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Analysis of conforming and nonconforming quadrilateral
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Abstract. In this paper we analyze numerical dispersion relation of some conforming

and nonconforming quadrilateral finite elements. The elements employed in this analysis

are the standard Q1 conforming finite element, the DSSY nonconforming element [5] and

the P1-nonconforming quadrilateral finite element [14]. Several aspects of comparative

analyses of the above three elements for two or three dimensional problems are shown.
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1. Introduction

The Helmholtz equation −(ω2/c2)u − Δu = 0 in a domain Ω may be
either an eigenvalue problem or a uniquely solvable problem, depending on
the boundary condition on the boundary ∂Ω. Indeed, under the classical
Dirichlet or Neumann boundary condition, an integration by parts of the
L2(Ω) inner-product yields that there exists an eigensolution u associated
with the angular eigenfrequency ω such that ω2 =

∫
Ω |∇u|2dx/

∫
Ω |u/c|2dx.

However, if the boundary condition is replaced by an absorbing boundary
condition of the type i(ω/c)u + ∂u/∂ν = 0, the problem turns out to be a
uniquely solvable problem for all ω �= 0 ([4]). The latter case supports an
interesting idea to solve the time-domain wave equation in the frequency-
space formulation in massively parallel computer using a different process for
different non-zero frequency. Such a direction was introduced by Douglas-
Santos-Sheen-Bennethum in [4]; also in the same paper a first rigorous finite
element error analysis was carried out for the one-dimensional Helmholtz
problem. The L2(Ω) and H1(Ω) finite element error estimates turn out to
depend essentially the multiplication of the frequency and the mesh size.

Later, Babus̆ka and Ihlenburg [12], and their colleges, looked deeply into
this dependence and raised an important issue, what is called the “pollution
effect”. The discrete solutions using the standard Galerkin finite element
method results in inaccurate solutions if the mesh size is not sufficiently
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small compared to the size of wave number [1, 12, 11, 10, 4, 3]. Numerical
dispersion seems to be a major source for the pollution effect. Therefore,
unless the size of wave number k is sufficiently small, some kind of specific
finite element techniques, such as hp methods, need to be employed. See
also extensive surveys on numerical methods for Helmholtz problems [8, 16].

In this paper we will examine the dispersion effects in solving Helmholtz
problems by the finite element method using quadrilateral or rectangular
elements of lowest order. Specifically, the following three conforming and
nonconforming element methods will be analyzed: (1) the standard Q1

conforming element (abbreviated as the “Q1 element”); (2) the DSSY non-
conforming element introduced by Douglas et al. [5] (abbreviated as the
“DSSY NC” element, or the “DSSY” element) which is a modified rotated
Q1 element of Rannacher and Turek [15]; and (3) the P1-nonconforming
quadrilateral(hexahedron) element [14] (abbreviated as the “ P1-NC ele-
ment”). Santos et al. [20] and Zyserman et al. [19] gave detailed dispersion
analyses for solving the Helmholtz equation, and elastic and viscoelastic
equations by comparing between the Q1 conforming and the DSSY NC fi-
nite element methods. It is shown in [1, 20, 19] that the L2-error of the
DSSY NC element behaves better in reducing numerical dispersion than
that of Q1 element based on the same size of grids. However, it has been
questionable if the DSSY NC element is actually cheaper than the Q1 con-
forming element to achieve desired accuracy. One of the purposes of the our
paper is to investigate the actual costs of computation to reduce errors up
to certain tolerance instead of estimating errors based on the size of meshes.
In the numerical experiments we concentrate on the number of elements and
the degrees of freedom necessary to guarantee the L2 and broken H1 errors
which are smaller than given tolerance ε. Our results imply that the P1-NC
quadrilateral element requires the least degrees of freedom among the three
elements.

The organization of this paper is as follows. In Section 2, the dispersion
relation and model problem are stated. In Section 3 a brief review of the P1-
NC quadrilateral element [14] is also given together its weak formulation.
In Section 4, numerical dispersion relations are shown for two and three
dimensional problems when the P1-NC quadrilateral elements are employed.
In Section 5, we analyze the dispersion relation and investigate the pollution
effects by comparing the three finite elements. Finally conclusions are given
in Section 6.
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2. Dispersion relation and model problem

In the approximation of wave propagation the two most annoying
sources of numerical errors are numerical dissipation and dispersion. Nu-
merical dissipations result in usually reducing or sometimes magnifying wave
amplitudes. Numerical dispersions are related with phase changes of com-
puted wave forms and thus may result in some erroneous approximation of
the wave velocity [13, 17].

Consider the following wave equation

1
c2

utt − Δu = 0. (2.1)

whose typical plane wave solution is given in the form

u(x, t) = Aeiϕ(x, t), (2.2)

where A, k = ∇ϕ and ω = −∂ϕ/∂t denote the amplitude, the wave vector,
and the angular frequency, with the wavelength λ = 2π/ω [18]. The phase
ϕ(x, t) = ωt − k · x determines phase surfaces {(x, t) : ϕ(x, t) = constant}
for each constant. Then the equation (2.1) with the solution (2.2) reduces
to ω2/c2 − |k|2 = 0, with which the dispersion relation, phase and group
velocities are given in the form

ω = ω(k) = ±c|k|, c =
ω(k)

k
k̂, cg =

∂ω(k)
∂k

, (2.3)

where k = |k| and k̂ = 1
kk. Since the wave equation is linear, the phase

speed should not differ from the speed c of wave propagation.
Let uh(x, t) be a numerical approximate solution to (2.1). While the

normalized plane wave solution u(x, t) = ei(ωt−k·x) has the value u(xjk, nΔt)
= ei(ωnΔt−k·xjk) at the nodal point xjk = (jh, kh) at nΔt, the numerical
solution uh may have a different value with a possible amplitude change.
However, the nodal values of the numerical solution will approximate the
feature of wave structure with an approximate angular frequency and an
approximate wave vector, denoted by ωh and kh, respectively. Representing
the numerical dissipative or amplifying factor by eσh

(assuming that σh ∈
R), the numerical solution at the nodal point xjk at nΔt has the value

uh(xjk, nΔt) = e(σh+iωh)nΔt−ikh·xjk . (2.4)

Usually careful schemes are chosen so that σh ≡ 0, independent of the
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numerical wave vector kh. With such numerical methods, the numerical
dispersion relation is defined by the relation bewteen the approximate an-
gular frequency and wave vector in the form:

ωh = ωh(kh), (2.5)

with the numerical phase and group velocities given by

ch =
ωh(kh)
|kh| k̂h, ch

g =
∂ωh(kh)

∂kh
, with k̂h =

|kh|
kh

. (2.6)

Let us turn to the Helmholtz equation, −(ω2/c2)û − Δû = 0, which
circumvents the time variable and thus it does not suffer from numerical
dissipation or amplification. In this case, (2.4) is replaced by ûh(xjk) =
e−ikh·xjk , and the ωh’s in (2.5) and (2.6) should be replaced by ω. How-
ever, its numerical solutions in the high frequency range exhibit malicious
numerical errors, mainly due to numerical dispersions in the approximation
of the Helmholtz equation, which will be our subject to investigate in the
paper.

2.1. The Helmholtz model problem
Let Ω be a simply-connected bounded open polygonal (polyhedral) do-

main with an artificial boundary Γ = ∂Ω. Assume that the origin O is con-
tained in Ω. With the convenient first-order absorbing boundary condition
(2.7b) imposed on the Γ, one then has the following Helmholtz problem:

−ω2

c2
u(x, ω) − Δu(x, ω) = f(x, ω) in Ω, (2.7a)

i
ω

c
u(x, ω) +

∂u

∂ν
(x, ω) = 0 on Γ. (2.7b)

Here, and in what follows, the hats (̂) on the functions u and f will
be dropped to simplify notations. Denote by L2(Ω) and L2(Γ) the com-
plex Hilbert spaces of square integrable functions in Ω and Γ with the
inner products ( · , · ) and 〈 · , · 〉Γ, respectively; the corresponding norms
are denoted by ‖u‖0 =

[∫
Ω |u|2dx

]1/2 and |u|0,Γ =
[∫

∂Ω |u|2dσ(x)
]1/2. The

standard notations for Sobolev spaces will be used; for instance, H1(Ω) =
{v ∈ L2(Ω); |∇v| ∈ L2(Ω)}. with its seminorm and norm given by |u|1 =[∫

Ω |∇u|2dx
]1/2 and ‖u‖1 =

[
‖u‖2

0 + |u|21
]1/2, respectively.

The weak formulation for (2.7) is then given by finding u ∈ H1(Ω) such
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that

a(u, v) = F (v), ∀v ∈ H1(Ω), (2.8)

where

a(u, v) = −
(ω2

c2
u, v

)
+ (∇u, ∇v) + iω

〈
1
c
u, v

〉
Γ

; F (v) = (f, v).

The well-posedness of Problem (2.8) is well understood [4, 3] and elliptic
regularity estimates are given in [6].

3. The nonconforming finite elements

In this section we briefly review the P1-nonconforming element on quad-
rilaterals in [14].

3.1. The P1-nonconforming element on quadrilaterals
Let Q be a (convex) quadrilateral with the vertices vj and the midpoints

mj of edges, such that mj = (vj−1+vj)/2, 1 ≤ j ≤ 4, with the identification
v0 = v4 as shown in Fig. 1. Throughout the paper, all quadrilaterals are
assumed to be convex. Set P1(Q) = Span{1, x1, x2}. Then the following
holds [14]:

Proposition 3.1 Let Q ∈ R
2 be a quadrilateral. If u ∈ P1(Q), then

u(m1) + u(m3) = u(m2) + u(m4). Conversely, if uj is a given value at mj

for 1 ≤ j ≤ 4, satisfying u1 +u3 = u2 +u4, then there is a unique u ∈ P1(Q)
such that u(mj) = uj, 1 ≤ j ≤ 4.

For 1 ≤ j ≤ 4, let φ̂j ∈ P1(Q) be defined such that

φ̂j(mk) =
{

1, k = j, j + 1 (mod 4),
0, otherwise.

(3.1)

For examples, if Q is the unit square [−1, 1]2 with the midpoints m1(0, −1),
m2(1, 0), m3(0, 1) and m4(−1, 0), then φ̂1(x1, x2) = (1/2)(1+x1−x2). The
following holds [14]:

Proposition 3.2 Span{φ̂1, φ̂2, φ̂3, φ̂4} = P1(Q). Indeed, any three of
φ̂1, φ̂2, φ̂3, φ̂4 span P1(Q).

Notice that the centroid C in Fig. 1 is indeed the center of the four
vertices of equal mass [9]. Given a two-dimensional decomposition T 2

h of
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Fig. 1. The midpoints mj , 1 ≤ j ≤ 4, forms a parallelogram in the quadrilateral
with vertices vj , 1 ≤ j ≤ 4, and C denotes their centroid.

Ω ⊂ R
2 into nonoverlapping quadrilaterals, let NQ, NV , and NE denote the

numbers of quadrilaterals, vertices, and edges, respectively, in T 2
h . Then set

T 2
h = {Q1, Q2, . . . , QNQ

};
NQ⋃
j=1

Qj = Ω,

V2
h = {v1, v2, . . . , vNV

} : the set of all vertices of in T 2
h ,

E2
h = {s1, s2, . . . , sNE

} : the set of all edges in T 2
h ,

M2
h = {m1, m2, . . . , mNE

} : the set of all edge-midpoints in T 2
h .

For each vertex vj ∈ V2
h, E2

h(j) denotes the set of all edges e ∈ E2
h which

contain the vertex vj , and M2
h(j) the set of all midpoints m in E2

h(j). Set

NC2
h ={vh : vh|Q∈P1(Q) for all Q∈T 2

h , vh is continuous on M2
h}.

Let φj ∈ NC2
h be defined by

φj(m) =
{

1 if m ∈ M2
h(j),

0 if m ∈ M2
h \M2

h(j).
(3.2)

The dimension and basis functions for NC2
h for the two-dimensional

case are given as follows [14].



Analysis of conforming and nonconforming quadrilateral element methods 897

Theorem 3.3 Let φj be the function defined in (3.2) with each vertex vj ∈
V2

h, j = 1, . . . , NV . Choose any vertex vj0 ∈ V2
h. Then {φ1, φ2, . . . , φNV

} \
{φj0} forms a basis for NC2

h. Moreover, dim(NC2
h) = NE −NQ = NV − 1.

That is, the degrees of freedom for NC2
h are equal to the number of vertices

in T 2
h minus 1.

Proof. The proof is given in [14] using a dimensional argument with dual
basis. Instead, here we will give a short proof. Notice that the total degrees
of freedom are equal to the number of edges in Ωh minus the number of
restrictions that the sum of values at the opposite midpoints should be
equal in every quadrilateral, that is, NE − NQ. By Euler formula, it is
equal to NV − 1. It is an easy consequence of dimensional argument that
{φ1, φ2, . . . , φNV

} \ {φj0} forms a basis for NC2
h. �

3.2. The P1-nonconforming element on hexahedron
We turn to three dimension. Consider an arbitrary hexahedron H, and,

for j = 1, . . . , 6, let cj be the centroid of each face of H. By a centroid of
face, we will mean the centroid of the four vertices of face. For example, if
v1, v2, v3, v4 are the vertices of a face of H, then the centroid c of the face
is defined by

c =
v1 + v2 + v3 + v4

4
. (3.3)

Moreover, assume that cj and ck are opposite if j+k = 7 as shown in Fig. 2.
Then one has the following [14]:

Proposition 3.4 Let H ∈ R
3 be a hexahedron with centroids cj , j =

1, . . . , 6. If u ∈ P1(H), then

u(c1) + u(c6) = u(c2) + u(c5) = u(c3) + u(c4). (3.4)

Conversely, if uj is a given value at cj for 1 ≤ j ≤ 6, satisfying u1 + u6 =
u2 + u5 = u3 + u4, then there is a unique u ∈ P1(H) such that u(cj) =
uj , 1 ≤ j ≤ 6.

For 1 ≤ j ≤ 8, associated with the vertex vj of H let φ̂ ∈ P1(H) be
defined such that

φ̂j(ck) =

⎧⎪⎨⎪⎩
1 at the centroid of face whose vertices contain vj ,

0 at the centroid of face

whose vertices does not contain vj .
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Fig. 2. vj denote the vertices, j = 1, . . . , 8, and ck the centroids of the faces,
k = 1, . . . , 6.

Then the following holds [7]:

Proposition 3.5 Span{φ̂1, φ̂2, . . . , φ̂8} = P1(H). Indeed there exist four
among φ̂1, φ̂2, . . ., φ̂8 which span P1(H).

Given a three-dimensional decomposition T 3
h of Ω ⊂ R

3 into nonover-
lapping hexahedrons, let NH , NF , NV , and NE denote the numbers of hex-
ahedrons, faces, vertices, and edges, respectively, in T 3

h . Then set

T 3
h = {H1, H2, . . . , HNH

};
NH⋃
j=1

Hj=Ω,

H3
h = {H1, H2, . . . , HNH

} : the set of all hexahedrons H∈T 3
h ,

F3
h = {F1, F2, . . . , FNF

} : the set of all faces in T 3
h ,

V3
h = {v1, v2, . . . , vNV

} : the set of all vertices in T 3
h ,

M3
h = {m1, m2, . . . , mNF

} : the set of all centroids of faces Fj∈F3
h.

For each vertex vj ∈ V3
h, F3

h(j) denotes the set of all faces f ∈ F3
h whose

vertices contain vj , and M3
h(j) the set of all centroids m in F3

h(j). Set

NC3
h ={vh : vh|Q∈P1(Q) for all Q∈T 3

h , vh is continuous on M3
h}.

Let φj ∈ NC3
h be defined by
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φj(m) =

{
1 if m ∈ M3

h(j),

0 if m ∈ M3
h \M3

h(j).
(3.5)

Similarly to the two-dimensional case, the dimension for NC3
h is given as

follows [7]:

Theorem 3.6 Let NF and NH denote the numbers of faces and hexahe-
drons in NC3

h. Then

dim(NC3
h) = NF − 2NH . (3.6)

That is, the degrees of freedom for NC3
h are equal to the number of faces in

T 3
h minus twice that of hexahedrons.

Proof. Notice that the total degrees of freedom are equal to the number
of faces in Ωh minus the number of restrictions that the sum of values at
the opposite midpoints should be equal in every hexahedron, that is, NF −
2NH . �

4. Numerical dispersion of P1-NC finite element solutions

From now on, we denote by NCn
h the P1 NC finite element space NC2

h

or NC3
h depending on its dimension n. The nonconforming Galerkin ap-

proximation is then to find the solution uh ∈ NCn
h of the equation

ah(uh, v) = F (v), ∀v ∈ NCn
h , (4.1)

where

ah(u, v) = −
(ω2

c2
u, v

)
+

∑
Q∈T n

h

(∇u, ∇v)Q + iω
〈〈1

c
u, v

〉〉
Γ
.

Here, and in what follows, Γ = ∪jΓj will mean the disjoint union of bound-
ary edges in T 2

h or boundary faces in T 3
h of the domain Ω, and 〈〈u, v〉〉Γ =∑

j〈〈u, v〉〉Γj with 〈〈 · , · 〉〉Γj denoting the approximation to the complex in-
ner product 〈 · , · 〉Γj in L2(Γj) by the one-point quadrature at the midpoint
or centroid ξj of Γj :

〈〈u, v〉〉Γj = (uv)(ξj)|Γj |.

For dispersion analysis, we follow the idea given in [20, 19], by setting
the source term in (2.7) to zero and neglecting the boundary condition. Also



900 T. Ha, K. Lee and D. Sheen

Fig. 3. vj denotes the vertex and mjk the midpoints of the vertices vj and vk.
The global test function φG for P1 NC element is constructed to have
values 1 at m45, m25, m56, m58 and 0 at the other midpoints.

c is assumed to be constant in the dispersion analysis. The weak formulation
(4.1) is then reduced to

−ω2

c2
(uh, v) +

∑
Q∈T n

h

(∇uh, ∇v)Q = 0, ∀v ∈ NCn
h . (4.2)

4.1. The two-dimensional case
Let us restrict ourselves to a portion of the domain far away from the

artificial boundaries, say, [−h, h]2, and then re-index the variables as shown
in Fig. 3. Let uh(x, ω) =

∑9
j=1 ajφj(x) and choose a test function φ = φ5

in (4.2) to get

−ω2(h/2)2

c2

[1
3
a1 + 2a2 +

1
3
a3 + 2a4

+
20
3

a5 + 2a6 +
1
3
a7 + 2a8 +

1
3
a9

]
+

[
−2a1 − 2a3 + 8a5 − 2a7 − 2a9

]
= 0. (4.3)

Here, as an example, we designate our global basis function φ5 associated
with the vertex v5, as shown in Fig. 3, as the piecewise-linear polynomial:
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φ5 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φRB in Ω1,

φLB in Ω2,

φLT in Ω3,

φRT in Ω4,

(4.4)

where φRB is the linear polynomial in Ω1 and have the value of which is 1 at
m25, m56 and 0 at m23, m36. The function values of φ5 in the other elements
are similarly defined. Consider the plane wave solution in the direction of
propagation k = (k1, k2) of (2.7a) with f = 0 of the form

u(x1, x2, ω) = e−i(k1x1+k2x2), (4.5)

with the dispersion relation k2
1 + k2

2 = ω2/c2. To derive a numerical dis-
persion relation, we attempt to replace the coefficients ai, i = 1, . . . , 9, by
the nodal values of the numerical solution uh(xjk, ω) = e−i(kh·xj), xj =
vj , j = 1, . . . , 9, with the numerical wave vector kh = (kh

1 , kh
2 ). Due to

Proposition 3.1 and the definition (3.2) of basis functions, the coefficients
ak’s should be determined by averaging the values of plane wave solutions
at the two vertices which share an edge-midpoint.

For example, since the value at m12 of the numerical solution is deter-
mined by the values at v1 and v2, we also impose that the value at this
midpoint be determined by the plane wave solutions at the vertices v1 and
v2. Therefore, using

1
2
[
ei(kh

1 +kh
2 )h + eikh

1 h
]
=

1
2
eikh

1 h
(
1 + cos(kh

2h) + i sin(kh
2h)

)
= ei(kh

1 +kh
2 /2)h cos

(kh
2h

2

)
,

in order to reduce the numerical dispersion we have the requirement:

a1 + a2 = ei(kh
1 +kh

2 /2)h cos
(kh

2h

2

)
. (4.6)

The other midpoint values at m′
jks give similar relations, resulting, together

with (4.6), in the following linear system for aj , j = 1, . . . , 9:

a1 + a2 = ei(kh
1 +kh

2 /2)h cos
(kh

2h

2

)
, a4 + a5 = ei(kh

2 /2)h cos
(kh

2h

2

)
,

a2 + a5 = ei(kh
1 /2)h cos

(kh
1h

2

)
, a1 + a4 = ei(kh

1 /2+kh
2 )h cos

(kh
1h

2

)
,
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a2 + a3 = ei(kh
1−kh

2 /2)h cos
(kh

2h

2

)
,

a5 + a6 = ei(−kh
2 /2)h cos

(kh
2h

2

)
, (4.7)

a3 + a6 = ei(kh
1 /2−kh

2 )h cos
(kh

1h

2

)
,

a4 + a7 = ei(−kh
1 /2+kh

2 )h cos
(kh

1h

2

)
,

a5 + a8 = ei(−kh
1 /2)h cos

(kh
1h

2

)
,

a6 + a9 = ei(−kh
1 /2−kh

2 )h cos
(kh

1h

2

)
,

a7 + a8 = ei(−kh
1 +kh

2 /2)h cos
(kh

2h

2

)
,

a8 + a9 = ei(−kh
1−kh

2 /2)h cos
(kh

2h

2

)
.

One can verify that the above linear system (4.7) is consistent of rank 8:
for instance, the first four equations in (4.7) are consistent and rank one
deficient, and hence the fourth depends on the first three equations, and so
on. Thus aj , j = 2, . . . , 9, can be written in terms of a1 and h, k1, k2. A
simple computation replacing the values of aj , j = 2, . . . , 9 in (4.3) leads
to the numerical dispersion relation:

ω =
2
√

6c

h

√
1 − cos(kh

1h) cos(kh
2h)

5 + 3(cos(kh
1h) + cos(kh

2h)) + cos(kh
1h) cos(kh

2h)
. (4.8)

We summarize the above result as in the following theorem:

Theorem 4.1 The dispersion relation for the P1 nonconforming quadri-
lateral element method for the Helmholtz equation (2.7a) is given by (4.8).

Remark 4.1 If the Q1 conforming finite element is adopted, one has the
following dispersion relation:

ω =
√

12
c

h

×
√

4− cos(kh
1h)− cos(kh

2h)− cos((kh
1 + kh

2 )h)− cos((kh
1 − kh

2 )h)
4(cos(kh

1h) + cos(kh
2h)) + cos((kh

1 + kh
2 )h) + cos((kh

1 − kh
2 )h) + 8

.

(4.9)
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Instead with the DSSY NC element employed, Zyserman, Gauzellino, and
Santos obtained the following dispersion relation: [20]

ω = 2
√

6
c

h

√
1 − cos(kh

1h/2) cos(kh
2h/2)

2 + cos(kh
1h/2) cos(kh

2h/2)
. (4.10)

4.2. The three-dimensional case
In the three-dimensional case, we analyze the numerical dispersion re-

lation with the numerical solution uh(x1, x2, x3, ω) = e−i(kh
1 x1+kh

2 x2+kh
3 x3),

with the numerical wave number vector kh = (kh
1 , kh

2 , kh
3 ). Analogous to

the two-dimensional case, the dispersion relation is derived as stated in the
following theorem.

Theorem 4.2 The dispersion relation for the P1 nonconforming hexahe-
dral element method for the Helmholtz equation (2.7a) is as follows:

ω =
√

6
c

h

√
3 + A − B − 3C

3 + 2A + B
, (4.11)

where

A = cos(kh
1h) + cos(kh

2h) + cos(kh
3h),

B = cos(kh
1h) cos(kh

2h) + cos(kh
2h) cos(kh

3h)

+ cos(kh
3h) cos(kh

1h), (4.12)

C = cos(kh
1h) cos(kh

2h) cos(kh
3h).

Proof. As in the two dimensional case, we restrict the computational do-
main to [−h, h]3, which is then divided into eight congruent subcubes.

Introduce the following notations, ajkl, j, k, l = 0, ±1, ηjkl, j, k, l =
0, ±1, ±1/2, Rjkl, j, k, l = ±. To avoid possible confusion between arith-
metics and indices, we will use the convention that j′ means −j. For
examples, a101′ means the value at the vertex (h, 0, −h), η11/2′1/2 means
the value at the point (h, −h/2, h/2), and R+−+ represents the subcube
{(x1, x2, x3) : 0 < x1 < h, −h < x2 < 0, 0 < x3 < 0}, and so on. Let
uh(x1, x2, x3, ω) =

∑
j, k, l=0,±1 ajklφj(x1, x2, x3) and assume that uh(xj , ω)

= e−ikh·xj for all 27 vertices of the eight subcubes, where aj ’s are deter-
mined by the function values at the centroid of 36 faces. We choose a test
function φ = φ000 in (4.2) to get
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(a) (b)

Fig. 4. (a) aijk denotes the value at the vertex (ih, jk, kh), i, j, k = 0, −1, 1.
ηijk is the value at the centroid of the rectangular containing
(ih, jk, kh), which i, j, k are one of 0, 1, 1′, 1/2 and (1/2)′. Here (1/2)′

means −1/2. (b) the hexahedral element divided with the eight regions,
which are R+++, R++−, R+−+, R+−−, R−++, R−+−, R−−+ and R−−−.

−ω2(h/2)3

c2

[8
3
a01′1′ +

8
3
a1′01′ +

32
3

a001′ +
8
3
a101′ +

8
3
a011′

+
8
3
a1′1′0 +

32
3

a01′0 +
8
3
a11′0 +

32
3

a1′00 + 32a000

+
32
3

a100 +
8
3
a1′10 +

32
3

a010 +
8
3
a110 +

8
3
a01′1

+
8
3
a1′01 +

32
3

a001 +
8
3
a101 +

8
3
a011

]
+

h

2
[−6a1′1′1′ − 4a01′1′ − 6a11′1′ − 4a1′01′ + 8a001′ − 4a101′

− 6a1′11′ − 4a011′ − 6a111′ + 8a01′0 + 8a1′00 + 48a000

+ 8a100 + 8a010 − 6a1′1′1 − 4a01′1 − 6a11′1 − 4a1′01

+ 8a001 − 4a101 − 6a1′11 − 4a011 − 6a111] = 0. (4.13)

Consider the approximation at the centroid (h, h/2, h/2). The value at
this centroid is determined by the values of plane wave solution at the
four vertices of the face containing the centroid. In the region R+++ :=
{(x1, x2, x3) : 0 ≤ x1, x2, x3 ≤ h}, the 6 centroids determine 6 equations.
Utilizing the following type of trigonometry,
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1
4
[
e−ikh

1 h + e−i(kh
1 +kh

2 )h + e−i(kh
1 +kh

3 )h + e−i(kh
1 +kh

2 +kh
3 )h

]
(4.14)

= e−ikh
1 h 1 + e−ikh

2 h + e−ikh
3 h + e−i(kh

2 +kh
3 )h

4

= e−i(kh
1 +kh

2 /2+kh
3 /2)h cos

(kh
2h

2

)
cos

(kh
3h

2

)
,

one can write

a100 + a110 + a101 + a111

= e−i(kh
1 +kh

2 /2+kh
3 /2)h cos

(kh
2h

2

)
cos

(kh
3h

2

)
:= η1 1

2
1
2
, (4.15a)

a010 + a110 + a011 + a111

= e−i(kh
1 /2+kh

2 +kh
3 /2)h cos

(kh
1h

2

)
cos

(kh
3h

2

)
:= η 1

2
1 1

2
, (4.15b)

a001 + a101 + a011 + a111

= e−i(kh
1 /2+kh

2 /2+kh
3 )h cos

(kh
1h

2

)
cos

(kh
2h

2

)
:= η 1

2
1
2
1, (4.15c)

a000 + a100 + a010 + a110

= e−i(kh
1 /2+kh

2 /2)h cos
(kh

1h

2

)
cos

(kh
2h

2

)
:= η 1

2
1
2
0, (4.15d)

a000 + a010 + a001 + a011

= e−i(kh
2 /2+kh

3 /2)h cos
(kh

2h

2

)
cos

(kh
3h

2

)
:= η0, 1

2
, 1
2
, (4.15e)

a000 + a100 + a001 + a101

= e−i(kh
1 /2+kh

3 /2)h cos
(kh

1h

2

)
cos

(kh
3h

2

)
:= η 1

2
0 1

2
. (4.15f)

Notice that the six equations in (4.15) are of rank 4, but consistent. Using
only the four linearly independent equations (4.15f), (4.15e), (4.15d) and
(4.15c), the following four values at the vertices can be expressed in terms
of the other four vertex values and the values at the centroids:

a101 = η 1
2
0 1

2
− (a000 + a100 + a001), (4.16a)

a011 = η0 1
2

1
2
− (a000 + a010 + a001), (4.16b)

a110 = η 1
2

1
2
0 − (a000 + a100 + a010), (4.16c)

a111 = η 1
2

1
2
1 − (a001 + a101 + a011)

= η 1
2

1
2
1 − (a001 + η 1

2
0 1

2
− (a000 + a100 + a001)

+ η0 1
2

1
2
− (a000 + a010 + a001))
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= η 1
2

1
2
1 − η 1

2
0 1

2
− η0 1

2
1
2

+ (2a000 + a100 + a010 + a001). (4.16d)

Now, we consider the other three subcubes each of which shares a centroid
of R+++, say, R−++, R+−+, R++− (Fig. 4). Each subcube has additional
5 centroids. Similarly to the above, the following equations are obtained on
the region R−++:

a1′00 + a1′10 + a1′01 + a1′11

= e−i(−kh
1 +kh

2 /2+kh
3 /2)h cos

(kh
2h

2

)
cos

(kh
3h

2

)
:= η1′ 1

2
1
2
, (4.17a)

a010 + a1′10 + a0,1,1 + a1′11

= e−i(−kh
1 /2+kh

2 +kh
3 /2)h cos

(kh
1h

2

)
cos

(kh
3h

2

)
:= η 1

2

′
1 1

2
, (4.17b)

a001 + a1′01 + a011 + a1′11

= e−i(−kh
1 /2+kh

2 2+kh
3 )h cos

(kh
1h

2

)
cos

(kh
2h

2

)
:= η 1

2

′ 1
2
1
, (4.17c)

a000 + a1′00 + a010 + a1′10

= e−i(−kh
1 /2+kh

2 /2)h cos
(kh

1h

2

)
cos

(kh
2h

2

)
:= η 1

2

′ 1
2
0
, (4.17d)

a000 + a1′00 + a001 + a1′01

= e−i(−kh
1 /2+kh

3 /2)h cos
(kh

1h

2

)
cos

(kh
3h

2

)
:= η 1

2

′
0 1

2
. (4.17e)

The argument from (4.15) to (4.16) will apply to (4.17), and in this case, we
have additional three (instead of four) independent relations which provide
the following relations:

a1′01 = η 1
2

′
0 1

2
− (a000 + a1′00 + a001), (4.18a)

a1′10 = η 1
2

′ 1
2
0
− (a000 + a1′00 + a010), (4.18b)

a1′11 = η 1
2

′ 1
2
1
− (a001 + a1′01 + a011)

= η 1
2

′ 1
2
1
−

(
a001 + η 1

2

′
0 1

2
− (a000 + a1′00 + a001)

+ η0 1
2

1
2
− (a000 + a010 + a001)

)
= η 1

2

′ 1
2
1
− η 1

2

′
0 1

2
− η0 1

2
1
2

+ (2a000 + a1′00 + a010 + a001). (4.18c)

notice that there are some patterns. Similarly, on each R+−+ and R++−, five
equations of type (4.17) and three equations of type (4.18) can be derived.

Next, we consider the regions R−−+, R+−− and R−+−. Each region
has four equations which reduce to two relations between vertex-wise values
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and values at centroids:

a1′00 + a1′1′0 + a1′01 + a1′1′1

= e−i(−kh
1−kh

2 /2+kh
3 /2)h cos

(kh
2h

2

)
cos

(kh
3h

2

)
:= η

1′ 1
2

′ 1
2
,

a01′0 + a1′1′0 + a01′1 + a1′1′1

= e−i(−kh
1 /2−kh

2 +kh
3 /2)h cos

(kh
1h

2

)
cos

(kh
3h

2

)
:= η 1

2

′
1′ 1

2
,

a001 + a1′01 + a01′1 + a1′1′1

= e−i(−kh
1 /2−kh

2 /2+kh
3 )h cos

(kh
1h

2

)
cos

(kh
2h

2

)
:= η 1

2

′ 1
2

′
1
,

a000 + a1′00 + a01′0 + a1′1′0

= e−i(−kh
1 /2−kh

2 /2)h cos
(kh

1h

2

)
cos

(kh
2h

2

)
:= η 1

2

′ 1
2

′
0
.

and

a1′1′0 = η 1
2

′ 1
2

′
0
− (a000 + a1′00 + a01′0),

a1′1′1 = η 1
2

′ 1
2

′
1
− (a001 + a1′01 + a01′1),

= η 1
2

′ 1
2

′
1
−

(
a001 + η 1

2

′
0 1

2
− (a000 + a1′00 + a001)

+ η
0 1

2

′ 1
2
− (a000 + a01′0 + a001)

)
= η 1

2

′ 1
2

′
1
− η 1

2

′
0 1

2
− η

0 1
2

′ 1
2

+ (2a000 + a1′00 + a01′0 + a001).

Finally, we consider the region R−−−. Similarly, the following three equa-
tions and one relation can be obtained:

a1′00 + a1′1′0 + a1′01′ + a1′1′1′

= e−i(−kh
1−kh

2 /2−kh
3 /2)h cos

(kh
2h

2

)
cos

(kh
3h

2

)
:= η

1′ 1
2

′ 1
2

′ ,

a01′0 + a1′1′0 + a01′1′ + a1′1′1′

= e−i(−kh
1 /2−kh

2−kh
3 /2)h cos

(kh
1h

2

)
cos

(kh
3h

2

)
:= η 1

2

′
1′ 1

2

′ ,

a001′ + a1′01′ + a01′1′ + a1′1′1′

= e−i(−kh
1 /2−kh

2 /2−kh
3 )h cos

(kh
1h

2

)
cos

(kh
2h

2

)
:= η 1

2

′ 1
2

′
1′ ,

and

a1′1′1′ = η 1
2

′ 1
2

′
1′ − (a001′ + a1′01′ + a01′1′)
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= η 1
2

′ 1
2

′
1′ −

(
a001′ + η 1

2

′
0 1

2

′ − (a000 + a1′00 + a001′)

+ η
0 1

2

′ 1
2

′ − (a000 + a01′0 + a001′)
)

= η 1
2

′ 1
2

′
1
− η 1

2

′
0 1

2

′ − η
0 1

2

′ 1
2

′ + (2a000 + a1′00 + a01′0 + a001′).

Up to now, we have total 36 equations and 20 relations. Notice that the
degrees of freedom are indeed 20 as stated in Theorem 3.6. Set

G1 = a100 + a010 + a001 + a1′00 + a01′0 + a001′ ,

G2 = a110 + a011 + a101 + a1′10 + a1′01 + a11′0

+ a01′1 + a101′ + a011′ + a1′1′0 + a01′1′ + a1′01′ ,

G3 = a111 + a1′11 + a11′1 + a111′ + a1′1′1 + a11′1′ + a1′11′ + a1′1′1′ .

Then by using the 20 relations, one can rewrite G2 and G3 as follows:

G2 = η0 1
2

1
2

+ η
0 1

2
1
2

′ + η
0 1

2

′ 1
2

+ η
0 1

2

′ 1
2

′ + η 1
2
0 1

2
+ η 1

2
0 1

2

′ + η 1
2

′
0 1

2

+η 1
2

′
0 1

2

′ + η 1
2

1
2
0 + η 1

2
1
2

′
0
+ η 1

2

′ 1
2
0
+ η 1

2

′ 1
2

′
0
− 12a000 − 4G1,

G3 = η 1
2

1
2
1 + η 1

2
1
2
1′ + η 1

2
1
2

′
1
+ η 1

2

′ 1
2
1
+ η 1

2
1
2

′
1′ + η 1

2

′ 1
2
1′ + η 1

2

′ 1
2

′
1

+η 1
2

′ 1
2

′
1′ − 2(η0 1

2
1
2

+ η
0 1

2
1
2

′ + η
0 1

2

′ 1
2

+ η
0 1

2

′ 1
2

′ + η 1
2
0 1

2
+ η 1

2

′
0 1

2

+η 1
2
0 1

2

′ + η 1
2

′
0 1

2

′) + 16a000 + 4G1.

Similarly to the process of reducing the equation (4.3) in the two-dimension-
al case, one can deduce from (4.13) that

ω =
√

3
c

h

√
24a000 + 4G1 − 2G2 − 3G3

12a000 + 4G1 + G2
. (4.19)

Observe that in the expression (4.19) the numerator and denominator in
the square root are independent of a000 and G1, but dependent only on η’s:
more precisely,

24a000 + 4G1 − 2G2 − 3G3 (4.20a)

= 4
(
η0 1

2
1
2

+ η
0 1

2
1
2

′ + η
0 1

2

′ 1
2

+ η
0 1

2

′ 1
2

′ + η 1
2
0 1

2
+ η 1

2

′
0 1

2

+ η 1
2
0 1

2

′ + η 1
2

′
0 1

2

′
)
− 3

(
η 1

2
1
2
1 + η 1

2
1
2
1′ + η 1

2

′ 1
2

′
1
+ η 1

2

′ 1
2

′
1′

+ η 1
2

′ 1
2
1
+ η 1

2

′ 1
2
1′ + η 1

2
1
2

′
1
+ η 1

2
1
2

′
1′

)
− 2

(
η 1

2
1
2
0 + η 1

2

′ 1
2
0
+ η 1

2
1
2

′
0
+ η 1

2

′ 1
2

′
0

)
,

12a000 + 4G1 + G2 (4.20b)
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= η0 1
2

1
2

+ η
0 1

2
1
2

′ + η
0 1

2

′ 1
2

+ η
0 1

2

′ 1
2

′ + η 1
2
0 1

2
+ η 1

2

′
0 1

2

+ η 1
2
0 1

2

′ + η 1
2

′
0 1

2

′ + η 1
2

1
2
0 + η 1

2

′ 1
2
0
+ η 1

2
1
2

′
0
+ η 1

2

′ 1
2

′
0
.

Using the elementary formulae from trigonometry

cos2
(θ

2

)
=

1 + cos(2θ)
2

, exp(−iθ) + exp(iθ) = 2 cos(θ),

one sees that

η0 1
2

1
2

+ η
0 1

2
1
2

′ = 2 cos
(kh

2h

2

)
cos2

(kh
3h

2

)
e−i(kh

2 /2)h,

η
0 1

2

′ 1
2

+ η
0 1

2

′ 1
2

′ = 2 cos
(kh

2h

2

)
cos2

(kh
3h

2

)
ei(kh

2 /2)h,

η 1
2
0 1

2
+ η 1

2

′
0 1

2
= 2 cos2

(kh
1h

2

)
cos

(kh
3h

2

)
e−i(kh

3 /2)h,

η 1
2
0 1

2

′ + η 1
2

′
0 1

2

′ = 2 cos2
(kh

1h

2

)
cos

(kh
3h

2

)
ei(kh

3 /2h),

and therefore,

η0 1
2

1
2

+ η
0 1

2
1
2

′ + η
0 1

2

′ 1
2

+ η
0 1

2

′ 1
2

′ + η 1
2
0 1

2
+ η 1

2

′
0 1

2
+ η 1

2
0 1

2

′ + η 1
2

′
0 1

2

′

= 4 cos2
(kh

2h

2

)
cos2

(kh
3h

2

)
+ 4 cos2

(kh
1h

2

)
cos2

(kh
3h

2

)
= (1 + cos(kh

2h))(1 + cos(kh
3h))

+ (1 + cos(kh
1h))(1 + cos(kh

3h)). (4.21)

Similarly,

η 1
2

1
2
1 + η 1

2
1
2
1′ = 2 cos

(kh
1h

2

)
cos

(kh
2h

2

)
e−i(kh

1 /2+kh
2 /2)h cos(kh

3h),

η 1
2

′ 1
2
1
+ η 1

2

′ 1
2
1′ = 2 cos

(kh
1h

2

)
cos

(kh
2h

2

)
e−i(−kh

1 /2+kh
2 /2)h cos(kh

3h),

η 1
2

′ 1
2

′
1
+ η 1

2

′ 1
2

′
1′ = 2 cos

(kh
1h

2

)
cos

(kh
2h

2

)
e−i(−kh

1 /2−kh
2 /2)h cos(kh

3h),

η 1
2

1
2

′
1
+ η 1

2
1
2

′
1′ = 2 cos

(kh
1h

2

)
cos

(kh
2h

2

)
e−i(kh

1 /2−kh
2 /2)h cos(kh

3h),

and hence

η 1
2

1
2
1 + η 1

2
1
2
1′ + η 1

2

′ 1
2
1
+ η 1

2

′ 1
2
1′
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= 4 cos2
(kh

1h

2

)
cos

(kh
2h

2

)
e−i(kh

2 /2)h cos(kh
3h),

η 1
2

′ 1
2

′
1
+ η 1

2

′ 1
2

′
1′ + η 1

2
1
2

′
1
+ η 1

2
1
2

′
1′ ,

= 4 cos2
(kh

1h

2

)
cos

(kh
2h

2

)
ei(kh

2 /2)h cos(kh
3h),

which implies that

η 1
2

1
2
1 + η 1

2
1
2
1′ + η 1

2

′ 1
2

′
1
+ η 1

2

′ 1
2

′
1′ + η 1

2

′ 1
2
1
+ η 1

2

′ 1
2
1′ + η 1

2
1
2

′
1
+ η 1

2
1
2

′
1′

= 8 cos2
(kh

1h

2

)
cos2

(kh
2h

2

)
cos(kh

3h)

= 2(1 + cos(kh
1h))(1 + cos(kh

2h) cos(kh
3h). (4.22)

Also, since

η 1
2

1
2
0 + η 1

2

′ 1
2
0
= 2 cos2

(kh
1h

2

)
cos

(kh
2h

2

)
e−i(kh

2 /2)h,

η 1
2

1
2

′
0
+ η 1

2

′ 1
2

′
0
= 2 cos2

(kh
1h

2

)
cos

(kh
2h

2

)
ei(kh

2 /2)h,

one has

η 1
2

1
2
0 + η 1

2

′ 1
2
0
+ η 1

2
1
2

′
0
+ η 1

2

′ 1
2

′
0

= 4 cos2
(kh

1h

2

)
cos2

(kh
2h

2

)
= (1 + cos(kh

1h))(1 + cos(kh
2h)). (4.23)

Thus, combining (4.20a) with (4.21)-(4.23). one arrives at

24a000 + 4G1 − 2G2 − 3G3

= 4
(
(1 + cos(kh

2h))(1 + cos(kh
3h)) + (1 + cos(kh

1h))(1 + cos(kh
3h))

)
− 6(1 + cos(kh

1h))

× (1 + cos(kh
2h) cos(kh

3h) − 2(1 + cos(kh
1h))(1 + cos(kh

2h)))

= 6 + 2A − 2B − 6C. (4.24)

Also, a combination of (4.20b) with (4.21) and (4.23) leads to

12a000 + 4G1 + G2 = (1 + cos(kh
2h))(1 + cos(kh

3h))

+ (1 + cos(kh
1h))(1 + cos(kh

3h)) + (1 + cos(kh
1h))(1 + cos(kh

2h))

= 3 + 2A + B. (4.25)
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Finally, the equation (4.11) is a consequence of the equation (4.19) by ap-
plying the equations (4.24) and (4.25). �

Remark 4.2 If the three-dimensional Q1 conforming finite element is
adopted, one has the following dispersion relation:

ω =
√

18
c

h

√
4 − B − C

8 + 4A + 2B + C
, (4.26)

where the coefficients A, B, C are given by (4.12). If the three-dimensional
DSSY NC element is used, Zyserman and Gauzellino show the following
dispersion relation: [19]

ω = 2
√

3
c

h

√
β2

1γ2γ3 + β2
2γ1γ3 + β2

3γ1γ2

(γ1γ2 + γ2γ3 + γ3γ1)
, (4.27)

where

γ1 = cos
(kh

1h

2

)
, γ2 = cos

(kh
2h

2

)
, γ3 = cos

(kh
3h

2

)
,

β1 = sin
(kh

1h

2

)
, β2 = sin

(kh
2h

2

)
, β3 = sin

(kh
3h

2

)
.

5. Analysis of the numerical dispersion

Let λ be the wavelength and G the number of grid points per wavelength
such that G = λ/h. The dimensionless phase and group velocities, q and
Q, are given by

q =
1
c

ω

|kh| , Q =
1
c
∇ω · 1

|kh|k
h. (5.1)

Using the dispersion relations in Section 4, the phase and group velocities
can be calculated depending on the elements adopted.

5.1. Dispersion curves according to the quadrilateral and hexa-
hedral finite elements

In the two-dimensional case, we set kh = (kh
1 , kh

2 ) = kh(cos θ, sin θ),
here kh =

∣∣kh
∣∣ is the numerical wave number 2π/λ and θ represents the

direction of plane wave propagation, measured from the axis x2. Fig. 5
shows the relation between the phase velocity q and the reciprocal of G

with the propagation directions θ = 0, π/8, π/4. From Fig. 5, we observe
that among the three simplest finite elements the DSSY NC element requires
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Fig. 5. Phase and group velocities for the two-dimensional problem. H in x-axis
means the reciprocal of the number of grid points, and the values on
y-axis are the phase and group velocities according to the propagation
direction θ = 0, π/8, π/4.

wave direction(θ) Q1 element P1 NC element DSSY NC element
0 22.2 22.2 11.1

π/8 19.3 15.7 7.6
π/4 15.7 4.5 4.5

Table 1. The grid points G per wavelength needed the error within 1% in the
two dimensional case.

the least number of grid points per wavelength to achieve certain accuracy.
The behavior of dispersion relation of P1 NC element is identical to that
of Q1 element for θ = 0 (see Fig. 5(a)), and that of DSSY NC element for
θ = π/4 (see Fig. 5(c)). We also compute the number of grid points per
wavelength needed in order to keep the error in group velocity within 1%.
Taking into account of the grid points G per wavelength with group velocity,
as shown in Table 1, one sees that the grid points G per wavelength of Q1-
and P1 NC elements are required nearly twice to three times those of DSSY
NC element depending on the wave propagation direction.

In the three-dimensional case, we set
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Fig. 6. Phase and group velocities for the three-dimensional problem. H in
x-axis means the reciprocal of the number of grid points, and the values
on y-axis are the phase and group velocities according to the
propagation direction θ = 0, π/6, π/4.

kh = (kh
1 , kh

2 , kh
3 ) = kh(cos ϕ cos θ, cos ϕ sin θ, sinϕ),

where θ represents the angle measured from the positive x1-axis to the
vector (k1, k2, 0) and ϕ the angle measured from the vector (k1, k2, 0) to
the vector kh. Fig. 6 shows the relation of phase velocity q and the number
of grid points G with the propagation directions θ = ϕ = 0, π/6, and π/4.
From Fig. 6, we observe that among the three simplest finite elements the
P1 NC element requires the least number of grid points per wavelength to
achieve the accuracy we want at several wave propagation directions. We
remark that this is different from the case of two dimension. Table 2 shows
the grid points G per wavelength to have the errors in group velocities
within 1%. We compute G with the direction θ = ϕ = 0, π/6, and π/4.
In contrast to the two dimensional case, we realize that the use of P1 NC
element requires less number of grids per wavelength than the other two
elements except for the case θ = ϕ = 0.
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wave direction(θ = ϕ) Q1 element P1 NC element DSSY NC element

0 22.2 22.2 4.6
π/6 14.3 9.2 12.1
π/4 13.6 11.1 12.4

Table 2. The grid points G per wavelength to have the error within 1% in the
three-dimensional case.

5.2. Comparison of relative errors according the degrees of free-
dom

To investigate the behavior of wave number, we choose the computa-
tional domain to be Ω = [0, 1]2 or [0, 1]3 depending on its dimension and the
source function f to be zero in (2.7) by taking a non-homogeneous boundary
condition [1, 20]. The following relative error norms are then used:

E0 :=
||u − uh||0,h

||u||0,h
, E1 :=

|u − uh|1,h

|u|1,h
,

where

||u||0,h =
(∑

j

||u||20,Ωj

)1/2
, |u|1,h =

(∑
j

|u|21,Ωj

)1/2
.

Given tolerance ε, let DOF(ε) denote the least degrees of freedom with
which the error is less than or equal to the desired tolerance in the numer-
ical experiments. For standard elliptic problem, the logarithm of DOF(ε)
increases with constant speed as ε decreases regardless of using conforming
or nonconforming elements. For Helmholtz type of problems this is not the
case any more. Due to the pollution effect, i.e., the non-robust behavior
with respect to the wave number, the logarithm of DOF(ε) does not grow
in constant speed any more and it may tend to infinity although ε is quite
small [1, 3, 4, 11].

We restrict ourselves to the case that the mesh size h satisfy hk ≤ π/4 so
that the grid points per wave length are at least 8. To investigate comparing
the errors with respect to the degrees of freedom, we fix the wave number
k and vary the mesh size h. Due to the result of Cummings and Feng [2]
on the elliptic regularity estimate for the Helmholtz equation in terms of
k, one can easily modify the result of [3] on the L2(Ω)-error estimate such
that there exists a positive constants K0 such that
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Fig. 7. E0 and E1 according the degrees of freedom for wave number k for the
two-dimensional problem
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Fig. 8. E0 and E1 according the degrees of freedom for wave number k for the
three-dimensional problem

‖u − uh‖0 ≤ K0(1 + k)h2‖f‖ for large k. (5.2)

(5.2) implies that as the frequency becomes larger, the error grows at most
linearly in k.

Fig. 7 shows the log-log plots of the E0 and E1 norms for k = 65 with
the propagation direction for our two-dimensional problem. For the three-
dimensional problem, Fig. 8 shows the log-log plots of E0 and E1 for k =
65.
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Since E0 ≤ C1(k, f)h2 and E1 ≤ C2(k, f)h, we have

log E0 ≤ log C1 + 2 log h, log E1 ≤ log C2 + log h, (5.3)

where the constants C1 and C2 depend not on the mesh size h but on
the frequency ω, the source function, and the finite elements. If the step
size h is sufficiently small, the log-log plots for the relative errors show the
slopes 2 and 1. We observe that regardless of its dimension, the error E0

using P1 NC element is smallest among those using the three elements.
However, concerning the error E1, the Q1 conforming element shows the
best performance when the mesh size is sufficiently small.

6. Conclusion

In this paper, we investigated in several features of using the P1 NC
element in solving two or three dimensional Helmholtz problems. Numerical
dispersion analysis was carried out. Since the P1 NC element is linear,
the behavior is very similar to that of Q1 conforming element. On the
other hand, since the P1 NC element is nonconforming, it reflects a similar
property as the DSSY NC finite element. A primary benefit for using the
P1 NC element is of course that it requires less DOF(ε) than the other Q1

conforming and DSSY NC elements within 1 % dispersion error in three-
dimensional space. In case the wave number k increases under the same
number of elements, for two-dimensional problems, the P1 NC element is
more sensitive to the wave number than the DSSY NC element. However,
for three-dimensional problems, the P1 NC element is less sensitive to the
wave number than the other two Q1 conforming and DSSY NC elements.
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