we can form the matrix [O]
with respect to the pair of bases (eg, ¢;) and (e}, e5). Since the function
81 = det[®;] € H does not vanish on «, it must be nonzero almost
everywhere on T. Let 3 € H®(M, N) be the function whose matrix,
with respect to the bases (ef, €5) and (e, €;), is the algebraic adjoint of
the matrix [©1]. It follows that ©1Q; = §1/x and 2101 = d11x. Applying
Lemma 4 for the outer function ©y € H®(E, M), defined by Oz(z) =
Pp©(z), with the inner function w = [d1];, we obtain that there exist
nonzero functions Qg € H®(M, &) and ds € H* such that @20y = d21
and 61 A 8y = 1. Let us consider the vectors g1 := Q€] € H2(N) C H2(E),
g2 = e, € H2(E), and let g := g1 + go. Since

Pr©g=PrmOg1 + PrmOga = ©:1Q1€] + O ey
=5le'1 + 526'2,

and since §; Adg = 1, we infer that [Py(©g]; = 1, that is, Pp©g is an outer
function. 0

It is evident that [Og|; divides [PpOgl;, and so Og is outer, when
Pr1Byg is outer. Therefore, the unilateral shift S¢ has CCQ, but does not
have CSCQ, if dim & = Ry. We guess that Theorem 5 is not true when the
2-dimensional subspace M is replaced by a 1-dimensional subspace.

4. Quasinormal operators

Quasinormal operators were first studied by A. Brown in [Br], where
a simple canonical model was given for them. We recall that an operator
T € L(H) is called guasinormal, if T(T*T) = (T*T)T holds, or equiva-
lently, if the factors in the polar decomposition of T' commute. It is clear
that all normal operators are quasinormal. The quasinormal operator T is
called pure, if there is no nonzero reducing subspace H’ of T such that the
restriction T'|H is a normal operator. Pure quasinormal operators can be
constructed in the following way. Given any nonzero Hilbert space &, let
L4 (&) denote the set of all strictly positive operators acting on &, that is,
the set of those operators A, satisfying the condition (Az, z) > 0, for every
0# x € £. Every operator A € £, (€) can be considered also as a constant
element of the function space H® (€, &). For any A € L, (&), let us consider
the operator W(A) € L(H?(E)), defined by W(A) := A, Se = SeA,. It is
easy to check that the unilateral weighted shift W(A), with the constant
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operator-weight A, is a pure quasinormal operator. More importantly, it
was shown in [Br] that every pure quasinormal operator is unitarily equiv-
alent to an operator of this form. Furthermore, the operators W(A;) and
W(Asz), with Ay € £4(&) and Ay € £4(&2), are unitarily equivalent, if and
only if A; and As are unitarily equivalent.

If the quasinormal operator 1" is not normal, then it is unitarily equiva-
lent to an operator of the form N&W (A) € L(K P H?(E)), where N € L(K)
is normal, A € £L4(£), 0 < dimK < Xg and 1 < dim& < Ng. The opera-
tors N and W(A), appearing here, are uniquely determined up to unitary
equivalence, and are called the normal and pure parts of T, respectively.
We refer to [C, Section I1.3] for details and further references.

The description of the similarity and quasisimilarity relations between
quasinormal operators proved to be a hard problem. The complete charac-
terization was given by K.-Y. Chen, D.A. Herrero and P.Y. Wu in [CHW].
We shall heavily rely on their deep result.

First, we consider pure quasinormal operators. The next lemma deals
with the particular case W{alg), where a € (0, 00). Let us observe that
W{(alg) = aSs.

We recall that an operator Ty € L(H1) is densely intertwined to an op-
erator Ty € L(Hz2), in notation: 11 <75, if the intertwining set Z(71, T2) con-
tains a transformation having dense range. Let us say that Ty is collectively
densely intertwined to Th, and we use the notation: T1<T2, ifv{ranX: X €
I(Th, T2)} = Ha.

Lemma 6 Let £ and F be nonzero, separable Hilbert spaces, and let us
assume that 0 < o < 3. Then

T(aSe, BSF) = {0} and BSr2aSe.

Proof. Let X € Z(aSg, BSF) be arbitrary. Since X(o/B)"Sg = SEX
holds for every n € N, it follows that

IXnl = Iszxn] = (5)"1xsghl < (5) IX11A]

is valid for any h € H?(€) and n € N. Taking into account that

. a\"”
I (5) =0
we conclude that X = 0.
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Since [|(a/B)Se|| = a/B < 1 and dim H?(£) = Ry, it follows that the
minimal isometric dilation V of («/§)S¢ is unitarily equivalent to Sx, where
dim K < No (see [NF1, Theorems I1.1.2 and II1.2.1]). Taking into account
that V<(a/8)Se (see [NF1, Theorem 1.4.1]), we infer that S;c—ﬁa/ﬂ)Sg.
On the other hand, it can be readily seen that SF<Si. Thus, S;rg<(oz/,8)5’g
is also true, that is .S f-'(igOZSg. O

We note here that conditions, under which a unilateral shift can be
injectively intertwined to an operator, were extensively studied by K. Taka-
hashi in [T].

The following statement claims a slightly stronger property than having
CCQ for the pure quasinormal operator W(A), when the largest spectrum-
point || A|| of A € £,(€) is an eigenvalue. For the sake of easy reference, let
us say in that case that W(A) has a dominating shift. Then, considering the
spectral measure E4 of A and the spectral subspaces & = E4((0, ||4]))E,
& = E4({|lA|I})E # {0}, it is clear that W(A) = ||A||Sg if & = {0}, and
W(A) =W (A4o) @ (||A]|Sg,) if & # {0}, where Ag = A|&.

Proposition 7 Let us assume that the pure quasinormal operator W(A) €
L(H?(&)) has a dominating shift. If the operator @ € {W(A)} has dense
range, then there exists a vector g € H?(E) such that Qg is cyclic for the
commutant {W(A)}.

Proof. By the main result, Theorem 3.1 of [CHW], we can find a diago-
nal operator Ag € L£4(€) such that W(A) is quasisimilar to W(Ag), and
Aol = ||All is an eigenvalue of Ag. Since p/(W(A)) = p/(W(4p)) =1
(see [K2, Theorem 2.1]), we infer by an analogue of Proposition 1 (with @
having dense range replacing @ quasiaffinity) that W(A) and W(Ay) have
the required property at the same time. Thus, we may assume in the sequel
that A is a diagonal operator.

Let ag := || 4. If A = alg, then the commutant of W (A) = aSg coin-
cides with {Sg}/, and so Proposition 2 and Theorem 5 imply the statement.
We can suppose, therefore, that the point spectrum o,(A) of A contains
more than one point. For any eigenvalue o € op(A), let us consider the
eigenspace & := ker(A — alg). We know that € = ) @&, and that the
orthogonal decomposition H2(€) = > ®H?(E,) is reducing for W (A), and
W(A)|H?(Ey) = aSa, where S := Sg, (a € 0,(A)). The operator Py, =
(Pg,)+ is the orthogonal projection onto H?(&,) in H?(£), and belongs to
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the commutant of W(A4).

Let @ € {W(A)} be an arbitrary operator with dense range. Since
PoyQIH?(E,) € T(0Say apSay), and since I(aSy, a9Sa,) = {0} by Lemma
6 if o < ag, we infer that Po,QH?(E) = Pay@QH?(Es,). Thus, the operator
Qo = PoyQ|H?*(Esy) € {0Sas} = {Sap} has dense range, and so — as
we have already seen — there exists a vector g € H?(E,,) such that Qog is
cyclic for {apSag} -

Let us introduce the subspace H = V{DQg: D € {W(A)}'}. For any
C € {Say Y, the operator C := Y, ®C,, belongs to {W(A)Y, where C,, =
C and Cy = 0 for @ # ap. Hence H contains the subspace \/{éQg =
CQog: C € {Say}'} = H*(Eay). On the other hand, given any a € g,(4) \
{ap}, for every intertwining mapping X € Z(apSa,, 0S4 ), the transforma-
tion X € L(H2(E)), defined by X|H2(E,,) := X and X|H2(&,) := 0 for
a # ap, also belongs to the commutant {W(A)}'. Taking into account that
aosao(—?aSa is true by Lemma 6, we conclude that

H%(E,)=V{XH*(£ay): X € T(0Sag, @Sa)}
=V{XCQg: X € Z(2Saq, @Sa), C € {a0Sa}'} CH.

Consequently, H must coincide with the whole space H?(£), and so the
vector Qg is cyclic for {W(A)}. O

Now, we prove our main result.

Theorem 8 Let T € L(H) be a quasinormal operator, and let us assume
that T s either normal or its pure part has o dominating shift. Then T has

cCQ.

Proof. If T is normal, then it has even CSCQ, as we have seen in Section
2. On the other hand, if 7" is pure, then Proposition 7 can be applied. Since
unitary equivalence obviously preserves the property having CCQ, we may
assume that T is of the form T = N @ W(A) € L(H = K © H?(£)), with
nonzero K and &, where N € L£(K) is normal and W(A) € L(H?()) has
a dominating shift. As in Proposition 7, the proof can be reduced again
to the case, when A € L£,(€) is a diagonal operator. We may suppose,
furthermore, that ||A|| = 1, since {c¢T'} = {T'} holds, for any nonzero c.
Let Exn denote the spectral measure of N, and let us consider the
spectral subspaces Ky := En(D)K, Ky, := En(T)K, K1 := Ex(C\ D)X,
and the restrictions Ng := N|Ko, Ny := N|Ky, N1 := N|K;. It is known
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that K, can be decomposed into the orthogonal sum X, = K, S, reducing
for N, such that NV, := N|K, is an absolutely continuous unitary operator
and N; := N|K; is a singular unitary operator. The subspaces Ko, Kq, Ks
and K; are all invariant for the commutant {N}'.

We shall assume that o,(A) contains more than one point; the simpler
case op(A) = {1} can be treated with obvious modifications. For any a €
op(A), let € = ker(A—alg) and S, := Sg,. Considering the decomposition
£ =& @ &1, where & =), ©E,, we obtain that W(A) = W(4q) & Sy,
where Ay = A|& and W(Ag) = > o1 DSa.

Now, we examine which intertwining sets reduce to the trivial one in
connection with the restrictions of T' to the reducing subspaces introduced
before. First, we know by [CHW, Lemma 4.2] that Z(N, W(A)) = {0}.

For any € > 0, let K1, = En(C\ (1 4+ ¢)D)K and Ny, := N|Ki..
Taking into account that

inf {|N,ez|: c € Kio |zl =1} 2 1+ > 1= ||W(A),

we infer by [CHW, Lemma 3.2] that Z(W(A), N1 ) = {0}. (An argumen-
tation, similar to the proof of Lemma 6 could be also applied here.) Since
e > 0 was arbitrary, it follows that Z(W(A), N;) = {0}. Considering the
decomposition W (A4g) = > .1 DS, the relations Z(W(Ao), N,) = {0}
and Z(W(Ap), S1) = {0} can be proved in a similar way (the latter one can
be also derived directly from Lemma 6).

Since W (A) is a completely nonunitary contraction and Nj is a singular
unitary operator, the Lifting Theorem results in that Z(W(A4), N;) = {0};
see [NF1, Theorems I1.2.3 and I1.6.4] and [D, Section 4].

On the other hand, the unilateral shift S7 can be abundantly intertwined
to some restrictions. Namely, Sl-<W(A0) holds by Lemma 6. The relation
51—<N0 is true, smce the minimal isometric dilation of Ny is a unilateral
shift. Finally, Sl—<N can be verified taking the functional model of N,
see, e.g., [K3].

Let us consider now an arbitrary quasiaffinity @ € {T}. In view of
the prohibited nontrivial intertwiners listed before, the matrix of ), with
respect to the decomposition

H="Ko®Ke®Ks®K1® H* (&) ® H (&),

is of the form:
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@ 0 0 0 Q15 Qe
0 @@ 0 0 0 Q26
lo 0 @ o o o
@= 0 0 0 Qa 0 0
0 0 0 0 @5 Qs
0 0 0 0 0 Qs

The structure of the operator @ shows that the entries Q3 € {Ns}, Q4 €
{N;}' are quasiaffinities, and Qg € {S1}’ has dense range. Since the normal
operators N, and Ny have CSCQ), there exist vectors g3 € Ky and g4 € K3
such that Qsgs is cyclic for {Ns}, and Qug4 is cyclic for {N1}. On the
other hand, Proposition 2 and Theorem 5 ensure the existence of a vector
gs € H?(&1) such that Qgge is cyclic for {S1}. Let us consider the vector

g =000DgsPga®0Dgs € H,

and the subspace H' := V{CQg: C € {T}'}. Taking into account that, for
any Cs € {N;}, Cy € {N1} and Cgs € {S1}', the operator 060 C3 & Cy ®
0 & Cs belongs to the commutant {7}/, and that

Qg = Q1,696 ® Q2,696 D Q393 D Qugs @ Q5,696 ® QsJs,

we infer that
H DK@ Ky @ H(&).

Furthermore, since H' D H?(£1), the relation 5183.7\70 ® N, e W (Ag) implies
that

H D Ko® Ky @ H?(&).
Hence H' = H, and so the vector Qg is cyclic for {T'}. O

The following statement is an immediate consequence of Proposition 1
and Theorem 8.

Corollary 9 Let us assume that the quasinormal operator T' is either nor-
mal or its pure part has a dominating shift. Then every operator T', which
s quasisimilar to T, is commutant-cyclic.

Remark 10 We note that the pattern of the proof of Theorem 8 actually
yields a more general statement than Corollary 9. Namely, let us be given
an operator T € L(H), which is the orthogonal sum of a normal operator
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N € L(K), an absolutely continuous contraction R € L(R), and a unilateral
shift Sg € L{H?(£)). (We recall that the absolute continuity of R means
that no nonzero subspace reduces R to a singular unitary operator.)

If the intertwining relations

SSR and Z(R, S) = {0}

hold between the simple unilateral shift S and R, then T has CCQ, p/(T) =
1, and so p/(T") =1 is true whenever T ~ T.

The proof needs only the following adjustment in the reasoning. Taking
into account that Z(Ni, R) = {0} does not necessarily hold, we can infer
only that the operator Q4 € {N1}' has dense range. However, it follows
by [D, Lemma 4.1] that the subspace (ker Q4)* reduces N; to an operator,
which is unitarily equivalent to N1. Let Z € {N1}' be an isometry such
that ran Z = (ker Q4)*. Then Q) = Q4Z € {N1} is a quasiaffinity and
ran @) = ran@q. Hence, there exists a vector g4 € K; such that Qags =
@, Z*g4 1s cyclic for {N7}.

We note also that applying the previous method for the component Q3
too, we may obtain that, for every operator @ € {T'} with dense range,
there exists a vector g € H such that Qg is cyclic for the commutant {T'}'.

We close this paper by posing the following questions.

Questions 11

(a) Do all quasinormal operators have CCQ?

(b) Is the property having CCQ a quasisimilarity invariant, in general?
(c) Do all operators have CCQ?

Affirmative answer for the last question would settle Herrero’s problem
in the positive (see Proposition 1).
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