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The local analytical triviality
of a complex analytic singular foliation

Yoshiki MITERA and Junya YOSHIZAKI®
(Received June 12, 1997; Revised November 5, 2003)

Abstract. A singular foliation on a complex manifold M is defined as an integrable
coherent subsheaf E of tangent sheaf of M. We give a detailed proof of the fact that
there exists a “leaf (integral submanifold)” of E passing through each point of M. The
dimensions of the leaves are not constant on M in general, so the singular set S(E), which
is in fact an analytic subset of M, is given as the set of points where the dimension of
the leaf of E is not maximal. Using this, we also prove that the structure of the foliation
is locally analytically trivial along each of the leaves.
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0. Introduction

There have been a number of fundamental works on foliations with sin-
gularities from various viewpoints, both in the complex and real cases (see,
e.g., [C], [N], [Ss] and [St]). In the complex analytic case, a general theory
in terms of coherent sheaves appeared in [BB]. This point of view not only
unifies various definitions and clarifies the situation, but also in suitable in
other contexts, e.g., in the studies of characteristic classes, residues, unfold-
ing and deformation theories and D-module theory of singular foliations.
Combined with the stratification theory etc., this would give us a nice way
of describing and understanding singular foliations.

The purpose of this paper is to give detailed proofs of some of the
basic facts concerning the structure of the singular set, in the framework of
theories of coherent sheaves and of stratification of analytic sets. We note
that some arguments are done in parallel with those for logarithmic vector
fields (cf. [Sal, [BR]). We should also note that some of the results explained
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here may be obtained by other means as well.

We first review and summarize basic definitions and facts about com-
plex analytic singular foliations in Section 1. In this paper, we only consider
“reduced” singular foliations (see Definition 1.4 below), as in [BB|. This ap-
parently technical condition is in fact a natural one to impose when we wish
to study “genuine” foliation singularities, since the singular set of a non-
reduced foliation may contain the zero set of a function, which is too large.
There is also a simple canonical process to obtain a reduced foliation from
the given one. For a complex analytic singular foliation F, we have the
fundamental “Tangency Lemma” (stated in Theorem 1.18 below), which
says that each vector field defining the foliation is “tangential” to the sin-
gular set S(FE). Using this lemma, we prove the existence of a leaf passing
through each point of M (even on S(F)) in Section 2 (Corollary 2.10). For
the proof we use the method of Whitney stratification of the singular set
and in fact we prove the existence of leaves “compatible” with the natural
‘Whitney stratification (Theorem 2.9).

In Section 3, we mainly explain and prove the local analytical triviality
of E along each leaf (Theorem 3.1). This is done using Theorem 2.9 and we
reprove the “normal form theorem” of [C] on the way, in the case of reduced
foliations. We also give some applications and examples. In a situation as
in Example 3.32, Theorem 3.1 does not give us much information about the
structure of a singular foliation near the singular set, since the dimension
of the leaf containing each singular point is zero. In such a case, it is more
appropriate to look into the problem of local topological triviality, which is
treated in [Y].

This article is based on the master’s thesis of the first named author
which was written in Japanese in 1989. The second names author revised,
supplemented it with some new results and translated it into English.

In the process of this work, we received many useful suggestions and
advices from T. Suwa. We would like to thank him for helpful conversations
and comments. We would also like to thank the referee for reading the
manuscript carefully and for giving many valuable comments.

1. Complex analytic singular foliations

First we recall some generalities about complex analytic singular folia-
tions on complex manifolds. For further details, see [B], [BB| and [Sw].
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Let M be a (connected) complex manifold of dimension n, and let Oy,
Ojs and Qpy denote, respectively, the sheaf of holomorphic functions on M,
the tangent sheaf and the cotangent sheaf of M.

Let E be a coherent subsheaf of ©y,. Note that, in this case, F is
coherent if and only if E is locally finitely generated, since O is locally
free. We set

S(E)={pe M| (©m/E), is not Oy, p-free},

and call it the singular set of E. For each point p of S(E), we also say that
p is a singular point of E. If we restrict F to a sufficiently small coordinate
neighborhood U with coordinates (z1, 22, ..., z,), we can express E on U
explicitly as follows:

m n
] .
Ep:ZoM,pvi, vizz:fij(z)a—zj, 1<i<m, (1.1)
i=1 =1

where f;; are holomorphic functions defined on U, and m is a non-negative
integer. Then the singular set S(E) is given on U by

S(E) = {p € U | rank(fi;(p)) is not maximal}.

We define the rank (we sometimes call it dimension) of E to be the
rank of the locally free sheaf E|j;_g(g), and denote it by rank E. If we use
the notation in (1.1), we can rewrite it as

rank ' = ]Ir)rée}v)fc rank ( fi;(p)).

Remark 1.2 The set S(E) is the set of points where the quotient sheaf
O/ E fails to be free. Thus it is possible that E is locally free on M, with
S(E)#0.

Next we give the definition of a singular foliation on M in terms of
vector fields. Later, we will introduce it again from another viewpoint.

Definition 1.3 A (complex analytic) singular foliation on M is a coherent
subsheaf F of ©j; which is integrable in the sense that

[Ep, Ep) C Ep, for pe M - S(E),

where [, | denotes the Lie bracket.
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It is clear that a singular foliation E induces a non-singular foliation on
M — S(E), whose dimension is equal to rank E.

Definition 1.4 A singular foliation E is said to be reduced if it is “full”
in Oy, ie.,

v e (U, Ou), vly_sm) € (U — S(E), E) = v eT'(U, E)
holds for every open set U in M.
Note that a reduced foliation E is involutive in the sense that
(Ep, Ep) C BEp, for pe M. (1.5)
Remark 1.6 If a singular foliation E is locally free, then (cf. [Sw])
E is reduced <= codim S(E) > 2.

In the following (Proposition 3.25), we prove the implication “=—”
without assuming that F is locally free. In general, the implication “<="
is false as the following example shows:

Let M = C? = {(21, 22)} and let E be generated by v; = 21(0/921)
and vy = 22(8/0z1). Then [v1, v2] = —vg and E defines a one-dimensional
foliation on C2. We have codim S(E) = 2, as S(E) = {0}. However, E is
not reduced, since the vector field 8/0z; is in E away from S(E), but not
over S(E).

Next we represent singular foliations in terms of holomorphic 1-forms.
It is not so difficult to rewrite it from the viewpoint of its “dual”, however
there are several points which require a little care.

Definition 1.7 Let F be a coherent subsheaf of ;7. Then we set
S(F)={pe M| (Qu/F)p is not Op, p-free},

and call it the singular set of F. A point in S(F) is called a singular point
of F.

Definition 1.8 A (complex analytic) singular foliation on M is a coherent
subsheaf F' of Qs which is integrable in the sense that

dF, CQpNFp, for pe M - S(F).

Moreover, the rank of F' is defined to be the rank of the locally free sheaf
F|p—s(r), and denote it by rank F.
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A singular foliation F induces a non-singular foliation on M — S(F"),
whose codimension is equal to rank F'.

Definition 1.9 A singular foliation F' is said to be reduced if it is “full”
in Q M, i.e.,

we (U, Qu), wly—gp) €eTWU = S(F), F) = w el F)
holds for every open set U in M.

Remark 1.10 If we impose the condition dFy, C Q, A F}, for all pin M, it
is too strong. It is not satisfied even by a reduced foliation as the following
example shows:

Let M = C? = {(21, 22)} and let F be generated by w = 22dz —
z1dzo. Then F defines a reduced singular foliation of codimension one on
C?. However, the integrability condition is satisfied only away from its
singular set, which is {0}.

In the following we describe the relation between the two Definitions
1.3 and 1.8.

For singular foliations £ C ©p; and F C s, we consider their “anni-
hilators”;

F*={weQpy]|{(v,w)=0 forallveE},
Fe={veOpy|{(v,w =0 forallwe F},

where (, ) denotes the natural pairing between a vector field and a 1-form.
Then it is not difficult to see that E* (C Q) and F (C ©)y) define reduced
singular foliations on M.

Remark 1.11 Note that S(E?%) C S(E) and S(F?) C S(F) hold.
Definition 1.12 We call (E®)? (resp. (£'*)%) the reduction of E (resp. F).

In the notation above, a singular foliation £ C Oy (resp. F C Q)
is reduced if and only if (E*)* = E (resp. (F*)* = F). In this way we
can make any singular foliation reduced by taking its reduction. Moreover,
if we consider only reduced foliations, then the two definitions of singular
foliation stated above are equivalent and the singular sets in terms of vector
fields and of 1-forms are the same.

In the sequel, we only consider reduced singular foliations, which will
be usually expressed in terms of vector fields.
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Next, let us summarize the basic properties of the singular set of a
singular foliation. Hereafter, we assume E (C ©/) to be a reeuced singular
foliation on a complex manifold M and set r» = rank E.

Definition 1.13 For each point p in M, we set

E(p) = {v(p) | v € Ep},

where v(p) denotes the evaluation of the vector field germ v at p. Note that
E(p) is a sub-vector space of the tangent space T,M.

Definition 1.14 For an integer k£ with 0 < k < r, we set
L® = {p e M | dim¢ E(p) =k},
S*) = {p e M | dime E(p) = k},

and set L(-1) = §(-1) = ¢ for convenience. Clearly we have
k
L#) = gk _ gl=1) = glk) — U @
i=0

fork=0,1,2,...,r.

Proposition 1.15 S® is an analytic set and L% is a locally analytic set
for every integer k with 0 < k < r.

Proof. If we use the notation in (1.1), S®) is locally expressed on a small
open set U in M as follows:

SE AU = {z € U | rank(fi;(2)) < k}.

All f;; are holomorphic on U, so S (k) is analytic. And besides, we come to
the conclusion that L*) (= &) — §(5=1)) is Jocally analytic because S*) is
analytic and S*~1 is closed in M. O

By the proposition stated above, we get the natural filtration which
consists of analytic sets:

S o5 glr=1) 5 gr=2) 5. ..... 5 81 5 50 5 g=1),
I I || (1.16)
M S(E) 0

Now we recall the following result, which will be the basis of our sub-
sequent arguments. The proof is originally due to T. Suwa and is given in
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[Y]. It is done in a similar way as for logarithmic vector fields (cf. [BR],

(Sa])-

Proposition 1.17 Let p be a point in M and v a germ in E,. Let {p, =
exptv} be the local 1-parameter group of transformations induced by v.
Then, for all t sufficiently close to 0, we have

(0e)«Ep = By, (),
where (1)« denotes the differential of @;.

It is not difficult to see that Proposition 1.17 implies the following (cf.
[YD):

Theorem 1.18 (Tangency Lemma) Let k be an integer with 0 < k < r
and p a point in S®) . Then we have

7 E(p) C CpS™®),
where C’pS(k) denotes the tangent cone of S®) at p.

Remark 1.19 Theorem 1.18 was proved by P. Baum under the hypothe-
ses that F is reduced, £ = r — 1 and p is a non-singular point of S(k)
(= SC=1) = S(E)) (see [B]). The general case may also be obtained as a
consequence of a theorem of D. Cerveau ([C] Théoréme 1.1), which gives ex-
plicitly “normal forms” of vector fields generating the foliation locally. Note
that, for this we only need the involutiveness (1.5) for E and E need not
be reduced. This normal form theorem also holds in the C°°, real analytic
and formal cases.

For related results in the case of real singular foliations, we refer to [IN],
[Ss] and [St], see also Remark 2.11 below.

2. Existence of the integral submanifolds

Let F be a singular foliation of rankr on M. In the preceding section
we recalled that E induces a non-singular foliation on M — S(E), so if a
point p € M does not belong to S(E), it is clear that there exists an integral
submanifold (of dimension 7) passing through p. The main purpose in this
section is to prove that there also exist integral submanifolds on the singular
set S(E), whose dimensions are lower than r.

Since the singular set S(E) is not a smooth submanifold of M in general,
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we have to take a stratification of S(E). However we must be careful in the
choice of the stratification, because if we take a stratification too much
fine, then the space E(p) is not always contained in the tangent space of
the stratum at p. We adopt here the famous method of natural Whitney
stratification which is due to H. Whitney. We introduce just the essence
below. (For details, see [W].)

Let A be an analytic set. We denote by Sing(A) the singular set of A
and denote by Reg(A) the set of regular (i.e., non-singular) points of A.
Moreover we set

Y(A) = Sing(A) U {p € Reg(4) | dim, A < dim A},

where dim, A denotes the dimension of A at each point p € Reg(A). For
two manifolds X and Y, we define a subset B(X, Y') of X by

B(X,Y)={pe X |Y is not Whitney regular over X at p}.
Also for two analytic sets A and A’ we set
W(A, A)=3(A)UB(A—32(A), A — £(4"). (2.1)

W(A, A’) is a analytic subset of A whose dimension is lower than dim A.
Using the notation stated above, for an analytic subset A we define a
family of analytic subsets {HiA},-=0, 1,2,... (inductively) as follows:

A=A
A = 3(4)
For each integer ¢ with ¢ > 2, (2.2)
i—2
I’A = U W(II-1A, TIIA — TIFHL A),
\ 3=0

where the closure is taken in A. Note that II’A = @ for sufficiently large s.
Thus we have a sequence of analytic subsets of A:

M4 > I'4A DIPAD .- SIA>TIHIAS oo > 0.

I I

A Z(A)

Then we set A = {TFA-TI""YA (£ 0) |i =0, 1, 2, ...}. By the construction
of IT'A, A is a Whitney stratification of A. This stratification is_called the



Local analytical triviality of a singular foliation 283

natural Whitney stratification of A. Note that each stratum of A is not
always connected, but if X and Y are connected components of a stratum
II'A — TI* 1A then dim X = dim Y.

Now let us prepare a lemma which plays an important role in the proof
of the existence of integral submanifolds.

Lemma 2.4 Let E (C Oypy) be a singular foliation on a complex manifold
M and S be an analytic subset of M. Suppose that E(p) C CpS holds for
every point p € S (CpS denotes the tangent cone of S at p, same notation
as in §1). Let S be the natural Whiteley stratification of S. Then we have
E(p) CTp,X for every point p € S where X (€ §) is the stratum containing

D.
Proof. 1t is sufficient to show that
E(p) C C,II'S  (for Vp € II*S) (2.5)

holds for every non-negative integer ¢. Suppose we have already showed
(2.5). For any point p € S, take the stratum X € S passing through p. By
the definition of the natural Whitney stratification, X can be expressed as

X =TI'S —II'*'S

for some integer i. p belongs to II*S — II**1S and the singular points of II*S
are contained in II**1S, hence p is a non-singular point of II*S. Then, by
(2.5), we have

E(p) C CpII'S = T,II'S = T, X,
which completes the proof. 0

In the following let us show (2.5) by the induction on ¢ under the as-
sumption of Lemma (2.4). In the case of ¢ = 0, (2.5) is nothing but the
assumption of Lemma (2.4). Suppose (2.5) holds for every integer i with
0 < i <[ and take a point p € II**1S arbitrarily. Our purpose is to show
that

E(p) C CpII'*s.
In order to do this, it is enough to prove that

v(p) € CpIII+1S (2.6)
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holds for any vector field germ v in the stalk of E at p. If v(p) = 0 then (2.6)
is clearly fulfilled, so let us consider the case of v(p) # 0. Take a coordinate

neighborhood U of p with coordinates (21, 22, ..., 2,) on U such that p =
(0, 0, ..., 0). Since v(p) # 0, we may assume that the expression of v using
the local coordinates (21, 22, ..., z,) is given by
0
= —. 2.7
U= 5 (2.7)

Next, for each point g € U we set

L(Q) = {q/ eUv I Zk(q/) = Zk(‘]) for (k; =2,3,..., n)}

It may be assumed that U has been chosen such that all L(g) are con-
nected. Note that L(q) is the integral curve of v = §/921 passing through
g. Furthermore, we set

D={zeU|zn =0},

and let m: U — D be the natural projection from U onto D (i.e. 7(z1, 22,
ey Zn) = (O, 22y « iy Zn))

Our purpose was to prove (2.6) under the inductive assumptions. How-
ever, in fact, it suffices to show the following claim:

L(g)NTI'S # 0 = L(g) CII!S holds fori =0, 1,...,1.  (2.8)

If we assume that (2.8) is true, then for any point y € II'S we have y €
L(y) NTIIES, so (2.8) assures L(y) C II*S. This implies that the structures
of TI!S N U are trivial along the z;-axis. To be more precise, there exist
analytic subsets A® of D such that 771(A%) = [I!S N U (in fact A’ coincide
with II*S N D). On the other hand, the way of construction of II*S given in
(2.2) tells us that the local structure of IT"+1S is determined using only the
local structures of II*S for ¢ = 0, 1, ..., . Therefore the structure of II*:S N
U is also trivial along the z;-axis, i.e., there exists an analytic subset A‘*?
of D such that 7~ }(A1) = T*1SNU. Taking (2.7) into consideration, we
obtain (2.6), thus the induction is completed.

From the preceding argument, all we have to do is to show (2.8) under
the inductive assumptions. We set

Lt = L(g)NII'S, L~ = L(q) —II'S.

Note that L(g) is the disjoint union L™ and L~. The inductive assumption
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implies that the vector field v is logarithmic for (II*S, q), so the flow gen-
erated by v preserves (II'S, q) (see, for example, [BR] §1). This fact tells
us that L' is open in L(g). On the other hand, L~ is also open in L(q)
since II'S is a closed set of M. Then either LT or L~ must be empty by
the connectedness of L(g). In other words if L™ is not empty then L~ is
empty, and this is clearly equivalent to (2.8). O

Let E (C Op) be a reduced singular foliation of dimension r on a
complex manifold M and S®*) the natural Whitney stratification of S,
k=0,...,r. Note that, for a stratum X € S®) X — §¢=1) ig 5 complex
manifold, since S*~1) is a closed set in M.

As a consequence of Theorem 1.18 and Lemma 2.4, we have

Theorem 2.9 In the above situation, for each X € S® and p € X, we
have E(p) C T,X. Thus E induces a non-singular foliation of dimension k
on X — Sk=1),

Corollary 2.10 (Existence of Integral Submanifolds) There exist integral
submanifolds (whose dimensions are lower than r) also on S(E). To be more
precise, there is a family L of submanifolds of M such that M = ., L is
a disjoint union and that, for any L € L and p € L, we have E(p) =T,L.

Each member L in £ is called a leaf of £.

Remark 2.11 For the above results to hold, we only need the involutive-
ness (1.5) for F and E need not be reduced (cf. Remark 1.19). In the real
case, consider the following properties:

(1) the involutiveness as in (1.5),

(2) the property as stated in Proposition 1.17,

(3) the existence of submanifolds as in Corollary 2.10.

In the C* case, (2) and (3) are equivalent and they imply (1), and
under the condition called “locally of finite type” in [Ss], (1) implies (2)
and hence (3) ([Ss], see also [St]). In the analytic case, this condition is
always satisfied and thus (1) implies (3), which is result proved earlier in
[N]. Their method should be applicable to prove Proposition 1.17 for non-
reduced foliations, only assuming involutiveness, in the complex analytic
case.
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3. The local analytical triviality along the leaves

Hereafter all the foliations we consider are assumed to be reduced. In
the preceding section we proved the existence of the leaves for a singular
foliation £ on M. The following theorem says that the structure of a sin-
gular foliation F is locally analytically trivial along the leaf containing each
point p in M.

Theorem 3.1 (Local Analytical Triviality) Let E (C ©p) be a reduced
foliation of rank r on a complex manifold M. Let k be an integer with
0 <k <7 andp apoint in L& (= S*) — SE=1)) " Then there exist a
neighborhood D of 0 in C"*, a singular foliation E' on D with E'(0) =
{0}, a neighborhood Uy, of p in M and a submersion w: U, — D with
m(p) = 0 such that

Ely, = (z*(E"))".
Proof. Take a coordinate neighborhood U of p with coordinates (u1, us,
..., Up) on U such that p = (0,0, ..., 0). We denote by L, the leaf of E
containing each point ¢ € U (the existence of the leaf has been proved in the
preceding section). p € L{¥) implies dimg E(p) = k, so Ly, is a k-dimensional
complex submanifold of M. Retaking the coordinates (u1, ..., u,), we may
assume

LyNU = {ups1 =+ = up, = 0.

Moreover, since S*~1) is a closed subset of M and L = §k) — g(k=1) e
may also assume that U NS¢ = ¢

At first, we take holomorphic vector fields 71, ..., v on U which satisfy
the following two properties:
i) m= 0 on L,NTU,
© Oy P (i=1,2,..., k) (3.2)
(il) 7(q) € E(g) forall geU.
Using these vector fields 1, ..., 7k, we define a holomorphic vector field V,
on U for each z = (z1, ..., @, 0, ..., 0) € L,NU as follows:
Ve =z1m1 + ZTav2 + -+ Te Y (33)

Let {@g,: = exptVz} be the local 1-parameter group of transformations
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induced by V. For € > 0 we set

U(E) :{(Ul, ,Un) EUHU‘Z| <e€ (Z:]-) 27 "'an)}v
L(E) = me U(E)

Choosing € > 0 sufficiently small, we may assume that ¢ +(q) stays in U
for any z € L), ¢ € U(ey and t € C with |¢| < 2. Moreover we set

Ve = P, 1-

The way of choice of € tells us that wx(U(a)) C U for any z € L), thus we
obtain a family of holomorphic maps {¢: Uy — Ulser,,,. We set

D={(ug,...,un) €U |u1 =ug=-- = uy =0},

then (3.2) and (3.3) assures that ), satisfies the following three properties:
(3.4) for any x € Ly, Yz (p) = x,

(3.5) forany g€ Uy,  ¥p(q) =g,

(3.6) for any x € L) and g € U, Yp(q) € Ly,

Let h: Ly x D — U be a map defined by h(z, y) = ¢z (y) for z € L
and y € D. By the definition of %,(y), h is holomorphic. Moreover, if
we consider (u1, ..., ug) and (Ug41, .- ., Un) as coordinates on L,y and D
respectively, h can be expressed explicitly as

h((ul, ey Uk)s (Uka1s - oy un))
= (fl(ul, cey Un)y ey falut, ..o, un)),
where f;(uy, ..., un) are holomorphic functions. Then (3.4) implies

R((ut, ..y w), (0, ..., 0)) = (ug, ..., u, 0, ..., 0),

in other words,
fi(ul, vy Uk, 0, ey 0) =

Similarly (3.5) implies
h((O, ooy 0) (ugt1s <o un)) =(0,...,0, Ugs1, - Un),

in other words,
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fi(O, ey 0, Uk+1s « -+ un) = (38)

{o (1<i<k)

wi (k+1<i<n).

(3.7) and (3.8) tell us (8f;/0u;)(0) = &;, so we have
det(H(O)) —1(£0).

Hence, if we take ¢ > 0 sufficiently small and set U, = h{L() x D) then
h: Ly x D — Up is a biholomorphic map. We define new coordinates
(21, ..., zn) on Up as follows:

ui(pry ok~ 1<i<k
for any q € Up, 2(q) = { (pr; @) ( )

wi(pryoh~i(q)) (k+1<i<n)
where pr; denotes the projection to the j-th component. In other words,

for any z € L(,) and y € D,

Clearly we have

U v@=J h9v)

z€L(e) T€L(e)
={geUp|z{g)=2y) fori=k+1,...,n)} (3.9)
On the other hand, it follows from (3.6) that

U #e(v) C Ly (3.10)

$€L(5)
From (3.9) and (3.10) we have

%(y), %(y), 5%(@/) € E(y). (3.11)

Next let us construct the submersion 7: U, — D and the singular
foliation E’ on D. We identify D with a neighborhood W of 0 in C*~* =
{(Wk+1, -+, wy)}, and set © = prooh~!. Note that, by the definition of
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(21, ..., zn), 7 is represented using the coordinates (21, ..., 2,) on U, and
(W1, -, wp)on D as w(z1, ..., 2n) = (Zk+1,---, 2n). 1t is clear that 7 is
a holomorphic submersion from U, onto D. Furthermore, let m.: TU, —
T'D denote the push-forward of the vector fields form U, to D. Then

5 0 (1<i<k)
ﬂ*<5_zz'>= aa (k+1<i<n).

Wi

Using 7, we define the coherent subsheaf E' C ©p by (E'), = m.(E,) for
each point y € D. Then we have E'(p) = {0} since F(p) is generated by
9/0z1, ..., 8/0z,.

In order to complete the proof, we must show that E’ is integrable and

(m*(E"))* = E|y,. Let {v}, ..., v}} be a system of local vector fields on D
which generates F’, and set
U‘;‘ = Z aji(wk-i-la SR u)’l‘b)(alwZ (1 S.] < 5)’ (312)
i=k+1

where each a’; is a holomorphic function on D. By the definition of £’ and

(3.11), it turns out that, for any y = (0, ..., 0, Yk21, ---, Yn) € D, E(y) is
spanned by following & + s vectors:
0 0 0
3 = ]
B= Y a'i(Uesr, - Un) 5~ (W),
i=k+1 ‘ (3.13)

n
) 0
Vg = E asi(yk-l-l) SRR y’n)az(y>
i=k+1 '

On the other hand, for any z = (21,..., &, 0, ..., 0) € L(¢) we have
¢x(21, vy Zn)=(251+331, ceey 2+ T, Zk+1, "'7zn)7

which implies

(). (8%@)) = 2 (waly) (<i<n) (3.14)
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for any y € D. Moreover, Proposition (1.17) says that there exists ¢ > 0
such that

(V) (E(y)) = E(¢a(v)) (3.15)

holds for any z € L,y and any y € D. Then it follows from (3.13), (3.14)
and (3.15) that the space E(y(y)) is spanned by following k + s vectors:

8%(%@)), a%(wz(y)), —%(%(yn,

(e(3) = Y @il - v (),

Z5

i=k+1 (3.16)

n

(’(/}:1:)*(’53) = Z a‘si(yk-i-l, sy yn)aizz(?/)m(y))

i=k+1

This means that for every point g € U, a system of generators of the space
E(q) is given by (3.16), therefore E|y, is generated by the following k + s
vector fields:

o 0 0

Oz1” 0z’ 7 Oz’

i=kt1 ' (3.17)

- 0
S
Vg = g a®i(Zk41y -+ s zn)—az_.
i=k+1 v

(3.12) and (3.17) tell us that if E’ is not integrable the E|y, is not integrable
either, hence E’ is integrable. Similarly, it turns out that E’ is reduced from
(3.12), (3.17) and the reducedness of F.
"~ Now all we have to do to complete the proof is to show that
E|Up — (W*(Ela))a,

We can easily check that
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(E")* = {w/ = Z bi(Wrt1, - - -, Wy )dw;

i=k+1

Zn: a’;b; =0 (forlg‘v'jgs)---(*)}. (3.18)

i=k+1

By the definition of 7 and the coordinates (z1, ..., zn), 7*(dw;) = dz; for
all 7 with £ + 1 <14 < n, hence we have

™ ((E)*) = {W*(w’) = > bi(2ks1, -5 2n)d2

i=k+1

(bk+1, - - -, byn) satisfies (*)}

In order to calculate (n*((E’)*))%, let us consider the condition for a
holomorphic vector field ¢ on U, to belong to (n*((E')%))*. We set
€= alz, ..., 2,)0/0z where ¢ are holomorphic functions on Up.
Then we have

n
Z bl(Zk+1, Cey Zn)

€ ( *((ENe )a = [=ktl 3.19
e (&) X ez, ooy 2n) =0 (8.19)
for any (bg+1, -- ., bn) satisfying (x).
Let
Cl(zla ) zn)
= Z hl(al""’a’“)(zkH, ooy Zn)21 % 2O (3.20)
(a1, ..., 2x)2(0,...,0)
be the series expansion of ¢; with respect to zy, ..., z (all hl(al""’a") are
holomorphic functions of zg41, ..., zn). Substituting (3.20) to (3.19),
n
Z ( Z blhl(al,...,ak)) 2% % =0,
(a1, .o, ag) \I=k-+1

thus we have
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n
Z bi(zks1s - -, zn)hl(al”"’a’“)(zkH, ceey2n) =0 (3.21)
I=k+1
for every (a1,...,ag) > (0,...,0). For each (o, ..., ar) we define a

holomorphic vector field £ ) on W by

0
oo e s on) 3.22
Z -’Ek-ﬁ-l) ) )awla ( )
I=k+1
then (3.18) and (3.21) imply &%) € ((E')2)* = E'. Since E' is gener-
ated by v}, ..., v}, we can express £(®1: %) a5
)
glommow) = S et L w o (3.23)
j=1

where f;al’“"a’“) are holomorphic functions on W. From (3.22) and (3.23),

n
z h?al’""ak)(zk-;-l, Ceey az Z f(al’ e (Zk+17 e )’Uj
I=k+1 b3
holds for every (ai, ..., ag). Hence we obtain
8
&= Zcz 2150, 2 (921
8
_ch_+l; Cl 21, 3 82[
+1
50
P l@zl

(a1, i) o N
+ Z Z hl (Zk+1,...,zn).z1 L 8_Zl
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38
(o1, s )
+ Z IRy ij (Zkt1s -5 20)05
i=1

+Z Z f;al""’a’“)(zk+1, vy Zn) 2 Mzl g (k)

J=1 \(a1,...,ap)

f(al, ooy ak)(

Note that each Z(al’ a) T Zhils -, Zn) 2190 - 2% appearing
in (**) can represent an arbitrary holomorphic function on Up. This implies

¢ € (m*((E")*))"<=¢ can be express as a linear combination
of 8/0z, ..., 8/0z1, v1, ..., vs like (¥%)
<= € By,

thus we have (7*((E')*))" = E|y,. O

Remark 3.24 As mentioned before, the above process of obtaining (3.17)
gives an alternative proof of the normal form theorem of [C] (cf. Remark
1.19). We may prove the “local analytical triviality”, expressed in one
form or another, without assuming that F be reduced, only assuming the
involutiveness (1.5). However, if we wish to express the local triviality as in
Theorem 3.1, E out to be reduced.

As an application of Theorem (3.1), we can show the following propo-
sition.

Proposition 3.25 If a singular foliation E (€ ©yr) is reduced, then
codim S(E) > 2.

Remark 3.26 For the converse of this proposition, we have counterexam-
ples. However, under the assumption that E is locally free, the converse is
also true (cf. Remark (1.6)).

Proof of (3.25). Suppose that E is reduced and codim S(E) = 1. Set
dimc M = n and rank E = r. First we chose a point p € S(F) such that p ¢
Sing(S(E)) and dim, S(E) = n— 1. Take a sufficiently small neighborhood
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U of p and coordinates (21, -.., 25) on U such that U N S(E) = {z, = 0}
and p = (0, ..., 0). We set k = max{dimc E(q) | ¢ € U N S(E)}, then
clearly 0 < k <r — 1.

Next, choose a point ¢ in UNS(E) such that dime E(g) = k. We ‘shift’,
for simplicity, the coordinates (z1, ..., z,) on U so that ¢ = (0, ..., 0).
Since S*1) = {z € M | dimc E(z) < k — 1} is a closed set, we can take
a neighborhood U, (C U) of ¢ so that U, N S¥~1 = §. Then we have
U,NS(E) = U, N LW (for the definition of L), see (1.14)). Applying

Theorem (3.1) (or (3.17) in the proof), we can retake U, and (z1, ..., zn)
so that E|y, is generated by the following k + I holomorphic vector fields:
9 0 0
821, 822’ Y 8zk’
. 9
1
v1 = Z @ i{zks1, - Zn)—f,
i=k+1 0z (3.27)

= 0
Vs = Z asi(Zk_'_l, Ceey Zin)a—zZ
i=k+1
If s = 0 then E gives a non-singular foliation on U,. This contradicts g €
S(E), so we have s > 1. On the other hand, U, N S(E) = U, N L) implies
that dimg E(z) = k holds for every point = € U, N S(F), therefore all a/;
appearing in (3.27) satisfy a’;(zg+1, -+, 2n_1,0) =0. Fori =k+1, ..., n,
we represent ali as

ati(2Zkt1s <oy Zn) = 20% - bi(Zet1s -, 20)

where «; € Z and b; are holomorphic functions such that b;(zx+1, - .., 2n—1,0)
# (. Note that a; and b; are uniquely determined and a; > 1. We set a =
min{a;}, and define a holomorphic vector field ¥1 on Uy by

_ " s o 1
v = Z Zn ¢ bi(Zk-_*_l, ey Zn)a—z = Z_a'U]_ .
i=k+1 : "

Then we have 01|y, _s(z), but v1 € E |u, since v1 # 0. This contradicts that
E' is reduced. O

Let us close this paper by giving some examples about singular foliations
and its local analytical triviality.
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Example 3.28 Let f be the holomorphic function on M = C3 defined by
flz,y, 2) = 2(a® = ),

and w the holomorphic 1-form on C? defined by
w = df = 2xzdz — 2yzdy + (2% — y?)dz.

The coherent subsheaf F (C Qj) generated by w is integrable since dw =
ddf = 0, so F defines a singular foliation on C3. E = F° (C Oy) is
generated by the following two vector fields:

9]
U =Yg T,
(3.29)

E is reduced, and rank E = 2. By (3.29), S(E) = S = {2z = yz =
-y =0={z=y=0U{z=2?-9> =0} and SO = {(0, 0, 0)}.
According to Theorem (3.1), the structure of E is locally analytically trivial
along each leaves, in particular along {x =y =0} — {0}, {zr=2z—-y =0} —
{0} and {z =z +y =0} — {0}.

Example 3.30 Let w be the holomorphic 1-form on C* = {(z, y, 2, w)}
defined by

w=z(2% —w)dr — y(z* — w?)dy — 2(2? — y?)dz + w(z? — y*)dw.

It is easy to check that dw = 4(—zzdz A dz + zwdx A dw + yzdy A dz —
ywdy A dw). The coherent subsheaf F' (C Qj) generated by w is integrable
since w A dw = 0, so F' defines a singular foliation on C*. E = F? (C Oy)
is generated by the following three vector fields:

v —w2+ 2—Fz*g—i-w—a—
1T or y@y 0z ow
0 0
_,9 .. 9 3.31
v2 y8m+$8y (3:31)
_ 2,0
v = Yo, T ouw

E is reduced, and rank £ = 3. By (3.31),
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S(E)=
SO={a(2” ~w?) = (2 —v?) = 2(” ~?) = w(z® —~ y) =0}
={z=y=0U{z=w=0 U {2’ —y* =22 —w’ =0},
S(l):{xz—yQ=22—w2=mz:xw=yz=yw:0}
={a:2—y2=z=w:0}U{22—w2:x:y:0},
S©={(0, 0, 0, 0)}.
Example 3.32 Let w be the holomorphic 1-form on C3 defined by
w=y(z +y)dz — z(z + y)dy + (2® — y*)dz.

It is easy to check that dw = 3{(—z—y)dzAdy+z?deAdz—y?*dyAdz}. The
coherent subsheaf F' (C ) generated by w is integrable since w A dw = 0,
'so F defines a singular foliation on C3. E = F% (C @) is generated by
the following two vector fields:

0

’U1=$%+ya—y

3.33
vy = i—i— 2—(?—4-(%-1— )2 o
2=V 5z x@y Yy

E is reduced, and rank B = 2. By (3.33),

S(E) = S(l)={y(x +y)=z(z+y)=2>—¢° = 0}
={x=y=0}u{x+y=x3—y3=0}
={z =y =0},

SOz =y=0} =50,

In this case, Theorem (3.1) means nothing particular about the structure
of E along S(E) = {z = y = 0}, since the leaf passing through each point
p € S(E) consists of only one point.
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