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SIMULTANEOUS SMALL COVERINGS BY
SMOOTH FUNCTIONS UNDER THE

COVERING PROPERTY AXIOM

Abstract

The covering property axiom CPA is consistent with ZFC: it is sat-
isfied in the iterated perfect set model. We show that CPA implies that
for every ν ∈ ω ∪ {∞} there exists a family Fν ⊂ Cν(R) of cardinality
ω1 < c such that for every g ∈ Dν(R) the set g \

⋃
Fν has cardinality

≤ ω1. Moreover, we show that this result remains true for partial func-
tions g (i.e., g ∈ Dν(X) for some X ⊂ R) if, and only if, ν ∈ {0, 1}. The
proof of this result is based on the following theorem of independent
interest (which, for ν 6= 0, seems to have been previously unnoticed):
for every X ⊂ R with no isolated points, every ν-times differentiable
function g : X → R admits a ν-times differentiable extension ḡ : B → R,
where B ⊃ X is a Borel subset of R. The presented arguments rely
heavily on a Whitney’s Extension Theorem for the functions defined on
perfect subsets of R, which short but fully detailed proof is included.
Some open questions are also posed.
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1 Preliminaries, the main result, and discussion

For an X ⊂ R, let X ′ ⊂ R denote, as usual, the set of all accumulation points
of X. A function f : X → R is differentiable, provided it admits a derivative,
that is, a map f ′ : X ′ ∩X → R defined, for every p ∈ X ′ ∩X, as

f ′(p) = lim
x→p, x∈X

f(x)− f(p)

x− p
.

Note that X ′ ∩X consists of all non-isolated points of X. We will be mainly
interested in the perfect sets X when, of course, X ′ ∩X = X.

For n ∈ ω = {0, 1, 2, . . .} and X ⊂ R, we will use symbol Dn(X) to denote
the class of all functions f : X → R which are n-times differentiable (with
all derivatives being finite) and symbol Cn(X) for the class of all f ∈ Dn(X)
whose n-th derivative f (n) is continuous. In particular, C0(X) = D0(X) is the
the class C(X) of all continuous maps from X to R. Also, C∞(X) = D∞(X)
denote all infinitely many times differentiable maps f : X → R. Recall that

C∞(X) ⊂ · · · ⊂ Cn(X) ⊂ Dn(X) ⊂ · · · ⊂ C1(X) ⊂ D1(X) ⊂ C0(X)

and that for X = R all these inclusions are proper.
In what follows we identify functions with their graphs. We will write

A ⊂? B to denote |A \B| ≤ ω1 which, clearly, defines a partial order relation.
Note that

if Aξ ⊂? Bξ for all ξ < ω1, then also
⋃
ξ<ω1

Aξ ⊂?
⋃
ξ<ω1

Bξ. (1)

Symbol CPAprism denotes a consequence, and a simpler part, of the full version
of the covering property axiom CPA.

The main aim of this paper is to present, prove, and discuss the following
Main Theorem. The proof of its part (i) for ν = 0 can be also found in [6].
The results in the direction of partitioning the Euclidean space into subsets
with certain smoothness properties can also be found in [17].

Main Theorem. CPAprism implies that for every ν ∈ ω ∪{∞} there exists a
family Fν ⊂ Cν(R) of cardinality ω1 < c such that

(i) g ⊂?
⋃
Fν for every g ∈ Dν(R).

Moreover, for n ∈ {0, 1} we also have

(ii) g ⊂?
⋃
Fn for every g ∈ Dn(X), where X ⊂ R is arbitrary.

The Main Theorem generalizes part (a) of the following result of Ciesielski
and Pawlikowski from [8]. (See [7, theorems 4.1.1(b) and 4.1.6].) It is also
closely related to its part (b), where f−1 stands for {〈f(x), x〉 : x ∈ R}.
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Proposition 1.1. CPAprism implies that c = ω2 and

(a) For every 0 < n < ω and g ∈ Dn(R) there is a family Fg ⊂ Cn(R) of
cardinality ω1 such that g ⊂

⋃
Fg.

(b) There is a G ⊂ C1(R) of cardinality ω1 such that R2 =
⋃
f∈G(f ∪ f−1).

We restate Proposition 1.1(a) as Theorem 2.2, since its proof presented in
[8] and [7] is not correct for the case of n > 1, as it is based on the following
proposition (L), which is false for n > 1. Thus, our proof of Theorem 2.2
constitutes the first correct argument for this result. In (L) and below we use
the notation N = {1, 2, 3, . . .} and ∆ = {〈x, x〉 : x ∈ R}.

(L) For n ∈ N let f ∈ Cn−1(R) and let P ⊂ R be a perfect set for which the

map F : P 2 \∆→ R defined by F (x, y) = f(n−1)(x)−f(n−1)(y)
x−y is uniformly

continuous and bounded. Then f � P can be extended to an f̄ ∈ Cn(R).

The falsehood of (L) is justified by the following example.

Example 1.1. Let C be the Cantor ternary set. There exists an f ∈ C1(R)
such that f ′ � C ≡ 0 and for no perfect set P ⊂ C there is an extension
f̄ ∈ C2(R) of f � P . In particular, f � C contradicts (L) for n = 2.

Construction. For n ∈ N let Jn be the family of all connected components
of R \ C of length 3−n. Define f0 : R→ R as

f0(x) =

{
2−n

3−n dist(x,C) if x ∈ J , where J ∈ Jn for some n ∈ N
0 otherwise.

It is easy to see that f0 is continuous, as f0[J ] ⊂ [0, 2−n] for every J ∈ Jn.
Define f : R → R as f(x) =

∫ x
0
f0(t) dt. Clearly we have f ∈ C1(R) and

f ′ � C = f0 � C ≡ 0. We just need to verify the statement about the extension.
To see this, notice that for every n ∈ N and distinct a, b ∈ C

if |b− a| < 3−n, then
|f(b)− f(a)|

(b− a)2
>

1

36

(
3

2

)n
. (2)

Indeed, if m ∈ N is the smallest such that there is J = (p, q) ∈ Jm between
a and b, then m > n, |b − a| ≤ 3 · 3−m, and |f(b) − f(a)| ≥

∫ q
p
f0(t)dt =

1
23−m 1

22−m. So, |f(b)−f(a)|
(b−a)2 ≥

1
4 3−m2−m

(3·3−m)2 = 1
36

(
3
2

)m
> 1

36

(
3
2

)n
. But this

means that for every perfect P ⊂ C the map f � P does not satisfy condition
(W2) from Theorem 3.3, our version of Whitney’s Extension Theorem, which
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is necessary for admitting extension f̄ ∈ C2(R). More specifically, either
(f � P )′′(a) does not exist or else

∣∣q2
f�P (a, b)

∣∣ =

∣∣f(b)− f(a)− 1
2 (f � P )′′(a)(b− a)2

∣∣
(b− a)2

≥ |f(b)− f(a)|
(b− a)2

− 1

2
(f � P )′′(a),

that is, q2
f�P is not continuous at the point 〈a, a〉, since, by (2), we have

limb→a,b∈P
|f(b)−f(a)|

(b−a)2 =∞.

Notice also, that if f is from Example 1.1, then g = f � C shows that the
property (ii) from the Main Theorem is false for n = 2 even in case when
X = C is perfect, g ∈ C∞(X), and g has an extension f ∈ C1(R).

Remark 1.2. In the Main Theorem is also possible to ensure that have part
(b) from Proposition 1.1: R2 =

⋃
f∈F1

(f ∪ f−1). This can be achieved by
replacing its family F1 with G ∪ F1, where G is from Proposition 1.1.

It is clear that the Main Theorem implies immediately Proposition 1.1(a).
Indeed, it implies that for every g ∈ Dn(R) we have g ⊂?

⋃
Fn. In particular,

for every g ∈ Dn(R) there exists a family Cg of cardinality ≤ ω1 consisting of
constant functions such that Fg = Fn ∪ Cg satisfies Proposition 1.1(a).

The Main Theorem generalizes Proposition 1.1(a) twofolds: (1) for n = 1
it concerns all partial functions, rather than just functions defined on R; (2)
each family Fn covers, in the ⊂? sense, every g ∈ Dn(R), while each family
Fg in Proposition 1.1 concerns only a single function g.

Notice that the generalization (2) is essential, as shown in the following
Example 1.2. (The details and constructions needed in order to justify Exam-
ples 1.2 and 1.3 shall be presented in Section 6.)

Example 1.2. Under CPAprism, there exists a collection {F̄g : g ∈ D1(R)}
such that each F̄g satisfies (a) of Proposition 1.1, while no single F̄g can serve
as the family F1 in the Main Theorem.

It may also look, at a first glance, that the family G from Proposition 1.1
could always be used as the family F1 (or F0) in the Main Theorem—after all,
it works for any constant function g. However, this is not the case, as shown
in the next example.

Example 1.3. Under CPAprism, there exists a family G satisfying (b) of
Proposition 1.1 such that if G1 = G ∪ {g−1 ∈ RR : g ∈ G} and h : R → R
is given as h(x) = x+ 2, then h \

⋃
G1 has cardinality c.
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2 Obtaining the Main Theorem via three key theorems

Our proof of Main Theorem is based on the following three theorems, which
will be proved in Sections 4 and 5, respectively. The first of these theo-
rems generalizes [6, theorem 3.6] from the case of n = 0 to an arbitrary
ν ∈ ω∪{∞}. The second is presented in Ciesielski and Pawlikowski [8] and [7,
theorems 4.1.1(b) and 4.1.6]. However the proof presented there is incorrect,
as indicated above. The third theorem for the case of n = 0 follows quite
easily from [7, theorem 4.1.1(a)]. However, the case of n = 1 is a bit more
involved.

Theorem 2.1. CPAprism implies that for every ν ∈ ω ∪ {∞} and every com-
pact interval I = [a, b] ⊂ R there exists a family FIν ⊂ Cν(R) of cardinality
ω1 < c such that g ⊂?

⋃
FIν for every g ∈ Cν(I).

Theorem 2.2. CPAprism implies that for every n ∈ N and g ∈ Dn(R) there
exists a family Fg ⊂ Cn(R) of cardinality ω1 < c such that g ⊂

⋃
Fg.

Theorem 2.3. CPAprism implies that for every n ∈ {0, 1} and g ∈ Dn(X)
with X ⊂ R there exists a family Fg ⊂ Cn(R) of cardinality ω1 < c such that
g ⊂

⋃
Fg.

Proof of Main Theorem. For every ν ∈ ω ∪ {∞} let Fν =
⋃∞
n=1 F

[−n,n]
ν ,

where each family F [−n,n]
ν is from Theorem 2.1. Clearly Fν has cardinality

ω1. To see that it is as desired, choose a g ∈ Dν(X) such that X ⊂ R and
X = R unless ν < 2. We need to show that g ⊂?

⋃
Fν .

For this, notice that there exists a family Fg ⊂ Cν(R) of cardinality ≤ ω1 <
c such that g ⊂

⋃
Fg. For ν < 2 this follows from Theorem 2.3, for ν = ∞

this is justified by Fg = {g} ⊂ D∞(R) = C∞(R), while for the remaining
cases this follows from Theorem 2.2. For each n ∈ N and f ∈ Fg we have

f � [−n, n] ⊂?
⋃
F [−n,n]
ν ⊂

⋃
Fν . Therefore

g ⊂
⋃
Fg =

⋃
f∈Fg

∞⋃
n=1

f � [−n, n] ⊂?
⋃
Fν ,

as needed.
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3 Whitney’s Extension Theorem and other preliminaries

Definition 3.1. For n < ω, perfect set P ⊂ R, f ∈ Dn(P ), and a ∈ P let
Tna f(x) denote the n-th degree Taylor polynomial of f at a, that is,

Tna f(x) =

n∑
i=0

f (i)(a)

i!
(x− a)i.

We define the map qnf : P 2 → R as

qnf (a, b) =


Tnb f(b)− Tna f(b)

(b− a)n
if a 6= b,

0 if a = b.

Notice that, for a, x ∈ P , the quantity Tnx f(x) − Tna f(x) = f(x) − Tna f(x) is

the remainder Rnaf(x) of Tna f(x). In particular, qnf (a, b) =
Rn

af(b)
(b−a)n for all a 6= b.

We will use the following simple facts about qnf : R2 → R, which can be
found in many advance calculus texts.

Proposition 3.2. Let n < ω.

(i) If f ∈ Dn(R), then qnf : R2 → R is continuous with respect to the second
variable, that is, the map R 3 x 7→ qnf (a, x) ∈ R is continuous for every
a ∈ R.

(ii) If f ∈ Cn(R), then qnf : R2 → R is continuous.

Proof. For n = 0 both statements are obvious. So assume that n > 0.

(i). Let a ∈ R. It is enough to show that qnf (a, ·) is continuous at a, that
is, that the limit

L = lim
x→a

qnf (a, x) = lim
x→a

Tnx f(x)− Tna f(x)

(x− a)n

exists and is equal to 0.

In order to see this, notice that, for every i < n, the limit

Li = lim
x→a

di

dxi (Tnx f(x)− Tna f(x))
di

dxi ((x− a)n)
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is of indeterminate form 0
0 and that L = L0. Thus, using L’Hôpital’s Rule

(n− 1)-times we obtain

L = lim
x→a

dn−1

dxn−1 (Tnx f(x)− Tna f(x))
dn−1

dxn−1 ((x− a)n)

= lim
x→a

f (n−1)(x)−
(
f (n−1)(a) + f (n)(a)(x− a)

)
n!(x− a)

= lim
x→a

1

n!

(
f (n−1)(x)− f (n−1)(a)

x− a
− f (n)(a)

)
= 0,

as needed.
(ii). Clearly qnf is continuous on R2 \∆. We need to show that qnf is con-

tinuous at every 〈a, a〉. To see this, choose a sequence 〈ak, bk〉k∈N converging
to 〈a, a〉. We need to show that limk→∞ qnf (ak, bk) = 0.

By the standard formula for the Taylor polynomial reminder, for every k ∈
N there is ξk between ak and bk with f(bk)− Tn−1

ak
f(bk) = f(n)(ξk)

n! (bk − ak)n.

Thus, since Tnbkf(bk)− Tnakf(bk) = f(bk)−
(
Tn−1
ak

f(bk) + f(n)(bk)
n! (bk − ak)n

)
,

qnf (ak, bk) =
f(n)(ξk)

n! (bk − ak)n − f(n)(bk)
n! (bk − ak)n

(ak − bk)n
=
f (n)(ξk)− f (n)(bk)

n!

converges to 0, as k → ∞, since f (n) is continuous and 〈ak, bk〉
k−→ 〈a, a〉.

Therefore,
lim
k→∞

qnf (ak, bk) = 0 = qnf (a, a),

as needed.

Our proof of Main Theorem will make use the following version of Whit-
ney’s Extension Theorem.

Theorem 3.3. Let P ⊂ R be perfect, n ∈ N, and f : P → R. There exists an
extension f̄ ∈ Cn(R) of f if, and only if,

(Wn) f ∈ Cn(P ) and the map qn−i
f(i) : P 2 → R is continuous for every i ≤ n.

Also, f admits an extension f̄ ∈ C∞(R) if, and only if, (Wn) holds for every
n ∈ N.

Proof. To see the necessity of the property (Wn) assume that f : P → R
has an extension f̄ ∈ Cn(R). Then, clearly f = f̄ � P ∈ Cn(P ). Moreover,



366 K. Ciesielski and J. B. Seoane–Sepúlveda

f̄ (i) ∈ Cn−i(R) for all i ≤ n. So by Proposition 3.2, each function qn−i
f̄(i) is

continuous and so is qn−i
f(i) = qn−i

f̄(i) � P 2.

The sufficiency of (Wn) can be deduced from [9, theorem 3.1.14].1 However,
this and other proofs of Whitney’s Extension Theorem (see, e.g., [1, 2, 10]) are
quite long, mainly due to their generality and framework considered (of dealing
with partial functions on Rn). Thus, for a sake of simplicity and completeness
of this article, we include a simple proof of this theorem, in our particular
form, in Section 7.

In the case of C∞ extensions, the necessity of all conditions (Wn) follows
from the finite cases. They are sufficient, since then f satisfies the assumptions
of C∞ version of Whitney’s extension theorem from [14, theorem 3]2 and so,
f admits an extension f̄ ∈ C∞(R).

Definition 3.4. Let τ : [0,∞]→ [0, 1] be an increasing homeomorphism. For
example, we can take τ(x) = 2

π arctanx. For a perfect set P ⊂ R and f ∈
Dn(P ) let ϕnf : P 2 → R be defined as

ϕnf (a, b) =

n∑
k=0

|qn−k
f(k) (a, b)|+

n∑
k=0

|qn−k
f(k) (b, a)|.

Also, for ν ∈ ω ∪ {∞} let Cν∗ (P ) be the class of all f ∈ C(P ) for which

(I) there exists a k ≤ ν such that f ∈ Ck(P ), the map τ ◦ ϕkf � P 2 \ ∆ is
uniformly continuous, and either k = ν or else k < ν and, for all x ∈ P ,

f (k+1)(x)
df
= lim
y→x, y∈P

f (k)(x)− f (k)(y)

x− y
= ±∞.

Notice that C0
∗(P ) = C(P ).

Lemma 3.5. Let P ⊂ R be perfect, n ∈ N, and f ∈ Cn(P ). Then ϕnf is

continuous, if, and only if, qn−i
f(i) is continuous for every i ≤ n.

1For every i ≤ n and compact C ⊂ P , the restriction qn−i
f(i)

� C2 is uniformly continuous.

So, if ρi(C, δ) = sup{|qn−i
f(i)

(a, b)− qn−i
f(i)

(a′, b′)| : a, a′, b, b′ ∈ C & max{|a− a′|, |b− b′|} ≤ δ}
for δ > 0, then limδ→0 ρi(C, δ) = 0. Therefore, for every a, b ∈ C with 0 < |a − b| ≤ δ,

we have

∣∣∣∣ (Tn
a f)

(i)(b)−(Tn
b f)

(i)(b)

(a−b)n

∣∣∣∣ =
∣∣∣qn−i
f(i)

(a, b)
∣∣∣ =

∣∣∣qn−i
f(i)

(a, b)− qn−i
f(i)

(a, a)
∣∣∣ ≤ ρ(C, δ), the

assumption of Whitney’s Extension Theorem from [9, theorem 3.1.14].
2This result can be also deduced from Whitney’s papers [20] and [19, §12]. See also the

1998 paper [15], where it is shown that the analogous result for functions on Rk, k ≥ 2, does
not hold.
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Proof. Clearly continuity of all maps qn−i
f(i) implies continuity of ϕnf .

To prove the other implication, assume that ϕnf is continuous and fix an

i ≤ n. We need to show that qn−i
f(i) is continuous. Since qn−i

f(i) is clearly con-

tinuous on P 2 \ ∆ and qn−i
f(i) (a, a) = 0 for all a ∈ P , it remains to show that

limp→〈a,a〉

∣∣∣qn−if(i) (p)
∣∣∣ = 0. But this follows from the continuity of ϕnf , as

0 ≤ lim
p→〈a,a〉

∣∣∣qn−if(i) (p)
∣∣∣ ≤ lim

p→〈a,a〉
ϕnf (p) = ϕnf (a, a) = 0,

finishing the proof.

As in [7], given a subset Y of a Polish space X, we let Perf(Y ) denote
the collection of all subsets of Y homeomorphic to the Cantor set C (rather
than all perfect subsets of Y ). The key notion behind the axiom CPAprism is
that of Fprism-density of the families of E ⊂ Perf(X). The definition of this
notion is based on the family P =

⋃
0<α<ω1

Pα of compact perfect sets (each
Pα consisting of subsets of Cα), whose precise description is not described here,
since it is not essential to what follows. (It can be found in [7].)

We will refer to a set P ∈ Perf(X) as a prism if it comes with a continuous
injection h (possibly given only implicitly) from an E ∈ P onto P . We say
that Q ∈ Perf(X) is a subprism of a prism P provided Q = h[E′] for some
E′ ⊂ E from P. A family E ⊂ Perf(X) is Fprism-dense provided for every
prism P in Perf(X) there exists a subprism Q of P with Q ∈ E . Now, we can
state CPAprism. (See [8] or [7].)

CPAprism: c = ω2 and for every Polish space X and every Fprism-dense family
E ⊂ Perf(X) there is an E0 ⊂ E such that |E0| ≤ ω1 and |X \

⋃
E0| ≤ ω1.

To use of CPAprism we will need the following two lemmas on Fprism-density.

Lemma 3.6. Let X and Y be Polish spaces.

(a) Every prism P ∈ Perf(X × Y ) admits a subprism Q such that either
π1 � Q or π2 � Q is one-to-one, where π1 and π2 are the projections of
X×Y onto the first and the second coordinate, respectively. In particular,

E0 = {P ∈ Perf(X × Y ) : either π1 � P or π2 � P is one-to-one}

is Fprism-dense.

(b) Let P ∈ Perf(R×Y ) be a prism and ψ : P → R be a continuous function.

Assume that π1 � P is one-to-one, that is, that ψP
df
= ψ ◦ (π1 � P )−1 ∈

C(π1[P ]). Then for every n < ω there exists a subprism Q of P such
that ψQ = ψ ◦ (π1 � Q)−1 ∈ Cn∗ (π1[Q]).
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(c) If X ⊂ R is an interval and ψ : X×Y → R is continuous, then for every
n < ω the families

En = {P ∈ Perf(X × Y ) : π2 � P is one-to-one or

π1 � P is one-to-one and ψP ∈ Cn∗ (π1[P ])}

and E∞ =
⋂
n<ω En are Fprism-dense.

Proof. (a). For X = Y = R this is proved in [7, proposition 4.1.3(b)]. (The
condition [7, (4.5) p. 100] implies that either π1 or π2 is one-to-one on h[E].)
The same argument works for arbitrary Polish spaces X and Y .

(b). We will prove this by induction on n < ω. Let P and ψ be as in the
assumptions. For n = 0 this holds forQ = P , as ψ◦P ∈ C(π1[P ]) = C0

∗(π1[P ]).
So, assume that for some n < ω there is a subprism Q of P such that ψQ ∈
Cn∗ (π1[Q]). We need to find a subprism R of Q with ψR ∈ Cn+1

∗ (π1[R]). Let
k ≤ n be the number from (I) justifying that f = ψQ belongs to Cn∗ (π1[Q]).
If k < n, then R = Q is already our desired subprism of P belonging to
Cn+1
∗ (π1[Q]), as this is justified by the same k. So, we can assume that k = n,

that is, that f = ψQ ∈ Cn(Q) and f (n) ∈ C(Q).

Put g = f (n) = ψ
(n)
Q and let ĥ : E → Q, with E ∈ P, be the bijection

making Q a prism. By [7, lemma 4.2.2] applied to g and h = π1 ◦ ĥ, there
exists a subset E′ ∈ P of E such that either g � π1[h[E′]] has the derivative
with a constant value in {∞,−∞}, or else g � π1[h[E′]] admits an extension

f̂ ∈ C1(R). Consider the subprism R′ = ĥ[E′] of Q.
If g′ = f (n+1) ≡ ±∞ on π1[h[E′]], then ψR′ ∈ Cn+1

∗ (π1[R′]), as this is
justified by k = n. In particular, R = R′ is as needed.

Thus, assume that g � π1[R′] admits an extension f̂ ∈ C1(R). Then, the

restriction of g = f (n) = ψ
(n)
Q to π1[R′] has continuous derivative, that is,

f̃ = ψR′ is in Cn+1(P̂ ), where P̂ = π1[R′]. In particular, the map

G = τ ◦ ϕn+1

f̃
◦ 〈π1, π1〉 : (h[E′])2 \∆→ [0, 1]

is well defined, symmetric, and continuous. Therefore, by [7, proposition 4.2.1],
there exists a subset E′′ ∈ P of E′ such that G is uniformly continuous
on (h[E′′])2 \ ∆. Hence, for a subprism R = h[E′′] of Q, we have ψR ∈
Cn+1
∗ (π1[R]) with k = n+ 1, since ψR ∈ Cn+1(π1[R]) and τ ◦ϕkψR

� π1[R]2 \∆
is uniformly continuous.

(c). For n < ω this immediately follows from (a) and (b).
To see the Fprism-density of E∞ fix a prism P ∈ Perf(X × Y ). We need

to find its subprism Q ∈ E∞. If there is n < ω and a subprism Q ∈ En
of P for which either π2 � P is 1-to-1 or both π1 � P is 1-to-1 and ψP ∈
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Cn∗ (π1[P ]) \Cn(π1[P ]), then Q ∈ E∞ is as desired. So, assume that this is not
the case.

Let h : E → P , with E ∈ Pα and 0 < α < ω1, be the bijection making P a
prism. For every n < ω let

Dn = {E′ ∈ Pα : E′ ⊂ E and ψ ◦ (π1 � h[E′])−1 ∈ Cn(π1[h[E′]])}

and notice that for every E′ ∈ Pα contained in E there exists an E′′ ∈ Dn
contained in E′. Indeed, P ′ = h[E′] is a subprism of P . Since En is Fprism-
dense, there exists a subprism P ′′ of P ′ with P ′′ ∈ En. Then P ′′ = h[E′′] for
some E′′ ∈ Pα contained in E′. Also, by our assumption, P ′′ ∈ En must be
justified by the fact that π1 � P ′′ is 1-to-1 and ψP ′′ ∈ Cn(π1[P ′′]), ensuring
that E′′ is indeed in Dn.

The above argument shows that the families Dn satisfy the assumptions
of [7, corollary 3.1.3]. Therefore, by [7, corollary 3.1.3], there exists an E0 ∈⋂
n<ω Dn. In particular, Q = h[E0] is a subprism of P with ψ ◦ (π1 � Q)−1 ∈⋂
n<ω C

n(π1[Q]) ⊂
⋂
n<ω C

n
∗ (π1[Q]), that is, Q ∈ E∞, as needed.

Fix a ν ∈ ω ∪ {∞} and an interval I = [a, b]. We will considered Cν(I)
with the metric:

ρ(f, g) =
∑
i≤n

‖f (i) − g(i)‖∞

when ν < ω, and with metric

ρ(f, g) =
∑
i<ω

2−i min{1, ‖f (i) − g(i)‖∞}

when ν = ∞. Notice that Cν(I), with such metric, is a Polish space (for
finite ν see, e.g., [11, example 5.4]. For the general case we refer the interested
reader to the calculations from either [18, pages 550 and 562] or [16, exam-
ple 1.46], or [22, §1]). In particular, I×Cν(I) is a Polish space. Define function
ψνI : I × Cν(I)→ R by ψνI (x, g) = g(x) and notice that it is continuous. Also,
for S ⊂ I × Cν(I) and g ∈ Cν(I) let

Sg = {x ∈ I : 〈x, g〉 ∈ S}.

Lemma 3.7. Let I = [a, b], ν ∈ ω ∪ {∞}, and E∞ be as in Lemma 3.6(c)
used with Y = Cν(I) and ψ = ψνI . Then, for every Q ∈ E∞ there exists an
fQ ∈ Cν(R) such that

(?) g � Qg ⊂? fQ for every g ∈ Cν(I).
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Proof. Fix a Q ∈ E∞. If Qg is countable for every g ∈ Cν(I), then every
function fQ ∈ Cν(R) satisfies (?). So, assume that there exists a g0 ∈ Cν(I)
such that Qg0 is uncountable. In particular, π2 � Q is not one-to-one, so π1 � Q
is one-to-one and ψQ ∈ Cν∗ (π1[Q]). In fact,

ψQ ∈ Cν(π1[Q]).

To see this, first note that

g � Qg = ψQ � Qg for every g ∈ Cν(I),

since for every x ∈ Qg we have ψQ(x) = ψ(x, g) = g(x). In particular, if P is a
perfect subset of Qg0 , then, for every number k < ν, we have (ψQ � P )(k+1) =

(g0 � P )(k+1) ∈ C(P ). Thus, for every x ∈ P , (ψQ)(k+1)(x) = g
(k+1)
0 (x) ∈ R so

that (ψQ)(k+1)(x) cannot be equal to ±∞. But, by the definition of Cν∗ (π1[Q]),
this can happen only when ψQ ∈ Cν(π1[Q]).

Next, let

Q̂ = {q ∈ Q : (∀ open U ⊂ I × Cν(I)) q ∈ U ⇒ (∃g ∈ Cν(I)) |(U ∩Q)g| = c}.

Notice, that Q̂ is closed in Q, π1[Q̂] ⊂ I is perfect, and ψQ̂ ∈ Cν(π1[Q̂]).
Moreover,

g � Qg = ψQ � Qg ⊂? ψQ̂ � Q̂g for every g ∈ Cν(I),

since Qg\Q̂g is at most countable, as (I×Cν(I))\Q̂ is a countable union of sets
W for which W g is countable. We will show that ψQ̂ satisfies the assumptions
of Theorem 3.3, our version of Whitney’s Extension Theorem; that is, that for
every n ∈ N with n ≤ ν the property (Wn) holds. Notice, that this will finish
the proof of the lemma, since then there exists an fQ ∈ Cν(R) extending ψQ̂
and so,

g � Qg = ψQ � Qg ⊂? ψQ̂ � Q̂g ⊂ ψQ̂ ⊂ fQ for every g ∈ Cν(I),

the desired property (∗).
So, fix an n ∈ N with n ≤ ν. To see that (Wn) holds, by Lemma 3.5, it is

enough to show that ϕnψQ̂
is continuous.

To see this, first notice that ψQ ∈ Cn(π1[Q]) ∩ Cn∗ (π1[Q]). Thus, the map
τ ◦ ϕnψQ

� (π1[Q])2 \∆ is uniformly continuous. In particular, it has a unique

continuous extension F : (π1[Q])2 → [0, 1] and τ−1 ◦ F : (π1[Q])2 → [0,∞] is a
continuous extension of ϕnψQ

� (π1[Q])2 \∆. Therefore, ϕ = τ−1 ◦F � (π1[Q̂])2
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is a continuous extension of ϕnψQ̂
� (π1[Q̂])2 \ ∆. It remains to show that

ϕ = ϕnψQ̂
, that is, that ϕ(a, a) = 0 = ϕnψQ̂

(a, a) for every a ∈ π1[Q̂].

To see this, let g ∈ Cν(I) be such that 〈a, g〉 ∈ Q̂. Since ψQ̂ ∈ Cν(π1[Q̂]),

it is enough to show that for every open U ⊂ I×Cν(I) containing 〈a, g〉 there
exists a 〈â, ĝ〉 ∈ U ∩ Q̂ such that ϕ(â, â) = 0.

So, fix an open U ⊂ I × Cν(I) containing 〈a, g〉. By the definition of Q̂,
there exists a ĝ ∈ Cν(I) such that (U ∩Q)ĝ is uncountable. Let P ⊂ (U ∩Q)ĝ

be a perfect set and notice that ψQ̂ � P = ĝ � P has an extension ĝ ∈ Cν(I),

which clearly can be further extended to a ḡ ∈ Cν(R). In particular, by
Theorem 3.3, the map ϕnĝ�P : P 2 → R is continuous. So, for every â ∈ P we

have 〈â, ĝ〉 ∈ U ∩ Q̂ and ϕ(â, â) = limb→â,b∈P ϕ(â, b) = limb→â,b∈P ϕ
n
ψQ̂

(â, b) =

limb→â,b∈P ϕ
n
ĝ�P (â, b) = ϕnĝ�P (â, â) = 0, as needed.

The following lemma will be used in the proof of Theorem 2.2.

Lemma 3.8. Let ψ : Q2 \ ∆ → [−∞,∞] be continuous, where Q ⊂ R is
perfect. If

(a) δ1, δ2 : Q2 ∩∆→ [−∞,∞] are continuous,

(b) ψ1 = ψ ∪ δ1 is continuous with respect to the first variable, and

(c) ψ2 = ψ ∪ δ2 is continuous with respect to the second variable,

then δ1 = δ2.

Proof. Replacing [−∞,∞] with its homeomorphic bounded copy, say [−1, 1],
if necessary, we can always assume that the ranges of ψ, δ1, and δ2 have only
finite values.

By way of contradiction, assume that δ1 6= δ2. Then, there exists an ε > 0
and an open non-empty set U ⊂ Q such that3

|δ1(p, p)− δ2(q, q)| > ε for every p, q ∈ U . (3)

Since ψ1 is continuous with respect to the first variable (by item (b) above), we
have that for every q ∈ U there is an nq ∈ N such that |ψ1(q, q)−ψ1(p, q)| < ε/2
for every p ∈ Q with |p − q| < 1/nq. On the other hand, since U is of
second category in Q, there is an n ∈ N such that Z = {q ∈ U : nq = n} is
dense in some non-empty open subset V of U . Now, choose p ∈ V . Since
ψ2 is continuous with respect to the second variable (by item (c) above),

3Indeed, if r ∈ Q is such that δ1(r, r) 6= δ2(r, r) and ε = |δ1(r, r) − δ2(r, r)|/3, then the
set U = {p ∈ Q : |δ1(p, p)− δ1(r, r)| < ε & |δ2(p, p)− δ2(r, r)| < ε} is as needed.
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there exists a non-empty open subset W of V containing p and such that
|ψ2(p, p)−ψ2(p, q)| < ε/2 for every q ∈W . Next, choose q ∈W ∩Z such that
0 < |p − q| < 1/n. Then |ψ1(q, q) − ψ1(p, q)| < ε/2, as |p − q| < 1/n = 1/nq.
In particular,

|δ1(p, p)− δ2(q, q)| ≤ |ψ1(p, p)− ψ1(p, q)|+ |ψ2(p, q)− ψ2(q, q)| < ε,

contradicting (3).

4 Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Fix a ν ∈ ω ∪ {∞} and an interval I = [a, b]. We
will use CPAprism for the Polish space I×Cν(I). The idea of this proof comes
from the proof of the existence of a family G from Proposition 1.1(b), see [7,
theorem 4.1.1].

Let ψ = ψνI be as in Lemma 3.7. By Lemma 3.6(c) used with this ψ, the
family E∞ is Fprism-dense. Therefore, by CPAprism, there is an E ⊂ E∞ such
that |E| ≤ ω1 and |(I × Cν(I)) \

⋃
E| ≤ ω1, that is, I × Cν(I) ⊂?

⋃
E .

By Lemma 3.7, for every Q ∈ E there exists an fQ ∈ Cν(R) satisfying (?).
We claim that the family

FIν = {fQ : Q ∈ E}

is as needed.
Indeed, for every g ∈ Cν(I) we have I×{g} ⊂ I×Cν(I) ⊂?

⋃
E =

⋃
Q∈E Q.

So, using (?), the fact that |E| ≤ ω1, and (1), we obtain

g ⊂? g �

⋃
Q∈E

Qg

 =
⋃
Q∈E

(g � Qg) ⊂?
⋃
Q∈E

fQ =
⋃
FIν ,

as desired.

Proof of Theorem 2.2. Fix an n ∈ N and a g ∈ Dn(R). Let

En =
{
Q ∈ Perf(R) : g � Q ∈ Cn(Q) & ϕng�Q ∈ C(Q2)

}
and notice that it is Fprism-dense in the Polish space X = R. To see this,
choose an arbitrary prism P ∈ Perf(R). Since g(n) : R → R is Borel (in fact,
Baire class one), using [7, lemma 4.2.2] we can find a subprism P ′ of P such
that g(n) � P ′ ∈ C(P ′). Then, g � P ′ ∈ Cn(P ′). Furthermore, similarly as
in the proof of the part (b) of Lemma 3.6, we can find a subprism Q of P ′
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such that ϕng�Q ∈ C(Q2). More specifically, since g � P ′ ∈ Cn(P ′), the map

G = τ ◦ ϕng�P ′ : (P ′)2 \∆ → [0, 1] is well defined, symmetric, and continuous.
Hence, by [7, proposition 4.2.1], there exists a subprism Q of P ′ such that G
is uniformly continuous on Q2 \∆. In particular, it has a unique continuous
extension Ḡ : Q2 → [0, 1] and τ−1 ◦ Ḡ : Q2 → [0,∞] is a continuous extension
of ϕng�Q � Q2 \∆. Thus, to prove that En is Fprism-dense, it remains to show

that ϕng�Q equals to the continuous map τ−1 ◦ Ḡ that is, that

τ−1 ◦ Ḡ � ∆ ≡ 0. (4)

To see this, define function Ψ: Q2 → R as

Ψ(a, b) =

n∑
k=0

|qn−k
(g�Q)(k)(a, b)|.

Then, we have that

τ−1 ◦ Ḡ(a, b) = ϕng�Q(a, b) = Ψ(a, b) + Ψ(b, a),

for every 〈a, b〉 ∈ Q2\∆. We will prove (4) by applying Lemma 3.8 to the maps
ψ = Ψ � Q2\∆ and δ1, δ2 : Q2∩∆→ R, where δ2 ≡ 0 and δ1 = τ−1◦Ḡ � Q2∩∆.
The map ψ2 = ψ ∪ δ2 = Ψ is continuous with respect to the second variable
(by (i) from Proposition 3.2). The map ψ1 = ψ∪ δ1 is continuous with respect
to the first variable, since τ−1◦Ḡ−ψ2 is continuous with respect to the second
variable and ψ1(a, b) = (τ−1 ◦ Ḡ − ψ2)(b, a) for every 〈a, b〉 ∈ Q2. Hence, by
Lemma 3.8, δ1 = δ2. Thus, for every a ∈ Q we have

τ−1 ◦ Ḡ(a, a) = lim
b→a, b∈Q

(ψ(a, b) + ψ(b, a)) = δ1(a, a) + δ2(a, a) = 0,

obtaining, as desired, (4) and Fprism-density of En.
Since En is Fprism-dense, by CPAprism there is an E ⊂ En such that |E| ≤ ω1

and |R \
⋃
E| ≤ ω1, that is, R ⊂?

⋃
E . Therefore, g ⊂?

⋃
Q∈En g � Q.

Now, for every Q ∈ En, g � Q ∈ Cn(Q) and ϕng�Q is continuous. Thus,
property (Wn) holds and, by Theorem 3.3, there is an fQ ∈ Cn(R) extending
g � Q. Hence, if F = {fQ : Q ∈ E}, then

g ⊂?
⋃
Q∈En

g � Q ⊂
⋃
Q∈En

fQ =
⋃
F .

For every p ∈ g \
⋃
F choose an fp ∈ Cn(R) containing p. Then the family

Fg = F ∪ {fp : p ∈ g \
⋃
F} is as needed. This finishes the proof.
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5 Proof of Theorem 2.3

We start with the following lemma. It is well known for X = R (see [21, 4]
and [3, §14]). However, we need it for arbitrary subsets X of R. Note that
the Fσδ Borel rank of Dif(g) is the best possible even for X = R, as shown by
Zahorski in 1941 (see [21] for the 1946 French edition of his work).

Lemma 5.1. For every subset X of R with no isolated points and every g ∈
C(X) the set Dif(g) of points of differentiability of g is an Fσδ subset of X.

Proof. It is not difficult to see that an x ∈ X belongs to Dif(g) (that is, the

finite derivative g′(x) = limy→x, y∈X
g(y)−g(x)
y−x exists) if, and only if, x belongs

to S
df
=
⋂
k∈N

⋃
n∈N S

n
k , where Snk is defined as the set of all x ∈ X such that∣∣∣ g(x)−g(y)

x−y − g(x)−g(y′)
x−y′

∣∣∣ ≤ 2−k for all y, y′ ∈ X ∩
(
x− 1

n , x+ 1
n

)
\ {x}.

Indeed, the inclusion Dif(g) ⊂ S is obvious. To see the other inclusion, take
an x ∈ S. For every k ∈ N the sequence 〈Snk 〉n is ascending. So, there is an

nk ≥ k for which x ∈ Snk

k . Pick an xk ∈ X ∩
(
x− 1

nk
, x+ 1

nk

)
\ {x}. Then

x ∈ S implies that the sequence 〈 g(x)−g(xk)
x−xk

〉k is Cauchy, so we can define

g′(x) = limk→∞
g(x)−g(xk)
x−xk

. This value does not depend on the choice of the

sequence since x ∈ S. So, indeed x ∈ Dif(g).

To finish the proof, it is enough to show that each set Snk is closed in X.
Indeed, y, y′ ∈ X belong to

(
x− 1

n , x+ 1
n

)
\{x} if, and only if, x ∈ X belongs

to the X-open set Uny,y′
df
= X ∩

(
y − 1

n , y + 1
n

)
∩
(
y′ − 1

n , y
′ + 1

n

)
\ {y, y′}.

Therefore Snk is equal to
⋂
y,y′∈X S

n
k (y, y′), where

Snk (y, y′) =
{
x ∈ X : x ∈ Uny,y′ ⇒

∣∣∣ g(x)−g(y)
x−y − g(x)−g(y′)

x−y′

∣∣∣ ≤ 2−k
}

=
{
x ∈ X :

∣∣∣ g(x)−g(y)
x−y − g(x)−g(y′)

x−y′

∣∣∣ ≤ 2−k
}
∪ (X \ Uny,y′)

is closed in X, as a union of two closed sets. So, indeed Snk =
⋂
y,y′∈X S

n
k (y, y′)

is closed in X.

We will also need the following two lemmas.

Lemma 5.2. For every with X ⊂ R with no isolated points, if f ∈ D1(X),
then the derivative f ′ : X → R is Borel. In fact it is of Baire class 2.
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Proof. Let {xk : k < ω} be an enumeration, with no repetition, of a dense
subset of X. For every n ∈ N let jn : X → ω be defined, for every x ∈ X, as

jn(x) = min {j < ω : 0 < |x− xj | < 1/n} .

Notice that, for every k < ω,

j−1
n ({0, . . . , k}) = X ∩

⋃
i≤k

(
(xi − 1/n, xi + 1/n) \ {xi}

)
is open in X. Thus, j−1

n (k) = j−1
n ({0, . . . , k}) \ j−1

n ({0, . . . , k− 1}) is both Fσ-
and Gδ-set in X.

Let qn : X → R be defined, for every x ∈ X, as qn(x) =
f(x)− f(xjn(x))

x− xjn(x)
.

Notice that, for every open set U ⊂ R,

q−1
n (U) =

⋃
k∈N

(
j−1
n (k) ∩

{
x ∈ X \ {xk} :

f(x)− f(xk)

x− xk
∈ U

})
is an Fσ-set in X. Finally it is clear that f ′(x) = lim

n→∞
qn(x) for all x ∈ X. In

particular, since every open set U ⊂ R can be represented as U =
⋃
j<ω Bj =⋃

j<ω cl(Bj) for some open intervals Bj , the set

(f ′)−1(U) =
⋃
j<ω

⋃
m∈N

⋂
n>m

q−1
n (cl(Bj))

is a Gδσ-set in X. Therefore, indeed, f ′ is a Borel and a Baire class 2 map.

Lemma 5.3. Assume that X ⊂ R has no isolated points and that X ⊂ B ⊂
cl(X). Let γ̄ ∈ C(B) be an extension of γ ∈ C(X). Then Dif(γ) ⊂ Dif(γ̄). In
particular, if γ ∈ D1(X), then X ⊂ Dif(γ̄).

Proof. Assume that x ∈ Dif(γ). Then γ′(x) = limy→x,y∈X
γ(x)−γ(y)

x−y exists

and we need to show that limb→x,b∈B
γ̄(x)−γ̄(b)

x−b = γ′(x). To see this, fix an

ε > 0 and let δ > 0 be such that
∣∣∣γ(x)−γ(y)

x−y − γ′(x)
∣∣∣ ≤ ε for all y ∈ X with

0 < |y − x| < δ. Then, for every b ∈ B with 0 < |b− x| < δ we have∣∣∣∣ γ̄(x)− γ̄(b)

x− b
− γ′(x)

∣∣∣∣ = lim
y→b,y∈X

∣∣∣∣γ(x)− γ(y)

x− y
− γ′(x)

∣∣∣∣ ≤ ε.
Thus, indeed,

lim
b→x,b∈B

γ̄(x)− γ̄(b)

x− b
= γ′(x)

and x ∈ Dif(γ̄).
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In the proof of Theorem 2.3 we will use the following result only for ν = 1.
However the result for all values of ν seem to be unknown and of independent
interest, so we include it in its full generality.

Theorem 5.4. Let X ⊂ R be with no isolated points, g ∈ C(X), and let
ḡ ∈ C(G) be an extension of g, where G is a Gδ-set in R with X ⊂ G ⊂ cl(X).
For every ν ∈ ω ∪ {∞}, if g ∈ Dν(X), then there is a Borel set Bν ⊂ G
containing X such that ḡ � Bν ∈ Dν(Bν).

Proof. First, we will prove the theorem, by induction, for ν = n < ω.
For n = 0 the theorem is true, since by a well known result (see [12, §3.B])

we have: for any g ∈ D0(X) = C(X), where X ⊂ R, there exists a Gδ-set
G ⊂ R with X ⊂ G ⊂ cl(X) and an extension ḡ ∈ C(G) = D0(G) of g. Then,
B0 = G is as desired.

Next, choose an n < ω for which the theorem is true. We need to show
that the theorem holds for n + 1. For this, fix an X ⊂ R with no isolated
points and g ∈ Dn+1(X). By the inductive assumption, there exists a Borel
set Bn ⊂ G containing X for which ḡ � Bn ∈ Dn(Bn). We shall find a Borel
set Bn+1 ⊂ Bn containing X for which ḡ � Bn+1 ∈ Dn+1(Bn+1). Note that,
by ḡ � Bn ∈ Dn(Bn), we have ḡ(i) � X = g(i) for all i ≤ n.

To find Bn+1 first notice that

there is a Borel B̂n ⊂ Bn containing X such that ḡ � B̂n ∈ Cn(B̂n). (5)

For n = 0 the property (5) holds with B̂n = Bn, since D0(B0) = C0(B0).
Thus, let us assume that n > 0.

Let γ = g(n−1). Then γ ∈ C1(X) and γ′ = g(n) ∈ C(X). Next, let
h ∈ C(Ĝ) be an extension of γ′ such that Ĝ ⊂ G is a Gδ-set with

X ⊂ Ĝ ⊂ cl(X).

If we now make B̃n = Ĝ ∩Bn, then B̃n is Borel and

X ⊂ B̃n ⊂ cl(X).

Put γ̄ = ḡ(n−1) � B̃n. Then γ̄ ∈ D1(B̃n) extends γ ∈ C1(X). Thus, both
h � B̃n and, by Lemma 5.2, γ̄′ are Borel maps. Therefore, the set

B̂n = {x ∈ B̃n : γ̄′(x) = h(x)} ⊃ X

is Borel. In particular, ḡ � B̂n ∈ Cn(B̂n) and (5) holds, since

(ḡ � B̂n)(n) = (ḡ(n−1))′ � B̂n = γ̄′ � B̂n = h � B̂n ∈ C(B̂n).
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To finish induction notice that, by Lemma 5.1, Bn+1 = Dif((ḡ � B̂n)(n))
is Borel in B̂n and so is in R. This B̂n contains X by Lemma 5.3, since
(ḡ � B̂n)(n) ∈ C(B̂n) extends g(n) ∈ D1(X). In particular,

(ḡ � Bn+1)(n) = (ḡ � B̂n)(n) � Bn+1 ∈ D1(Bn+1),

that is, ḡ � Bn+1 ∈ Dn+1(Bn+1). This finishes the induction.
Finally notice that if g ∈ D∞(X), then the sets Bn are well defined and

B∞ =
⋂
n<ω Bn is as needed.

Proof of Theorem 2.3. Let n ∈ {0, 1}, X ⊂ R, and g ∈ Dn(X). If X
is countable, then any family Fg ⊂ Cn(X) of right cardinality satisfies the
requirements. So, we can assume that X is uncountable. Also, removing from
X a countable set, if necessary, we can assume that that X has no isolated
points. Then, by Theorem 5.4, there exist a Borel set B with X ⊂ B ⊂ R and
an extension ĝ ∈ Dn(B) of g.

By CPAprism, see [7, fact 1.1.7], there exists a family P of cardinality ≤ ω1

of compact subsets of B such that B =
⋃
P. Then, for every P ∈ P, we

have ĝ � P ∈ Dn(P ) and there exists an extension gP ∈ Dn(R) of ĝ � P :
for n = 0 this is ensured by Tietze Extension theorem, while for n = 1 by a
theorem of Jarńık from [5]. Therefore, by Theorem 2.2, there exists a family
FP ⊂ Cn(R) of cardinality ω1 < c such that gP ⊂

⋃
FP . Then, for the family

Fg =
⋃
P∈P FP we have

g ⊂ ĝ =
⋃
P∈P

ĝ � P ⊂
⋃
P∈P

gP ⊂
⋃
P∈P

⋃
FP =

⋃
Fg

as needed.

6 Constructions justifying Examples 1.2 and 1.3

Construction justifying Example 1.2. For g ∈ D1(R) let Fg be as in
(a) of Proposition 1.1. Let M ∈ R be such that g(x) < M for all x ∈ [−2, 2].
For every f ∈ Fg let Uf = {x ∈ (−2, 2) : f(x) > M}, put Pf = R \ Uf , and
notice that

• there exists an extension f̄ ∈ C1(R) of f � Pf such that f̄(x) < M + 1
for all x ∈ [−1, 1].

This follows from a version of Whitney’s extension theorem (see [19, 20]),

proved in [5]. First let f̂ : [−1, 1] → (−∞,M + 1) be a C1 extension of
f � Pf ∩ [−1, 1] → (−∞,M ]. Then there exists an extension f̄ ∈ C1(R)

of (f � Pf ) ∪ f̂ which satisfies property •.
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Now, the collection of all F̄g = {f̄ : f ∈ Fg} is as needed. Indeed, g ⊂
⋃
F̄g

since g ⊂
⋃
Fg and for every f ∈ Fg we have g ∩ f ⊂ g ∩ f̄ .4 On the other

hand, if h ≡ M + 1, then h \
⋃
F̄g ⊃ h � [−1, 1]. In particular, no single F̄g

can serve as the family F1 in Main Theorem.

Sketch of the construction justifying Example 1.3. This argument
is a refinement of the construction of the family G from part (b) of Proposi-
tion 1.1, as presented in [8] and [7, theorem 4.1.1(b)]. Let C ⊂ R be the Cantor
ternary set and choose a non-injective H ∈ C1(R) containing (h � C)−1 and
disjoint with h � C. Note that Y = H ∪ H−1 is a closed subset of R2 con-
taining the set K = (h � C)−1 ∪ (h � C). Using CPAprism to the Polish space
X = R2\Y (and the family of perfect subsets of X that belong to the family E
considered in the proof of [7, theorem 4.1.1(b)]) we can find a cover E0 of X of
size ω1 consisting of pairwise disjoint compact sets such that for each P ∈ E0
there is a P̂ ∈ {P, P−1} which can be extended to a map fP ∈ C1(R). By a
C1 version of Whitney’s extension theorem from [5], we can assume that each
extension fP of P̂ is not one-to-one and is disjoint with the zero-dimensional
set K. (Since P̂ is disjoint with K, we can first find a finite non-injective
extension gP of P̂ whose linear interpolation ḡP is disjoint with K. Then
there exists a small modification f̄P of ḡP – of size smaller than the distance
between f̄P and K – which is an extension of gP ⊃ P̂ and disjoint with K.)
The family G = {fP : P ∈ E0} ∪ {H} is as needed.

Indeed, clearly G ⊂ C(R) has cardinality ω1. Also R2 =
⋃
f∈G(f ∪ f−1),

since R2 = H−1 ∪
⋃
P∈E0 P ⊂ H−1 ∪

⋃
P∈E0(fP ∪ f−1

P ) ⊂
⋃
f∈G(f ∪ f−1).

The fact that neither H nor any fP is injective implies that G1 = G. Finally,
h \

⋃
G1 = h \

⋃
G has cardinality c, as it contains h � C. This is the case,

since H ∪
⋃
f∈G(f ∪ f−1) ⊃

⋃
G is disjoint with h � C.

7 Proof of sufficiency part of Theorem 3.3

Let perfect P ⊂ R, n ∈ N, and f : P → R be such that

(Wn) f ∈ Cn(P ) and the map qn−i
f(i) : P 2 → R is continuous for every i ≤ n.

Let H be the convex hull of P . We will construct an extension f̄ ∈ Cn(H) of
f . This will finish the proof since, in an event when the interval H is not the
entire R, a further extension of f̄ to a function in Cn(R) is an easy exercise.

4If 〈x, y〉 ∈ g ∩ f , then x ∈ Pf , as otherwise g(x) = y = f(x) > M and x ∈ (−2, 2),
contradicting the choice of M . So, f̄(x) = f(x) and 〈x, y〉 ∈ g ∩ f̄ .
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Let {(aj , bj) : j ∈ J} be the family of all connected components of H \ P .
Let ψ ∈ C∞(R) be non-decreasing such that ψ = 1 on [2/3,∞) and ψ = 0 on
(−∞, 1/3]. For every j ∈ J define the following functions from R to R:

• the linear map Lj(x) =
x−aj
bj−aj (with Lj(aj) = 0 and Lj(bj) = 1);

• βj = ψ ◦ Lj and αj = 1− βj ;

• f̄j = αjT
n
ajf + βjT

n
bj
f .

Notice that αj + βj ≡ 1 and that the values of αj and βj are in (0, 1) only on
the middle third portion of (aj , bj).

We define f̄ on P as f and on every interval (aj , bj), j ∈ J , by a simple
formula

f̄ = f̄j � (aj , bj).

Clearly f̄ : H → R extends f and is C∞ on H \P . Also, f̄ is Cn on the interior
of P . Thus, it remains to show that for every i ≤ n, i ∈ N, f̄ (i) is well defined
and continuous at every p ∈ bd(P ), the boundary of P in H. Of course, f̄ (i)

can be well defined on P only when

(Pi) f̄ (i)(p) = f (i)(p) for every p ∈ bd(P ).

We will prove (Pi) by induction on i ≤ n.

This clearly holds for i = 0. So, assume that (Pi) holds for some i < n.

We need to show (Pi+1), that is, that limx→p

∣∣∣ f̄(i)(x)−f̄(i)(p)
x−p − f (i+1)(p)

∣∣∣ = 0.

However, by (Pi), for every x, p ∈ P we have f̄ (i)(x) = f (i)(x) and f̄ (i)(p) =
f (i)(p). Therefore,

lim
x→p
x∈P

∣∣∣∣ f̄ (i)(x)− f̄ (i)(p)

x− p
− f (i+1)(p)

∣∣∣∣ = lim
x→p
x∈P

∣∣∣∣f (i)(x)− f (i)(p)

x− p
− f (i+1)(p)

∣∣∣∣ = 0.

So, to prove (Pi+1), we need limx→p, x∈H\P

∣∣∣ f̄(i)(x)−f̄(i)(p)
x−p − f (i+1)(p)

∣∣∣ = 0,

that is,

lim
x→p

x∈H\P

∣∣∣∣ f̄ (i)(x)− f (i)(p)

x− p
− f (i+1)(p)

∣∣∣∣ = 0 for every p ∈ bd(P ). (6)
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Next notice that∣∣∣∣ f̄ (i)(x)− f (i)(p)

x− p
− f (i+1)(p)

∣∣∣∣
≤

∣∣∣∣∣ f̄ (i)(x)− (Tnp f)(i)(x)

x− p

∣∣∣∣∣+

∣∣∣∣∣ (Tnp f)(i)(x)− f (i)(p)

x− p
− f (i+1)(p)

∣∣∣∣∣
=

∣∣∣∣∣ f̄ (i)(x)− (Tnp f)(i)(x)

x− p

∣∣∣∣∣+

∣∣∣∣∣
∑n−i
k=0

f(i+k)(p)
k! (x− p)k − f (i)(p)

x− p
− f (i+1)(p)

∣∣∣∣∣
=

∣∣∣∣∣ f̄ (i)(x)− (Tnp f)(i)(x)

x− p

∣∣∣∣∣+

∣∣∣∣∣
n−i∑
k=2

f (i+k)(p)

k!
(x− p)k−1

∣∣∣∣∣
and lim

x→p

∣∣∣∣∣
n−i∑
k=2

f (i+k)(p)

k!
(x− p)k−1

∣∣∣∣∣ = 0. Hence, to prove (6) it is enough to

show that

lim
x→p

x∈H\P

∣∣∣∣∣ f̄ (i)(x)− (Tnp f)(i)(x)

(x− p)n−i

∣∣∣∣∣ = 0 for every i ≤ n and p ∈ bd(P ). (7)

To argue for (7) we need to know that, for every p, q ∈ P and x ∈ R,

(Tnp f)(i)(x)− (Tnq f)(i)(x) =

n−i∑
k=0

qn−i−kf (q, p)

k!
(x− q)k(q − p)n−i−k. (8)

Indeed, if m = n− i, then g(x) = (Tnp f)(i)(x)− (Tnq f)(i)(x) is a polynomial of
degree ≤ m. Therefore, it is equal to its m-th degree Taylor polynomial:

g(x) =

m∑
k=0

g(k)(q)

k!
(x− q)k

=

m∑
k=0

(x− q)k

k!

(
(Tnp f)(i+k)(q)− (Tnq f)(i+k)(q)

)
=

m∑
k=0

(x− q)k

k!

(
Tm−kp

(
f (i+k)

)
(q)− Tm−kq

(
f (i+k)

)
(q)
)

=

n−i∑
k=0

(x− q)k

k!
(q − p)n−i−kqn−i−kf (q, p)

giving desired (8).
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Coming back to the proof of (7), for x ∈ (aj , bj) let qx ∈ {aj , bj} be the
closest among these points to x, and notice that

|x− qx| ≤ |x− p| and |qx − p| ≤ 2|x− p|.

Indeed, if qx is between p and x, then |x− qx| ≤ |x− p| and |qx − p| ≤ |x− p|.
Otherwise, |x−qx| ≤ |bj−aj |2 ≤ |x−p| and |qx−p| = |x−qx|+ |x−p| ≤ 2|x−p|,
as needed. Therefore, using (8),

∣∣∣∣∣ f̄ (i)(x)− (Tnp f)(i)(x)

(x− p)n−i

∣∣∣∣∣
=

∣∣∣∣∣ f̄ (i)(x)− (Tnqxf)(i)(x)

(x− p)n−i
+

(Tnqxf)(i)(x)− (Tnp f)(i)(x)

(x− p)n−i

∣∣∣∣∣
=

∣∣∣∣∣∣ f̄
(i)(x)− (Tnqxf)(i)(x)

(x− p)n−i
+

∑n−i
k=0

qn−i−k
f (qx,p)

k! (x− qx)k(qx − p)n−i−k

(x− p)k(x− p)n−i−k

∣∣∣∣∣∣
≤

∣∣∣∣∣ f̄ (i)(x)− (Tnqxf)(i)(x)

(x− p)n−i

∣∣∣∣∣+

n−i∑
k=0

∣∣∣qn−i−kf (qx, p)
∣∣∣ 2n−i−k

k!
.

Since, by (Wn), limx→p, x∈H\P
∑n−i
k=0

∣∣∣qn−i−kf (qx, p)
∣∣∣ 2n−i−k

k! = 0, to prove (7)

it is enough to show that limx→p, x∈H\P

∣∣∣∣ f̄(i)(x)−(Tn
qx
f)(i)(x)

(x−p)n−i

∣∣∣∣ = 0. Moreover,

if U is the union of all middle thirds of the intervals (aj , bj), then we have
f̄ (i)(x) = (Tnqxf)(i)(x) for all x ∈ H \ P not in U . In particular, (6) holds for
any p which is not a limit point of U . So, we may assume that p is a limit
point of U . To finish the proof of (7) and (6) for such p, it is enough to show
that

lim
x→p
x∈U

∣∣∣∣∣ f̄ (i)(x)− (Tnqxf)(i)(x)

(x− p)n−i

∣∣∣∣∣ = 0. (9)

Now, if x ∈ (aj , bj) ∩ U , then f̄(x) = αj(x)Tnajf(x) + βj(x)Tnbjf(x) and

|x− q| ≤ |bj − aj |
2

=
3

2

|bj − aj |
3

≤ 3

2
|x− p|.
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Next, assume that qx = aj , the case when qx = bj being similar. Then, by (8),∣∣∣∣f̄ (i)(x)− (Tnqxf)(i)(x)

∣∣∣∣ =
∣∣∣(f̄ − Tnajf)(i)(x)

∣∣∣ =

∣∣∣∣(βj · (Tnbjf − Tnajf)
)(i)

(x)

∣∣∣∣
=

∣∣∣∣∣
i∑

k=0

(
i

k

)
β

(i−k)
j (x)

[
(Tnbjf)(k)(x)− (Tnajf)(k)(x)

]∣∣∣∣∣
=

∣∣∣∣∣
i∑

k=0

(
i

k

)
ψ(i−k)(Lj(x))

(bj − aj)i−k

[
n−k∑
s=0

qn−k−sf (aj , bj)

s!
(x− aj)s(aj − bj)n−k−s

]∣∣∣∣∣
≤

i∑
k=0

(
i

k

)∣∣ψ(i−k)(Lj(x))
∣∣

s!

[
n−k∑
s=0

∣∣∣qn−k−sf (aj , bj)
∣∣∣ |x− aj |s|aj − bj |n−i−s] .

From this, and the fact that

3|x− aj | ≤ 3|aj − bj | ≤ |x− p|

we obtain∣∣∣∣∣ f̄ (i)(x)− (Tnqxf)(i)(x)

(x− p)n−i

∣∣∣∣∣ ≤
i∑

k=0

(
i

k

)∣∣ψ(i−k)(Lj(x))
∣∣

s!

[
n−k∑
s=0

∣∣∣qn−k−sf (aj , bj)
∣∣∣ 3n−i].

Hence, by the assumption (Wn), the right hand side converges to 0, as x ∈
(aj , bj) ∩ U converges to p. This completes the proof of (9), (6), and differen-
tiability of f̄ .

To finish the proof, it remains to show that f̄ (n) is continuous at the points
p ∈ bd(P ). But clearly

lim
x→p
x∈P

(
f̄ (n)(x)− f̄ (n)(p)

)
= lim
x→p
x∈P

(
f (n)(x)− f (n)(p)

)
= 0

while, using f̄ (n)(p) = (Tnp f)(n)(p) and (7),

lim
x→p

x∈H\P

∣∣∣f̄ (n)(x)− f̄ (n)(p)
∣∣∣ = lim

x→p
x∈H\P

∣∣∣f̄ (n)(x)− (Tnp f)(n)(p)
∣∣∣ = 0

giving the desired continuity.

8 Final remarks and open questions

It is worth to notice that, for no ν ∈ ω ∪ {∞}, a family Fν from the Main
Theorem can be countable. Indeed, if |Fν | < c, then there is a constant
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(so, C∞) function g such that [f = g]
df
= {x ∈ R : f(x) = g(x)} is nowhere

dense in R. In particular, if |Fν | ≤ ω, then g \
⋃
Fν is co-meager in g, so

it has cardinality c, a contradiction. The same argument shows that under
Martin’s Axiom the property (i) from Main Theorem implies that |Fν | = c.
In particular, for no ν ∈ ω ∪ {∞} the existence Fν as in Main Theorem can
be proved in ZFC.

Problem 8.1. What is the lowest Baire class of the extension in Lemma 5.2?

Problem 8.2. What is the lowest Borel rank of the sets Bn in Theorem 5.4?

Problem 8.3. Is there a model of ZFC in which there is a family G as in
Proposition 1.1 with G ⊂ C(R) but there is no such family in C1(R)?
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Sepúlveda, On functions that are almost continuous and perfectly every-
where surjective but not Jones. Lineability and additivity, Topology Appl.,
235 (2018), 73–82.



384 K. Ciesielski and J. B. Seoane–Sepúlveda
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[17] J. Steprāns, Decomposing Euclidean space with a small number of smooth
sets, Trans. Amer. Math. Soc., 351 (1999), 4, 1461–1480.

[18] M.E. Taylor, Partial differential equations I. Basic theory, Applied Math-
ematical Sciences, 115, 2nd edition, Springer, New York (2011).

[19] H. Whitney, Analytic extensions of differentiable functions defined in
closed sets, Trans. Amer. Math. Soc., 36 (1934), 1, 63–89.

[20] H. Whitney, Differentiable functions defined in closed sets. I, Trans.
Amer. Math. Soc., 36 (1934), 2, 369–387.



Simultaneous coverings by smooth functions under CPA 385

[21] Z. Zahorski, Sur l’ensemble des points de non-dérivabilité d’une fonction
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