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Abstract. We investigate several stabilities and a genericity of function germs with

respect to the reticular t-P-K-equivalence.
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1. Introduction

In [3], S. Izumiya introduced the equivalence relation ‘t-P-K-equiv-
alence’ of function germs in order to classify ‘generic Legendrian unfoldings’.
The classification list is given in [12] by V. M. Zakalyukin who classified
quasi-homogeneous function germs.

In this paper we introduce a more general equivalence relation ‘reticular
t-P-K-equivalence’ of function germs in M(r; k + n + m) and give a generic
classification in the case r = 0, n ≤ 5, m ≤ 1 and r = 1, n ≤ 3, m ≤ 1
respectively. Our one is for not only quasi-homogeneous function germs but
also all smooth function germs. Our work in this paper will play an impor-
tant role in a generic classification of bifurcations of wave fronts generated
by a hypersurface germ with a boundary ([8], [9]).

Let Hr = {(x1, . . . , xr) ∈ Rr|x1 ≥ 0, . . . , xr ≥ 0} be an r-corner. We
consider a equivalence relation of the set E(r; k+n+m) of function germs on
(Hr×Rk+n+m, 0). Function germs F, G ∈ E(r; k+n+m) are called reticular
t-P-K-equivalent if there exist a diffeomorphism germ Φ on (Hr×Rk+n+m, 0)
and a unit α ∈ E(r; k + n + m) such that

(1) Φ can be written in the form:

Φ(x, y, u, t) =
(
x1φ

1
1(x, y, u, t), . . . , xrφ

r
1(x, y, u, t),

φ2(x, y, u, t), φ3(u, t), φ4(t)
)
,
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(2) G(x, y, u, t) = α(x, y, u, t) · F ◦ Φ(x, y, u, t) for all (x, y, u, t) ∈ (Hr ×
Rk+n+m, 0).

We investigate stabilities and a genericity of function germs under this
equivalence relation. The main result is the following (Theorem 4.7):

Let r = 0, n ≤ 5 or r = 1, n ≤ 3 and U be a neighborhood of 0 in
Hr × Rk+n+1. Then there exists a residual set O ⊂ C∞(U,R) with C∞-
topology such that for any F̃ ∈ O and (0, y0, u0, t0) ∈ U , the function germ
F (x, y, u, t) ∈ M(r; k +n+1) given by F (x, y, u, t) = F̃ (x, y + y0, u+u0, t+
t0) − F̃ (0, y0, u0, t0) is reticular t-P-K-stable unfolding of F |t=0 and stably
reticular t-P-K-equivalent to one of the types:

In the case r = 0, n ≤ 5: 0Al(0 ≤ l ≤ 5), 0D±
4 , 0D5,

1Al(1 ≤ l ≤ 6), 1D±
4 ,

1D5,
1D±

6 , and 1E6.
In the case r = 1, n ≤ 3: 0A1,

0A2,
0A3,

0B1,
0B2,

0B3,
0C±3 , 1A2,

1A3,
1A4,

1D±
4 , 1B1,

1B2,
1B3,

1B4,
1C±3 , 1C4, and 1F4.

This paper consists of three sections. In Section 2 we define notations
and review stabilities of unfoldings under the reticular P-K-equivalence rela-
tion. In Section 3 we investigate stabilities of unfoldings under the reticular
t-P-K-equivalence relation. In Section 4 we give a generic classification of
function germs under the equivalence relation.

2. Preliminaries

We denote by E(r; k1, r; k2) the set of all germs at 0 in Hr × Rk1

of smooth maps Hr × Rk1 → Hr × Rk2 and set M(r; k1, r; k2) = {f ∈
E(r; k1, r; k2)|f(0) = 0}. We denote E(r; k1, k2) for E(r; k1, 0; k2) and denote
M(r; k1, k2) for M(r; k1, 0; k2).

If k2 = 1 we write simply E(r; k) for E(r; k, 1) and M(r; k) for M(r; k, 1).
Then E(r; k) is an R-algebra in the usual way and M(r; k) is its unique
maximal ideal. We also denote by E(k) for E(0; k) and M(k) for M(0; k).

We denote by J l(r + k, p) the set of l-jets at 0 of germs in E(r; k, p).
There are natural projections:

πl : E(r; k, p) −→ J l(r + k, p), πl1
l2

: J l1(r + k, p) −→ J l2(r + k, p) (l1 > l2).

We write jlf(0) for πl(f) for each f ∈ E(r; k, p).
Let (x, y) = (x1, . . . , xr, y1, . . . , yk) be a fixed coordinate system of (Hr×
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Rk, 0). We denote by B(r; k) the group of diffeomorphism germs (Hr ×
Rk, 0) → (Hr × Rk, 0) of the form:

φ(x, y) =
(
x1φ

1
1(x, y), . . . , xrφ

r
1(x, y), φ1

2(x, y), . . . , φk
2(x, y)

)
.

We denote by Bn(r; k + n) the group of diffeomorphism germs (Hr ×
Rk+n, 0) → (Hr × Rk+n, 0) of the form:

φ(x, y, u) =
(
x1φ

1
1(x, y, u), . . . , xrφ

r
1(x, y, u),

φ1
2(x, y, u), . . . , φk

2(x, y, u), φ1
3(u), . . . , φn

3 (u)
)
.

We denote by Bl
n(r; k + n) the Lie group of l-jets at 0 of germs in

Bn(r; k + n). This group acts on J l(r + k + n, 1) by the composition.

Lemma 2.1 (cf. [11, Corollary 1.8]) Let B be a submodule of E(r; k +n+
m), A1 be a finitely generated E(m) submodule of E(r; k + n + m) generated
d-elements, and A2 be a finitely generated E(n + m) submodule of E(r; k +
n + m). Suppose

E(r; k + n + m) = B + A2 + A1 + M(m)E(r; k + n + m)

+ M(n + m)d+1E(r; k + n + m).

Then

E(r; k + n + m) = B + A2 + A1,

M(n + m)dE(r; k + n + m) ⊂ B + A2 + M(m)E(r; k + n + m).

We recall the stabilities of n-dimensional unfolding under reticular P-
K-equivalence which is developed in [7].

We say that f0, g0 ∈ E(r; k) are reticular K-equivalent if there exist
φ ∈ B(r; k) and a unit a ∈ E(r; k) such that g0 = a · f0 ◦ φ. We write
OrK(f0) the orbit of f0 under this equivalence relation.

Lemma 2.2 Let f0(x, y) ∈ M(r; k) and Ol
rK(jlf0(0)) be the submanifold

of J l(r+k, 1) consist of the image by πl of the orbit of reticular K-equivalence
of f0. Put z = jlf0(0). Then
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Tz(Ol
rK(z)) = πl

(〈
f0, x1

∂f0

∂x1
, . . . , xr

∂f0

∂xr

〉

E(r;k)

+M(r; k)
〈

∂f0

∂y1
, . . . ,

∂f0

∂yk

〉)
.

We say that a function germ f0 ∈ M(r; k) is reticular K-l-determined if
all function germ which has same l-jet of f0 is reticular K-equivalent to f0.
If f0 is reticular K-l-determined for some l, then we say that f0 is reticular
K-finitely determined.

We denote x∂f0
∂x for

(
x1

∂f0
∂x1

, . . . , xr
∂f0
∂xr

)
and ∂f0

∂y for
(

∂f0
∂y1

, . . . , ∂f0
∂yk

)
, and

denote other notations analogously.

Lemma 2.3 Let f0(x, y) ∈ M(r; k) and let

M(r; k)l+1 ⊂ M(r; k)
(〈

f0, x
∂f0

∂x

〉
+ M(r; k)

〈
∂f0

∂y

〉)
+ M(r; k)l+2,

then f0 is reticular K-l-determined. Conversely if f0(x, y) ∈ M(r; k) is
reticular K-l-determined, then

M(r; k)l+1 ⊂
〈

f0, x
∂f0

∂x

〉

E(r;k)

+ M(r; k)
〈

∂f0

∂y

〉
.

Let f(x, y, u) ∈ M(r; k + n1), g(x, y, v) ∈ M(r; k + n2) be unfoldings
of f0(x, y) ∈ M(r; k). We say that g is reticular P-K-f0-induced from f if
there exist Φ ∈ M(r; k + n2, r; k + n1) and α ∈ E(r; k + n2) satisfying the
following conditions:

(1) Φ(x, y, 0) = (x, y, 0), α(x, y, 0) = 1 for all (x, y) ∈ (Hr × Rk, 0),
(2) Φ can be written in the form:

Φ(x, y, v) =
(
x1φ

1
1(x, y, v), . . . , xrφ

r
1(x, y, v), φ2(x, y, v), φ3(v)

)
,

(3) g(x, y, v) = α(x, y, v) · f ◦Φ(x, y, v) for all (x, y, v) ∈ (Hr ×Rk+n2 , 0).
We denote Φ(x, y, v) = (xφ1(x, y, v), φ2(x, y, v), φ3(v)).

We say that f, g ∈ E(r; k +n) are reticular P-K-equivalent if there exist
Φ ∈ Bn(r; k + n) and a unit α ∈ E(r; k + n) such that g = α · f ◦ Φ. We
call (Φ, α) a reticular P-K-isomorphism from f to g. We write OrP-K(f)
the orbit of f under this equivalence relation.



Stabilities of unfoldings under Reticular t-P-K-equivalence 181

Definition 2.4 We recall the definition of several stabilities of unfoldings
under the reticular P-K-equivalence. Let f(x, y, u) ∈ M(r; k + n) be an
unfolding of f0(x, y) ∈ M(r; k).

We say that f is reticular P-K-stable if the following condition holds: For
any neighborhood U of 0 in Rr+k+n and any representative f̃ ∈ C∞(U,R) of
f , there exists a neighborhood Nf̃ of f̃ in C∞(U,R) with C∞-topology such
that for any element g̃ ∈ Nf̃ the germ g̃|Hr×Rk+n at (0, y0, u0) is reticular
P-K-equivalent to f for some (0, y0, u0) ∈ U .

We say that f is reticular P-K-versal if any unfolding of f0 is reticular
P-K-f0-induced from f .

We say that f is reticular P-K-infinitesimally versal if

E(r; k) =
〈

f0, x
∂f0

∂x
,
∂f0

∂y

〉

E(r;k)

+
〈

∂f

∂u

∣∣∣∣
u=0

〉

R
.

We say that f is reticular P-K-infinitesimally stable if

E(r; k + n) =
〈

f, x
∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

.

We say that f is reticular P-K-homotopically stable if for any smooth
path-germ (R, 0) → E(r; k + n), t 7→ f t with f0 = f , there exists a smooth
path-germ (R, 0) → Bn(r; k + n)× E(r; k + n), t 7→ (Φt, αt) with (Φ0, α0) =
(id, 1) such that each (Φt, αt) is a reticular P-K-isomorphism from f0 to f t,
that is f t = αt · f0 ◦ Φt.

Theorem 2.5 Let f ∈ M(r; k +n) be an unfolding of f0 ∈ M(r; k). Then
the following are equivalent.

(1) f is reticular P-K-stable.
(2) f is reticular P-K-versal.
(3) f is reticular P-K-infinitesimally versal.
(4) f is reticular P-K-infinitesimally stable.
(5) f is reticular P-K-homotopically stable.

For f0(x, y) ∈ M(r; k), if a1, . . . , an ∈ E(r; k) is a representative of a
basis of the vector space
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E(r; k)/
〈

f0, x
∂f0

∂x
,
∂f0

∂y

〉

E(r;k)

,

then the function germ f0 + a1u1 + · · · + anun ∈ M(r; k + n) is a reticular
P-K-stable unfolding of f0.

Proposition 2.6 Let f0 ∈ M(r; k). Then f0 has a reticular P-K-stable
unfolding if and only if f0 is reticular K-finitely determined.

3. Reticular t-P-K-stabilities of unfoldings

The right-left-(n,m)-stabilities of m-dimensional unfoldings of n-
dimensional unfoldings of function germs is studied by G. Wassermann
in [11]. In this section we study stabilities of m-dimensional unfold-
ings of n-dimensional unfoldings of function germs under the reticular t-
P-K-equivalence which should be called reticular (n,m)-K-equivalence in
G. Wassermann’s notation.

Lemma 3.1 Let f(x, y, u) ∈ E(r; k +n) and set z = jlf(0). Let Ol
rP-K(z)

be the submanifold of J l(r + k + n, 1) consist of the image by πl of the orbit
of reticular P-K-equivalence of f0. Then

Tz

(
Ol

rP-K(z)
)

= πl

(〈
f, x

∂f

∂x

〉

E(r;k+n)

+M(r; k+n)
〈

∂f

∂y

〉
+M(n)

〈
∂f

∂u

〉)
.

(1)

Here we give the definitions of stabilities of unfoldings under the equiv-
alence relation ‘reticular t-P-K-equivalence’ and prove that these definitions
are all equivalent.

Let F (x, y, u, t) ∈ M(r; k +n+m1) and G(x, y, u, s) ∈ M(r; k +n+m2)
be unfoldings of f(x, y, u) ∈ M(r; k + n).

A reticular t-P-K-f-morphism from G to F is a pair (Φ, α), where Φ ∈
M(r; k+n+m2, r; k+n+m1) and α is a unit of E(r; k+n+m2), satisfying
the following conditions:

(1) Φ can be written in the form: Φ(x, y, u, s) = (xφ1(x, y, u, s),
φ2(x, y, u, s), φ3(u, s), φ4(s)),

(2) Φ|Hr×Rk+n = idHr×Rk+n , α|Hr×Rk+n ≡ 1
(3) G(x, y, u, s) = α(x, y, u, s) · F ◦ Φ(x, y, u, s) for all (x, y, u, s) ∈ (Hr ×

Rk+n+m2 , 0).
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If there exists a reticular t-P-K-f -morphism from F to G, we say that
G is reticular t-P-K-f-induced from F . If m1 = m2 and Φ is invertible, we
call (Φ, α) a reticular t-P-K-f-isomorphism from F to G and we say that
F is reticular t-P-K-f -equivalent to G.

Let U be a neighborhood of 0 in Rr+k+n+m and let F : U → R be a
smooth function and q be a non-negative integer. We define the smooth
map germ

jq
1F : U −→ Jq(r + k + n, 1)

as the follow: For (x, y, u, t) ∈ U we set jq
1F (x, y, u, t) by the l-jet of the

function germ F̃(x,y,u,t) ∈ M(r; k + n) at 0, where F̃(x,y,u,t) is given by
F̃(x,y,u,t)(x′, y′, u′) = F (x + x′, y + y′, u + u′, t)− F (x, y, u, t).

Theorem 3.2 Let U be a neighborhood of 0 in Rr+k+n+m and A be a
smooth submanifold of Jq(r + k + n, 1). We define

TA =
{
F ∈ C∞(U,R)| jq

1F |x=0 is transversal to A
}
.

Then TA is dense in C∞(U,R).

The transversality we used is a slightly different for the ordinary one [10],
however we can also prove this theorem by the method which is the same
as the ordinary method.

Definition 3.3 We define stabilities of unfoldings. Let F (x, y, u, t) ∈
M(r; k + n + m) be an unfolding of f(x, y, u) ∈ M(r; k + n).

Let q be a non-negative integer and z = jqf(0). We say that F is
reticular t-P-K-q-transversal unfolding of f if the jq

1F |x=0 at 0 is transversal
to Oq

rP-K(z).

We say that F is reticular t-P-K-stable unfolding of f if the following
condition holds: For any neighborhood U of 0 in Rr+k+n+m and any rep-
resentative F̃ ∈ C∞(U,R) of F , there exists a neighborhood NF̃ of F̃ in
C∞(U,R) with C∞-topology such that for any element G̃ ∈ NF̃ the germ
G̃|Hr×Rk+n+m at (0, y0, u0, t0) is reticular t-P-K-equivalent to F for some
(0, y0, u0, t0) ∈ U .

We say that F is a reticular t-P-K-versal unfolding of f if any unfolding
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of f is reticular t-P-K-f -induced from F .
We say that F is a reticular t-P-K-universal unfolding of f if m is

minimal in reticular t-P-K-versal unfoldings of f .

We say that F is reticular t-P-K-infinitesimally versal if

E(r; k + n) =
〈

f, x
∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

+
〈

∂F

∂t

∣∣∣∣
t=0

〉

R
.

We say that F is reticular t-P-K-infinitesimally stable if

E(r; k + n + m)

=
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(r;k+n+m)

+
〈

∂F

∂u

〉

E(n+m)

+
〈

∂F

∂t

〉

E(m)

. (2)

We say that F is reticular t-P-K-homotopically stable if for any smooth
path-germ (R, 0) → E(r; k + n + m), τ 7→ Fτ with F0 = F , there exists a
smooth path-germ (R, 0) → B(r, k + n + m)×E(r; k + n + m), τ 7→ (Φτ , ατ )
with (Φ0, α0) = (id, 1) such that each (Φτ , ατ ) is a reticular t-P-K-
isomorphism and Fτ = ατ · F0 ◦ Φτ for τ ∈ (R, 0).

For a function germ f(x, y, u) ∈ E(r; k + n), we define that

Te(rP-K)(f) =
〈

f, x
∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

,

and define that rP-K-codf = dimR E(r; k + n)/Te(rP-K)(f).

Lemma 3.4 Let F (x, y, u, t) ∈ E(r; k + n + m) be an unfolding of
f(x, y, u) ∈ M(r; k + n) and q be a non-negative integer.

The function germ F is reticular t-P-K-q-transversal if and only if

E(r; k + n) = Te(rP-K)(f) +
〈

∂F

∂t
|t=0

〉

R
+ M(r; k + n)q+1.

We remark that if F is reticular t-P-K-q-transversal then F is also
reticular t-P-K-q′-transversal for any q′ ≤ q.

Proof of the lemma. By an immediate calculation, we have
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T (jq
1F |x=0)(T0Rk+n+m) =

〈
jq ∂f

∂y
(0), jq ∂f

∂u
(0), jq ∂F

∂t

∣∣∣∣
t=0

(0)
〉

R

= πq

(〈
∂f

∂y
,
∂f

∂u
,
∂F

∂t

∣∣∣∣
t=0

〉

R

)

Therefore

F is a reticular t-P-K-q-transversal

⇔ Jq(r + k + n, 1) = Tjqf(0)

(
Oq

rP-K(jqf(0))
)

+ T (jq
1F |x=0)(T0Rk+n+m)

⇔ Jq(r + k + n, 1) = πq

(〈
f, x

∂f

∂x

〉

E(r;k+n)

+ M(r; k + n)
〈

∂f

∂y

〉

+ M(n)
〈

∂f

∂u

〉)
+ πq

(〈
∂f

∂y
,
∂f

∂u
,
∂F

∂t

∣∣∣∣
t=0

〉

R

)

⇔ Jq(r + k + n, 1) = πq

(〈
f, x

∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

+
〈

∂F

∂t
|t=0

〉

R

)

⇔ E(r; k + n) =
〈

f, x
∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

+
〈

∂F

∂t
|t=0

〉

R

+ M(r; k + n)q+1. ¤

Proposition 3.5 Let F, G ∈ M(r; k + n + m) and q be a non-negative
integer. Suppose that F is reticular t-P-K-equivalent to G. If F is reticular
t-P-K-q-transversal, then G is also reticular t-P-K-q-transversal.

Theorem 3.6 (cf. [11, Theorem 3.6]) Let f(x, y, u) ∈ M(r; k + n) be an
unfolding of f0(x, y) ∈ M(r; k) and F (x, y, u, t) ∈ M(r; k + n + m) be an
unfolding of f . Suppose f0 is reticular K-finitely determined. Choose an
integer l such that

M(r; k)l+1 ⊂
〈

f0, x
∂f0

∂x

〉

E(r;k)

+ M(r; k)
〈

∂f0

∂y

〉
. (3)

Let q ≥ lm + l + m. Then the following are equivalent.
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(a) F is reticular t-P-K-infinitesimally stable.
(b) F is reticular t-P-K-infinitesimally versal.
(c)

E(r; k + n) =
〈

f, x
∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

+
〈

∂F

∂t

∣∣∣∣
t=0

〉

R

+ M(n)m+1E(r; k + n) + M(r; k + n)q+1

Proof. It is enough to prove (c)⇒(a). Since f |u=0 = f0 it follows
that

〈
f0, x

∂f0
∂x , ∂f0

∂y

〉
E(r;k)

⊂ 〈
f, x∂f

∂x , ∂f
∂y

〉
E(r;k+n)

+ M(n)E(r; k + n). Since

M(r; k + n)l+1 ⊂ M(r; k)l+1 + M(n)E(r; k + n) it follows that M(r; k +
n)q+1 ⊂ M(r; k+n)(l+1)(m+1) ⊂ 〈

f, x∂f
∂x , ∂f

∂y

〉
E(r;k+n)

+M(n)m+1E(r; k+n).
Therefore we may drop the term M(r; k +n)q+1 from the right-hand side of
(c). Then the following holds:

E(r; k + n + m) =
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(r;k+n+m)

+
〈

∂F

∂u

〉

E(n+m)

+
〈

∂F

∂t

〉

E(m)

+ M(n + m)m+1E(r; k + n + m) + M(m)E(r; k + n + m).

Then the assumption of Lemma 2.1 holds for B =
〈
F, x∂F

∂x , ∂F
∂y

〉
E(r;k+n+m)

,

A2 =
〈

∂F
∂u

〉
E(n+m)

, A1 =
〈

∂F
∂t

〉
E(m)

and m = d. Hence we have (a). ¤

The following two lemma’s can be proved by almost parallel methods of
the corresponding assertions in [11].

Lemma 3.7 (cf. [11, Corollary 3.7]) Let F (x, y, u, t) ∈ M(r; k + n + m1)
and G(x, y, u, t, s) ∈ M(r; k + n + m1 + m2) and suppose G|s=0 = F . If
F is reticular t-P-K-infinitesimally stable, then G is also reticular t-P-K-
infinitesimally stable.

Lemma 3.8 (cf. [11, Theorem 3.8]) Let F, G ∈ M(r; k + n + m). If F is
reticular t-P-K-infinitesimally stable and if F is reticular t-P-K-equivalent
to G, then G is also reticular t-P-K-infinitesimally stable.

Lemma 3.9 Let f0(x, y) ∈ M(r; k) be a reticular K-l-determined function
germ. Let q ≥ lm + l + m. If F (x, y, u, t) ∈ M(r; k + n + m) unfold
f(x, y, u) ∈ M(r; k + n) and f0, and if F is a reticular t-P-K-q-transversal,
then the following holds:
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M(r; k + n)q+1 ⊂
〈

f, x
∂f

∂x

〉

E(r;k+n)

+ M(r; k + n)
〈

∂f

∂y

〉
+ M(n)

〈
∂f

∂u

〉
.

Proof. By Lemma 2.3, we have that M(r; k)l+1 ⊂ 〈
f0, x

∂f0
∂x

〉
E(r;k)

+

M(r; k)
〈

∂f0
∂y

〉
. It follows as the proof of Lemma 3.6 that

M(r; k+n)q+1 ⊂
〈

f, x
∂f

∂x

〉

E(r;k+n)

+M(r; k+n)
〈

∂f

∂y

〉
+M(n)m+1E(r; k+n).

(4)
Therefore we have that

M(r; k + n)q+1 ⊂
〈

F, x
∂F

∂x

〉

E(r;k+n+m)

+ M(r; k + n + m)
〈

∂F

∂y

〉

+ M(n + m)m+1E(r; k + n + m) + M(m)E(r; k + n + m).

This means that

E(r; k + n + m)

⊂ E(r; k + n) + M(m)E(r; k + n + m)

⊂
〈

f, x
∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

+
〈

∂F

∂t

∣∣∣∣
t=0

〉

R

+ M(r; k + n)q+1 + M(m)E(r; k + n + m)

⊂
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(r;k+n+m)

+
〈

∂F

∂u

〉

E(n+m)

+
〈

∂F

∂t

〉

E(m)

+ M(n + m)m+1E(r; k + n + m) + M(m)E(r; k + n + m).

We apply B =
〈
F, x∂F

∂x , ∂F
∂y

〉
E(r;k+n+m)

, A2 =
〈

∂F
∂u

〉
E(n+m)

, A1 =
〈

∂F
∂t

〉
E(m)

and m = d for Lemma 2.1. Then we have that

M(n + m)mE(r; k + n + m)

⊂
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(r;k+n+m)

+
〈

∂F

∂u

〉

E(n+m)

+ M(m)E(r; k + n + m).

Restrict this equation on t = 0, then we have that
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M(n)mE(r; k + n) ⊂
〈

f, x
∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

.

From this equation and the equation (4), we have the result. ¤

Let q be a non-negative integer. We say that a function germ f ∈
M(r; k + n) is reticular P-K-q-determined if all function germ which has
same q-jet of f is reticular P-K-equivalent to f .

Lemma 3.10 Let f(x, y, u) ∈ M(r; k+n) and q be a non-negative integer.
If

M(r; k + n)q ⊂
〈

f, x
∂f

∂x

〉

E(r;k+n)

+ M(r; k + n)
〈

∂f

∂y

〉
+ M(n)

〈
∂f

∂u

〉

+ M(n)M(r; k + n)q, (5)

then f is reticular P-K-q-determined.

Proof. Let a germ g(x, y, u) ∈ E(r; k + n) with the same q-jet of f be
given. We have to show that there exists a germ φ ∈ Bn(r; k + n) and
α ∈ E(r; k + n) such that g has the form g(x, y, u) = α(x, y, u)f ◦ φ(x, y, u).
By the restriction of (5) to u = 0, we have that f(x, y, 0) ∈ E(r; k) is reticular
K-q-determined by Lemma 2.3. It follows that there exist φ′(x, y) ∈ B(r; k)
and a unit a ∈ E(r; k) such that f(x, y, 0) = a(x, y)g(φ′(x, y), 0). Therefore
we may assume that f(x, y, 0) = g(x, y, 0). Hence we may assume that
f − g ∈ M(n)M(r; k + n)q.

Define the one-parameter family F connect f and g by F (x, y, u, τ) =
(1 − τ)f(x, y, u) + τg(x, y, u), τ ∈ [0, 1] and set Fτ0 ∈ E(r; k + n + 1) by
Fτ0(x, y, u, τ) = F (x, y, u, τ0 + τ) for τ0 ∈ [0, 1].

By using the same methods of the Mather theorem (see [10, p. 37]), we
need only to show that

∂Fτ0

∂τ
∈ M(n)

〈
Fτ0 , x

∂Fτ0

∂x

〉

E(r;k+n+1)

+ M(n)M(r; k + n)
〈

∂Fτ0

∂y

〉

E(r;k+n+1)

+ M(n)2
〈

∂Fτ0

∂u

〉

E(n+1)

Then we have that
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M(n)M(r; k + n)qE(r; k + n + 1)

= M(n)M(r; k + n)q(E(r; k + n) + M(1)E(r; k + n + 1))

= M(n)M(r; k + n)q + M(1)M(n)M(r; k + n)qE(r; k + n + 1)

⊂ M(n)
(〈

f, x
∂f

∂x

〉

E(r;k+n)

+ M(r; k + n)
〈

∂f

∂y

〉

+ M(n)
〈

∂f

∂u

〉
+ M(n)M(r; k + n)q

)

+ M(1)M(n)M(r; k + n)qE(r; k + n + 1)

⊂ M(n)
〈

f, x
∂f

∂x

〉

E(r;k+n+1)

+ M(n)M(r; k + n)
〈

∂f

∂y

〉

E(r;k+n+1)

+ M(n)2
〈

∂f

∂u

〉

E(n+1)

+ M(n + 1)M(n)M(r; k + n)qE(r; k + n + 1)

⊂ M(n)
〈

Fτ0 , x
∂Fτ0

∂x

〉

E(r;k+n+1)

+ M(n)M(r; k + n)
〈

∂Fτ0

∂y

〉

E(r;k+n+1)

+ M(n)2
〈

∂Fτ0

∂u

〉

E(n+1)

+ M(n + 1)M(n)M(r; k + n)qE(r; k + n + 1).

By the assumption (5), we have the first inclusion. For the last inclusion,
observe that

xi
∂Fτ0

∂xi
− xi

∂f

∂xi
= (τ0 + τ)xi

∂

∂xi
(g − f) ∈ M(n)M(r; k + n)q,

∂Fτ0

∂yi
− ∂f

∂yi
= (τ0 + τ)

∂

∂yi
(g − f) ∈ M(n)M(r; k + n)q−1,

∂Fτ0

∂ui
− ∂f

∂ui
= (τ0 + τ)

∂

∂ui
(g − f) ∈ M(r; k + n)q.

Since M(n)M(r; k +n)qE(r; k +n+1) is a finitely generated E(r; k +n+1)-
module, we have by Malgrange preparation theorem (see [11, p. 60 Theorem
1.6, Corollary 1.7]) that
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∂Fτ0

∂τ
= g − f

∈ M(n)M(r; k + n)q ⊂ M(n)M(r; k + n)qE(r; k + n + 1)

⊂ M(n)
〈

Fτ0 , x
∂Fτ0

∂x

〉

E(r;k+n+1)

+ M(n)M(r; k + n)
〈

∂Fτ0

∂y

〉

E(r;k+n+1)

+ M(n)2
〈

∂Fτ0

∂u

〉

E(n+1)

¤

Lemma 3.11 Let f0(x, y) ∈ M(r; k) be a reticular K-l-determined func-
tion germ. Let f(x, y, u) ∈ M(r; k + n) unfold f0 and suppose m = rP-K-
codf is a finite number. Let q ≥ lm+l+m and let F (x, y, u, t), G(x, y, u, t) ∈
M(r; k + n + m) be reticular t-P-K-q-transversal unfolding of f . Then F

and G are reticular t-P-K-f-equivalent.

Proof. By using analogous methods of the Mather theorem (see [10, the
proof of p. 68 Lemma 3.16]), we need only to prove the following assertion:
Suppose that Eτ (x, y, u, t) = (1−τ)F (x, y, u, t)+τG(x, y, u, t) ∈ E(r; k+n+
m + 1) is reticular t-P-K-q-transversal unfolding of f for all τ ∈ [0, 1] and
define Eτ0 ∈ E(r; k+n+m+1) by Eτ0(x, y, t, u, τ) = (1−τ0−τ)F (x, y, u, t)+
(τ0 + τ)G(x, y, u, t) for τ0 ∈ [0, 1]. Then for all τ ∈ [0, 1], the following holds

E(r; k + n + m + 1) =
〈

Eτ0 , x
∂Eτ0

∂x
,
∂Eτ0

∂y

〉

E(r;k+n+m+1)

+
〈

∂Eτ0

∂u

〉

E(n+m+1)

+
〈

∂Eτ0

∂t

〉

E(m+1)

.

Proof of this assertion Fix τ0 ∈ [0, 1]. Since Eτ0 is reticular t-P-K-q-
transversal, we have

E(r; k + n) =
〈

f, x
∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

+
〈

∂Eτ0

∂t
|t=0

〉

R
+ M(r; k + n)q+1.

By Lemma 3.9, we have that
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M(r; k + n)q+1 ⊂
〈

f, x
∂f

∂x

〉

E(r;k+n)

+ M(r; k + n)
〈

∂f

∂y

〉
+ M(n)

〈
∂f

∂u

〉
.

Therefore we have that

E(r; k + n) =
〈

f, x
∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

+
〈

∂Eτ0

∂t
|t=0

〉

R
.

Since Eτ0(x, y, u, t)− f(x, y, u) ∈ M(m)E(r; k + n + m), we have that

E(r; k + n + m)

= E(r; k + n) + M(m)E(r; k + n + m)

=
〈

f, x
∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

+
〈

∂Eτ0

∂t

∣∣∣∣
t=0

〉

R

+ M(m)E(r; k + n + m)

=
〈

Eτ0 , x
∂Eτ0

∂x
,
∂Eτ0

∂y

〉

E(r;k+n+m)

+
〈

∂Eτ0

∂u

〉

E(n+m)

+
〈

∂Eτ0

∂t

〉

E(m)

+ M(m)E(r; k + n + m).

Therefore we have that

E(r; k + n + m + 1)

= E(r; k + n + m) + M(1)E(r; k + n + m + 1)

=
〈

Eτ0 , x
∂Eτ0

∂x
,
∂Eτ0

∂y

〉

E(r;k+n+m)

+
〈

∂Eτ0

∂u

〉

E(n+m)

+
〈

∂Eτ0

∂t

〉

E(m)

+ M(m)E(r; k + n + m) + M(1)E(r; k + n + m + 1)

=
〈

Eτ0 , x
∂Eτ0

∂x
,
∂Eτ0

∂y

〉

E(r;k+n+m+1)

+
〈

∂Eτ0

∂u

〉

E(n+m+1)

+
〈

∂Eτ0

∂t

〉

E(m+1)

+ M(m + 1)E(r; k + n + m + 1).

By Malgrange preparation theorem, we have
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E(r; k + n + m + 1) =
〈

Eτ0 , x
∂Eτ0

∂x
,
∂Eτ0

∂y

〉

E(r;k+n+m+1)

+
〈

∂Eτ0

∂u

〉

E(n+m+1)

+
〈

∂Eτ0

∂t

〉

E(m+1)

. ¤

Theorem 3.12 Let F (x, y, u, t) ∈ M(r; k + n + m) unfold f(x, y, u) ∈
M(r; k + n) and f0(x, y) ∈ M(r; k). Suppose that f0 is reticular K-l-
determined and q ≥ lm + l + m + 1. Then the following are equivalent.
(1) F is reticular t-P-K-q-transversal.
(2) F is reticular t-P-K-stable.
(3) F is reticular t-P-K-versal.

Proof. Let z = jqf(0). (1)⇒(2). Let F be a reticular t-P-K-q-transversal
unfolding of f . Let F̃ ∈ C∞(U,R) be a representative of F . Set V =
U ∩ ({0} × Rk+n+m). Define

NF̃ =
{
G̃ ∈ C∞(U,R)| jq

1G̃|x=0 is transversal to Oq
rP-K(z)

and jq
1G̃|x=0(V ) ∩Oq

rP-K(z) 6= ∅}.

This is an open neighborhood of F̃ because the maps G̃ 7→ jqG̃ 7→ jq
1G̃ 7→

jq
1G̃|x=0 are given by compositions of continuous maps. Let G̃ ∈ NF̃ and take

(0, y0, u0, t0) ∈ V such that jq
1G̃ is transversal to Oq

rP-K(z) at (0, y0, u0, t0).
Let G be the germ of G̃|Hr×Rk+n+m at (0, y0, u0, t0) and define g ∈ E(r; k+n)
by g(x, y, u) = G(x, y+y0, u+u0, t0). Since jqg(0, 0, 0) = jq

1G̃(0, y0, u0, t0) ∈
Oq

rP-K(z), there exists φ ∈ Bn(r; k + n) and a unit α ∈ E(r; k + n) such that
the germ f ′ ∈ E(r; k + n) defined by f ′(x, y, u) = α(x, y, u)g ◦ φ(x, y, u) has
the same q-jet of f . Since F is also reticular t-P-K-(q − 1)-transversal and
q − 1 ≥ lm + l + m, we have by Lemma 3.9 that

M(r; k + n)q ⊂
〈

f, x
∂f

∂x

〉

E(r;k+n)

+ M(r; k + n)
〈

∂f

∂y

〉
+ M(n)

〈
∂f

∂u

〉
.

This means by Lemma 3.10 that f is reticular P-K-q-determined. It follows
that f ′ is reticular P-K-equivalent to f . So g is also reticular P-K-equivalent
to f . Hence there exist φ′ ∈ Bn(r; k + n) and α′ ∈ E(r; k + n) such that g

has the form f(x, y, u) = α′(x, y, u)g ◦φ′(x, y, u) Define G′ ∈ E(r; k +n+m)
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by G′(x, y, u, t) = α′(x, y, u)G(φ′(x, y, u), t). Then G′ is a reticular t-P-
K-q-transversal unfolding of f . By Lemma 3.11 we have that F and G′

are reticular t-P-K-f -equivalent. Therefore F and G are reticular t-P-K-
equivalent.
(2)⇒(3). Let F be a reticular t-P-K-stable unfolding of f and let F̃ ∈
C∞(U,R) be a representative of F . By hypothesis and Theorem 3.2, there
exist F̃ ′ ∈ C∞(U,R) and (0, y0, u0, t0) ∈ U such that jq

1 F̃ ′|x=0 is transversal
to Oq

rP-K(z) and the germ F ′ = F̃ ′|Hr×Rk+n+m at (0, y0, u0, t0) is reticular
t-P-K-equivalent to F . By Proposition 3.5, we have that F is a reticular
t-P-K-q-transversal unfolding of f .

Let an unfolding G(x, y, u, s) ∈ E(r; k + n + m1) of f be given. Define
G′(x, y, u, t, s) ∈ E(r; k + n + m + m1) by G′(x, y, u, t, s) = G(x, y, u, s) −
f(x, y, u)+F (x, y, u, t). Then G′ is a reticular t-P-K-q-transversal unfolding
of f because F is reticular t-P-K-q-transversal. Define F ′′(x, y, u, t, s) ∈
E(r; k + n + m + m1) by F ′′(x, y, u, t, s) = F (x, y, u, t). Then F ′′ is also a
reticular t-P-K-q-transversal unfolding of f . By Lemma 3.11, we have that
G′ and F ′′ are reticular t-P-K-f -equivalent. Since G is reticular t-P-K-f -
induced from G′, and F ′′ is reticular t-P-K-f -induced from F , it follows
that G is reticular t-P-K-f -induced from F . Therefore F is reticular t-P-
K-versal.
(3)⇒(1). Let F (x, y, u, t) ∈ E(r; k + n + m1) be a reticular t-P-K-versal
unfolding of f . Take a reticular t-P-K-q-transversal unfolding G(x, y, u, s) ∈
E(r; k + n + m2) of f . By hypothesis, there exists a reticular t-P-K-f -
morphism from G to F of the form:

G(x, y, u, s) = α(x, y, u, s)F
(
xφ1(x, y, u, s), φ2(x, y, u, s), φ3(u, s), φ4(s)

)
.

Since G is reticular t-P-K-q-transversal, we have

E(r; k + n) =
〈

f, x
∂f

∂x
,
∂f

∂y
,

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

+
〈

∂G

∂s
|s=0

〉

R

+ M(r; k + n)q+1.

On the other hand, we have that

〈
∂G

∂s

∣∣∣∣
s=0

〉

R
⊂

〈
f, x

∂f

∂x
,
∂f

∂y

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

+
〈

∂F

∂t

∣∣∣∣
t=0

〉

R
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Therefore

E(r; k + n) =
〈

f, x
∂f

∂x
,
∂f

∂y
,

〉

E(r;k+n)

+
〈

∂f

∂u

〉

E(n)

+
〈

∂F

∂t

∣∣∣∣
t=0

〉

R

+ M(r; k + n)q+1.

Hence F is reticular t-P-K-q-transversal. ¤

Theorem 3.13 (Uniqueness of universal unfoldings) Let F (x, y, u, t),
G(x, y, u, t) ∈ M(r; k +n+m) be unfoldings of f ∈ M(r; k +n). If F and G

are reticular t-P-K-versal, then F and G are reticular t-P-K-f-equivalent.

Proof. Since F is a reticular P-K-versal unfolding of f0 = f |u=0 as (n+m)-
dimensional unfolding. This means that f0 is finitely determined. Choose
an non-negative integer l such that (3) holds for f0. Let q ≥ lm+ l +m+1.
By Theorem 3.12, we have that F and G are reticular t-P-K-q-transversal.
By Lemma 3.11 we have that F and G are reticular t-P-K-f -equivalent. ¤

Theorem 3.14 Let F (x, y, u, t) ∈ M(r; k + n + m) be an unfolding of
f(x, y, u) ∈ M(r; k + n) and let f be an unfolding of f0(x, y) ∈ M(r; k).
Then following are equivalent.

(1) There exists a non-negative number l such that f0 is reticular K-l-
determined and F is reticular t-P-K-q-transversal for q ≥ lm + l +
m + 1.

(2) F is reticular t-P-K-stable.
(3) F is reticular t-P-K-versal.
(4) F is reticular t-P-K-infinitesimally versal.
(5) F is reticular t-P-K-infinitesimally stable.
(6) F is reticular t-P-K-homotopically stable.

Proof. (2)⇒(5) F is also reticular P-K-stable unfolding of f0 as (n+m)-
dimensional unfolding. Therefore f0 is reticular K-finitely determined.
Choose an non-negative integer l such that (3) holds for f0. Let q ≥
lm + l + m + 1. By Theorem 3.12, we have that F is reticular t-P-K-q-
transversal. Then the assertion (c) of Theorem 3.6 holds. Therefore F is
reticular t-P-K-infinitesimally stable.
(4)⇔(5) This is proved by Theorem 3.6.
(5)⇒(2) F is also reticular P-K-infinitesimally stable unfolding of f0 as
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(n + m)-dimensional unfolding. Therefore there exists a non-negative num-
ber l such that f0 is reticular K-l determined. By Theorem 3.12, we have
that F is reticular t-P-K-q-transversal for q ≥ lm + l + m + 1. This means
that F is reticular t-P-K-stable by Theorem 3.12.
(1)⇔(2)⇔(3) This is proved in Theorem 3.12.
(5)⇒(6)

E(r; k + n + m + 1)

= E(r; k + n + m) + M(1)E(r; k + n + m + 1)

=
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(r;k+n+m)

+
〈

∂F

∂u

〉

E(n+m)

+
〈

∂F

∂t

〉

E(m)

+ M(1)E(r; k + n + m + 1)

=
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(r;k+n+m+1)

+
〈

∂F

∂u

〉

E(n+m+1)

+
〈

∂F

∂t

〉

E(m+1)

+ M(m + 1)E(r; k + n + m + 1).

By Malgrange preparation theorem, we have that

E(r; k + n + m + 1) =
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(r;k+n+m+1)

+
〈

∂F

∂u

〉

E(n+m+1)

+
〈

∂F

∂t

〉

E(m+1)

. (6)

This means that F is reticular t-P-K-homotopically stable.
(6)⇒(5) Suppose that F is reticular t-P-K-homotopically stable. Then (6)
holds. Restrict this equation to Hr × Rk+n+m. Then we have the equation
(2). ¤

For f ∈ M(r; k + n) if a1, . . . , am ∈ E(r; k + n) is a representative of a
basis of E(r; k + n)/Te(rP-K)(f), then the function germ f + a1t1 + · · · +
amtm ∈ M(r; k + n + m) is a reticular t-P-K-stable unfolding of f .
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4. A generic classification of unfoldings under the reticular t-P-
K-equivalence

Definition 4.1 We say that function germs f1(x, y) ∈ M(r1; k1) and
f2(x, y) ∈ M(r2; k2) are stably reticular K-equivalent if f1 and f2 are reticular
K-equivalent after additions of linear forms in x whose all coefficients are
not zero and non-degenerate quadratic forms in the variables y. We also
define the stably reticular P-K-equivalence relation and the stably reticular
t-P-K-equivalence relation analogously.

Proposition 4.2 Let f0 ∈ M(1; k). Then f0 is stably reticular K-
equivalent to y ∈ M(0; 1) or there exists f ′0 ∈ M(r; k′)2 (r = 0 or 1) such
that f0 and f ′0 are stably reticular K-equivalent.

Proposition 4.3 (cf., [7, p. 126]) Let f0(y) ∈ M(0; k) with (r)K-codf0 ≤ 6
be given. Then f0 is stably (reticular) K-equivalent to one of

Al : yl+1(0 ≤ l ≤ 6), D±
4 : y2

1y2 ± y3
2 , D5 : y2

1y2 + y4
2 ,

D±
6 : y2

1y2 ± y5
2 , E6 : y3

1 + y4
2 .

Let f0(x, y) ∈ M(1; k) with rK-codf0 ≤ 4 be given. Then f0 is stably retic-
ular K-equivalent to one of

Al : yl+1(0 ≤ l ≤ 4), D±
4 : y2

1y2 ± y3
2 , Bl : xl(1 ≤ l ≤ 4),

C±3 : ±xy + y3, C4 : xy + y4, F4 : x2 + y3.

Proposition 4.4 Let f0(x, y) ∈ M(r; k) be a simple singularity, that is
Al, Dl, E6, E7, E8 for r = 0, or Bl, Cl, F4 for r = 1. Let Qf0 be the local
ring of f0, that is Qf0 = E(r; k)/〈f0, x

∂f0
∂x , ∂f0

∂y 〉E(r;k). Then there exist
monomials ϕ0, ϕ1, . . . , ϕn ∈ M(r; k) which consist a basis of Qf0 such that

(1) M(r; k) · ϕ0 ∼ 0 mod Qf0

(2) For any i, j ∈ {1, . . . , n}(i+j ≥ n) there exists a non-zero real number
a such that ϕi · ϕj ∼ aϕi+j−n mod Qf0 .

(3) For any i, j ∈ {1, . . . , n}(i + j < n), ϕi · ϕj ∼ 0 mod Qf0 ,

For example, if f0(x, y) = xy + y4(C4) then we may choose that ϕ0 = y3,
ϕ1 = y2, ϕ2 = y, ϕ3 = 1.
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Proposition 4.5 Let f0(x, y) ∈ M(r; k) be a simple singularity, that is
Al, Dl, E6, E7, E8 for r = 0, or Bl, Cl, F4 for r = 1. Choose monomi-
als ϕ0(x, y), . . . , ϕn(x, y) as the previous proposition. Then the function
F (x, y, u, t) = f0(x, y) + ϕ0(x, y)t +

∑n
i=1 ϕi(x, y)ui is a reticular t-P-K-

universal unfolding of F |t=0.

Proof. In this proof we write E(x, y, u, t) for E(r; k + n + 1) and write
E(u) for E(n) and write other notations analogously. Since F − f0 ∈
M(u, t)E(x, y, u, t), we have that

xi
∂F

∂xi
− xi

∂f0

∂xi
,

∂F

∂yj
− ∂f0

∂yj
∈ M(u, t)E(x, y, u, t).

It follows that
〈

f0, x
∂f0

∂x
,
∂f0

∂y

〉

M(u,t)

⊂
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(x,y,u,t)

+ M(u, t)2E(x, y, u, t).

(7)

Therefore we have that
〈

f0, x
∂f0

∂x
,
∂f0

∂y

〉

M(u,t)E(x,y,u,t)

⊂
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(x,y,u,t)

+ M(u, t)2E(x, y, u, t). (8)

Let a function germ G(x, y, u, t) ∈ E(x, y, u, t) be given. It is enough to
prove that

G ∈
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(x,y,u,t)

+ 〈ϕ1, . . . , ϕn〉E(u,t) + 〈ϕ0〉E(t)

+ M(u, t)2E(x, y, u, t),

because this means by Lemma 2.1 that

E(x, y, u, t) =
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(x,y,u,t)

+ 〈ϕ1, . . . , ϕn〉E(u,t) + 〈ϕ0〉E(t).
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Since F is a reticular P-K-infinitesimal stable unfolding of f0 as (n+1)-
dimensional unfolding, we have that

E(x, y, u, t) =
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(x,y,u,t)

+ 〈ϕ0, ϕ1, . . . , ϕn〉E(u,t).

It follows that there exist function germs g0(u, t), . . . , gn(u, t) ∈ E(u, t) such
that

G ∼ g0(u, t)ϕ0(x, y) + · · ·+ gn(u, t)ϕn(x, y) mod
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(x,y,u,t)

.

Then g0 has the form g0(u, t) = g0(0, t) +
∑n

i=1 aiui + h(u, t), where ai ∈ R
and h ∈ M(u, t)2. Since F is quasi-homogeneous function germ (see [1,
p. 192] for the definition), and f0 is simple singularity, there exist non-zero
real numbers bx, by, bt, bui

such that F has the form:

F = bxx
∂F

∂x
+ byy

∂F

∂y
+ bttϕ0 + bu1u1ϕ1 + · · ·+ bun

unϕn.

Then there exist non-zero real numbers b′i such that

ϕn−1F ∼ bxϕn−1x
∂F

∂x
+byϕn−1y

∂F

∂y
+bttϕ0ϕn−1 +b′1u1ϕ0 + · · ·+b′nunϕn−1

mod
〈
f0, x

∂f0
∂x , ∂f0

∂y

〉
M(u,t)E(x,y,u,t)

. Therefore we have by (8) that

0 ∼ ϕn−1F ∼ bttϕ0ϕn−1 + b′1u1ϕ0 + · · ·+ b′nunϕn−1

mod the right hand side of (8). Since M(x, y)ϕ0 ∼ 0 mod Qf0 , we have that

0 ∼ ϕn−1F ∼ b′1u1ϕ0 + · · ·+ b′nun−1ϕn−1

mod the right hand side of (8). This means that

u1ϕ0 ∈
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(x,y,u,t)

+ 〈ϕ1, . . . , ϕn〉M(u,t) + M(u, t)2E(x, y, u, t).

(9)
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By considering ϕn−2F, . . . , ϕ0F instead of ϕn−1F , we have that u2ϕ0,
. . . , unϕ0, are included in the right hand side of (9). This means that
g0(u, t)ϕ0 ∼ g0(0, t)ϕ0 mod the right hand side of (9). Therefore we have
that

G ∈
〈

F, x
∂F

∂x
,
∂F

∂y

〉

E(x,y,u,t)

+ 〈ϕ1, . . . , ϕn〉E(u,t) + 〈ϕ0〉E(t)

+ M(u, t)2E(x, y, u, t). ¤

Lemma 4.6 Let f0(x, y) ∈ M(r; k) be a simple singularity and
F (x, y, u, t) ∈ M(r; k + n + 1) be a reticular P-K-universal unfoldings of
f0. If F is a reticular t-P-K-universal unfoldings of f = F |t=0 and rK-
codf = 1, then F is reticular t-P-K-equivalent to the function germ of the
form in Proposition 4.5.

Proof. We may assume that f0 has the normal from. Then F is reticular
P-K-equivalent to F0 = f0(x, y) + tϕ0(x, y) + u1ϕ1(x, y) · · · + unϕn(x, y).
Therefore there exists a reticular P-K-isomorphism (α, Φ) from F0 to F .
We write Φ = (xφ1, φ2, φ3, φ4). We set f0 ∈ M(r; k) by f0 = F0|t=0, that is
f0 = f0(x, y)+u1ϕ1(x, y) · · ·+unϕn(x, y). Since rK-codf = 1, it follows that
the map germ u 7→ φ3(u, 0) is invertible. Therefore we may reduce F to the
form: F (x, y, u, t) = f0(x, y)+a(u, t)ϕ0(x, y)+u1ϕ1(x, y) · · ·+unϕn(x, y) for
some a ∈ M(n+1) with ∂a

∂t (0) 6= 0. By an analogous method of Proposition
4.5, we have that

M(u)ϕ0 ∈
〈

f0, x
∂f0

∂x

〉

E(x,y,u)

+ M(x, y, u)
〈

∂f0

∂y

〉
+ M(u)〈ϕ1, . . . , ϕn〉.

We fix τ0 ∈ [0, 1] and define Eτ0(x, y, u, τ) ∈ M(r; k + n + 1) by
Eτ0(x, y, u, τ) = f0(x, y)+(τ0+τ)a(u, 0)ϕ0(x, y)+u1ϕ1(x, y) · · ·+unϕn(x, y).
Since Eτ0 − f0 = (τ0 + τ)a(u, 0)ϕ0, it follows that

∂Eτ0

∂τ
∈

〈
Eτ0 , x

∂Eτ0

∂x

〉

E(x,y,u,τ)

+ M(x, y, u, τ)
〈

∂Eτ0

∂y

〉
+ M(u, τ)

〈
∂Eτ0

∂u

〉
.

By an analogous method of [10, p. 26 Lemma 1.27], we have that F |t=0

and f0 are reticular P-K-equivalent. By Theorem 3.13, it follows that F is
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reticular t-P-K-equivalent to F0. ¤

Now we classify reticular t-P-K-stable unfoldings in M(r; k+n+1) with
respect to stably reticular t-P-K-equivalence for the case r = 0, n ≤ 5 and
r = 1, n ≤ 3. We prove only the case r = 1, n ≤ 3.

Let a reticular t-P-K-stable unfolding F (x, y, u, t) ∈ M(1; k+n+1) with
n ≤ 3 be given. We set f = F |t=0 and f0 = f |u=0. Since F is a reticular
P-K-stable unfolding of f0 as (n + 1)-dimensional unfolding, it follows that
f0 is stably reticular K-equivalent to one of the types in Proposition 4.3. So
we may assume that f0 has the normal form in M(1; 1). We denote X the
type of f0. Then the local ring Qf0 has basis ϕ0, . . . , ϕl−1 (l ≤ n+1) and ϕ0

has the maximal degree. The function germ F0(x, y, u, t) = f0+tϕ0+u1ϕ1+
· · ·ul−1ϕl−1 ∈ M(1; 1 + (l − 1) + 1) is a reticular t-P-K-universal unfolding
of f0 by Proposition 4.5. Since F is a reticular P-K-stable unfolding of f0,
there exists a diffeomorphism germ φ on (Rn+1, 0) such that F1 ∈ M(r; k +
(l − 1) + 1) given by F1(x, y, u, t) = F (x, y, φ(u1, . . . , ul−1, t, 0, . . . , 0)) is
reticular t-P-K-equivalent to F0. So we may reduce F1 to F0. Therefore F

has the form

F (x, y, u, t) = f0(x, y) + a0(u, t)ϕ0(x, y) + · · ·+ al−1(u, t)ϕl−1(x, y),

where the map germ (u1, . . . , un, t) 7→ (a0(u, t), . . . , al−1(u, t)) is a submer-
sion.
In the case that the map germ (u1, . . . , un) 7→ (a0(u, 0), . . . , al−1(u, 0)) is
also a submersion, then F is reticular t-P-K-equivalent to 0X.
In the case that the map germ (u1, . . . , un) 7→ (a0(u, 0), . . . , al−1(u, 0)) is not
a submersion. Then rK-codF |t=0 = 1. It follows that F is reticular t-P-K-
equivalent to F0 by Lemma 4.6. Therefore F is reticular t-P-K-equivalent
to the function germ:

f0 + (t + a0)ϕ0 + (u1 + a1)ϕ1 + · · · (ul−1 + al−1)ϕl−1,

where ai ∈ M(ul, . . . , un)E(u) for i = 1, . . . , l − 1. Hence F is reticular
t-P-K-equivalent to the function germ:

f0 + (t + a0)ϕ0 + u1ϕ1 + · · ·ul−1ϕl−1.

Let l − 1 = n. Since a0 = 0, it follows that F is reticular t-P-K-equivalent
to 1X.
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Let l − 1 < n. Then ∂a0
∂ui

(0) = 0 for all i = l, . . . , n. If
(

∂2a0
∂ui∂uj

(0)
)
i,j=l,...,n

is degenerate then rK-codF |t=0 > 1. It follows that F is not reticu-
lar t-P-K-stable. Therefore

(
∂2a0

∂ui∂uj
(0)

)
i,j=l,...,n

is non-degenerate. Since
a0|u1=···=ul−1=0 is a Morse function on ul, . . . , un, We have that F is retic-
ular t-P-K-equivalent to 1X.

Theorem 4.7 Let r = 0, n ≤ 5 or r = 1, n ≤ 3 and U be a neighborhood
of 0 in Hr × Rk+n+1. Then there exists a residual set O ⊂ C∞(U,R) such
that the following condition holds: For any F̃ ∈ O and (0, y0, u0, t0) ∈ U ,
the function germ F (x, y, u, t) ∈ M(r; k + n + 1) given by F (x, y, u, t) =
F̃ (x, y+y0, u+u0, t+t0)−F̃ (0, y0, u0, t0) is a reticular t-P-K-stable unfolding
of F |t=0.

In the case r = 0, n ≤ 5, F is stably reticular t-P-K-equivalent to one
of the following type:

(0Al) yl+1
1 +

∑l−1
i=1uiy

i
1 + ul (0 ≤ l ≤ 5),

(0D±
4 ) y2

1y2 ± y3
2 + u1y

2
2 + u2y2 + u3y1 + u4,

(0D5) y2
1y2 + y4

2 + u1y
3
2 + u2y

2
2 + u3y2 + u4y1 + u5,

(1Al) yl+1
1 + (t± u2

l−1 ± · · · ± u2
n)yl−1

1 +
∑l−2

i=1 uiy
i
1 + ul (2 ≤ l ≤ 6),

(1D±
4 ) y2

1y2±y3
2+ty2

2+u1y2+u2y1+u3, y2
1y2±y3

2+(t±u2
4)y

2
2+u1y2+u2y1+u3,

(1D5) y2
1y2 + y4

2 + ty3
2 + u1y

2
2 + u2y2 + u3y1 + u4, y2

1y2 + y4
2 + (t± u2

5)y
3
2 +

u1y
2
2 + u2y2 + u3y1 + u4,

(1D±
6 ) y2

1y2 ± y5
2 + ty6

2 + u1y
3
2 + u2y

2
2 + u3y2 + u4y1 + u5,

(1E6) y3
1 + y4

2 + ty1y
2
2 + u1y1y2 + u2y

2
2 + u3y1 + u4y2 + u5.

In the case r = 1, n ≤ 3, F is stably reticular t-P-K-equivalent to one of the
following type:

(0Al) (0 ≤ l ≤ 3),
(0B1) x + u,
(0B2) x2 + u1x + u2,
(0B3) x3 + u1x

2 + u2x + u3,
(0C±3 ) ±xy + y3 + u1y

2 + u2y + u3,
(1Al) (2 ≤ l ≤ 4), (1D±

4 ),
(1B1) x + t,
(1B2) x2 + tx + u1, x2 + (t± u2

2)x + u1, x2 + (t± u2
2 ± u2

3)x + u1,
(1B3) x3 + tx2 + u1x + u2, x3 + (t± u2

3)x
2 + u1x + u2,

(1B4) x4 + tx3 + u1x
2 + u2x + u3,
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(1C±3 ) ±xy + y3 + ty2 + u1y + u2, ±xy + y3 + (t± u2
3)y

2 + u1y + u2,
(1C4) xy + y4 + ty3 + u1y

2 + u2y + u3,
(1F4) x2 + y3 + txy + u1x + u2y + u3.

We remark that a class 1X is not one equivalent class, since non-degenerate
quadratic forms +u2 and −u2 may define different classes.

Proof. We prove only the case r = 1, n ≤ 3. All function germ in M(1; k)
with the reticular K-codimension ≤ 3 are stably reticular K-equivalent to
one of the types in Proposition 4.3. We define the stably reticular P-K-
equivalence classes by

(0Al) yl+1
1 +

∑l−1
i=1uiy

i
1 + ul (0 ≤ l ≤ 3),

(0B1) x + u,
(0B2) x2 + u1x + u2,
(0B3) x3 + u1x

2 + u2x + u3,
(0C±3 ) ±xy + y3 + u1y

2 + u2y + u3,
(1Al) yl+1

1 + (±u2
l−1 ± · · · ± u2

n)yl−1
1 +

∑l−2
i=1uiy

i
1 + ul (2 ≤ l ≤ 4),

(1D±
4 ) y2

1y2 ± y3
2 + u1y2 + u2y1 + u3, y2

1y2 ± y3
2 ± u2

4y
2
2 + u1y2 + u2y1 + u3,

(0B1) x,
(1B2) x2 + u1, x2 ± u2

2x + u1, x2 + (±u2
2 ± u2

3)x + u1,
(1B3) x3 + u1x + u2, x3 ± u2

3x
2 + u1x + u2,

(1B4) x4 + u1x
2 + u2x + z,

(1C±3 ) ±xy + y3 + u1y + u2, ±xy + y3 ± u2
3y

2 + u1y + u2,
(1C4) xy + y4 + u1y

2 + u2y + u3,
(1F4) x2 + y3 + u1x + u2y + u3.

We define that

O′ =
{
F ∈ C∞(U,R) | jl

1F |x=0 is transversal to [X] for all above X
}

Then O′ is a residual set in C∞(U,R).
We set

Y =
{
jlf(0) ∈ J l(r + k + n) | rP-Kcodf > 1.

}

Then Y is an algebraic set in J l(r + k + n). We also set

O′′ =
{
F ∈ C∞(U,R) | jl

1F |x=0 is transversal to Y
}
.
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Then Y has codimension > k+n+1 because all function germ f ∈ M(1; k+n)
with jlf(0) ∈ Y is adjacent to one of the above list which are simple. Then
we have that

O′′ =
{
F ∈ C∞(U,R) | jl

1F (U ∩ {x = 0}) ∩ Y = ∅}.

We set O = O′ ∩O′′. Then O has the required condition. ¤
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