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Singular perturbation of domains and semilinear
elliptic equations III

Shuichi JIMBO
(Received January 25, 2000; Revised May 27, 2003)

Abstract. We consider a (parametrized) bounded domain, some portion of which de-
generates and approaches a lower dimensional set when the parameter goes to zero. We
consider semilinear elliptic equation with Neumann B.C. in this domain and the behavior
of the solutions in the limit. We give a characterization for the solutions in the sense of
uniform convergence.
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1. Introduction

We deal with a domain Q({) which partially degenerates to a lower
dimensional set as ( — 0. The shrinking subregion of Q(¢{) is denoted by
Q(¢). We will consider solutions of the semilinear elliptic equation

Au+ fu)=0 in Q((), Ou/dv=0 on Q)
(Neumann B.C.) (1.1)

for ( — 0 and characterize their behaviors in this limitting process. In the
previous work [10, 11, 12], we dealt with such problems for the Dumbbell
shaped domain (cf. Fig. 1), which is obtained by connecting two disjoint
domains by a thin cylindrical channel and gave a characterization of the
solutions in the sense of “uniform convergence” when the channel part be-
comes thinner and approaches a 1-dimensional line segment. The methods
of the proofs (scaling technique) used in that work, are restrictive and are
not applicable to more general cases of partial degeneration of domains. In
this paper we deal with this problem by a direct method based on concrete
comparison (barrier) functions and generalize the previous results to the
case where the limit set of Q(() is higher-dimensional {(cf. Example, Fig. 2).

There have been several significant studies on reaction-diffusion equa-
tions on variable domains since late 70’s. Behavior of solutions and their
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Fig. 1. Dumbbell, n=3,£{=1.

structure in the process of domain varying, have been subjects of a great in-
terest. Matano [19] dealt with (1.1) and proved an existence a non-constant
stable solution in a Dumbbell domain, while there is no nontrivial stable
solution in a convex domain (see Matano and Mimura [20] for competition
system). By this result, he showed that the structure of solutions strongly
depend on the shape of the domain. After this work, Hale and Vegas [9],
Vegas [24] studied the detailed bifurcation structure of solutions in a certain
situation of partial degeneration domains. Morita [21] studied the domain
dependency of a reaction-diffusion system through inertial manifold theory
and constructed a time-periodic solution with a spatially nontrivial pattern
in a Dumbbell domain. Matano’s method and the results were extended
and generalized by the author’s previous work [10, 11, 12], in which the
behavior of solutions on the whole domain, including that on the shrinking
region Q((), is studied and characterized in the uniform convergence sense.
Moreover, it was shown by an example that even the thin region Q({) can
have an important influence on the structure of the soluions. Such type
of singularly perturbed domain is constructed through a surgical operation
of domains, which is sometimes called a connected-sum of domains. For a
given fixed domain (or several domains), a new domain is constructed by
glueing small or thin regions to the fixed one. One natural issue in this
situation is a structure of solutions (or a spectral problem) on the new do-
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Fig. 2. The function g = ¢(s) (—o0 < s £ 0).

main and its relation to that on the fixed one. Such problems are of great
interest in several different situations. One of them is a problem of vortex
solutions in Ginzburg-Landau equation (cf. Dancer [7], Jimbo-Morita [14]),
to which the results in this paper are applicable. Another related subject is
the eigenvalue problem of the Neumann Laplacian on singularly perturbed
domains See J.T. Beale [3], J. Arrieta [1, 2], S. Jimbo [13, 15] for charac-
terization of eigenvalues for the the Dumbbell shaped domain. For other
related topics of PDE’s on connected-sum of domains, thin domains, net-
work shaped domain and bumped domains, see [6], [16], [18], [22], [25] and
the references therein.

Hereafter we formulate the problem and state the main results. We
specify a bounded domain Q(¢) C R™ (¢ > 0 : parameter) in the following
form:

Q¢ =DuQR() (1.2)

where D and Q((¢) are regions in R™ (n 2 2) which are defined below. Let £
be a natural number such that 1 £ £ < n and put m = n—£. For z € R", we
can express it as z = (z/,z") € R® = R xR™, where 2’ = (1,2, ...,%¢) €
Rf and z” = (zoy1,...,2,) € R™. We denote the origin of R¢ and R™ by
o' and 0", respectively. .

Hereafter we use the notation B®)(y, p) = {z € R? | |z—y| < p}. which
is the ball in R? of radius p centered at y. We denote B (o, p) = B (p),
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B (0" p) = B™™ (p) for simplicity.

Let D € R® and L C R? be bounded domains (or disjoint union of
bounded domains) with C® boundaries, respectively and we impose the
following conditions on D and L.

Assumption

There exists (o > 0 such that DU (L x B™(3(,))
is connected in R™ and (1.3)

{T x B™)(3¢)} nD = 8L x B™(3¢y) c D.

We should note that L and 8L are the closure and the boundary of L in R¢.
0L x {0"} C 8D follows immediately. We use the following sets D(r) C D
and L(r) C L defined by

D(r) = {z € D | dist(z, (0L x {0"})) > r}, (1.4)

L(r)={z' € L | dist(z',0L) > r}. '
For the definition of the shrinking region Q({), we prepare a positive contin-
uous function ¢ = g(s) defined in —co < s < 0 such that ¢ € C3((—c0,0))
and

g(s)=1 (—oo<s=Z-1), ¢(s)>0 (-1<s5<0), ¢0)=2
and the inverse function ¢~! satisfies limyyp dPq(¢)/dtF = 0 for (1 S k <
3).
Q(¢) is defined by Q(C) = Q1(¢) U Qa(¢) where

Q1(¢) = L(2¢) x BM™(¢),
Q2(¢) = {(€+ sn(g),n) e R* xR™ |
—20=£s520, In|<¢q(s/¢), £ € OL}.

Here n(£) is the unit outward normal vector on 0L at ¢ in RY. From
the above conditions, 2(¢) in (1.2) is a bounded domain in R™ with a C?
boundary for ¢ € (0, (o).

In this paper, we consider the semilinear elliptic equation (1.1) for the
domain (¢). Here we note that A = Y 7_;0%/0x2, f is a real valued
C! function in R and v is the unit outward normal vector on 9Q(¢). We
characterize the behavior of solutions of (1.1) when ¢ tends to zero.
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Fig.3. Q) =DUQ(¢),n=3,£=2.

Theorem 1.1 Let {¢, p=1 be a positive sequence which converges to 0 as
p — oo and let uc, € C2(Q((p)) be a solution of (1.1) for ¢ = ¢, such that

h=sup sup |ug,(x)] < oo. (1.5)
p21 2€Q(¢p)
Then there exists a subsequence {op}s2; C {Gp}p2: and functions w €
C%*(D) and V € C?(L) such that
Aw+ f(w)=0 in D, %%— =0 on 9D (Neumann B.C.),
1.6)

(1.6
AV +fV)=0 in L, V(&)=w(,o") for ' €dL, (1.7)
(1.8

1.8)

li - =0,
T8, Sup |Ua, (2) — w(z)]

lim sup  |ug, (¢, ") = V(2)| =0, (1.9)
p—oo (=, 2" EQ(op)

where A/ = Z£=1 8%/0xz%. Note that OL x {0"} C 8D in (1.7).
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Remark 1.2 One typical example of f is f(u) = u —u®. In this case

any solution v« of (1.1) satisfies |u(z)| £ 1 (by the maximum principle). So
Theorem 1.1 is applicable. If the nonlinearity f guarantees an upper bound
and lower bound for solutions (such as the above), (1.5) is automatically
true. For example, (1.5) can be repalced by the condition that & f(§) < 0
for large |€}.

Before the proof of the main result, we carry out a preliminary argu-
ment. For the family {ucp};‘f;l given in the Theorem, we can apply the
arguments of regularity of solutions by the aid of the Schauder estimates of
elliptic boundary value problems with the condition (1.5), we see that the
family {uc,}52; is bounded in C?t2(D(p)) for any p > 0, o € [0,1) and
so it is relatively compact in C? (m) Hence Cantor’s argument gives a
subsequence {o,}52; and w € C*(D \ (8L x {0"'})) such that

lim sup |us,(z) —w(z)|=0 forany p>0. (1.10)
- P70 zeD(p)
It is easy to see w satisfies the equation in (1.6) and the Neumann boundary
condition on 8D \ (0L x {0”}). Next, applying the removable singularity
theorem with the boundedness condition |w(z)| £ h in D, we see that w
satisfies the Neumann boundary condition all over 8D and w € C?+%(D)
for o € [0,1). However, the uniform convergence of {u,, } in D is not trivial
and will be justified in §2. In the proof, we can assume without loss of
generality, from the condition (1.5), that there exists M > 0 and My > 0
such that

IFOI= M, [f(Ql=M ((€R) (1.11)

because we can modify (“cut off”) the nonlinear term f(u) in the region
|u| 2 h adequately. We will start the proof of the theorem at this situation
in the next section.

2. Preliminaries and uniform convergence in D

"~ We deal with a varying domain and discuss the behavior of solutions
in detail. We prepare notation for several subregions of 2({) and construct
certain auxiliary functions to estimate solutions.
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Notation 2.1 For p > 0, ¥’ 2 k 2 2p, we define the following sets,
St(0) ={(s;n) ERxR™[0 <5, * + [n|* < p?}
S7(p,0) ={(s,n) ERXR™ | =k < s £ 0, In| < pq(s/p)}
2°(p, &', 5) = {(s,m) e Rx R™| =’ < s < =, |n| < p}
THp)={(s;mM) eRxR™|0<s, s> +n|* = p?}
T (p,k) = {(s,7) ERX R™ | 5 = —r, |n] < p}
A(p) = 57 (p,20) UE*(2p).

Notation 2.2 For p >0, k > 0, £ € L, we define the following sets,
£F(p, &) = {(€ +5n(6),m) € R x R™ | (s,) € T*(0)}
=7 (p, 5, €) = {(€+sn(£),m) € R* x R™ [ (s,7) € £ (p, )}
2°(p, w1, €) = {(€ + sm(§),n) € R x R™ | (s,1) € £°(p, &', )}
T*(p, &) = {(€ + sn(&),n) € R* x R™ | (s,7) € T (p)}
I (p,5,€) = {(6 +sn(€),n) € R* x R™ | (5,m) € T (p, )}
Sty = | 209, =7 (k)= | Z7(0k,8)

£edL £edl
Ap) =T (p,2p) U (2p)

2%(p, K k) = U %(p, K, &k, )
£edl

)= J T8, T (pr) = {J I (p59).

€€l ¢€dL
It should be remarked that A(p) is an open set in R™ for small p > 0.
Remark 2.3 Note that for any £ € 8L,
£t (p) <= @ = (€ + sn(€),n) € T (p,£)
£ (p, k) <= & = (£ +sn(€),n) € £ (p, &, €)
5°(p, 6, k) <= 2 = (£ + s1(£),7) € T°(p, &, 5, €)
I (p) & 2= (£ +s0(),m) €T (p,0)
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Fig. 4. S+(p), £~ (p, &), £°(p, &, K).

holds if | 5| is small. The same relation is also true for > (p, &, &), 2°(p, &, K),
T*(p), T~ (p, &, €).

The coordinate system near 0L
A point z' € Rf near 8L is uniquely expressed as

' =¢+sn(¢) e R (2.1)

where (£,s) € OL x (—rg,rg) provided that ro > 0 is small. Using a
local coordinate (&1,...,&,-1) of OL, we introduce the local coordinate
(&1,...,€¢-1,8) in this tubular neighborhood O. Denote the metric ten-
sor of R¢ with respect to (£, s) = (&1, ..,&-1,8) by g = (g:;(£, 8))i;. Here
s corresponds to the component for ¢ = £. Let us remark that

giE(ﬁa S) = g&'(€75) =0 (1 é 1 é £— 1)7 gé@(fa 3) =1 in O

which follow from the relation (2.1).

Under this coordinate system and the metric tensor g = (g45(¢, s))
we can express the Laplacian A’ = Y% _ 8%2/8z2 in R’ in terms of
(&1, ...,€—1,8) € O as follows,

o1
1 0 . Ou 1 8 Ou
Au=-—" —{ VG ”—>+—— <\/G—->.
“ \/GMZ=1 0¢; ( g 0&; VG 0Os Os

Here G = det(g;;(&, s)). (¢%(&,s)) is the inverse matrix of (g:;(&,s)). Re-
mark that the functions g = g¥(¢, s), gij = ¢i;(€, s), G = G(&, s) depend
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on the choice of the local coordinate (&1, .. .,&—1) on 8L. On the other hand,
(1/v/G)(0v/G/8s) does not depend on such choice, because it is equal to
A’s and the function s is defined indepently of the choice of the coordinate
on OL. Here we put

1 9/ G(¢&, s)
NEGORNEE

We prepare some functions to construct a barrier function to constrol the
behavior of solutions around 8L X {0”}. We consider the following ODE,

2K m dK
(7 ma0) DK =0 (r>0) (2:3)

By applying the standard Frobenius method, we can construct a formal
power series solution of (2.3) and we can discuss its convergence by the aid
of the method of a majorant series. Consequently we get solutions K; =
Ki(r) and Ky = Ks(r) which are convergent for all » > 0 and linearly
independent. We summarize the results in the following proposition.

ap = +1. (2.2)

sup
£€0L,Js|Srg

Proposition 2.4 The equation (2.3) has two (linearly independent) solu-
tions K1(r), Ko(r) of the following form,

( oo
Ki(r) = Z ag rk (regular solution),
k=0

(2.4)

o0 o0
Ko(r) = r—m+1 <Zbk rk) + (ch rk> logr
k=0 k=0

L (singular solution),

and all the power series in (2.4) are convergent for r > 0. We note
ag#0 for m21,
bo#£0 if m22 and cp#0 if m=1.

Multiplying adeguate constants to normalize the coefficient of the leading
terms, we have the properties for some 1 € (0, 3¢o] N (0, 7o)
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(K, is regular at 7 =0 and Ki(0)=1 (mz21),
lilrng(r)/r_m"'l =1 (mz22),
lifBle(r)/log(l/r) =1 (m=1), (2.5)

Ki(r) >0, Ki(r) <0, K/(r) <0 (0<7r<m),
Ko(r) >0, Kj(r)<0 (0<rZmr).

Next we consider the following equation for N = N(z) (z € A(1))
A,N=0 in A1),
N=1 on I'"(1,2), N=0 on I't(2), (2.6)
ON/BTi=0 on OA(1)\ (I (1,2)UTT(2)),
where z = (5,1) = (8,71, ..., Tm), A, = 8?/85* + 372, 0%/6n? and 1 is the
outward unit normal vector on the boundary dA(1) in RY.

It is easy to see that (2.6) has the unique smooth solution Ny = Ny(z2).
We define the constant o1 by

ay = sup{|V,.No(2)| | z € A(1)} +1 > 0. (2.7)

We can prove by the maximum principle and a regularity argument that
there exist constants ds > 0, §; > 0 such that

ds _ ONy ~ ONy _ 62 =~
2L < + <z
5 = a5 = 26; on I'™(2), 26; = 5 =3 on I'"(1,2).
(2.8)
Next we define the constant ag by
as = max{209(4ds + 1), 200(ca +1)} > 0 (2.9)

and consider the following equations,
AN + (M +1)N = —a3¢? in A1),
N=1 on I'"(1,2), N=1 on I'*(2), (2.10)
ON/BT =0 on OA(1)\ (T™(1,2) UT*(2)),
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Fig. 5. A(1) = £-(1,2) U S+(2).

AN+ 3 (M+1)N = —og¢ in A1),
N=1 on I''(1,2), N=0 on I'(2), (2.11)
ON/B =0 on OA(1)\ (T (1,2) UTH(2)).

Recall that the constant M > 0 appeared in the condition (1.11). It is easy
to see that each of (2.10) and (2.11) has a unique solution provided that
¢ > 0 is small. We denote those solutions of (2.10), (2.11) by Ny = Ny(z),
Ny = Ny(z), respectively. It should be noticed that Ny, Ny depend on ¢ > 0
while Ny does not. Note that N, and N, smoothly approach the constant
function 1 and Ny, respectively as ¢ — 0.

Lemma 2.5 There exist 63 > 0 and {1 > 0 such that
|N1(2) — 1} + |V.N1(2)] £ 8¢ in A(1),

i ) (2.12)
—se <M< o FrE)UT(,),
on
[ |V2(N2 — Np)| < 8¢,
(2.13)

&< %—2 <6 on TH2), &< %‘%2 <6, on T(1,2),

Sketch of the Proof of Lemma 2.5. Consider the functions
Ni(z) = (N(2) = 1)/¢%, Na(2) = (Na(2) — No(2))/¢
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and we see that they satisfy

(AN +C(M+1)N = —as— M —1 in A1),
Ni=0 on I''(1,2), Ni=0 on I't(2),

| ON1/60i=0 on AA(1)\ (T7(1,2)UTT(2)),

(Az]/\}z + CZ(M—F l)ﬁz =—ag —({(M+1)Ny in K(l),
Ny=0 on I(1,2), Ny=0 on I't(2),
| ON,/0%i=0 on OA(1)\ (I (1,2)UTT(2)).

In these equations, we apply the Schauder estimate to ]Vl, JVQ and investi-
gate those limit for { — 0 and obtain the conclusion. a

We also prepare the following equations, which depend on £ € L as a
‘parameter,

AN =TFri(? for z=(s,n) € A(1),

N =w(£, o) Fry¢ for z=(s,n) el (1,2),
N = w(¢ +Csn(e),¢n) for 2= (s,n) € T+ (2),
ON/OR =0 for z € OA(1)\ (I (1,2) UTH(2)).

(2.14)

We denote the unique solution of (2.14) by Ni = NFE(€, 2) (vespectively),
which depend on &, smoothly. Note also that both N. 3i smoothly approaches
w(&, 0"} for ¢ — 0 and this convergence is uniform in £ € L. We have the
following properties for N?)i.

Lemma 2.6 There exists kg > 0 such that for any k1 > 0, ko = Ko there
exist (o3 = Ca(k1, k) and 0 < J4 = 04(kK2) < 05 = O5(K2) with the following
conditions

(|V.NSF(€,2)| S 85¢, Ni(€,2) S Ny(€2) in A1),
- - ONs ~ ON; ~
_ <93 < _ + < < -
{ —05¢ = a = 64¢ on TT(2), 0ds( = EF S 05¢ on T7(1,2),
N5 ~ ON3 =5
L54C § B_ﬁ :<: 55C on I (2), —05¢ < —5? < —04¢ on T (1,2),

(2.15)
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for £ € OL, ¢ € (0,(2]. Moreover we can take 64(k2) > 0 so that
lim d4(k2) = o0. (2.16)

Kg—00

Notice that d4, d5 do not depend on x; > 0, while (5 does.

Sketch of the Proof of Lemma 2.6. We carry out a similar argument as in
the previous lemma for the function Nj (¢, 2) = (NF(¢,2) — w(¢,0")/¢
which satisfies,

A NG = —k1¢ for z=(s,n) € A1),
va'*':—/cg on I'(1,2),
N = (w(&+¢sn(8),¢n) — w(€,d")/¢ on T*H2),
ONF /6B =0 on OA(1)\ (T (1,2)UTH(2)).
By decomposing ]V3+ into two parts j\}g’r ; (depending on ;) and ]V;' 5 (de-
pending on kg) by
( Azﬁéfl = —k1¢ in A(1),
N, =0 on T7(1,2),
N1 =0 on I'*(2),
| ON/65=0 on 8A(1)\ (T~ (1,2)UT*(2)),

(ANF=0 in A1),

ﬁ;& =-—xy on I (1,2),

Ny = (€ +¢sn(€),¢n) — w(g,0")/¢ on TH(2),
| 0N3,/66=0 on 8K(1)\ (T~ (1,2) UTH(2)).

First restrict {3 in the region 0 < (o < 1/k; and estimate ]V;’ 1 .7/\7;" o for
the limit for { — 0, we can obtain the conclusion the lemma. A similar
argument applies to N5 . O

Barrier functions
We will define functions ¢; ¢, @2, gogzg in the set

J(C,r2, 1) = E°(C, 72, 2¢Q) UA(Q U (27 (r1) \ BF(20))
for ro > 0 (r1 > 0 was fixed in Prop. 2.4). We remark that the choices of
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the constants ag, a; and as in (2.2), (2.7), (2.9) are determined to make
these functions work to bound the solutions.

Definition Fo
In|%)1/2), we put

p1¢(z) =

p2c(T) =

rz=(§+sn(§),n) € J((ram) (2= (s,m), |2] = (s* +

[ Ki(j2))/Ei(r1) for 2= (s,n) € £F(r1) \ £¥(2),

(EE)(2)-§0(2) o - emeito

K1(2¢
(Klw - 5) 20l 20 = mle 207
for z=(s,n) € 2°((, 9,20,

((~1/K5(20))Ka(|=]) for 2= (s,7) € ZF(r1) \ ¥(2),

N (2) 4 5o (2) or 2= e Keo)

K5(2¢) ¢ 5
(_Ké(QC) " E) ~ Tgg; 5 720 — 2ls + 20)°

‘P?:g(x)

for z = (s,m) € 5°((, 2, 20),

(w(:v) for z€ X%(r)\ 27(20),

N3 (€,2/¢) for z = (£+sn(€),m) € A(C),
w(€,0") — kol +3(s + 2¢) — vals +2¢)?

{ for z=({+sn(£),n) € £°(¢,r2,20),

(w(z) for z e oH(r)\ ZH(20),

_ 4 Ny (€,2/¢) for z = ({+sn(£),n) € A((),

w(§,0") + w2 — y3(s + 2C) + va(s +2()?
for = (£+sn(€),n) € £°(¢, 72, 2¢),

where v1 > 0, v2 > 0, v3 > 0, 74 > 0 will be determined later.

It should be remarked that z = (£ + sn(§), n) belongs to £°(¢, rg, 2¢)
or A(¢) or £ (ry) \ ©F(2¢) if and only if z = (s,7) belongs to £°(¢, 79, 2¢),
or A(¢) or &+(r1) \ £+(2¢), respectively.
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It is easy to see that @1 ¢, o, gogt)g are C® and piecewise smooth. It is
also true that

©1,¢r P2,¢5 903i,§ € Hl(‘](ga T2, Tl)) N CO(J(Cﬂ 72, 7"1))-

We are going to make an adequate linear combination of these functions
which play a role of barrier to prove the uniform convergence in . We
see that there exists ro > 0 (independent of ¢ > 0) such that ¢; ¢, w2 are
positive in J(¢,rq,71) and

4
0 < liminf ( inf ¢y, :v)) < limsup ( sup 1 c(z ) < 00,
¢—0 "‘DGJ(C7T2:T1) C( ¢—0 .’BEJ(C,TQ,T]_) C( )

0 < lim inf( inf gou(a:)> < limsup< sup gom(a:)) < 00,

¢—0 z€l=(¢,r) ¢—0 zel—(¢,r)
€ (0,72l
- lim{ su T = 0.
| i sup leac(o)])
(2.17)

Lemma 2.7 We can take (smaller) r1, ro > 0 and (3 € (0, min(¢1, (o)) >
0 (depending on only D and function ¢ = q(s)) such that the above two
functions @1 ¢(x), w2,(x) are positive and satisfy the following differential
inequalities,

Hi(z)=Api¢c+ (M +1)pic 20 in J((,r2,71),

Opic/Ov=0 on 8J(¢(,re, 1)\ (TT(r1)UT™(¢,72)),
fori=1,2,0< (< (3. The meaning of the inequality in (2.18) is taken in
the generalized sense (cf. Gilbarg-Trudinger [8 : Chap. 8]).

(2.18)

Proof of Lemma 2.7. First we calculate H; in terms of the local coordinate
in each subregion, %°(¢, r2, 2¢), A(¢) and (Z*(r;)\Z+(2¢)). By the property
of the metric tensor g = (Qij(l‘)), we have

pee)= S mge (VO )

1£4,5<0-1

52 1 0V/G o . 0%
+( \/_ s 83) 21—52
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and

T 52 8% mOy
<832 > 57 ) =2 T o

1

for a function ¢ = 9(r), (|z| = r = 1/s? + [n|?). Noting that @1, @2, do
not depend on &, we calculate H;(z) as follows,

1 6‘\/_ a‘Pz,C ]
H (882 + Z )SDLC \/_ s s + (M + 1)@1,C

(i) In Zt(r) \ Z7(2¢), from (2.3), we have

1 8v@s\ KI(r)
Hl(x)z(““f 5s ?) Koy =

}‘ff)( —Ky(J#)/KY20) SO (2¢ S 7 S 7).

(ii) In A(Q), from (2.10)—(2.11), we have
Hi(z) = ( Ki20) L L > o

(2¢=r=m).

)= (e

Ki(ry)
5 (e (215 ()

_(Ka(2¢) 1
50 = (Kiag  15;) °
1 0vG ([ Kx(2¢Q)18N; (= L 1 0Ny (=
\/— Os KL(2¢)¢ 0s \¢ 46, 8s \(
From K1(0) =1, K{(r) < 0, K(r) > 0, K5(r) < 0 for 0 < r < 71 and the
definition of the constants ag, a1, ag, both Hi, Hs are negative in A({)
provided that ¢ > 0 is small.
- (i) In 3°(¢, 2, 20),

18\/_

Hy(z) = =271 + —=—F—(202 — 271(s + 2())

+ (M +1) [262(5 +20) —mls+20)" + (% - %ﬂ
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1 V@ §
Hy(z) = 272-{—\/_ 5 ( 162 2'72(s+2§)>
01 2 _Kl(2<) <
+(M+1)[ 165, (s +2¢)—a(s + 2¢) +< KQ(ZC)+452 )
Define 71, 72 by
M+1 apd1
271—2040524—}{1( )—1-1, 279 = 165 + 1.

From the properties of K3, Ko, we can take ro > 0 small so that Hy(z),
Hj(z) are negative in X°(¢, rq, 2¢) for small ¢ > 0.

Next we consider the derivatives of ;¢ (¢ = 1, 2) in the normal direction
on I'F(2¢), T'(¢,2¢) at which each ;¢ is continous and is not C*.

Op1,¢ _ K1(29) +
or jr=2¢+0  Ki(r) =0 on I'™(20),
) 3(,01( K1<2<) 18N1 (_) lc‘?Ng (_) > (5_1
or |r=20—0 ()§8n ¢ 26m \()= 2
on I'(2¢),
Bp1, __Ki(2016M 10N,
ds IS:—2C+O Kl(rl)c on ( 2 /C) 2 8~( 2777/C)§52
on I'"(¢,2Q),
Op1,¢ B _
5s |s=—2<—0_262 on I'"(¢,2(),

for small ¢ > 0. From Lemma 2.5, Proposition 2.4, we see that

01 ¢ 0p1¢
=6 < o It (20), 2.19
Or |r=2¢+0 — Or |r=2¢—0 on (20) (219)

Op1¢ < o1 -
— < —= (¢, 20, 2.20
0s |s=—2¢+0 — 08 |s=—2¢-0 o (620) ( )

for small ¢ > 0. Next we calculate

6‘F2C Ké(?{) +
— L 5 =——2_ 22 — _ 1 on ] 2
or |r=2¢+0 Ké(2€) ( C)’
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Opag _ _Ka(2O10Ny (z2) 1 ONa [z, 1
or lr=2¢—0 K§(2C)C on ¢ 46, on ¢ = 2
on I't(2¢),
Op2¢ - K2<2<>1§f£<_2 7 - LQJ_@(_2 7
Bs js=—2¢c+0  Kh(20)C Om \ C) 48 m \ ¢
o1 _
< =
Op2.¢ =01 _
0s |s=—2¢—0 1609 on I'"(¢,2¢),
for small ¢ > 0. Hence we get
Opac < Ovac +
Or |r=2¢+0 = Or |r=2¢-0 on I™(2¢), (2.21)
O¢ag < Qe on T (¢,2(), (2.22)

- 0s |s=—2¢+0 ~ Os [s=—2¢—0

for small ¢ > 0. Each ¢;¢ satisfles the Neumann B.C. on 8J((,r2,71)\
(T=(¢, ) UT*(r1)). By using (i), (ii), (iii) and (2.19)—(2.22), we conclude
H; is positive in the generalized sense, i.e.

[ -VeiVe- (M4 Dpice)ds S0 (i=1,2)

J(¢,r2,m1)

for any ¢ € HY(J({,r9,71)) such that ¢(z) = 0in J(¢,re,71) and ¢(z) = 0
on I'"(¢, o) UTH(ry). O

Lemma 2.8 There exist k1 > 0, kg > 0, 73 > 0, 4 > 0 and r3 € (0,79)
(which depend only on L and M, M) and {4 € (0,(3) such that <p§c’<(a:)
satisfy the differential inequalities

Pac(2) S pg.() (z€ (¢ rs,m),

Hi = Ap3, + flp3e) S0 in J((,73,71), (2.23)

8(,02',(/81/ =0 on 8J((, r3,7r) \ (CT(r) UT™(¢,m3)),

in the generalized sense, in J((,r3,71) for 0 < ( £ ¢4 and

Hy =Apg .+ flese) 20 in J(C r3,71),
6(,05’4/61/:0 on 0J(¢,r3,m) \ (T (r)) UT™(¢,m3)),

in the generalized sense, in J((,r3,71) for 0 < ¢ £ (4.

(2.24)
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Proof of Lemma 2.8. It is easy to see
Hy (z) = Ay + flp5,) = Aw+ f(w) =0 in TF(r) \ =H(20).

Next we consider the normal derivative of T at I'*(2¢).

&pf dpt
¢ < 3,¢ > 1‘\+ 9
?TWMOJ?WW B jpencg =04 OO (2¢),
Ops
3¢ <5 T+

or jr=2¢—0 - on (2€),

By (2.16) in Lemma 2.6, we can take kg > 0 large (to control d4 = d4(kz2))
and fix it so that

By ¢ dpd

< I8¢ (2
or |r=2¢40 — Or |r=2¢—0 o (20),
. O3, 03,
59 > 3,¢ 1‘\+ 2
Or |r=2¢+0~ Or |r=2¢—0 on (20),

for 0 < ¢ = (2 = (a(k1, K2).
In A(¢), we calculate HF in terms of the local coordinate system (¢, s,7).

+
Be- Y = (Ve (25) (c2))
5 1@%4_1 VGO \ 0¢; ¢
1 8VG1ONF

Note that A,Ni(z) = Fry in A(¢) and |(1/¢)(ONE/8s)(€,2/¢)| £ 6,
the first and third terms in H:,ft, are bounded independent of ¢ and ¢ €
(0, {2(k1, K2)). We should note that their bounds are independent of k1 > 0
and so we take x; large so that we have Hi (z) < 0, Hy (z) > 0 in A(¢).

Next we consider the derivative of gpg:,c on I'"((,2¢). Put y3 =65 +1
and we have (with the aid of Lemma 2.6),

+ (ANF)(E 2/) +

Ovsc Oy,

. S 5 — ——"g 1"— 2

ds |s=—2¢+0 = ° <7 85 |s=—2¢—0 on I'(¢,2¢),

O3 ¢ Ops .,

T 2 __6 _ — ) 1-‘.__ , 2 )
85 Jo——zcto = 27 BT TBs gm0 OO (¢,20)
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In X°(¢, 79, 2¢), we calculate HY as follows

H:si = F2v4 + —\;_a;af(,yg — 2ya(s+20))
1 -1 o y dw(E, O“)) )
’ —\/_azgl 9; (g Ve e, )T fleze)

By taking r3 € (0,72) small and v4 > 0 large (independent of {), we have
Hf <0and Hy > 0in 2°(¢, 73, 20).

Taking into account that gogfc satisfies the Neumann B.C. on
8J (¢, 73, 71)\ (T~ (¢, m3)UT™ (71)), we conclude the inequalities in Lemma 2.8
in the generalized sense. O

Uniform convergence of the solution in D

We will prove the uniform convergence of ug, to w(z) in D (cf. (1.10)) by
_making a barrier of u,, (z) —<p:',i Cp(ac) from above and one of ug, (z) - @5 Cp(a:)
from below. Here the barrier function is a certain linear combination of
p1,¢(z) and @y ¢(x).

As is seen before, we see that i ¢, w2, are positive in J({,r3, 1) for
small ¢ > 0 and

hgri)lglf <zel‘1—n(f§,r3) wl,g(x)) > 0, hlgi)lé’lf (xel“l—n(fc,rs) (pz’g(x)> > 0.
(2.25)

Lemma 2.9 Let u be any solution of (1.1) in Q(¢) such that |u(z)| £ h
in Q(¢). Put

a=al@=( sw ju@)-w@|)/( it @),

z€l+(ry) z€lt(ry)
(2.26)

cr=eal@)=(_sup (edeloll +lesc@D +1) /(nt  oac@).

(2.27)

Then it holds that
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P3¢(2) — (1010 (2) + c2p2,¢(2))
< u(z) £ 93 (2) + crp1,¢(z) + capa (@)
in J(Cr3,m) for 0< ¢S (e (2.28)

Recall that h appeared in the condition (1.5) in §1.

Proof of Lemma 2.9. From the inequalities in Lemma 2.7, Lemma 2.8 and
the equation for u, we have,

Alerpie + capae — (u—3,))
+ A(z) (c101,¢(2) + c2p2,¢(z) — (v — 93 ()
S a9+ cag2 — (M + 1= A(z))(crp1c + capz) <0 in J((,73,71),

Aleriprg + capae + (u—p3.)

+ B(z) (c191,¢(w) + capa (@) + (u — 95 (2)))
S c191 +c2ga — (M + 1+ B(z))(crp1,¢ + capae) <0 in J(¢,73,71),

where

1
A@) = [ Ftta) + (- D (@) at,

Bw)= [ tae) + (- Do)

By the definition of ¢1, ¢o, we have
—(c1p1,¢ + coa¢) Su(a) —pz.(x) on T(¢,r3) UTT(ry),
u(z) — goé",c(x) Scapic+capae on T7(¢rs) UTH(r).

Note also c1¢1,¢ +caga,¢ (positive) and u— <p§° satisfy the Neumann bound-
ary condition on 8J(¢,rs, 1)\ (I'~(¢, r3) UF“L(rl)). Therefore by the maxi-
mum principle in the generalized version, we get the inequality (2.28). O

. Put { = 0, and u = u,, in Lemma 2.9, we have

03,6,(%) = (€1(0p)1,6, (%) + c2(0p) 2,0, (2))
s Uop (z) = (pg_,ap (:E) +a (Up)(Pl,ap(x) + CQ(O'p)Wz,gp(l’) in D
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for large p, where

eifop) = (_swp fug(@)—w@)) / (__inf ¢10,()),

z€l+(ry) z€lt(ry)

- + —~ :
C2(Up) B (meré?fp’rs)(l@g,gp(x)l * I‘Ps,gp(x)l) * h) / <x€1"l?t£p,r3) P2op (.7:))

Note limy_,c0 ¢1(0p) = 0 from (1.10) and lim¢—o sups+ () l2,¢(z)| = 0 and
c2(op) is bounded from above and below by positive numbers as p — oo.
We conclude the uniform convergence of u,, to w(z) in D for p — co. This
implies (1.8) in the main theorem.

3. Uniform convergence in Q(¢)

In this section we consider the behavior of solutions in the shrinking
_part @(¢). We recall the following estimate,

©3.¢(@) = (c1(Qe1c(@) + c2(Qp2c())
CS () S ¢ (@) + ea(Qere(@) + ca(Qwacla),
in J(¢,r3,r1) (0<{=0p = Ca)

which was obtained in the previous section. From this estimate we derive a
behavior of u,, near L. Taking the limit p — oo, we have

lim sup sup U, (§ + s1(8), 1) — w(€, 0")]
p—0  g=(¢é+sn(&),n)€T(op,T3)

< |yss — 7452| + | — (61/1602)s — 7252[ -lim sup c2(op)

p—00

(—r3<s20). (3.1)

We will obtain estimates on the derivatives of the solutions and deduce
a certain compactness of solutions. For that purpose, the following two
lemmas are key estimates to prove the convergence of the solutions in Q(¢).
Let u be any solution of (1.1) such that [u(z)| < h in Q(¢). We have the
following properties for this solution.

Lemma 3.1 For any p > 0 there ezists c3(p) > 0 such that
[Vou(z',2")] S es(p) in QO\Z7((,20) (0<(=G). (3.2)
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Lemma 3.2 For any p > 0 there exists ca(p) > 0 such that

(7 Voru(z',&"))| £ cal(p)¢ for z = (2/,2") € L(2p) x IB™((),
(3.3)

and any unit vector T € R™ such that (" -7) =0 (0 < ¢ £ ().

Proof of Lemma 3.1. We estimate Vu(z) by reflection with a barrier
function (cf. Gilbarg-Trudinger [8; Chap. 14]). We consider the deriva-
tive of u in z’-direction. Let 0 < 2¢ < p. Take any zg = (zp, z5) € Q(¢) \
¥~ (¢, 2p) and take any unit vector 7 € R? and fix them. Then

V(¢) = B9 (x5, 0) x B™(¢) € Q(Q)
holds. We give an upper bound to |7 - Vu(zo)| by constructing a certain
barrier function. We use the reflection map z —— 7 defined by
- = (2 - 2(z' — x5 7)7,2") for x = (z/,2").
This reflection is with respect to the hyperplane P, = {(z/,z") | (z' — z -
7) = 0} which contains z¢ and is orthogonal to the vector 7. Here ( - )
denotes the inner product of two vectors. Let us consider the domain

Vi(¢) ={z = (a/,2") e V() | (&' — 25 - 7) 20,

|2’ — 25 — (&' — 2o - T)7| < p/2}.

Note that if u is a solution, u(Z) also satisfies the equation in V((). Hence
if we put U(z) = u(z) — w(Z), then

AU + f(u(z)) - f(u(Z)) =0 in V()

with U = 0 on V({) N P;. We restrict U on V;(¢) and discuss its derivative
in the 7 direction on V1 (¢) N P;. We will use the relation 2(r - Vu) = (-
VU) on Vi({) N Py to get the estimate on du/07.

Define a function

¢(z) = a (2p(z’ -z - 7) — (2 — 5 - 7)?) + b ¢ (2),
where
0 for e Vi(C), |of —ah— (o —ah - 7)r| < p/4,

¢(z) =1 (I’ - 25 — (2’ — 2 - 77| — p/4)?
for z € V1(¢), p/a< |z’ —xp — (' —xp - T)7] S p/2.
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It is easy to see that ¢ is C' and piecewise smooth in the closure of Vi (¢).
Put

a = (M1/2) +32(Lh/p?), b=32h/p%
then we have the differential inequalities

Alg£U) <0 in V1((), —9¢(z) SU(z) £ ¢(z) on V1(C) \ 0Q(S).

Note that ¢(z), U(z) satisfy the Neumann B.C. on 9V;(¢) N 9Q(¢). Hence
we apply the maximum principle and obtain

—¢(z) SU(z) £ ¢(z) for z €V1(()-
Therefore we get
|7 - Varu(zo)| = (1/2)|7- VarU(xo)| £ a = (M/2) + 4(¢h/p?).

This bound does not depend on the choice of zg € Q(¢)\X7(¢, 2p) and unit
vector 7 € R™, we have the conclusion of the lemma. a

Proof of Lemma 3.2. Similarly as the proof of Lemma 3.1, we prove the
estimate by the reflection. Take any unit vector = € R™. Define the reflec-
tion with respect to the hyperplane P» = {(z/,z") | (z"-7) =0} by T =
(', 2" —2(z" - T)7). By using this, we define a function U(z) = u(z) — u(2)
in the domain

V2(¢) = {(',2") € L(p) x BI™(() | {7 -2") 20} € Q(0)-
Note that U(z) = 0 on P, N V3(¢). We construct a comparison function
¢(z) = a(2¢{e" 1) — (" 7)) + b (2),
where
0 for z=(2',2") € V2((Q), ' € L(2p)
¢'(z) = { (s+2p)* for z=(§+sn(§),2") € \(0),
-20Ss%—p, £€0L

Similarly as in Lemma 3.1, we can choose a > 0, b > 0 which depend only
on p > 0, by which we can prove

—¢(z) SU(z) £ ¢(z) 7 €V2(().
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This implies

|7 VnU(z)| £ |7 Vynd(z)| = 2a(
if ' e L(2p), z=(2',2") € P,n &Va(¢).
Particularly it is true for ¢ = (2/, ") € L(2p) xdB™)(¢) such that (z”, 7) =
0. By using the relation 2(7- V u(z)) = (7- Vo U(x)) for z € PoNOV5().
We complete the proof of Lemma 3.2. a

Let u be any solution of (1.1) with |u(z)| £ h in Q((¢). To discuss the
convergence of solutions in Q(¢), we use the following change of the variable

y =2, ¢ =2"/¢, Uv,y")=uy,{y") (3.4)
and we define the domain Q(¢) by
Q) ={(,y") e R* xR™ | (¥, ¢y") € Q)}- (3.5)

We also denote some portions of @(C ) by Q' (¢, p) and §(C , p) which are
defined as follows,

Q') ={,v") € Q) |V € L(p)},

§(¢p) ={,v") € 8Q(¢) | ¥ € L(p)}-
Remark that Q'(¢, p) and S'(¢, p) do not depend on ¢ if 0 < 2¢ < p. That
is,

5'(¢,p) = L(p) x B™(1), §(¢,p) = L(p) x B (1)

So we denote them by Q'(p) and s (p) if 0 < 2¢ £ p. It is easy to see that
U satisfies the equation

(Ayl + éAyu>’ﬁc -+ f(z’ic) =0 in @'(,0) (O < 2¢ é p), (36)

and the Neumann boundary condition on S'(p).
By multiplying the equation (3.6) by ¢ and integration in Q'(p), we
obtain

/@,( ) (Ivy'adz + (l/gz)lvy”a(F - f(’/u\g) ’/U,\C) dy/dy”
P

U¢ (8¢ /On) dSydy’

/a;;(p)xB(m)a)
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Using the upper bound of solution |u| £ h and the estimate on the gradient
of w in Lemma 3.1, we see that that there exists c5 = c5(p) > 0

Jo, [Vl dyay S (o)
0
(3.7)
/é IV S o)
(p

for 0 < 2¢ < p. From these estimates, we conclude {Zi¢}o<c<,/2 is relatively

compact in Lz(é’(p)) for any small p > 0. Applying Cantor’s argument,
we get a subsequence o, and a function ug on L such that ug(y',y") is
independent of ¢ and

lim |[@g;, — “0”1;2(@/(,;)) =0, [|uw()Sh in L,

p—00

4 /@/(p) <vy/a‘7§z V;qﬁ(y/) - f(ﬁa;,) ¢(y/)) dy/dy” =0

for any ¢ = ¢(y') in C°(L) with Supp(¢) C L(p). Taking p — oo, we get
/ (V0¥ 86" - F(uo) 8) d'dy” =0
L(p)xB(m)(1)

for any small p > 0. This implies
Ay/’u,o + f(U()) =0 in L. (38)

By the Schauder estimate, ug is a C? in the interior of L (classical solution)
of this elliptic equation. Moreover from the estimate in (3.1), we have

/1)i_r}13)sup{|ud§+ sn(€)) —w(& )| E€BL, —p<s<0}=0
(3.9)

This justifies the boundary condition ug(€) = w(¢, 0”) on 6L and ug is C?
up to the boundary of L. We will prove that ﬁ% “uniformly converges” to
ug.- Hereafeter we denote o, by op.

Lemma 3.3

lim sup Iug,,(ﬂcl, 96”) - U0($/)| =0.
p—x x:(m’,z”)EQ(o‘p)
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Proof of Lemma 3.3. Using Lemma 3.1 and Lemma 3.2, we see that
{ticto<c<p/a 1s precompact in C°%(S'(p)) for any p > 0. So U, uniformly

converges to ug in §(p) for any p > 0. This consideration with the estimate
(3.1) implies that ,, uniformly converges to ug in the whole boundary of

Q(op). It is in other words,

lim  sup [y (2 2”) — uo(a)| = 0. (3.10)
P00 g— (2 ,x'")€8Q(0p)

We estimate the convergence in the whole Q(o,). Define

kp)=  sup  Jug, (3, 2") — uo(z')|
a=(',2")€0Q(ay)

+ sup g, (2, 2") — up(z”)|.
m:(m’,z”)ez— (UP:QUP)

It is also easy to see from (3.1) that lim, .o x(p) = 0. Let us define
uoi,ap(a:) = ug(z') £ Mi(ol — |2"]®) + K(op) (cf. My in (1.11)).
It is true that
U, () S Uy (2) S uif, (2) o O(QUoy) \ B (07, 207))-
On the other hand, an easy calculation gives
A(u&ap —Uop) S0, Altog, —ug, ) S0, in Qop) \ 7 (0, 20p)
for large p. By the maximum principle, we conclude

Ugo, () S Uo, (z) = u('{o,p (z) in Q(op) \ T (op, 20p).
U

This estimate proves (1.9) in the main theorem. Summing the results
in §2 and §3, we complete the proof of the main result of this paper.

4. Generalization

-In the previous sections, we have dealt with the scalar (stationary)
reaction-diffusion equation and obtained the characterization for behaviors
of solutions. We are going to generalize those results to the case of system
(vector valued) reaction-diffusion equations. In this problem it is important
to estimate solutions uniformly in the fixed region D (up to the interfacial
region near 0L) and for that purpose, we constructed barrier fuctions and
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apply a comparison technique to bound the difference between the perturbed
solution (¢ > 0) and the limit solution (¢ = 0). Here, in this procedure we
have to be careful because, in general, the maximum principle (or compari-
son technique) may not be applicable to system reaction-diffusion equations
such as our case. But the situation where we apply the comparison tech-
nique, is very special. We construct and use the (positive) barrier functions
in a very thin region around the interfacial region between the fixed domain
D and Q(¢), and so the comparison method is still applicable to our case.
Now we formulate the problem.

We consider the following stationary reaction-diffusion system in Q(¢)

(¢>0),
Au+Ce(z)f(w) =0 in Q(C), du/dv=0 on 8Q(C), (4.1)

where
w="(ut,ug, ..., ug) flu)="(fi(w), o), ..., fa(w)),
f e C'RYRY),
C¢ = (Cijchigij<a € CHQ), Ma(R)),
C = (Cy)igij<d € CH(D, M4(R)),
C = (Cij)1<ij<a € CH (L, My(R))
and
%lf)% sup |C¢(z) — C(z)| =0, %1_{% zz(z,’?nl)?e@(o |C¢(a’,2") = C(a')] = 0.

Here we denoted the set of all d x d real matrices by My(R). One impor-
tant and simple example (our result is applicable) is the Ginzburg-Landau
equation (see [7], [14], f(u) = A(1 — |u|?)u).

We have the following result.

Theorem 4.1 Assume that {(p}52; is a sequence of positive values with
limy 00 §p = 0 and u¢, is a solution of (4.1) for { = ¢, with

g, (@) Sh<too (z€QG), p2 1), (42)

Then there ezist a subsequence {op}52; C {(p}52; and w € C*(D,R%) and
V € C?(L,RY) such that
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Aw + C(z)f(w) =0 in D, ?;5 —0 on D, (4.3)

AV +CENf(V)=0 in L, V(2)=w(, o) (2 €dL),
(4.4)

lim.sup i, () — w(z)| = O,

PP zeD ‘

lim  sup  |ue,(z,2") — V()| = 0. (4.5)

P00 (a2 €Q(op)

Sketch of the Proof of Theorem 4.1. We can carry out a similar argument
as the scalar case except for the construction of the barrier function. From
the boundedness of the solution (4.2) (cf. similar argument in §1), we can
claim that there exist a subsequence {o,} C{(,} and w = *(w1, wo, ..., wq) €
C?%(D;R%) such that (4.3) holds and

- lim sup |u,,(z) —w(z)|=0 forany n>0. (4.6)
P= zeD(n)
From the condition of the uniform boundedness of {u¢,}, we can modify
(&) for large |€] (“cut off”) without changing the solutions. Thus we can
assume, without loss of generality that

HGIES S Z|Czkc($ 8f’“<s>|<M'

(z€Q(C), (>0, £€R 154,52 d). (4.7)

We will construct a barrier to bound the behavior of the solution in the
region J({,72,71) around the interfacial set L x {0"}. O

Barrier functions. Now we consider barrier functions to control
[to, (z) —w(z)|. In the Section 2, ¢ ¢ and g were defined and the impor-
tant inequalities (cf. Lemma 2.7) are deduced. We should note that they
depend on the constant M > 0 and D, the function ¢ = ¢(s), but not on
the equation and solutions.

We use the same ;¢ and @ ¢ by putting M = d(M’ + 1) — 1, where
M’ is the constant in (4.7) and it is related with the nonlinear term f. We
state the inequalities for these barrier functions in Lemma 2.7 for our later
use.
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Ap; ¢+ d(M' + Dpic 20 in J((, re,71),
- (i=1,2)

8ic/Ov =0 in 8J(C,r2,m1) \ (T (r1) UT™ (¢, r2)),
(4.8)
for 0 < ¢ < (3. .
Next we define wg”i (1 £ ¢ £ d), which is obtained by replacing w by
w; in the definition of <p3i’c in §2. Namely,

(wi(z) for z€ oH(r)\ TH(20),

NS (€,2/¢) for == (£+sn(é),n) € A(Q),
w(€, 0") — kol +73(s + 20) — ya(s + 2¢)?

\ for z = (£+sn(§),n) € £°((, 2, 20),

oyt (z) =

rwi(m) for z € Tt(ry) \ T7(2¢0),
N3 (§,2/¢) for z=(§+sn(&),n) € A(Q),
w(€, ") + K2l — 13(s + 2¢) +va(s + 2¢)?
for z = (§+sn(&),n) € L°(¢,re, 2¢),
It includes parameters k1, kg, 3, k4, Which are to be fixed depending
on M', Mj.
Denote t,o§:C = ((pé’g:, . -a‘szgi)- Similarly as Lemma 2.8, we have the
following differential inequalities.

05 (z) = (1£i<d).

Lemma 4.2 (cf. Lemma 2.8)
(050 2@yt in J(Crs,m),
) d
AQST 4+ Canfulpi) S0 in J(( r3,m1), |
= (1<i<d)

d
A‘P;’E + Zcikfk(‘P:;,g) 20 in J(¢ r3,71),
k=1

| 09%%/0v =0 on 0J(¢,rs,m) \ (CH(r1) UT™(¢,m3)),

(4.9)

We define the following quantity,
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o) =( sup fug,(@)—w@l)/(_inf ¢1e,())

z€l+(ry) z€l+(ry)

+ 2M{( sup  |Cig(z) — Cik,o, (93)|> /

z€J(op,r3,71)
(_inf  pie,@) (410

z€J(op,m3,71)

dlog) = {1+t sw el @I+ sw e, @I}/
z€l*+(r1) z€lt(m

( inf m,(,p(:c)). (4.11)

z€l'~(op,T3)
Then we have the following estimate.
Lemma 4.3
- P, (@) = €1(0p)01,0, (%) = h(07) P2,0,(2) S 1,0, (¢)
< 903 ap( ) + C/1 (UP)(pl,ap (:L') + ci?(o-p)QDQ,ap (-77) (412)
in J(op,r3,71), (1£iZd).
forany p = 1.
Proof of Lemma 4.3. From the definition of ¢ (o) and c4(op), we have,
for 1 £4<d,
57, (%) = 1,0, (2) < ¢4(0p)P1,0,(2) + (07 P20, ()
Uiy (€) — 055 (T) < () 01,0, () + ¢(0p) P20, ()
on I'F(ri) Ul (op,7s).
Noting that (p (:v) < <p3 o (x) (cf. (4.9)), we have
Uiy (7) = 955, (%) S Ui, (3) — P55 (2)
in J(Up7r3arl)) (1 § ( g d) (413)
' AWe will prove that if 0 < e £ 1,
- (cll(ap)‘Pl,ap (@) + c2(0p)p2,0,(2)) = f(ui,a;: (z) - 90?3’,;,, (a:))
€(ti0p (2) — 035 (2)) S €1 (0p)P1,0,(2) + E2(0p) 02,0, () (4.14)
in J(op,73,71), 1S1=<d.
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The second inequality follows from (4.13). We know that this is true for
z € I'M(r1) U~ (0p,73) and p = 1. Moreover, for any p = 1, the inequality
(4.14) is true for small € > 0. For the proof of (4.12), we assume that there
is a finite supremum of € > 0 for which (4.14) is true. Denote it by €3 > 0.
If eg = 1, the proof is finished. We consider the case 0 < ¢g < 1.

From the equations for u,,, ¢1,0,, ¥2,0, and ‘Pét,a,,? we have

A(c1(0p) P10, + (o) P20, + €(P50, = Uin,))
d

+ dM’ (¢ (0p)P1,0, + h(0p)P2,0,) €Y Aijio, (95T — Ujo,)
=1

d
—d(c1(0)P1,0p + C(0p)P2,0,) + €Y (Cik — Cikop) Fr(P55,)
k=1
in J(op,r3,71), (4.15)
and

A(c1(0p) P10, + () P20y T (o, — P55,))

d
+dM’ (cll (Up)‘Pl,ap + ¢ (Up)902,ap) t+e Z Bijop (Ugop — ‘P%’,;p)
j=1
d
< —d(h(0p)P1,05 + h(0p)02,0,) + € O _(Cik = Cikop) Fie(#3,5,)
k=1

in J(op,r3,71), (4.16)

for 1 £ 1 £ d, where

Aty (@) = Zcm,, 0 g—?“ 763 5, () + (1= Ty (<)) dr
%,

From the condition (4.7), |4, (2)| £ M', |Aijo,(z)| £ M’ follow. Now
(4.14) is valid for 0 < € £ ¢p. Consequently, we have, from (4.13) and (4.14),

Bij,a,,(x>=20ik,a,,<x> 0 00y (@) + (1~ TV, (@) dr
k=1
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ll/\

olti,o, () — 935, (@)

| = c1(0p)01,0, () + c2(0p) 02,0, ()
€0lttio, (@) — 055, (@) S &

(09)%1,0,(%) + 2(0p) 2,0, () (4:17)

in J(op,73,71),

ll/\

for 1 £ 4 < d. For simplicity of notation, we define
¢, (2) = ¢1(0p) 1,0, () + 3(0p) 2,0, (%) + €(ttiygy, () — 055, (2)),
UL, (@) = ¢1(00) 01,0, (%) + ch(0)P2,0, (@) + €(05 (T) — Ui, (2)).

Then &%, o (Z), \Ilz_oa (x) are non-negative in J(op,rs,m1) for 1 <4 = d.
From the definition of €y, either @20 op OF vl o, takes 0 in J(op,73,71) \
(I'*(r1) UL~ (op, r3)) for some 1.

‘We divide the situation into 4 cases.

CaseI. There exists ¢ such that <I>§0 o, bakes zero at an interior point y of
J{op,T3,71). On the other hand, from (4.16) with (4.17) and the definition

of ¢} (op), we have

ACI)Z <0 in J(O'p,'f‘3,’l’1). (4.18)

€0,0p

Since ®e,0, () in J(op, 73,71), we apply the maximum principle and we get
a contradiction.

Case II: There exists ¢ such that \Iféo o, bakes zero at an interior point y
of J(op,73,71). Similarly as in the case I, we get a contradiction in the

argument on (4.15) and (4.17) with the maximum principle.

Case . @ , (1 =14 = d) are positive in the interior of J(oy,73,71) for
1 £ 1 £ d but some @20 ., takes zero at a boundary point y € J(op,73,71)\
(I‘+ (rl) U~ (op, r3)). Applying the Hopf maximum principle at y to the dif-
ferential inequality (4.18), we get the normal derivarive of ®¢ _ is negative.
It contradicts to the Neumann B.C. of &

€0,0p "

€0,0p

Case IV: U* 1 £ i £ d) are positive in the interior of J(op,rs,71) for
2

€0,0p
1 <4 £ d but some U2 -, takes zero at a boundary point y € J(op,73,71) \
(I‘+ (7'1) U™ (op,73)). A completely similar argument as in Case III applies

and yields a contradiction. Thus we complete the proof of Lemma 4.3. [
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From Lemma 4.3, we have

lim sup sup |ti0, (6 + s1(€), 1) — wi(€, 0")]
P> a:=(§+sn(§),n)€2‘(0'p,r3)

< |yss — 74s2| + | —(61/1602)s — 7232} - lim sup co(op)

p—00

(_T3 é S é 0)7 (419)

lim sup |u,, (z) —w(z)| = 0. (4.20)
P=®zeD

It remains to prove that a subsequence of Uoy| (o) CONVETEES (like Lemma,

3.3). However this part is same as the case of the scalar equation in §3,
because we only carry out the argument for each component of u,, and get
the conclusion of Theorem 4.1.
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