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1. Introduction

Let f1, . . . , fr ∈ Z[x1, . . . , xn] be polynomials of degrees d1, . . . , dr , respectively,
and let f denote the r-tuple of polynomials (f1, . . . , fr). We are interested in upper
bounds for the counting function

N(f,B) := #{x ∈ Zn;f1(x) = · · · = fr(x) = 0, |x| ≤ B}.
(Here, and throughout the paper, | · | denotes the maximum norm |x| = max{|x1|,
. . . , |xn|}.) If we assume that the polynomials fi define a complete intersection in
An of dimension n− r ≥ 0, then we have the well-known upper bound N(f,B) �
Bn−r , which we shall refer to as the trivial bound (cf. Lemma 2.5). Heuristic
arguments suggest the bound N(f,B) � Bn−D , where

D :=
r∑

i=1

di,

at least as soon as n > D. In the special case where the polynomials fi are homo-
geneous of the same degree d , a famous result by Birch establishes the heuristic
upper bound and indeed an asymptotic formula, as soon as

n > s∗ + 2d−1(d − 1)r(r + 1). (1)

Here, s∗ = s∗
f is the dimension of the so-called Birch singular locus, the affine

variety
{x ∈An | rankJ (x) < r},

where J (x) is the Jacobian matrix of size r × n with rows formed by the gradi-
ent vectors ∇fi(x). (See also recent work by Dietmann [6] and, independently,
Schindler [16], where s∗ is replaced by an alternative quantity, sometimes lead-
ing to a stronger result.) Birch’s results have recently been extended to forms of
differing degree by Browning and Heath-Brown [4].

Seeing as Birch’s theorem, like most results proven with the Hardy–Littlewood
circle method, requires the number of variables to be rather large, we may ask if
more modest upper bounds are still available for smaller values of n. At the far
end of the spectrum, the dimension growth conjecture of Heath-Brown and Serre
leads us to expect the bound N(f,B) � Bn−ρ−1+ε for an r-tuple of homogeneous
polynomials f defining an irreducible nonlinear variety of codimension ρ ≤ n − 2
in Pn−1. The determinant method has proved a useful tool in approaching this
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conjecture, and it has now been established in many cases; see [1, §3] for an
overview. A full proof has recently been announced by Salberger.

We shall allow ourselves to call an r-tuple of polynomials f as above a sys-
tem of polynomials, and d := (d1, . . . , dr ) its multidegree. For each polynomial
fi , we denote its leading form (homogeneous part of degree di ) by Fi . The r-
tuple F := (F1, . . . ,Fr) is then called the system of leading forms of f. We as-
sociate with f the projective variety Zf ⊂ Pn−1

Q
defined by the leading forms

F1, . . . ,Fr . By a slight abuse of notation we write 〈f〉 := 〈f1, . . . , fr 〉 for the ideal
of Z[x1, . . . , xn] generated by the polynomials fi . Finally, we define the height
‖f‖ to be the maximal absolute value of any coefficient appearing in one of the
polynomials fi in the system.

The results in this paper, which we are now ready to state, occupy a middle
ground between the two types of bounds discussed above. We first state a simpli-
fied version of our main result.

Theorem 1.1. Suppose that di ≥ d ≥ 4 for all i and that Zf is nonsingular of
codimension r . Put

ηn,r,d := 2d−2(d − 1)r

n + 2d−2(d − 1)r − 1
.

Then we have the estimate

N(f,B) �n,d Bn−rd(1−ηn,r,d ) log(‖F‖)rd

as soon as n > 2d−2(d − 1)r .

Remark. For any ideal I ⊂ Z[x1, . . . , xn], one may define the ideal of leading
forms I ′ consisting of the leading forms of all elements of I . If I = 〈f〉 as above,
then it may not always be the case that I ′ = 〈F〉. However, it is well known that if
the leading forms Fi cut out a subscheme of codimension r , then they do indeed
generate the ideal I ′ of leading forms.

Remark. In the excluded case where min{di} = 2 or 3, the estimate in The-
orem 1.1 may be replaced by results of Luo [12, Thm. 2] or the author [13,
Thm. 1.1], respectively.

In the case where the polynomials are truly of different degree, we can do better
than Theorem 1.1. In order to state this more general result, we group the polyno-
mials according to their degree. Thus, for each 2 ≤ d ≤ D, where D = maxi{di},
let fd,1, . . . , fd,rd be an enumeration of the polynomials of degree d among the
fi .
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Theorem 1.2. Suppose that D ≥ 4 and that Zf is nonsingular of codimension r .
Put

D′ :=
D−1∑
d=2

(d − 1)rd + DrD,

� :=
D−1∑
d=2

(d − 2 + 2−d+1)rd + (D − 1)rD,

and η := 2D−2�

n + 2D−2� − 1
.

Then, provided that n > 2D−2�, we have the estimate

N(f,B) �n,d Bn−D′(1−η) log(‖F‖)D. (2)

To compare the admissible range of n in the above theorems with (1), we consider
the singular locus, in the usual sense, of the projective variety Zf, which is the
variety

Sing(Zf) = {x ∈ Pn−1
Q

| F1(x) = · · · = Fr(x) = 0, rankJ (x) < r}.
Here, J (x) is the Jacobian matrix with rows ∇Fi(x). Putting s = dim(Sing(Zf)),
we have

s + 1 ≤ s∗ ≤ s + 1 + r

for s∗ = s∗
F. The nonsingularity assumption in our theorems translates to the con-

dition that s = −1, but it would be an easy matter to derive more general results
with s + 1 playing a similar role as the quantity s∗ in (1).

The proofs of Theorems 1.1 and 1.2 employ an iterated version of the multidi-
mensional q-analogue of van der Corput differencing introduced by Heath-Brown
[8] and are also built upon previous work by the author [13; 14].

Remark 1.3. We observe that in the case where the polynomials are of equal
degree, the exponent of B in Theorem 1.1 may be written as n − μD, where
μ → 1 as n → ∞. Thus, our bound approaches the heuristic one asymptotically
in this sense. The fact that the same is not true, in general, for the exponent in
Theorem 1.2 indicates that our method is open to further improvement.

We shall now describe the strategy behind the proof of Theorems 1.1 and 1.2. Let
us first introduce some notation.

Notation. We define

Zf := ProjZ[x1, . . . , xn]/〈F〉 ⊂ Pn−1
Z

,

so that the variety Zf featuring in our main results may be expressed as

Zf = Zf ⊗Z Q.

For any prime p, reduction modulo p gives rise to the projective variety

Zf,p := Zf ⊗Z Fp = ProjZ[x1, . . . , xn]/〈p,F1, . . . ,Fr〉 ⊂ Pn−1
Fp

.
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Writing Zf,∞ := Zf and F∞ := Q for notational convenience, we now define

ρv(f) := codim(Zf,v,P
n−1
Fv

) and sv(f) := dim(SingZf,v),

where either v = p for a prime p, or v = ∞. The parameters ρv(f) and sv(f) will
appear frequently in our arguments. They clearly satisfy the inequalities

0 ≤ ρv(f) ≤ r, −1 ≤ sv(f) ≤ n − 1 − ρv(f).

It is also clear that ρp(f) ≤ ρ∞(f) for all p and that ρp(f) = ρ∞(f) for p �f 1.
Conversely, we have sp(f) ≥ s∞(f) with equality for p �f 1.

Our approach for estimating N(f,B) involves replacing the system of equations
fd,1(x) = · · · = fd,rd (x) = 0 for each 2 ≤ d ≤ D with a system of congruences

fd,1(x) ≡ · · · ≡ fd,rd (x) ≡ 0 (mod qd) (3)

for suitably chosen integers q2, . . . , qD . More precisely, let m be an integer be-
tween 0 and D − 2. Then, given a parameter ξ ∈ [B1/2,B] and a collection of
pairwise different primes p0, . . . , pm, satisfying

p1 � · · · � pm � ξ, p0 � ξ2, and (4)

(p0p1 · · ·pm,D!) = 1, (5)

we take

qd :=
min{m,d−2}∏

i=0

pm−i . (6)

Remark. The natural number m represents the number of differencing steps that
will be performed on the polynomials of highest degree D. Each congruence to
the modulus qd will correspond, after one step in our van der Corput differencing
process, to a family of congruences of degree d −1 to the smaller modulus p−1

m qd .
The numbers qd are chosen in such a way that we only ever need to consider
congruences involving polynomials of degree at least 2 (discarding, as we may,
all congruences to the modulus 1).

To encode the congruence relations (3), we now put

qd := (qd, . . . , qd) ∈ Nrd

for 2 ≤ d ≤ D and let q ∈Nr be the vector

q = (q2, . . . , q2, . . . , qD, . . . , qD) = (q2, . . . ,qD). (7)

Now, for a suitably chosen smooth weight function W ∈ C∞
0 (Rn), we certainly

have
N(f,B) ≤

∑
x∈Zn∩[−B,B]n

q|f(x)

1 �
∑
x∈Zn

q|f(x)

W(B−1x) =: NW(f,B,q), (8)

where the condition q | f(x) should be interpreted to mean that the congruence
systems (3) are simultaneously satisfied for 2 ≤ d ≤ D.
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In estimating the quantity NW(f,B,q), we shall group the polynomials fi into
blocks in two different ways: we put

fd = (fd,1, . . . , fd,rd ) ∈ Z[x]rd
for each 2 ≤ d ≤ D and, furthermore,

f̂i = (fi+2, fi+3, . . . , fD) ∈ Z[x]ri+2+···+rD

for each 0 ≤ i ≤ m. (Thus, each system f̂i is composed of all polynomials fd,j

for which pi | qd , so that they will be subject to at least i differencing steps. In
particular, f̂0 = f and f̂m = (fm+2, . . . , fD).)

We are now ready to formulate the main technical result of the paper, giving
an asymptotic formula for a weighted counting function NW(f,B,q). The class
of smooth weight functions Cn(R, (κj )) occurring in the statement will be defined
in Section 2.

Proposition 1.4. Let ξ ∈ [B1/2,B] and suppose that p0, . . . , pm are primes sat-
isfying (4) and (5). Suppose that ρpi

(f) = r for all 0 ≤ i ≤ m and put

s := max
0≤i≤m

spi
(f̂i ).

Then, for any smooth weight function W ∈ Cn(R, (κj )), we have the asymptotic
formula

NW(f,B,q) − B
q

r2
2 q

r3
3 · · ·qrD

D

� Bnξ−R
(

ξ

B

)(n−s−2)/2m

+ Bnξ−r/2
(

ξ

B

)(n−s−1)/2

, (9)

where

R=
m+1∑
i=2

(1 − 2−i+1)ri +
D∑

i=m+2

ri

and
B = BW :=

∑
x∈Zn

W(B−1x).

The implied constant in (9) depends at most on the data

n,d,m,R and (κj ).

The case m = 0 in Proposition 1.4 gives an asymptotic formula for the weighted
number of solutions of height at most B to a system of congruences modulo a
single prime p0 ∈ [B,B2], with an error term depending on the dimension of the
singular locus of the corresponding variety. Such a result appeared as Theorem 3.3
in [13], Heath-Brown [8] having treated the case r = 1. It may be viewed as
an extension of Hooley’s estimate [10] for the number of points on a complete
intersection over a finite field, which in turn generalized Deligne’s estimate [5,
Thm. 8.1].
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The case m = 1, where a single differencing step is performed, was treated in
[13]. To deduce Theorem 1.1 from Proposition 1.4, we shall take m = d − 2 ≥ 2,
in this way performing the same number of differencings on each of the polyno-
mials. For Theorem 1.2, we instead take m = D − 2, performing the maximum
number of differencings on the polynomials of highest degree and gradually fewer
for those of lower degree.

After collecting the necessary tools in Section 2, we devote Section 3 to the
proof of Proposition 1.4. The deduction of Theorems 1.1 and 1.2 is carried out in
Section 4.

2. Preliminaries

The differencing process that will be used in Section 3 gives rise to new polyno-
mials

f
y
i (x) = fi(x + pmy) − fi(x).

If y �= 0, then the polynomial f
y
i has degree di − 1, and its leading form is

F
y
i (x) = pmy · ∇Fi(x).

To apply Proposition 1.4 iteratively, we need to control the dimension of singular
loci of varieties defined by collections of such forms. The following result, which
appeared in previous work of the author [13, Lemma 2.9], addresses that problem.
However, that version contained two errors, which we now take the opportunity
to correct:

• The condition p � di in the hypotheses needs to be strengthened to p � di(di −1)

in order for the proof to be valid.
• In the proof of item (i), the identity x · ∇2Gi(x) = · · · is both erroneous and

superfluous, and one gets a valid proof by simply ignoring this statement.

Lemma 2.1. Let G1, . . . ,Gr ∈ Z[x1, . . . , xn] be homogeneous polynomials of de-
grees d1, . . . , dr , respectively, let p be a prime such that p � di(di − 1) for all
i = 1, . . . , r , and suppose that ρp(G) = r and sp(G) = −1. Define the closed
subschemes S ⊆ Pn−1

Fp
× Pn−1

Fp
and Sy ⊆ Pn−1

Fp
for each y ∈ Pn−1

Fp
by setting

S = {(x,y) ∈ Pn−1
Fp

× Pn−1
Fp

;y · ∇Gi(x) = 0, i = 1, . . . , r,

rank(y · ∇2Gi(x))1≤i≤r < r}
and

Sy = {x ∈ Pn−1
Fp

;y · ∇Gi(x) = 0, i = 1, . . . , r,

rank(y · ∇2Gi(x))1≤i≤r < r}.
For s = −1,0,1, . . . , n − 1, let Ts = {y ∈ Pn−1

Fp
;dimSy ≥ s}. Then Ts is also

Zariski closed, and we have the following estimates:

(i) dimS ≤ n − 2;
(ii) dimTs ≤ n − s − 2;
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(iii) If T
(1)
s , T

(2)
s , . . . are the irreducible components of Ts , then∑

j

deg(T
(j)
s ) = On,d(1).

Remark 2.2. In particular, it follows that the set of y such that y · Gi(x) vanishes
identically in x for some i is (projectively) empty. Indeed, in this case, we would
have Sy = Pn−1, and by (ii), we have Tn−1 = ∅.

In our arguments, we use smooth weight functions, for which we introduce the
following notation, partly following [9].

Definition (Smooth weights). For any function W ∈ C∞
0 (Rn), we define its ra-

dius Rad(W) to be the smallest real number R such that supp(W) ⊂ [−R,R]n.
Furthermore, we put

κj (W) := max
j1+···+jn=j

max
x∈Rn

∣∣∣∣ ∂j

∂x
j1
1 · · · ∂x

jn
n

W(x)

∣∣∣∣
for any integer j ≥ 0. In particular, κ0(W) = maxx |W(x)|. Using this notation,
given a positive real number R and a sequence of positive real numbers (κj )

∞
j=0,

we let Cn(R, (κj )) be the set of all functions W ∈ C∞
0 (Rn) such that

Rad(W) ≤ R and κj (W) ≤ κj for all j ∈ Z≥0.

In our next result, we list some elementary properties of the classes Cn(R, (κj )).

Proposition 2.3. Suppose that W ∈ Cn(R, (κj )). Then we have the following
properties:

(i) For any u ∈ Rn, the translation τuW defined by x �→ W(x + u) satisfies
τuW ∈ Cn(R + |u|, (κj )).

(ii) For any x ∈ R, the restriction rxW : Rn−1 → R defined by x �→ W(x, x)

satisfies rxW ∈ Cn−1(R, (κj )).
(iii) If W ′ ∈ Cn(R

′, (κ ′
j )), then WW ′ ∈ Cn(R

′′, (κ ′′
j )), where

R′′ = min{R,R′} and κ ′′
j �n

∑
j1+j2=j

κj1κ
′
j2

.

(iv) For any matrix M = (mij ) ∈ GLn(R), the composition W ◦ M satisfies W ◦
M ∈ C(R′, (κ ′

j )), where

R′ �n,‖M−1‖ R and κ ′
j �n,‖M‖ κj ,

with ‖M‖ := max |mij |.
Proof. Properties (i) and (ii) follow directly from the given definition, whereas
(iii) and (iv) are easy consequences of the Leibniz formula and the chain rule,
respectively. �
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Our next result is a reformulation of [14, Lemma 3.1] in the notation introduced.
It is a consequence of the Poisson summation formula and plays a key role in the
proof of Proposition 1.4.

Lemma 2.4. Let W ∈ C(R, (κj )), and let a and B be real numbers with B ≥ 1
and 1 ≤ a ≤ B . Then we have∑

x∈Zn

W

(
1

B
x
) ∑

y∈Zn

W

(
1

B
(x + ay)

)

= a−n

(∑
x∈Zn

W

(
1

B
x
))2

+ On,R,N (κ0κNB2n−Na−n+N)

+ On,R,N (κ2
NB2(n−N)a−n+N)

for any N ∈ Z≥0.

We may view this result as counting, with smooth weights, the number of points
of height at most B in the lattice {(x,x + ay) | x,y ∈ Zn} ⊆ R2n. This lattice
has determinant an, explaining the main term in the asymptotic formula, and the
smooth weight allows for a strong error term.

Given any integer q , we may define the congruence counting function

N(f,B, q) := #{x ∈ Zn;f1(x) ≡ · · · ≡ fr(x) ≡ 0 (modq), |x| ≤ B}.
The following result records “trivial” estimates for the counting functions N(f,B)

and N(f,B,p) for any prime p.

Lemma 2.5. Given f ∈ Z[x1, . . . , xn]r , we have the upper bound

N(f,B) �n,d Bn−ρ∞(f). (10)

Furthermore, for any prime p, we have

N(f,B,p) �n,d Bn−ρp(f) + Bnp−ρp(f). (11)

In particular,

#Zf,p(Fp) �n,d pn−ρp(f). (12)

Such bounds are certainly used frequently, with or without proof, in the literature.
In particular, a well-known reference for the bound (12) is the classic paper by
Lang and Weil [11]. We allow ourselves to give a self-contained proof of all of
these statements, thereby reproducing parts of the proof of [3, Lemma 4].

Proof of Lemma 2.5. Let us first assume that B ≤ p and prove the bound

N(f,B,p) �n,d Bn−ρp(f), (13)

which will establish (11) in this case. For any closed subvariety V ⊂ An
Fp

, let
V (B) be the set of points in V (Fp) having a representative x in Zn with |x| ≤ B .
Furthermore, let δ(V ) be the sum of the degrees of the irreducible components
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of V . We shall prove that

#V (B) �δ(V ) Bdim(V ). (14)

Since δ(Zf,p) ≤ ∏
di by Bézout’s theorem [7, Ex. 8.4.6], this will imply the de-

sired bound (13). We proceed by induction on the dimension m := dim(V ). If
m = 0, then it is clear that #V (B) ≤ δ(V ). Assume now that m ≥ 1. We may fur-
ther assume that V is irreducible since it has at most δ(V ) irreducible components,
each of dimension at most m. By irreducibility we may choose i ∈ {1, . . . , n} such
that the hyperplane Hb defined by xi = b intersects V properly for any b ∈ Fp and
write

#V (B) ≤
∑

b∈Z;|b|≤B

#(V ∩ Hb)(B).

Now we have δ(V ∩ Hb) ≤ δ(V ) = deg(V ), so our induction hypothesis implies
that #(V ∩Hb)(B) �δ(V ) Bm−1 for each b in the sum, and the desired bound (14)
follows.

Taking B = p in (13), we immediately infer the bound (12). Furthermore, we
clearly obtain a proof of (10) by replacing Fp by Q in the proof of (13).

Suppose next that B > p. For each u ∈ Fn
p , the number of points x counted

by N(f,B,p) whose reduction (mod p) is u is at most On((B/p)n). By (12) we
conclude that N(f,B,p) �n,d Bnp−ρp(f), thus establishing the remaining case of
(11). �

Our final result in this section is a variant of Bertini’s theorem, formulated in
an “effective” way. Here, for a ∈ Zn, we use the notation Ha ⊂ Pn−1 for the
hyperplane defined by the equation a · x = 0.

Lemma 2.6. Let � = {p1, . . . , pN } be a finite set of primes, and suppose that
ρp(f) = r for each p ∈ �. Then, provided that

∑N
i=1

1
pi

�n,d 1, there is a prim-
itive integer vector a ∈ Zn, with a �n,N,d 1, such that, for each p ∈ �, we have
the properties

(i) dim(Sing(Zf,p ∩ Ha)) = max{−1,dim(SingZf,p) − 1},
(ii) dim(Zf,p ∩ Ha) = dimZf,p − 1.

Proof. It follows from [13, Lemma 2.8] that there exist forms �i ∈ Z[ξ1, . . . , ξn]
of degree On,d(1), not identically divisible by pi , such that properties (i) and (ii)
hold for p = pi as soon as pi � �i(a). For any A ∈ N, let

M(A) := {a ∈ Zn ∩ [−A,A]n;gcd(a1, . . . , an) = 1}.
We note that

#M(A) = 2n

ζ(n)
An + O(An−1 log(A)) > An

as soon as A exceeds some explicit constant C1(n). Furthermore, we put

Ni (A) := {a ∈ M(A);pi | �i(a)}
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for i = 1, . . . , n and N (A) := ⋃
i Ni (A). Then by Lemma 2.5 there is a constant

C2(n,d) such that

#Ni (A) ≤ C2(n,d)(An−1 + Anp−1
i )

for all i. This implies that

#N (A) ≤ C2(n,d)

(
NAn−1 + An

N∑
i=1

1

pi

)
,

so if
N∑

i=1

1

pi

≤ 1

2C2(n,d)
and A ≥ max

{
C1(n),

2N

C2(n,d)

}
,

then we get #N (A) ≤ An < #M(A), and in particular N (A) �= M(A), establish-
ing the existence of an integer vector a with the desired properties. �

3. Proof of Proposition 1.4

We shall argue by induction over m. The inductive base m = 0 follows from [13,
Thm. 3.3]. Indeed, we then have R = r and qd = p0 for all d . In this case, [13,
Eq. (5)] with q = p0 � ξ2 reads

NW(f,B,q) − B
qr

� Bs+2ξn−r−s−2 = Bnξ−r

(
ξ

B

)n−s−2

,

as required for (9).
For m ≥ 1, we shall use induction over s, the inductive base being the case

s = −1. Thus, suppose that spi
(f̂i ) = −1 for all 0 ≤ i ≤ m. The quantity we wish

to estimate is

VW(f,B,q) := NW(f,B,q) − B
Q

,

where Q := q
r2
2 q

r3
3 · · ·qrD

D . We shall do this by carrying out a pm-van der Corput
differencing step, reducing all the moduli involved by a factor pm. Our first step
is to split the sum into congruence classes modulo pm, yielding

VW(f,B,q) =
∑

u (modpm)
pm|f(u)

∑
x≡u (modpm)

q|f̃(x)

W(B−1x) − Q−1B, (15)

where f̃ := f̂1 = (f3, . . . , fD). Note that if x ≡ u (modpm), where pm | f(u), then
for each 3 ≤ d ≤ D, the condition qd | fd(x) is equivalent to q̃d | fd(x), where
q̃d := p−1

m qd . Therefore, the “expected value” of the inner sum∑
x≡u (modpm)

q|f̃(x)

W(B−1x) =: ϒ(u),

say, is p−n
m Q̃−1B, where

Q̃ := q̃
r3
3 · · · q̃rD

D = p−r
m Q.
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Writing q̃ := (q̃3, . . . , q̃3, . . . , q̃D, . . . , q̃D) ∈Nr3 × · · · ×NrD and

S :=
∑

u (modpm)
pm|f(u)

{ϒ(u) − p−n
m Q̃−1B},

we obtain

VW(f,B,q) = S + p−n+r
m Q−1B

∑
u (modpm)

pm|f(u)

1 − Q−1B.

We have assumed that ρpm(f) = r and spm(f) = −1, so we have∑
u (modpm)

pm|f(u)

1 = pn−r
m + O(p

(n−r+1)/2
m )

by Hooley’s extension [10] of Deligne’s theorem (see [13, Lemma 3.2]). Observ-
ing that Q � ξκ , where

κ :=
m+1∑
i=2

(i − 1)ri + (m + 2)

D∑
i=m+2

ri ,

we conclude that

VW(f,B,q) = S + O(Bnξ−κ−(n−r−1)/2). (16)

The error term here is clearly admissible for (9). Indeed, since κ − r
2 ≥ R and

ξ−1 ≤ ξ/B ≤ 1, we have

Bnξ−κ−(n−r−1)/2 < Bnξ−R−(n−1)/2 ≤ Bnξ−R
(

ξ

B

)(n−1)/2

≤ Bnξ−R
(

ξ

B

)(n−1)/2m

,

as required.
Applying Cauchy’s inequality to the sum defining S and using (12) with

ρpm(f) = r , we get

S � p
(n−r)/2
m �1/2,

and thus

VW(f,B,q) � p
(n−r)/2
m �1/2 + Bnξ−R

(
ξ

B

)(n−1)/2m

,

where
� :=

∑
u (modpm)

{ϒ(u) − p−n
m Q̃−1B}2

may be viewed as the “variance” of the quantity ϒ(u) introduced before. To fa-
cilitate the analysis of this sum, we add some extra terms to it, obtaining

� ≤
∑

3≤d≤D

∑
ad∈(Z/q̃dZ)rd

∑
u (modpm)

Tu(a3, . . . ,aD)2, (17)
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where

Tu(a3, . . . ,aD) :=
∑

x≡u (modpm)
fd (x)≡ad (mod q̃d ),3≤d≤D

W(B−1x) − p−n
m Q̃−1B.

In particular, Tu(0, . . . ,0) = ϒ(u) − p−n
m Q̃−1B.

Remark 3.1. As seen in [14], one can obtain better bounds by circumventing this
step, at the cost of more complicated geometric considerations. The current ap-
proach, however, seems better suited for an inductive argument with an arbitrary
number of differencing steps.

When summing the expression

Tu(a3, . . . ,aD)2 =
{ ∑

x≡u (modpm)
fd (x)≡ad (mod q̃d ),3≤d≤D

W(B−1x)

}2

− 2p−n
m Q̃−1B

{ ∑
x≡u (modpm)

fd (x)≡ad (mod q̃d ),3≤d≤D

W(B−1x)

}

+ p−2n
m Q̃−2B2

over a3, . . . ,aD and u as in (17), we see that the contribution from the last term
precisely cancels the contribution from one of the cross terms, and thus the right-
hand side of (17) equals

∑
3≤d≤D

∑
ad (mod q̃d )

∑
u (modpm)

{ ∑
x≡u (modpm)

fd (x)≡ad (mod q̃d ),3≤d≤D

W(B−1x)

}2

− p−n
m Q̃−1B2.

Expanding the square, we express the leftmost sum as∑
x∈Zn

∑
x′≡x (modpm)

fd (x′)≡fd (x) (mod q̃d ),3≤d≤D

W(B−1x)W(B−1x′)

=
∑
y∈Zn

∑
x∈Zn

q̃d |fd (x+pmy)−fd (x),3≤d≤D

W(B−1(x + pmy))W(B−1x).

Now we define, for each y ∈ Zn and each polynomial fi , the differenced polyno-
mial f

y
i by setting

f
y
i (x) = fi(x + pmy) − fi(x).

Accordingly, we put fy
d := (f

y
d,1, . . . , f

y
d,rd

) for each 3 ≤ d ≤ D, f̂y
i := (fy

m−i+2,

. . . , fy
D) for each 0 ≤ i ≤ m − 1, and f̃y := f̂y

3. Similarly, we define new weight
functions Wy by

Wy(t) := W(t)W(t + B−1pmy).
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By Proposition 2.3 we have Wy ∈ C(R, (κ ′
j )), where κ ′

j may be bounded in terms
of the numbers κ0, . . . , κj . In this notation, we conclude from the previous con-
siderations that

� ≤
∑
y∈Zn

NWy(f̃
y,B, q̃) − p−n

m Q̃−1B2. (18)

In fact, by the definition of Wy the sum runs only over y � B/pm, a fact we shall
soon use.

If we denote the leading form of each polynomial f
y
i by F

y
i , then we observe

that
F

y
i = pmy · ∇Fi,

unless the right-hand side vanishes identically in x. But by Remark 2.2 this hap-
pens only if y = 0. In particular, for y �= 0, f

y
i is a polynomial of degree di − 1.

We shall shortly invoke our induction hypothesis, with f replaced by f̃y and m

replaced by m − 1, to obtain an estimate for

VWy(f̃
y,B, q̃) = NWy(f̃

y,B, q̃) − Q̃−1
∑
x∈Zn

Wy(B
−1x) (19)

for each y �= 0. We then need to show that the last term in (19), when summed
over y ∈ Zn, approximately cancels the last term in (17). To this end, note that∑

y∈Zn

NWy(f̃
y,B, q̃) −

∑
y∈Zn

VWy(f̃
y,B, q̃)

= Q̃−1
∑
y∈Zn

∑
x∈Zn

W(B−1(x + pmy))W(B−1x),

which by Lemma 2.4 is

= p−n
m Q̃−1B2 + ON(p−n

m Q̃−1B2n(pm/B)N)

for any N ∈ N. The rightmost term here is

� p−n+r
m B2nξ−κ

(
ξ

B

)N

,

and thus its contribution to S is

� Bnξ−κ/2
(

ξ

B

)N

≤ Bnξ−R
(

ξ

B

)N

,

since κ ≥ 2R. This is certainly admissible if N is chosen large enough. Thus, we
obtain

VW(f,B,q) � p
(n−r)/2
m

( ∑
y�B/pm

VWy(f̃
y,B, q̃)

)1/2

+ O

(
Bnξ−R

(
ξ

B

)(n−1)/2m)
. (20)

For each y ∈ Zn, we define

ρ(y) := min
0≤i≤m−1

ρpi
(f̃y).
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The number of equations in our new system f̃y = 0 is r̃ := r − r2, so we have
0 ≤ ρ(y) ≤ r̃ . Estimating the sum∑

y�B/pm

VWy(f̃
y,B, q̃), (21)

we shall first consider the contribution from those y for which the system f̃y still
defines a complete intersection, that is, for which ρ(y) = r̃ . In this case, our in-
duction hypothesis applies. Putting

s(y) := max
0≤i≤m−1

spi
(f̂y

i ),

we have

VWy(f̃
y,B, q̃) � Bnξ−R̃

(
ξ

B

)(n−s(y)−2)/2m−1

,

where

R̃ =
m∑

i=2

(1 − 2−i+1)ri+1 +
D−1∑

i=m+1

ri+1.

We shall apply Lemma 2.1 to estimate how often s(y) attains a given value. Thus,
suppose that s(y) = t , where −1 ≤ t ≤ n − 1. (Here we ignore the fact that our
assumption on ρ(y) would allow us to use a smaller upper bound for s(y) since the
bounds we use are such that large values of t make a negligible contribution.) Let
us fix a prime pi such that spi

(f̂y
i ) = t . Invoking our condition (5) and recalling

that spi
(f̂i ) = −1 by assumption, we shall then apply Lemma 2.1 to the forms

Fd,j , where i + 2 ≤ d ≤ D. If we denote by Vy ⊂ Pn−1
Fpi

the closed subvariety

defined by
F

y
d,j = 0, 1 ≤ j ≤ rd, i + 2 ≤ d ≤ D,

then our assumption means that dim(Sing(Vy)) = t . However, since ρpi
(f̃y) = r̃

by assumption and thus necessarily ρpi
(f̂y

i ) = ri+2 + · · · + rD , the singular lo-
cus of Vy is, by the Jacobian criterion, precisely the algebraic set Sy defined in
Lemma 2.1. Hence, y lies in (the affine cone over) the algebraic set Ts . By Lem-
mas 2.1 and 2.5 we conclude that there are at most O((B/pm)n−t−1) choices of
y for which s(y) = t . Thus, the contribution to (21) from y such that ρ(y) = r̃ is
at most

� Bnξ−R̃
(

ξ

B

)(n−1)/2m−1 n∑
t ′=0

∑
y�B/pm

s(y)=t ′−1

(
B

ξ

)t ′/2m−1

� Bnξ−R̃
(

ξ

B

)(n−1)/2m−1 n∑
t ′=0

(
B

ξ

)n−t ′(1−1/2m−1)

� B2nξ−n−R̃
(

ξ

B

)(n−1)/2m−1

.
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Then the contribution to the right-hand side of (20) from these values of y is

� p
(n−r)/2
m Bnξ−(n+R̃)/2

(
ξ

B

)(n−1)/2m

� Bnξ−(r+R̃)/2
(

ξ

B

)(n−1)/2m

= Bnξ−R
(

ξ

B

)(n−1)/2m

,

as required.
Now we treat those values of y for which ρ(y) < r̃ . In this case, the induc-

tion hypothesis does not apply, but we may apply a more elementary bound. If
ρ(y) = ρ, then there is some pi such that ρpi

(f̃y) = ρ, so a crude upper bound for
NWy(f̃

y,B, q̃), and hence for VWy(f̃
y,B, q̃), is given by Bnξ−ρ , by Lemma 2.5.

Furthermore, it is easy to see [13, Lemma 4.2] that in this case we actually have
y ∈ Tn−ρ−1. Again, by Lemmas 2.1 and 2.5 we conclude that the contribution to
(21) from values of y with ρ(y) < r̃ (including y = 0) is at most

�
r̃−1∑
ρ=0

∑
y�B/pm

ρ(y)=ρ

Bnξ−ρ �
r̃−1∑
ρ=0

(
B

ξ

)ρ

Bnξ−ρ

= Bn
r̃−1∑
ρ=0

(
B

ξ2

)ρ

� Bn.

This yields a contribution to the right-hand side of (20) of size at most

� Bnξ−r/2
(

ξ

B

)n/2

,

corresponding to the second error term in (9). This concludes the treatment of the
case s = −1.

Next, assume that s ≥ 0. By Lemma 2.6 there is a primitive integer vector
a �n,D 1 such that

ρpi
(f|a) = r + 1 and spi

(f̂i |a) = s − 1 (22)

for all 0 ≤ i ≤ m, where f|a := (f1, . . . , fr , a1x1 + · · · + anxn), and analogously
for f̂i |a. We may then find a unimodular matrix M ∈ GLn(Z), all of whose entries
are On,D(1), such that MT a = en and write∑

x∈Zn

q|f(x)

W(B−1(x)) =
∑
b�B

∑
x∈Zn

q|f(x),a·x=b

W(B−1x)

=
∑
b�B

∑
x′∈Zn

q|f(Mx′),x′
n=b

W(B−1Mx′)

=
∑
b�B

∑
x∈Zn−1

q|gb(x)

W̃B−1b(B
−1x).
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Here we have put gb = (gb,1, . . . , gb,r ), where gb,i , for each 1 ≤ i ≤ r , is the poly-
nomial in n − 1 variables given by gb,i(x) := fi(M(x, b)), and we have defined
W̃u :Rn−1 →R by W̃u(t) := W(M(t, u)). Moreover, we have∑

b�B

∑
x∈Zn−1

W̃B−1b(B
−1x) =

∑
x∈Zn

W(B−1Mx) =
∑
x∈Zn

W(B−1x)

since M is unimodular.
It follows that

VW(f,B,q) =
∑
x∈Zn

q|f(x)

W(B−1(x)) − Q−1
∑
x∈Zn

W(B−1(x))

=
∑
b�B

V
W̃

B−1b
(gb,B,q). (23)

Note that the polynomials gb,i have the same leading forms Gi(x) :=
Fi(M(x,0)) for each b ∈ Z (indeed, by (22), Gi cannot vanish identically)
and that the subscheme V (G1, . . . ,Gr) ⊂ Pn−2

Z
is isomorphic to the subscheme

V (F1, . . . ,Fr ,a · x) ⊂ Pn−1
Z

. Thus, we may conclude by (22) that ρpi
(gb) = r

and spi
(gb) = s − 1 for all b ∈ Z and all 0 ≤ i ≤ m. Moreover, we have

W̃B−1b ∈ C(R′, (κ ′
j )), where R′ � R and κ ′

j � κj , by Proposition 2.3. Conse-
quently, we may invoke our induction hypothesis to obtain the bound

V
W̃

B−1b
(gb,B,q) � Bn−1ξ−R

(
ξ

B

)(n−s−2)/2m

+ Bn−1ξ−r/2
(

ξ

B

)(n−s−1)/2

.

Summing over b � B , by (23) we get

VW(f,B,q) � Bnξ−R
(

ξ

B

)(n−s−2)/2m

+ Bnξ−r/2
(

ξ

B

)(n−s−1)/2

,

as desired.

4. Proof of the Main Results

Suppose that we are given a system f of polynomials with ρ∞(f) = r and s∞(f) =
−1. We want to apply Proposition 1.4, so our first step will be to find an alternative
system g = (g1, . . . , gr ), generating the same ideal 〈f〉, such that s∞(ĝi ) = −1 for
each i = 0, . . . ,D − 2. The following result, which is a slight modification of [2,
Lemma 3.1], shows that this is possible.

Lemma 4.1. Let f = (f1, . . . , fr ) be a system of polynomials in Z[x] with

deg(f1) ≤ · · · ≤ deg(fr ),

and let I = 〈f〉 be the ideal in Z[x] that it generates. Suppose that the leading
forms F1, . . . ,Fr define a nonsingular complete intersection of codimension r in
Pn−1
Q

. Then there is another system g = (g1, . . . , gr ), with deg(gi) = deg(fi) for
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all i, such that the corresponding leading forms G1, . . . ,Gr have the following
property:

For each 0 ≤ j ≤ r , the subset Gr−j+1, . . . ,Gr defines

a nonsingular complete intersection of codimension j .
(24)

Furthermore, ‖g‖ may be bounded above by a polynomial in ‖f‖ whose height
and degree are bounded in terms of n and d.

Proof. Let us write I ′ for the ideal generated by the leading forms Fi . In the
proof of [2, Lemma 3.1], a new system of generators Gi satisfying property (24)
is found by taking

Gi =
∑

1≤j≤i
di=dj

λijFj +
∑

1≤j≤i
di>dj

∑
1≤k≤n

λijkx
di−dj

k Fj (25)

for suitable integers λij , λijk . It is not hard to see that we may take λii = 1 for
all i, so that the Gi indeed generate the ideal I ′ as a Z[x]-module. It follows
immediately by construction that the polynomials

gi =
∑

1≤j≤i
di=dj

λij fj +
∑

1≤j≤i
di>dj

∑
1≤k≤n

λijkx
di−dj

k fj

then generate the ideal I .
It remains to verify the height bound. To this end, we need to redo the pre-

vious argument in a more abstract setting. Let Pdi
, for i = 1, . . . , r , be the pro-

jective space PNi

Z
parameterizing degree di hypersurfaces in Pn−1

Z
. By abuse of

notation, we will write Fi for the element of Pdi
representing the hypersurface

Fi = 0, and F = (F1, . . . ,Fr) for an element of Pd1 × · · · × Pdr . Moreover, for
each i = 1, . . . , r , we consider the parameter spaces �i = PMi−1

Z
, where Mi is

the number of unknowns λij , λijk occurring in the right-hand side of (25) for a
fixed i, and denote a general element of �i by λi . Let VF,λi

denote the hyper-
surface in Pn−1 defined by the form Gi in (25). It is then a standard fact that the
locus of (F,λ1, . . . ,λr ) such that the intersection VF,λr

∩ · · · ∩VF,λr−j+1 is proper
and smooth for each j = 1, . . . , r is an open subset U of Pd1 × · · · × Pdr × �1 ×
· · ·× �r . Its complement, being a closed subset, is thus defined by the simultane-
ous vanishing of a finite collection of multihomogeneous forms Fi (F;λ1; . . . ;λr )

with coefficients in Z.
For the specific r-tuple F under consideration, we have already verified the

nonemptiness of π−1(F), where π denotes the projection from U to Pd1 × · · · ×
Pdr . In particular, at least one of these forms G(λ1; . . . ;λr ) := Fi (F;λ1; . . . ;λr ),
say, does not vanish identically in λ1, . . . ,λr . Clearly, we have the bounds

‖G‖ �n,d ‖F‖On,d(1) and deg(G) �n,d 1.

As an easy consequence of Lemma 2.5, we may then find a solution λ1, . . . ,λr to
G(λ1; . . . ;λr ) �= 0 satisfying |λi | �n,d ‖F‖On,d(1). This in turn gives the desired
bound on ‖g‖. �
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By Lemma 4.1 we may now assume that s∞(f̂i ) = −1 for each i = 0, . . . ,D − 2.
Indeed, the possible increase in ‖f‖ is absorbed by the implied constant in (2).

Lemma 4.2. Suppose that

ρ∞(f) = r and s∞(f̂0) = · · · = s∞(f̂D−2) = −1.

Then, provided that ξ � log‖F‖, there exist m distinct primes p1, . . . , pm with
pj � ξ such that

ρpj
(f) = r and spj

(f̂0) = · · · = spj
(f̂D−2) = −1 (26)

for all j = 1, . . . ,m. The implied constants depend only on n, d, and m.

Proof. By an argument similar to that in the proof of Lemma 4.1 the set of F =
(F1, . . . ,Fr) such that either ρ∞(F) < r or s∞(F̂i ) > −1 for some i is a closed
subset of Pd1 ×· · ·×Pdr , defined by a collection of multihomogeneous forms. By
assumption, at least one of these, say G(F), does not vanish when F is taken to be
the system of leading forms of the system f in the hypotheses. Furthermore, any
prime p violating condition (26) has to divide the integer G(F).

It is a straightforward consequence of Chebyshev’s theorem that for any natural
number m, there is a constant C depending only on m such that for any natural
number A ≥ 3, the interval (logA,C logA] contains at least m distinct primes not
dividing A. From this the lemma follows by taking A = G(F) and observing that

logG(F) �n,d log‖F‖. �

We shall derive the estimate in Theorem 1.2 by applying Proposition 1.4 with
m = D − 2. A suitable smooth weight function is given by

W(t) =
n∏

i=1

w(ti/2), where w(t) =
{

exp(−1/(1 − t2)), |t | < 1,

0, |t | ≥ 1.

The asymptotic formula (9) in particular yields an upper bound for NW(f,B, q).
Assuming that s = −1, the optimal such upper bound will be obtained when

ξ = B1−η, (27)

where η is the quantity defined in Theorem 1.2. Provided that n > 2D−2�, this
implies that ξ ≥ B1/2, as required in Proposition 1.4. Suppose first that

B � (log‖F‖)1/(1−η).

In view of Lemma 4.2, we may then indeed apply Proposition 1.4, and the primes
p0, . . . , pD−2 may be chosen so that s = −1. We obtain

N(f,B) � Bnξ−D′ + Bnξ−R
(

ξ

B

)(n−1)/2D−2

+ Bnξ−r/2
(

ξ

B

)n/2

.

In (27), we have already set ξ to make the first two terms on the right-hand side
equal. Verifying that the third term is then of negligible size as soon as D ≥ 4, we
arrive at the bound

N(f,B) � Bn−D′(1−η),
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thus establishing the bound in Theorem 1.2 in this case. Here, the implied constant
depends only on n and d.

In the complementary case where B � (log‖F‖)1/(1−η), we may, for example,
use the trivial bound from Lemma 2.5 to obtain

N(f,B) � Bn−r � Bn−D′(1−η)(log‖F‖)D′−r/(1−η)

≤ Bn−D′(1−η)(log‖F‖)D′
,

as desired. This completes the proof of Theorem 1.2.
To prove Theorem 1.1, one instead takes m = d − 2 ≥ 2 in the application of

Proposition 1.4. More generally, for certain given specifications of the data n, d,
the optimal upper bound for N(f,B) may be attained by choosing some other
value of m ∈ {0, . . . ,D − 2}. Thus, there is a whole range of intermediate results
between Theorem 1.1 and Theorem 1.2, a precise formulation of which is left to
the reader.

5. Concluding Remarks

Continuing the discussion from Remark 1.3, it would be desirable to have a result
where the exponent of B approaches the heuristic one also for systems of truly
differing degree. In fact, the expression n −D′, which is the asymptotic value of
the exponent of B in Theorem 1.2 as n → ∞, would be the expected one for a
system where all polynomials of degree d ≤ D − 1 were replaced by polynomi-
als of degree d − 1. This is because our setup at the moment needs to exclude
polynomials of degree ≤ 2 in each differencing step.

One could also imagine using ideas from [14] to improve our results. That
paper considers the case where r = 1 and m = 2. Using the ideas of Salberger
[15], an alternative differencing procedure is used, which allows one to keep the
original polynomial in play in each step (see Remark 3.1). This produces varieties
of gradually increasing codimension, giving stronger bounds. But it is not obvious
how to turn the arguments in [14] into an iterative approach, nor how to generalize
the geometric considerations playing the role of Lemma 2.1 in [14] to the case
r > 1.

Acknowledgments. I wish to thank the anonymous referee for valuable re-
marks and Jörg Brüdern for helpful discussions concerning this paper.
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