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Carleson Measures and Toeplitz Operators for
Weighted Bergman Spaces on the Unit Ball

JorRDI PAU & RUHAN ZHAO

ABSTRACT. We obtain some new characterizations on Carleson mea-
sures for weighted Bergman spaces on the unit ball involving product
of functions. For these, we characterize bounded and compact Toeplitz
operators between weighted Bergman spaces. The results are applied
to characterize bounded and compact extended Cesaro operators and
pointwise multiplication operators. The results are new even in the
case of the unit disk.

1. Introduction

Let C" denote the Euclidean space of complex dimension n. For any two points
z=1(z1,...,2n) and w = (wy, ..., w,) in C", we write (z, w) = zjw; + --- +
ZnWy, and |z] = /(z,2) = \/|Z]|2+"'+ |z,|2. Let B, = {z € C": |z] < 1} be
the unit ball in C". Let H(B,) be the space of all holomorphic functions on
the unit ball B,,. Let dv be the normalized volume measure on B, such that
v(B,)=1.For0 < p<ooand —1 <a < o0, let L?* := LP(B,, dv,) denote
the weighted Lebesgue spaces that contain measurable functions f on B, such
that

1/p
||f||p,a=<[B If(z)lpdva(z)) < 00,

where dvy(z) = co(1 — |z|2)°‘ dv(z), and ¢, is the normalized constant such
that v, (B,) = 1. We also denote by AL = L?(B,,, dv,) N H(B,) the weighted
Bergman space on B,,, with the same norm. If « = 0, then we simply write them
as L?(B,, dv) and A”, respectively, and || f||, for the norm of f in these spaces.

Let u be a positive Borel measure on B,,. For A > 0 and « > —1, we say that
uis a (;, @)-Bergman—Carleson measure if for any two positive numbers p and
q with g/p = X, there is a positive constant C > 0 such that

/ |f@17dpu) < Cll fll}.a

n
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for any f € AL. We also denote

lallne = sup /E |f @I du(z).

FeALNflpa=sl

The concept of Carleson measures was first introduced by L. Carleson in order
to study interpolating sequences and the corona problem [4; 5] for the algebra H*®
of all bounded analytic functions on the unit disk. It quickly became a powerful
tool for the study of function spaces and operators acting on them. The Bergman—
Carleson measures were first studied by Hastings [10], and further pursued by
Oleinik [ 18], Luecking [13; 14], Cima and Wogen [7], and many others.

In this paper we will give new characterizations for (4, y)-Bergman—Carleson
measures and vanishing (A, y)-Bergman—Carleson measures (defined in Sec-
tion 4) on the unit ball B, by using products of functions in weighted Bergman
spaces. In order to prove these results, we have to characterize bounded and com-
pact Toeplitz operators between weighted Bergman spaces, which is of indepen-
dent interest. Our results will be applied to study boundedness and compactness of
extended Cesaro operators and pointwise multiplication operators from weighted
Bergman spaces to a general family of function spaces.

THEOREM 1.1. Let u be a positive Borel measure on B,. For any integer k > 1

andi=1,2,...,k,let0 < p;,qi <ooand —1 < o; < 00. Let
A=) y=—) —. (1.1)
;171' ?»Z Di

i=1

Then p is a (A, y)-Bergman—Carleson measure if and only if there is a constant
C > 0 such that for any f; € Ay, i=1,2,... k,

f ]—[Iﬁ(z)lq' dp(z) <C]_[||ﬁ 1 0 (1.2)

B j—1

A similar result for Hardy spaces on the unit disk was given by the second author
in [26]. Due to lack of Riesz factorization theorem for weighted Bergman spaces,
the proof of the theorem will be quite different and involved. For the proof of one
implication in the case 0 < A < 1, a description of bounded Toeplitz operators
between different Bergman spaces is needed. We state this result, which may be
of independent interest, as a theorem. Given 8 > —1 and a positive Borel measure

u on B, define the Toeplitz operator T'S as follows:

TFf(2) = / i f<w§’1+l+ﬁdu(w), 2B,

THEOREM 1.2. Let 0 < p1, p2 < o0 and —1 < ay, ay < 00. Suppose that

1 1 i
n+1+,3>nmax<l,—)+ +a,’ i=1,2.
i Pi
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Let

1 1 1
A=14——-— y=—<ﬁ+ﬂ—%>~
P12

Let ju be a positive Borel measure on B,,. Then the following statements are equiv-
alent:

() T/ is bounded from AL 1o AL2.
(ii) The measure w is a (A, y)-Bergman—Carleson measure.

Moreover, we have

ITE N g1 azz = el

REMARK. In Theorem 1.2, the condition
1 14+ o
n+14+pg>nmax|1, — |+ (1.3)
P D1
is used to prove that (i) implies (ii), whereas the condition
1 J )
n+14+pg>nmax|1, — |+ (1.4)
P2 P2

is needed to prove that (ii) implies (i). Moreover, when p; > 1, condition (1.3)
reduces to (1 + B)p1 > 1 4+ o1, and by Theorem 2.11 of Zhu’s book [28], this
is equivalent to the fact that Pg is a bounded projection from L?'(B,, dvy,)
onto A4!. Here, the projection Pg is defined as

J(w)dvg(w)
B, (1= (z, w))"+1+#"

Pgf(z) =

In a similar way, when p; > 1, condition (I.4) is equivalent to the fact that Pg is
a bounded projection from L”2(B,,, dv,,) onto Ag;

An account of the theory of Toeplitz operators acting on Bergman spaces can be
found, for example, in [29, Chapter 7]. Theorems and are proved together:
we first prove the sufficiency in Theorem 1.1, and this is applied in order to get
the sufficiency in Theorem [.2. After that, using standard test functions in the case
A > 1 and a method developed by Luecking [17] using Khinchine’s inequality in
the case 0 < A < 1, we get the necessity in Theorem |.2. Finally, applying the
result on Toeplitz operators and mixing several existing techniques in a non stan-
dard an maybe a new way, we prove the necessity in Theorem 1.1. Of particular
importance in the proof is the technical Lemma 3.3, a result that can be of inde-
pendent interest since it may have more applications to be discovered in the next
years.

The product characterization of Carleson measures obtained in Theorem
can be applied to a number of questions that arise naturally in connection with
function and operator theory in the ball. We are going to give some examples
of that. First, an immediate consequence of Theorem is the result stated in
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Corollary 5.1: u is a (A, y)-Bergman—Carleson measure if and only if for any
fe AP and for some (any) t > 0,

t
sup/ @ —la ')m (@) < CILF 1%,

aeB, >|

The expression of A, y in terms of the parameters p, g, and s and some condi-
tions required on the parameters can be found in the statement of Corollary
This result is applied in order to study the boundedness and compactness of the
extended Cesaro operators

1 dt 1 dt
Jgf(Z)=/0 f(tZ)Rg(tz)T and ’gf(z)=/0 Rf(tz)g(tz)T

acting from the weighted Bergman spaces Al to a general family of function
spaces F(p,q,s). Here Rf denotes the radial derivative of the function f. The
operator J, was first used by Ch. Pommerenke to characterize BMOA functions
on the unit disk. It was first systematically studied by Aleman and Siskakis [2].
They proved that J, is bounded on the Hardy space H” on the unit disk if and
only if g € BMOA. Thereafter there have been many works on these operators.
See [1; 3; 11; 19; 20; 21], and [23] for a few examples. The space F(p, q,s) is
defined as the space of all holomorphic functions f on B, such that

(1—la?*

T a) dv(z) < o0,

11 gy = SUP f IRF@IP(L = |21+
acB,
where 0 < p<oo,—n—1<q <00,0<s <o0,and g + s > —1. The family of
spaces F(p, q,s) on the unit disk was introduced in [25]. It contains, as special
cases, many classical function spaces, such as the analytic Besov spaces, weighted
Bergman spaces, Dirichlet spaces, the Bloch space, and BMOA and Q) spaces.
See [25] for the details. For F'(p, g, s) on the unit ball, we refer to [24].

In Theorem we give a complete description of the boundedness of
Jot Al, — F(p, pB —n —1,s), and a similar description for the boundedness
of I, is obtained in Theorem 5.5. As a consequence, a characterization of the
pointwise multipliers from A, to F(p, pp —n —1,s) is obtained in Theorem
It looks possible to obtain these results directly (essentially by extracting the rel-
evant parts in the proof of our Theorem 1.1), but the use of Theorem 1.1 gives a
better understanding of what is going on, and it looks that more applications in
the setting of operator theory can be discovered in the future.

The paper is organized as follows. In Section 2 we recall some notation and
preliminary results, which will be used later. Section 3 is devoted to the proofs
of our main results, Theorem and Theorem 1.2. In Section 4 we give similar
characterizations for vanishing (A, y)-Bergman—Carleson measures. In Section
we apply Theorem to characterize bounded extended Cesaro operators and
pointwise multiplication operators from weighted Bergman spaces into a general
family of function spaces.
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In the following, the notation A < B means that there is a positive constant C
such that A < CB, and the notation A < B means that both A < B and B < A
hold.

2. Preliminaries

In this section we introduce some notation and recall some well-known results
that will be used throughout the paper.

For any a € B,, with a # 0, we denote by ¢, (z) the Mobius transformation on
B, that interchanges the points 0 and a. It is known that ¢, satisfies the following
properties: ¢, o ¢,(z) = z, and
(1 —la)(1 — |z

11— (z,a)]?
For z, w € B,,, the pseudo-hyperbolic distance between z and w is defined by

p(z, w) = ¢ (w)l,

and the hyperbolic distance on B, between z and w induced by the Bergman
metric is given by

1 —1¢a(2)* =

, a,z€B,. @2.1)

. _ ] g LH 100
B(z, w) =tanh p(z, w) = ) log 1 —|p,(w)|”

For z € B,, and r > 0, the Bergman metric ball at z is given by
D(z,r)={weB,: B(z,w) <r}.
It is known that, for a fixed r > 0, the weighted volume
va(D(z, 1)) = (1 = [z,
We refer to [28] for these facts.
We cite two results for Bergman—Carleson measures that justify the fact that a
Bergman—Carleson measure depends only on « and the ratio A = ¢g/p. The first

result was obtained by several authors and can be found, for example, in [
Theorem 50] and the references there.

THEOREM A. For a positive Borel measure u on B, 0 < p <q < 00, and —1 <
o < 00, the following statements are equivalent:

(i) There is a constant C1 > 0 such that, for any f € AP,
/]B |f(@17duz) < Cill fIIh -

(i) There is a constant Cy > O such that, for any real number r with 0 <r < 1
y
and any z € B,
p(D(z,r)) < Ca(1 — [z HF1H/p,

(iii) There is a constant C3 > 0 such that, for some (every) t > 0,

(1 —|a®)? 4 e
aseuﬁ 1= (z, a) |l 1Fea/pl n(z) = Cs.
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Furthermore, the constants C1, Ca, and C3 are all comparable to ||jt||x,a With
A=q/p.

REMARK. Let A =g/ p. Then this result states that a positive Borel measure & on
B, is a (A, «)-Bergman—Carleson measure if and only if

(1 —la])’
sseuﬁ /]Bn TR CEEre, du(z) < oo
for some (every) ¢ > 0.

For the case 0 < g < p < 0o, we need a well-known result on decomposition of
the unit ball B,,. A sequence {ay} of points in B, is called a separated sequence (in
the Bergman metric) if there exists a positive constant § > 0 such that 8(z;, z;) >
8 for any i # j. The following result is Theorem 2.23 in [28].

LEMMA A. There exists a positive integer N such that for any 0 <r < 1, we can
find a sequence {ay} in B,, with the following properties:

(i) B, =, D(ak,r).

(ii) The sets D(ay,r/4) are mutually disjoint.
(iii) Each point z € B,, belongs to at most N of the sets D(ay, 4r).

Any sequence {ay} satisfying the conditions of the lemma is called a lattice (or
an r-lattice if one wants to stress the dependence on r) in the Bergman metric.
Obviously, any r-lattice is separated. For convenience, we will denote by Dy =
D(ag, r) and Dy = D(ay, 4r). Then Lemma A says that B, = ({2, Dx and there
is a positive integer N such that every point z in B, belongs to at most N of
sets Dy.

The following result is essentially due to Luecking [16; 17] for the case & =0
(note that the discrete form (iii) is actually given in Luecking’s proof). For —1 <
o < 00, the result can be similarly proved as in [17]. The condition in part (iv) first
appeared in [0] (see also [27, Theorem 54]), where it was used for the embedding
of harmonic Bergman spaces into Lebesgue spaces.

THEOREM B. For a positive Borel measure p onB,,,0 <qg < p < o0, and —1 <
o < 00, the following statements are equivalent:

(1) There is a constant C1 > 0 such that, for any f € AP,

/ |f @I du(z) < Cill f1I} o

(ii) The function
w(D(z,r))
(1 _ |Z|2)n+l+a
is in LP/P=D: for any (some) fixed r € (0, 1).
(iii) For any r-lattice {ax} and Dy as in Lemma A, the sequence

u(Dy) }

(1 — |ag|?)+1+a/p)

wr(2) =

{1} :={
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belongs to £7/P=9 for any (some) fixed r € (0, 1).
(iv) For any s > 0, the Berezin-type transform By o (1) belongs to Lp/(p=a).«

Furthermore, with .. = q/p, we have
”ﬁr”p/(p—q),ot = ||{Mk}||(p/<p—q) = ||Bs,a(ﬂ)||p/(p—q),a = llx e

Here, for a positive measure v, the Berezin-type transform B; o (V) is

(1—1z»°
[T — (z, w)|rHi+ste

Bya()(2) = / dv(w).

B

As a consequence of Theorem B, for 0 < A < 1, a positive Borel measure i on
B, is a (A, «)-Bergman—Carleson measure if and only if

w(D(z, 1)1 — |z 1e e LV/O-Me

or
(D) (1 — ag )~ H1F0ry g g1/0-H
for any (some) fixed r € (0, 1).

The following integral estimate (see [28, Thm. 1.12]) has become indispens-
able in this area of analysis and will be used several times in this paper.

LEMMA B. Suppose z € B,, ¢ > 0andt > —1. The integral

1— 2\t
Ic,l(Z)Z/ = lwh dv(w)
B, |1 —

(z, w) |n+1+t+c
is comparable to (1 — |z|*)~¢.
We also need a well known variant of the previous lemma.

LEMMA C. Let {zx} be a separated sequence in By, and let n <t < s. Then

o 25\t

1—|z _
Z%EC(I—MZY S z7eB,.
= (2 2]

Lemma C can be deduced from Lemma B after noticing that, if a sequence {z;}
is separated, then there is a constant r > O such that the Bergman metric balls
D(zy, r) are pairwise disjoint. With all these preparations, now we are ready to
prove the main results.

3. Proofs of Theorems and

We first need the following lemma.

LEMMA 3.1. Let —1 <o <oo. Fori=1,2,...,k, let 0 < p;,qi < o0, and let
fi € AD9E Let

. qi i Qigi
X:;E; yZXZ —.
i=

pi
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Then [T, fi € A)/*, and
k

[1#

i=1

k
fgnufl'”pi/qisoli'

L/hy i

Proof. Let f; € AL/ (i =1,2,... k). Since piA/g; > | foranyi=1,2,.... k,
we can apply Holder’s inequality to obtain

k
[

i=1

1/xy

A
( /]_[If(z)ll“(l 2] )Vdv(z))

”11

k qi/ pi
< H(/ | fi (Z)l(l/?»)(m)»/qz)(l — Izl )(qzax/(m)n))(m)\/qx)dv(z))

1

k

qi/ pi
l_[(f @17 (1 — [z dv(Z))

i=1

':l»

”fl ”Pt/‘]t a;+

1

The result is proved. O

PROPOSITION 3.2. Let i be a positive Borel measure on B,,. For any integer k > 1
andi=1,2,...,k,let 0 < p;,q;i <00 and —1 < a; < 00, and let A and y be as
in (1.1). If w is a (A, y)-Bergman—Carleson measure, then (1.2) holds.

Proof. If k = 1, then the result is just the definition. Let us now assume that k > 2.
1 /A

Let hj € AL/ i =1,2,... k. By Lemma 3.1, [T_, hi € A)/*, and
k k
[Tr| ST g -
i=1 "ayoiog
Since @ isa (A, y)—Bergman—Carleson measure,
k
/ ]"[h @)|duzx) <C Hh <c[[1nrillpge-  G.1)
Bnlizi i=t /Ay i=1
Let
k k
dpi = (1"[ |hi|du> / (1"[ ||hi||pi/qi,ai).
=2 =2

Then (3.1) is equivalent to

/BIhl(Z)Idul(z)SCIIhlllpl/ql,al-
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Thus, u1 is a (q1/p1, @1)-Bergman—Carleson measure. Thus, for any f € Agll,

f A dpun (@) < CILAID o,

which is the same as

/ Ifl(z)l‘“]_[lh (z)|du(z)<C||f1||p1m]"[||h,-||p,-/q,-,a,-. (32)

i=2
Let

k
duy = (mrﬂ I |hi|d,U~)/<||f1 1P e H ||h,-||p,./q,.,a,.>.
=3

i=3
Then (3.2) is the same as

/E [h2(2) | di2(z) < Cllhz |l py/gs,en-
Thus, u; is a (q2/ p2, «2)-Bergman—Carleson measure. Thus, for any f> € Aaz,
f | 21 dpa(z) < Cll 21150

or

/ A1 ()] H i (@) (@) < CllL AN a L2150, H 1A e g

Continuing this process we will eventually get (1.2). O

3.1. Proof of Theorem

3.1.1. (i) Implies (i1). We divide this part into two cases: A > 1 and 0 < A < 1.

Case 1: » > 1. Fix a € B, and let f,(z) = (1 — (z,a))”®+t1*A) Under the
condition (n + 1 + B)p1 > n + 1 + «y, it is easy to check using Lemma B that
fa € AL with

I fallD) gy S (1 — |a|Py et iren—(tl+Ap:
Since
B _ Ja(w)
T) fa(z) = /Bn TEERTEEY: dup(w)
_ / dp(w)
B, (1 —{z, w48 . (1 — (w, a))r+1+8’
we get

T,ffz(z)z/ g (du(w) o MDG)
B, -

z, w)|2(n+1+/f5) = |Z|2)2(n+l+ﬁ)'
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On the other hand, by the pointwise estimate for functions in Bergman spaces
(see [28, Thm. 2.1]) together with the boundedness of the Toeplitz operator A ,
we get

TP £.@) =T 2@ S ITL fill praay (1 = |27) O F I He/ P2
SUTL N foll o (1 — [2]?) o)/ P2

Hence,
w(D(z, 1) S ITA(1 — |22yt Dt e/ pi—(rt 1) o
= I = 2B,
By Theorem this means that pu is a (A, y)-Bergman—Carleson measure
with
lelny SITEI.

Case 2: 0 < A < 1. Notice that the condition 0 < A < 1 is equivalent to 0 <
p2 < p1 < oo. Let ri () be a sequence of Rademacher functions (see [9. App. A]),
and {ay} be any r-lattice on B,,. Since

1 14+ o
n+l14+pg>nmax|1, — |+ ,
pP1 Pi

we know from Theorem 2.30 in [28] that, for any sequence of real numbers
{Ar} € £P1, the function

a-— |ak|2)n+1+ﬂ—('l+l+a1)/1’|

(1 = (z, ag)nt1+F

fi@ =Y k()
k=1

isin Agll with || fillpy.ay S IH{Ak}ler1 for almost every ¢ in (0, 1). Denote by
a- |ak|2)n+l+,3—(n+l+oz|)/p1

(1 = (z, a)"t1+P

fi(@) =

Since T,f is bounded from A% to AL2, we get that for almost every ¢ in (0, 1),

P2
ITP fill P2 ey = / dvg, (2)

> T fi(2)

k=1

00 P2/ p1
SITANP2 N fill5 oy SNTE P2 (Z mv’l) :
k=1

n

Integrating both sides with respect to ¢ from O to 1, and using Fubini’s theorem
and Khinchine’s inequality (see, e.g., [17]), we get

o0 P2/2
/ (Z |Ak|2|T,ffk<z)|2> dve, (2) SITLIP - {123, - (3.3)

By k=1
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Let { Dy} be the associated sets to the lattice {a;} in Lemma A. Then

o
> Il / ITf fi ()17 dva, (2)
k=1 Dy

= / (Z|)~k|p2|T,ffk(Z)|p2Xﬁk(Z)>dvaz(Z)-

n k=1

If pp > 2, then 2/p> < 1, and from the fact that 0! injects continuously into {p2/2
we have

o0

> Il / TS £ ()72 dve, (2)
Dy

k=1

o P2/2
< / <Z|xk|2|T,ffk<z)|2x,3k(z)) dve, (2)

Bn \t—1

oo P2/2
< [ <Z|xk|2|T,ffk<z)|2) dvy (2).

B Nz
If 0 < p2 <2, then 2/p; > 1. Thus, by Holder’s inequality we get

S el / T8 i 17 vy (2)
k=1

I
Dy
. 2 ) m/2 1=p2/2

S/B <Z|/\k| IT/ffk(Z)l X[)k(z)) <ZXDk(Z)> dvg, (2)

n =1 X

=y /2 . S\
< N7/ /B (ZWI ITffk(z)|> dvg, (2)

n =1

since any point z belongs to at most N of the sets Dy. Combining the last two
inequalities and applying (3.3), we obtain

Dy

Sl [T A@I dun @
k=1

1 2 - 2 2 n/2
< max{1, N'~P2/%} /B (Z MPITY fi(2)] ) dve, (2)
n k=1

SATENP {173 -
Since, by subharmonicity (see [28, Lemma 2.24]) we have

1

B P <
|TM fk(ak)| ~ (1 _ |ak|2)n+1+a2

/~ TP fi ()| dve, (2),
Dy
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we get

meza —lax YT fita) | SITLNP - 1, (B4)
k=1

Now, notice that

_ dp(w)
TP f(an) = (1 — |ap |2 TIHB—(+1+an)/p / )
l;,fk( K =( lak|”) B, T (wyak>|2(n+l+ﬁ)

Therefore,

u(Dy)
<T8
(1 - |ak|2)n+1+,3+(”+1+(11)/p1 ~ T, fk(ak)»

and putting this into (3.4), we get

P2
Z| (L’%) <||Tﬁ||p2 ||{)Lk}||gm

with
1 1
s=n+1+,3+(n+p+a1)—(n+p+a2)=(n+1+y)k. (3.5)
1 2

Since the conjugate exponent of (p1/p2) is (p1/p2)’ = p1/(p1 — p2) by duality,

we know that
(v} = {( 1 (D) >p2} c ¢P1/(P1=p2)

(1 — lax]®)®
with
e g1 1=y SNTE (172
or
{ur} = {(1 — |al:|(2?(kn)+l+y)k } e ¢P1P2/(P1—p2) _ pl/(1=3)
with

1
Wi lan = L2 S ITEL

By Theorem B this means that p is a (A, y)-Bergman—Carleson measure with
Iliay SITLI-

3.1.2. (ii) Implies (). Now suppose (ii) holds, that is, i is a (A, y)-Bergman—
Carleson measure. We show that this implies (i). We divide the proof into three
cases.

Case 1: p> > 1. For this case, let p} and «) be two numbers satisfying

1 1 o o
—+—==1 _2+_%=/3, 3.6)
P2 P P2 P

Then
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since 8 > (1 + a2)/p2 — 1. By a duality result due to Luecking (see [15] or [
Thm. 2.12]), we know that (A52)* = As,z under the integral pairing
2

(f,g>5=/B f(2)g(2) dvg(2).

Let f € ALl and h € A . An easy computation using Fubini’s theorem and
the reproducmg formula for Bergman spaces shows

(T8 fys = /B hOF@ du ().

The conditions for A and y in the theorem are equivalent to

1 1 () o
)"=_+_,» Yy =— —+—/ .
PP A\pP1 Py
Thus, by Proposition 3.2,

[(h, T f)p] SfB Ih@If @ldpn@) S Iilly - 1 1 pras - 1l py e

Hence, 7,/ is bounded from AZ! to AL with [T < [l
Case2: pp=1.Let f € Agll.For this case, since 8 > (1 +a2)/1 — 1 =, by
Fubini’s theorem and Lemma B we have

1Tf Fll o < f ( / %dum)%(z)

(1—zH)™
/|f( )|(/IB T )|n+l+ﬂdv(z)>du(w)

S/l; |f )1 = [w)*> P dpu(w). (3.7

Let v be the measure defined by dv(w) = (1 — lw|®)®2=P du(w). Since p is a
(A, y)-Bergman—Carleson measure, using Theorems A and B, we easily see that v
is a (1/p1, @1)-Bergman—Carleson measure and, moreover, [V|1/p,.a; S Iitlla,y -
Thus, for any f € AO,l , we have

/B |f)ldvw) S Ivilyprar - 1 pren S Ty - 1 lpya-

Thus, by (3.7) it follows that
TP fllnes S il 1 F py

and so T,f is bounded from A} to AL with ||T,f|| Sy -
Case 3: 0 < py < 1. Let {ax} be an r-lattice of B, in the Bergman met-
ric, and {Dy} be the corresponding sets as in Lemma A. Then we know that
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B, = Ui D« and there is a positive integer N such that each point in B, be-
longs to at most N of the sets Di. Then

Tﬁf(Z)| S Z/ H_m%d,u(w)

ee]

1
11— (z, ag)|"+1+P

/ |f(w)ldp(w).
Dy

k=1
Now, for w € Dy, we have

1
FACDILES A= a2y /ﬁk | f (@7 dvg, (2).

From this we get

1 1/p1
/ ) dp(w) < ( / F @I dvmm) (D).
Dy, Dy,

(1— |ak|2)(n+1+a1)/p1
Since 0 < py < 1, this implies

! 1(DP
1 — (z, ag)|@H1+PP2 (1 — |gg|?) +1+an)(p2/p1)

P2/ p1
X (/ If(Z)Ipldval(Z)> .
Dy

Therefore, since (n + 1+ B)p2 > n + 1 + a», we can apply Lemma B to obtain

w(Dy)P2 p2/p1
1T f 1530 S Z (0= Jaa Py o Fan (/o) / | £ @17 dvg, (2)

/ (1 =1z dv(z)
X

11— (z,ak)|(”+1+/3)1’2

IT] f@I7 S Z |

00
(Dk)pz P2/ p1
< E P1
~ (1- |ak|2)(n+1+a1)(P2/P1) (/ £ (@) dval (Z)>

k=1
x (1 — |ak|2)n+1+a2_(n+l+ﬁ)p2. (3.8)

First, assume that A > 1. Since u is a (), y)-Bergman—Carleson measure, by The-
orem A we get

1w(DE) Sty (1 — Jag |2 HHD2,
Bearing in mind (3.5), this, together with (3.8) and the fact that p, > p; (due to
the assumption A > 1), yields

e¢]

P2/ p1
IITﬂfllm a2NIIMII </ |f ()| dval(z))

k 1

p2/p1
snuni’?y(Z/D |f<z>|”ldva1<z>) SN, 1 F U2 -
k=1 k
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Hence, T,’f is bounded from AJ} to A4? with ||T,f|| < el - Next, assume that
0 <A < 1. Then p; > p», and using Holder’s inequality in (3.8), we get

D.)P2 p2/p1
nTﬁfnmNZ s [ 1@ v, o)
k

(1— |ak|2)(n+1+y)kp2

ad P2 p1/(p1—p2)y 1=p2/p1
[y w(Dy)
- P (1 — |ag|?)+1+1)Ap2

0 p2/p1
x (Z f |f(z)|1’ldvm(z)> :
k=1"Dx

Since w is a (A, y)-Bergman—Carleson measure, by Theorem B we get that

i w(Dy)P2 p1/(p1=p2) _ i w(Dp) /1~
—ld- lag|2) (r+1+7)Ap2 — - |ay |2)+1+1)A

1/(0—A
< ”/’L” /( )_ ”M”PIPZ/(PI Pz)

and so
o0 P2/ p1

UL £ 152 00 S el (Z/D |f(z)|P1dval<z>) SN, 115
k=1"1Dk

Hence, T,’f is bounded from A}! to AR? with ||TM’3 Il < llgell;.., - The proof is com-
plete.

3.2. A Key Lemma

Now, we are going to use the result just proved on Toeplitz operators to obtain the
following technical result that will be the key for the proof of the remaining part
in Theorem

LeEmMA 3.3. Let u be a positive Borel measure on the unit ball B,,. For s,r > 0
and o1 > —1, let

~ rs [ 1fI dp(w)
;Lozlf(Z) (I—1zI") /];nll—(z,w)w*””“l'

Forg>1, p>0,and oy > —1, let

r 1 1 owr o«
A=1+-—— and y=—(a1+i——1>. (3.9)
P q A P q
Assume that
1 14+
n+s>nmax| 1, — )+ . (3.10)
4 P

The following conditions are equivalent:

(@) wisa (A, y)-Bergman—Carleson measure.
(b) There is a positive constant K such that ||SM o Sllga < K||f||po[2 for

feAOt2
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Moreover, we have |||,y < K.

Proof. Suppose first that u is a (A, y)-Bergman—Carleson measure. Consider a
lattice {a;} and its associated sets {D;}. Since |1 — (z, w)| is comparable with
[1—(z,a;)| forw in Dj, we have

"d
1) 0, fF@I S (1 =2 )sZ/ | f ()" dp(w)

1 —(z, w) |n+1+s+a1

o0

1
= (1—|z%)* f " dp(w).
( |z|);|1_ o [, /O duo)

Using the notation

_~ 1 » I/p
|f(aj)l:= <(1—|aj|m/;},|f@)| dvoq(é')) ;

we have
[f)|" S1f@)l”, weD;.
This gives

[e%e] 7y r q
q 2\sq | f(aj)|"mw(Dj)
187 o F@1 S (1 =12 (Z = 2 aypieorer ) -
j=1 ’
Now, pick ¢ > 0 so that o; — s max(g, g’) > —1 with ¢’ being the conjugate

exponent of g, that is, 1/¢g + 1/q’ = 1. By Holder’s inequality with exponent
q > 1 we get

i |Flaplruwmd)y \*
o= (zaypr et
0 1.2yt tap—eg’ \ 91
=< (Z (i |aj| ) n+1+4+s+a )
,-:1' —(z,a;j)|

O 1 F @) (DN — |a;|?)et+and-g)+eq
X<Z|f(a])| u(DHIA —la;l) )

|1 _ (Z, aj>|n+1+s+<x|

j=1
Since the sequence {a;} is separated and n + 1 + «; — &g’ > n, using Lemma C,

we have
00 —eq’
(1 |aj|2)n+1+ol1 eq

< (1 _1,12y—5—¢q
Z 1 —(z,a;)|rHiHste SA=1= ’
Jj=1 ’

and therefore
17,0 (I
S N NT(1 — 112\ 14a))(1—q)+eq
5(1_|Z|2)qu<z [f@ap™pu(DHI(1 —laj|”) )

1= (z.aj)rtitsten

j=1
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This, together with the typical integral estimate in Lemma B, gives

oo
1Sy, o Fllg.ar S Y 1F @) (D1 — |aj | Hiroent=ated
j=1

_ 2\s+a)—&
X/ (1 —|z]7)* 17 dv(2)
B

’ [1— (z,aj)|”+1+s+0!1

S @)l uDj(1 — fa; ) e t=a),

j=1

If & > 1, then (D) S llella,y (1 = la;[H@+H1H7)% due to Theorem A. More-
over, the condition A > 1 also implies p/(rq) < 1, and therefore we have

o0
Yy 2 1
187 a0 PG SNl , Y 1 @) (1 — Jaj Pyt treralp
j=1

- —_— rq/p
< ||u||i,y(2|f(a,-)|f’<1 — la; >yt +°‘2)
j=1

If 0 < A < 1, then we use Holder’s inequality with exponent p/(rg) > 1. Ob-
serve that the conjugate exponent of p/(rq) is

p/b) _ p 1
p/rg)—1 p—rq q(1—21)

We obtain, after an application of Theorem B,

o~ 2 1 rq/p
1) f oy S (Zl FapiP(l o Py M)

j=1
00 1/(1=2)N qg(1—2)
D:
(X (s
— (1 _ |a/|2)(n+l+y)k
J= ’

S S rq/p
S ||u||§,y(2|f(a,-)|l’(1 — laj|H"™* *“2>
j=1

Finally, in both cases, we obtain the inequality in part (b) after noticing that
o0
D I @pP (= la; Py SN o
j=1

Conversely, assume that (b) holds. We want to show that u is a (A, y)-
Bergman—Carleson measure. We split the proof in two cases.
If A > 1, then, for each a € B,,, consider the functions

fa@=0—(z,a)™°
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with o big enough, that is, with po > n + 1 + . By Lemma B we have

dvg, (2) _
o _ T\ <« a 2\n+1+an po_
Il fallp,as /}Bn“_% >|p(,N( lal”)
Also, for any T > 0, we get

(1 — 2| fal@)]"

[1— (Z,a)|”+1+x+°‘1

w(D(a, 7)) < (1 — |Z|2)s/ | fa(w)[" dpa(w)

Dia7) |1 — (z, w)|Fi+sta
M (xlfa(z)

Moreover, since v, (D(a, 7)) < (1 — |a[>)" 7% we have

(1— |a|2)(n+l+a|)(l—q) < (1— |Z|2)S qdv )
~ D(a,t) 11— (z,a)|rH+sta “

(1—z»* 1
ffm <|1 T ) @
Hence,

(1 — |aH) " HHDU=D| £ ()] (D (a, 1) < f St oy fa@? dva, (2)
B

n

< K| fallpla
S KU — |ayrriteemroyalr,

This gives

w(D(a, 7)) < K(1— |a|2)(n+1+a1)(q71)/q(1 _ |a|2)(n+l+a2)r/p

By Theorem A it follows that u is a (X, y)-Bergman—Carleson measure with

lllay S K.
For 0 < A < 1, we split the proof in several cases.
Case r = 1: In that case, it is easy to see that the condition implies that the

Toeplitz operator Tf : AL, — A% is bounded with

B=s+4+oa; and o =o]+sq.
Therefore, part (a) is an immediate consequence of Theorem after checking
that the parameter 8 satisfies the conditions of that theorem, that is, we need to
check (1.3) and (1.4). Observe that, since 8 > s — 1, condition ( ) ensures that
B satisfies (1.3). On the other hand, since ¢ > 1, (1.4) becomes

1 1
1+ﬂ>ﬁ & 4o > + o
q

& g>1.

This finishes the proof of this case.

Case r > 1: We want to show that u is a (A, y)-Bergman—Carleson measure,
or equivalently, that By , (1) belongs to L'/(=1).7 By Theorem B and the result
on Toeplitz operators (Theorem 1.2) we have

| Bs,y (W ll1/a1=2),y < CllT,fllAgzﬁAg (3.11)
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with
o r—1
'3=S+_1+M’
r r
1
ft=———
1—-A+1/p

and o is determined by the relation

_1 ﬁ+a2 o
V=3 p t)

Again, it must be checked that the parameter $ satisfies the condition indicated in
the second line of the statement of Theorem 1.2. Since 8 > s — 1, condition (1.3)
is satisfied due to ( ). On the other hand, the corresponding condition (1.4)

becomes
1 l1+o
n+ 14 8 > nmax 1,; + P

It is easy to see that > 1, so that we must check the condition
140

148>
or, equivalently,
1 o
1+B8>-4B+——yh
t p

Taking into account the expression for Ay given in (3.9), we see that this condition
is equivalent to

1l « o 1+a 1+«
1>—+—2(1—r)——1(q—1)=g(l—r)+g—a
t p q
Since r > 1, this holds if
14+ o
I+o > )
q

and this is clearly satisfied because ¢ > 1 and (1 + o) > 0.
Next, we continue with the proof. Assume first that © has compact support
on B,,. By Holder’s inequality,

B et |Lf ()| dpu(w) )’/’ / dp(w) )W
|TN— f(Z)| = <~/IB,, |1 _ (Z, w>|n+1+s+a] B, |1 _ (Z, w>|n+1+s+y s

where 7’ = L5 is the conjugate exponent of . This yields

1—|z 27\ rd t/r ,
”,Tltﬂf”?a S/I; < i ( |Z| ) |f(w)| /"l’(w)) (BM/,U«(Z))I/V dvo‘fst(z)'

1= (2 w) T

Now, since r’/((1 — A)t) > 1 (because (1 — 1)t < 1), we can apply Holder’s in-
equality again to obtain

ITE I o < By DI,

(1= 1z’ If w)I" dpu(w) qd 1/n
g B, \/B, 1 —(z, w)|”+1+5+a1 UV"‘(U—St—y)n(Z) .
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Observe that
( r )/ r'/((1 = X)) r’ r
n = = =

(1=t A= —1 rF—(—nt r——ntr—1)
and therefore
m t _ 1
==t =1 r/t—(1=0F—1)
1 1

T At lp—(d—n-1 rpti—x T

After some long and tedious but elementary computations, it is possible to check
that
y+(o—st—y)n=aj. (3.12)

—(1=Ntr—1)
—(—Mt(r—=1)°

-y =Mt(r—1)4+or —str=a1[r — (1 —Mt(r—1)].
Using that 0 = Bt + aat/ p — y At and the expression of 8, after some simplifica-
tions, we see that the previous identity is equivalent to

Indeed, since 1 —n = identity ( ) is equivalent to

’
—YAtt+opt—=oqr —oaptr(l1 — X)) —aAt.
p

Now, using the expressions of A, y given in (3.9), we must check that
oyt
i =y —ait(l —X).
4

This is obvious if o) = 0. If a1 # 0, this is equivalent to
1
f=—
1-x+1/p
and this is our choice of 7. Hence, ( ) holds.
Then, by our condition (b) we obtain

WL FUE 5 < 1Bsy GOUY sy 1S g £,

< KU Bsy Iy 11 -
This, together with ( ), gives

1 ’
”Bs,y(ﬂ)nl/(l—k),y 5 ”T,f” 5 K‘I/fli : ”BS’V(M)HI%IfA),y’

and since g/nt = 1/r, this implies
I Bs,y (Wl /a-2).y S K,

proving the result when p has compact support on B,,. The result for arbitrary p
follows from this by an easy limit argument.
Case r < 1: Fix a number m > 1 and consider the measure & given by

diiz) = (1 — |z du(z)

with |
A=(m— r)w'
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Let
y —V )\"
e yfm—1)
,3_s—l—m+ )
1
f=—,
1-x2+1/p

and let o be determined by the relation

1 oy O
*k
— —’————.
y X<ﬁ P t)

As done in the previous cases, it can be checked that the parameter 8 satisfies the
condition indicated in the second line of the statement of Theorem

Again, assume first that u has compact support on B,. Obviously, then the
measure i also has compact support. By Theorem applied to the Toeplitz
operator Tlif : AL, — Al we have

I Bs,y+ (ID11/(1=2),p% < CIITf laz,— - (3.13)
Arguing as in the previous case, we get
ITE FUE o < Bsye GOy e 1S5 F 1
where m’ denotes the conjugate exponent of m, and
1
Tm/pH1—A
Since m > r, we have q; < (r/p + 1 —A)~! =g, and hence

1S o fllgrar < 182 Fllg.an-

q1

Therefore,
ITZ 11 o < 1By BN o 10, £l - (3.14)
Now, applying the pointwise estimate for f € Ak,, we obtain

" o F@l I N
1S2 4y £1G 0 = fE n<(l_'Z'2) fB G du(w)> dva, ()

< |15 fB ((1 2Py

| f(w)|" (1 — |w|?)A= =) (rtlter)/p
* /IB 1 — (z, w)|rHit+ste

q
du(w)> dvg, (2)
= £ 1% 1S, gy 11 -
Putting this into ( ) and using the inequality in part (b), we obtain
~ oy 1/m’ — 1
ITE Flleo < 1By GO 1E W™ 1T £l

~ o 1/m’
< KM By GO Gye 1 -
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This, together with ( ), yields

~ ~ 1 ’
”Bs,y*(ﬂ)nl/(l—k),y* 5 Kl/m : ”Bs,y*(ﬂ)uljz_)\)’y*v

which proves that
| By« (11 /1=y, S K (3.15)

for p with compact support on B,,. Then a standard limit argument gives ( )
for a general positive measure x.

Now, let {ax} be any lattice in B,,. Since m + 1+ y* )L —A=mn+ 14+ y)A,
applying Theorem B, we get that

1/(1-A
el ”<Z< o )K |
~ _ (n+14+y*)r—A
=\ (1 = lag o +1+7
VZ (D) v

TN = fagh R

1/ ~y 1/ (=2
SIEN S S 1By @IS

Then, from ( ) we have that u is a (1, y)-Bergman—Carleson measure with

lelln,y S K.
The proof is complete. (]

3.3. Proof of Theorem

The following result, together with Proposition 3.2, concludes the proof of Theo-
rem

PrOPOSITION 3.4. Let A > 0. If (1.2) holds, then w is a (A, y)-Bergman—Carleson
measure. Furthermore, |||, < C, where C is the constant appearing in (1.2).
Proof. Assume first that A > 1. Let

(1 _ |a|2)(n+l+ol,-)/p,~

fi,a(Z) =

(1 — (z,a))2(+1+ad)/pi”

Then it can be easily checked that for every a € B, and for all i = 1,2,...,k,
“fi,a ”p, a S < 1. Thus, ( ) implies

f 1"[|f,a<z)|% du(z)<61"[||ﬁa||p, v =C, (3.16)

"il

where C is a positive constant independent of a. An easy computation shows that

Z(n+1+a,>— (n+ 1+ )%,
i=1
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Thus, ( ) is equivalent to

/ (] _ |a|2)(fl+1+y))\.

B, [1— (Z’a>|2(ﬂ+1+)/))\.

du(z) <C.

Since A > 1, by Theorem A we know that u is a (A, y)-Bergman—Carleson mea-
sure with |||, S C.

Next, we consider the case 0 < A < 1. We use induction on k. If k = 1, then
(1.2) is just the definition of a Bergman—Carleson measure. Now, let k > 2 and
assume that the result holds for £ — 1 functions. Set Ay = A, % = ¥ and

k=1 qi 1 oigi
AH:Z_Z» Vk71=i .

Considering the measure

dpk(2) = | fi (@)% du(2),

we see that our condition

/ l_[lf(z)l"’du(z)<Cl_[||ﬁlp, o

)l l ]
is equivalent to the condition
k—1

/B []1£@1% durz) < C(fi) H 1fi D,
nj=1
with C(fx) =C - || fx ”Pk - By induction this implies that gy is a (Ak—1, Yk—1)-

Bergman—Carleson measure with [l 1.y S C(fi). Since 0 < Ar—g <
A < 1, Theorem B implies that By ,, () belongs to LYU=%-1Yk-1 for any
s > 0 with

1B,y (i 170 =2p— )iy S CUf)-
That is, we have

(1= 1212 | e (w) % dge(w) \ /A1)
‘[E B dvyk—l (@)

1= (@ w) s

S fellPya) D
or, equivalently,
”Su Vi— 1fk”1/(1 —Ak—1):Vi—  SC- ”fk”pk o

whenever f; is in A(’x’,ﬁ Thus, by Lemma the measure u is a (A*, y™)-
Bergman—Carleson measure with || i ||+, « S C, where

9k 1 L
A*=1+E—(1—)¥k—l) and y*= M(Vk 1+?—Vk 11— Ax— 1)>

Simple algebraic manipulations show that A.* = A and y* = y, concluding the
proof. (]
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4. Vanishing (), y)-Bergman—Carleson Measures

We say that p is a vanishing (%, o)-Bergman—Carleson measure if for any two
positive numbers p and ¢ satisfying ¢/p = A and any sequence { f3} in A% with
| fillp,o <1 and fi(z) — O uniformly on any compact subset of B,

lim / (@19 du(z) =0,
k—oo JB,

It is well known that, for A > 1, u is a vanishing (X, «)-Bergman—Carleson mea-
sure if and only if

I A—laP) g 4.1
|a|121 B, |1 — (z, a)|(H1Her+ (@)= (4.1)

for some (any) ¢ > 0. It is also well known that, for 0 < A < 1, u is a vanishing
(%, @)-Bergman—Carleson measure if and only if it is a (A, o)-Bergman—Carleson
measure. We refer to [27] for these facts.

THEOREM 4.1. Let u be a positive Borel measure on B,. For any integer k > 1

andi=1,2,...,k,let0 < p;,qi <ooand —1 < o; < 00. Let
k q 1 k a.q.
A= =, y == .

Then the following statements are equivalent.

(1) w is a vanishing (A, y)-Bergman—Carleson measure.
(i1) For any sequence { f1,} in the unit ball of Agll that is convergent to 0 uni-
formly in compact subsets of B,,,

lim F(l) =0,
[—o00

where
k
F(D) =sup{/B @I TTIA@ du@): 1 fillpe < 1i=2, k}
n i=2

(iii) For any k sequences {fi1},{f2.1},- -, {fx1} in the unit balls of AL}, AL,
ey Ag’,f , respectively, that are all convergent to 0 uniformly in compact sub-
sets of By,

lgrgo[l;g L@ L0 @1% | frea ()% dp(z) = 0.

Proof. By the remark preceding the statement of the theorem, the case 0 < A < 1
is just a consequence of Theorem 1.1. So, we assume that A > 1. Let (i) be true,
so / is a vanishing (X, y)-Bergman—Carleson measure. Let { f1 ;} be a sequence
in the unit ball of A;! that is convergent to 0 uniformly in compact subsets of B,,,
and let { f;} be arbitrary functions in the unit balls of Aﬁf, i=2,3,...,k.
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Let u, = “llB%,l\Br’ where D, = {z € B,,: |z| <r}. Then u, is also a (A, y)-
Bergman—Carleson measure, and
lim ||, I3, = 0.
r—1
(See, p. 130 of [&].) Hence,

/ @I 2@ - | fie (@ d(2)
B,\D,

s/B @I AN | fe (@)% di (2)
<Cllurlls,y <Ce “4.2)

as r sufficiently close to 1. Fix such an r. Since { fi ;} converges to 0 uniformly
in compact subsets of IB%i, there is a constant K > 0 such that for any [ > K,
| f1.1(z)| < € for any z € D,. Therefore, using Theorem 1.1, we have

/5|f1,1(Z)|q1|f2(Z)|q2"'|fk(z)|qkd,u(z)
SS/B [ 2@ - | fi (@)% du(2)

= 8/ I @19 | fe @)% d ()

<8||1||p1 o] ||f2||p2 a” ”fk”pk [e7% N (4-3)

for any z € D,. Combining (4.2) and (4.3), we get (ii).
It is obvious that (ii) implies (iii). Now let (iii) be true. Let
(1—|a| )(n+l+oc,)/17,
(1 — (z,a))2+1+e)/pi”

fla()_

Then, as before, we know that for every a € B, and for all i = 1,2,...,k,
| fi.all pi.e; S 1, and it can be easily checked that

lim |fia(2)] =
la|l—1

uniformly on any compact subset of B,,. Thus, (iii) implies

(1 — |a|?)n+1+eqi/ pi
l_[ = EGE du(z) =0
‘a‘_>1 Ly 11— (za)l (n+14ai)qi/pi

Since Zf-;l (n+1+4a;)qi/pi = (n+ 14 y)A, this equality is the same as
. a- |a|2)(n+l+)/))u
1 d =0.
a1 /]B 1= (@, oy 4

Thus, by (4.1) p is a vanishing (A, y)-Bergman—Carleson measure. The proof is
complete. U

Vanishing Bergman—Carleson measures are also useful in order to describe the
compactness of Toeplitz operators between weighted Bergman spaces.
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THEOREM 4.2. Let | be a positive Borel measure on B, 0 < p1, p» < 00, and
—1 < ay,0p < 00. Let B, A, and y be as in Theorem . Then Tf is compact
from Ag,l to Ag; if and only if u is a vanishing (A, y)-Bergman—Carleson mea-
sure.

Proof. If 0 < A < 1, then by the remark preceding Theorem a vanishing
(%, y)-Bergman—Carleson measure is the same as a (A, y)-Bergman—Carleson
measure. Also, since 0 < A < 1, we have 0 < p; < p; < 00, and therefore the
result follows from Theorem 1.2 since in that case Tf is compact from A} to
A(IZ if and only if it is bounded due to a general result of Banach space theory:
it is known that, for 0 < p» < p; < 0o, every bounded operator from £7! to £72
is compact (see, e.g., [12, Thm. 1.2.7, p. 31]), and the weighted Bergman space
AL is isomorphic to £7 (see [22, Thm. 11, p. 89]; note that the same proof there
works for weighted Bergman spaces on the unit ball B,,).

Next, we consider the case A > 1. If Tf is compact, then ||T/f Sillpran = 0
for any bounded sequence { fi} in A%! converging to zero uniformly on compact
subsets of B,,. Let {a;} C B,, with |a;| — 1~ and consider the functions

(- lag |2) (1 HIHB) — (it 1tan) /1

(1 = (z, ap)"t1+P

Sfi(@)

Due to the conditions on B and Lemma B, we have supy || fkll p;,o; < 00, and it
is obvious that f; converges to zero uniformly on compact subsets of B,,. Hence,
I T,f Jicll pp,a; = 0. Therefore, proceeding as in the proof of the case A > 1 of that
(i) implies (ii) in Theorem 1.2, for any r > 0, we get

1(D(ag, r)) 20 (114 B)+ (11 400) pr — (- 1+ A e
(1 — |Clk|2)(n+l+y))‘ 5 (1 - |ak| ) ! ! TM fk(ak)

= (1= |ax )"0 fi(ar)

SITE fillpray = O

Thus, by [27. p. 71], the measure u is a vanishing (X, y)-Bergman—Carleson mea-
sure.

Conversely, let © be a vanishing (X, y)-Bergman—Carleson measure with
A > 1. To prove that Tf is compact, we must show that || TM’S Sicll ps,a, — 0O for any
bounded sequence { f;} in Agll converging to zero uniformly on compact subsets
of B,,. If p» > 1, then, as in the proof of Theorem |.2, by duality and Theorem
we have (the numbers p} and o} are the ones defined by (3.6))

ITP fillppoy =< sup (A, T fi)gl

<
1l g o <1

= sup [ fe(@)11h(2)[d(z) — 0.

1l g <1 B
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If 0 < po <1, from the estimates obtained in the proof of that (ii) implies (i) in
Theorem (see (3.8)) it follows that, for any lattice {a;}, we have

IT2 fill 52

/p1
- (D)) )PZ ( / ) )1’2
N;( 0, BT Dj|fk<z)| ' dvg, (2) . (44)

Let ¢ > 0. Since p is a vanishing (A, y)-Bergman—Carleson measure, due to [
p. 711, there is 0 < rg < 1 such that

uw(Dj)

su <€
oy (1= [a; )57

(4.5)

Split the sum appearing in (4.4) in two parts: one over the points a; with |a;| <rg
and the other over the points with |a;| > rg. Since {f;} converges to zero uni-
formly on compact subsets of B, it is clear that the sum over the points a; with
laj| < ro (a finite sum) goes to zero as kK goes to infinity. On the other hand, by
(4.5) and since py > p; (because A > 1), we have

w(Dj) P2 p2/p1
Z <(1—|aj|2)(n+1+y)/\) (/;)j|fk(z)|pldval(z)>

Ji lajl>ro

P2/ p1
<e? ) ( / |fk<z>|”ldval<z>) < &P ficll b2 oy < CeP™.

) D;
Ji lajl>ro J

Thus, ||Tf Jill py,a; — O, finishing the proof. O

5. Applications

As a direct consequence of Theorem |.1 and Theorem 4.1, we have the following
result.

COROLLARY 5.1. Let u be a positive Borel measure on B,,. Let p,q > 0, s > 0,
and o, § > —1 be given constants such that q/p +s/(n+1+36) > 1. Let

q s 1 /aq 88
A=—F+——— and y=—|—+——).
p m+1+49) A\p n+l1+4+$6

Then w is a (7, y)-Bergman—Carleson measure if and only if for any f € AL and
for some (any) t > 0,

| %)’
supf @I e 4@ S s 5.1
aeB, a)l
and p is a vanishing (,,y) Bergman—Carleson measure if and only if for some
(any) t > 0 and for any sequence { fi} in AL with I fillpo <1 and fr(z) = 0
uniformly on any compact subset of B,

(1~ laP)’

tim sup [ I

=00 4B, JB, —{z,

du(z) =0. (5.2)
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REMARK. Note that (5.1) does not depend on &, which means that, in this corol-
lary, we can choose any real number § > —1 satisfying g/p+s/(n+146) > 1
for A and y. Furthermore, if s = 0, then we can also take ¢t = 0 since then the
result reduces to the definition of (vanishing) Bergman—Carleson measures.

Proof of Corollary 5.1. We begin with the first part. The case s = 0 follows
directly from the definition of Bergman—Carleson measures and the trivial in-
equality |1 — (z,a)| = (1 — |a]) for z € B,,. So we assume that s > 0. Since
s/(n+ 14 §) > 0, we can choose two positive numbers p> and g such that
s/(n+1+38)=g>/p>. Then
A= 1 + # — g + 2 2 1
p n+l1+é p p

1/« 8s 1/« 8
)t
A\p n+14$6 A\ p P2

Let i be a (&, y)-Bergman—Carleson measure. Then, from the previous observa-
tion and Theorem we know that for any f € A% and g € A(’; %, we have

/B If@I1g@I"2 dn@) S flIbe - g7 5 (5.3)

and

For any ¢ > 0, let

(1—la|?)!/e
(1 = {(z,a)nt1+8)/pr+t/q2 "

g(2) =ga(2) =

Using Lemma B, we easily check that g, € A§2 and sup,cp, 18allp,.6 S 1. Put
g = g4 in equation (5.3), take the supremum over all a € B,;, and we get (5.1).
Conversely, suppose (5.1) holds for some 7 > 0. Given an arbitrary | > 0, let

(1 —lal>)"/
(1= (z.a)rttee/pn/a”

Ja(@) =

As before, it is easy to check that f, € AP and Il fall p.o S 1. Tt s clear that

~

m+1+py)A=s+m+1+a)g/p,

and therefore, due to (5.1), we get

1— 2yt+n 1— 2\t
/B |1_<( la]”) d’u(Z)Z/B Ifa(z)lqu(&dﬂ(@,il.

z, a) | IHyA+i+n —(z, @) T

Therefore,
(1— o)

aseulgl /Bn [1— (Z,a)|(n+1+y)x+t+t1
Since A > 1, by Theorem A we see that u is a (A, y)-Bergman—Carleson measure.
Next, we deal with the part concerning vanishing Bergman—Carleson mea-
sures. If s = 0, then the result follows easily from the definition of vanishing
Bergman—Carleson measures, and so we assume that s > 0. If  is a vanishing
(%, y)-Bergman—Carleson measure, then, proceeding as in the first part, but using
Theorem instead of Theorem 1.1, we obtain (5.2). Conversely, suppose that

du(z) < oo.
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(5.2) holds for some ¢ > 0. Let {ar} C B,, with |ax| — 1 and, for arbitrary #; > 0,
consider the functions

(1 — |ag|H)"/e
(1—{(z, ak))(n+]+a)/p+t1/q :

(@) =

Then supy || fill p,« < C and { fx} converges to zero uniformly on compact subsets
of B,,, and using (5.2), we see that

(1 Jax[)™ ( —| aP)’
/B 11— (2, ag) |1+ du(z) = / | fri(@ ————— T >|S+[ du(z)

2\t
supf AN T )

aeB,

IA

—> 0.

Since A > 1, it follows from (4.1) that u is a vanishing (1, y)-Bergman—Carleson
measure. The proof is complete. (]
5.1. Applications to Extended Cesaro Operators

For g € H(B,), the radial derivative is defined by

n
g
Rg(x) =) z—(),
@)=Y u 5o @
k=1
and the extended Cesaro operator is defined by

1 d
Jof (@) = fo IR, f € HB,).

In the case of one variable, the operator is the same as

Jof(2) = /0 F©)8 @) dE,

which is also called the Riemann—Stieltjes operator. Here we are considering
boundedness and compactness of these operators from a weighted Bergman space
into the general space F(p, g, s) on the unit ball, which is defined as the space of
all holomorphic functions f on B,, such that

L UE gy = sup /B IRF @17 (1 =12 (1 = I¢a(2)P)’ dv(z) < 00,
ael, n

where 0 < p <00, —n — 1 <qg <00,0<s <o00,and g +s > —1. We also say
that f € Fo(p,q,s) if

lim /B IRF@IP( = 227(1 = a2 dv(z) =

lal—

Here, for our purpose, we point out that if s > n and @ > 0, then for any p > 0,
the space F(p, po —n — 1,5) = B%, the a-Bloch space, which means the space
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of all functions f € H (BB,) such that
I £ll g = sup [Rf (2)I(1 —|z[H* < oc.

z€B,
When o = 1, B! = B, the classical Bloch space.

For the case of the unit disk, this result can be found in [25]. For the case of
the unit ball B,,, the result may be also known, but we were not able to find a
reference, so we provide a brief proof here. First, we show that F(p, g, s) are all
subspaces of some «a-Bloch space.

PROPOSITION 5.2. Let0 < p <00, —n—1<qg<00,0<s <oo,andgq+s > —1.
Then F(p,q,s) C BO+1+a/p,

Proof. Let f € F(p,q,s). By subharmonicity we have that, for a fixed r,
O<r<l,

IRf(@I” < 7/ IRf (2)I” dv(z).
A = 1al> Jp@r
Leta =(n+14g¢q)/p. Then g = pa —n — 1. Hence,

1
IRf (@)|P (1 — |a|*)P* < —/
f (1 _ |a|2)n+lfpa Dia.r)

< / IRf (2)IP (1 — |27 du(z).
D(a,r)

IRf ()17 dv(z)

Since |1 — (z,a)| < (1 — |z|*) =< (1 — |a|?) for z € D(a, r), we know from (2.1)
that 1 — |¢,(2)|> < 1 for z € D(a, r), and so, for s > 0,

IRf (@)|P (1 — |a|*)P* 5/ IR ()17 (1 — |z/HP* 11 — | (2) ) dv(2)

D(a,r)
< / IRF@IPA = 2P 1 = e (2) D) dv(2).
B,
This clearly implies F(p, pa —n — 1,5) € B*, or F(p,q,s) € B"t+o/r O

PRrOPOSITION 5.3. Let0 < p <00, —n—1<q <00,0<s <o00,andq+s > —1.
If s > n, then F(p,q,s) = B"+1+0/p,

Proof. Leta = (n+14+¢q)/p. The inclusion F(p, g,s) € B* has been proved in
the previous proposition. Now we are proving the opposite inclusion. Let f € B*
and assume that s > n. Then, by Lemma B,

Vg0 = 590 [ IRF@IPQ =121 = 0,0 duto)
acby n

< 1f 15 supr (1= 1z ™" 11 = | (2) ) dv(2)

aeB,

(1 _ |Z|2)s—n—1
SHflse sup (A = la®)® | s
B% ieB, B, |1—(z,a)>

S f e

dv(z)
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and so f € F(p, q,s). The proof is complete. O

In a similar way we can prove that, under the same restrictions on the parame-
ters, Fo(p,q,s) € B(()"+]+q)/p, and Fo(p,q,s) = Bénﬂw)/p if s > n, where, for
a > 0, By is the closed subspace of B* that consists of functions f € H(B,) such
that

Jlim |Rf@)I(1 = 1zI*)* =0

and is called the little @-Bloch space. We will frequently use the following well-
known result [28, Exer. 7.7] for the a-Bloch space: for & > 1, an analytic function
f € B if and only if

sup | £ (2)I(1 — |z1*)* ! < 00

zeB,

and the norm of f in BY is

IO+ I fllpe < sup | f@)IA—[zH*!,  a>1. (5.4)

z€B,

THEOREM 5.4. Let 0 < p,t,a <00, —1 < B <00, 0 <s < o0, with pf +
s >n. Let g € HWB,) and suppose that § — n + 1 + @)/t > 0 and p/t +
s/(n+1+38) > 1 for some § > —1. Then
(a) Jg is a bounded operator from A, into F(p,pp —n — 1,s) if and only if
g€ Bﬂ—(n+1+a)/z;
(b) J, is a compact operator from Al, into F(p, pB —n — 1,s) if and only if
ge Bﬂ—(n+1+a)/z
0 .

Proof. An easy computation shows that R(J, f) = fRg. By definition, J, is
bounded from Afx into F(p, pB —n —1,s) if and only if, for any f € A;,

P
I Flp(p. ppn—1.5)

= sup | |F@IPIRg()IP (A — |z 711 — e (2)17)° duv(z)

2)3

- sup/ F@IPIRg @7 (1 = |22y topn—t Ll o

acB, JB, 11— (z,a)*
= sup/ |f(z )Ip <| I))|zs dpg(2)

aeB,

<CUf N as

where du,(z) = |Rg(2)|P(1 — |z|2)TPP="=1 du(z). By Corollary 5.1, this is
equivalent to that ug is an (A, y)-Bergman-Carleson measure, where
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Then, by the condition in the theorem, A > 1, and it is easy to check that y > —1.
Thus, by Theorem A the boundedness of J, is equivalent to

(1 _ |a|2)(n+1+)/)k
sup /

B, 1= (2, a) 201707

[Rg(2)|P (1 = |z)?)* PP du(z) < 0. (5.5)

acB,

An easy computation shows that
(n+1+y))\=s+(n+1+a)§,

and (5.5) becomes

/ a- |a|2)s+(n+1+a)p/t
B

P(1 _ |,12\s+pB—n—1
[1 — (z, a)|26+@+1+a)p/n) IRg ()" (1 = z[7) dv(z) < 0o,

sup
aeB,

which is the same as

sup/ |[Rg(2)|7 (1 — |Z|2)P(ﬂ—(n+l+a)/t)—n—1
B,

acB,
X (1 — | (2) |2 THIFOP/T gy () < 0.

Thus, the operator J, is bounded from Afx into F(p, pB —n — 1, s) if and only if

gGF(P,q,s+(n+1+a)§> (5.6)

n+l+a
NI

Since A > 1 and y > —1, we know that

with

s+(n+1+a)€=(n+1+y)an+l+y>n,

and so, by Proposition 5.3, condition (5.6) is equivalent to g € Bf~(1+1+a)/1,
which proves part (a).

Using the second part of Corollary 5.1, the criterion for the compactness in
part (b) is proved in the same way. We omit the details. U

Our next result is for the integral operator

! dt
I f(z) = Rf(tz)g(tz)T-
0
This operator can be considered as a companion of the operator J,.

THEOREM 5.5. Let 0 < p,t,8 <00, -1 <a < 00,0 <s < oo with pf+s >n.
Let g € H(B,) and suppose that p/t +s/(n+1438) > 1 for some 6 > —1. Then
I, is a bounded operator from Al into F(p, pB —n — 1, s) if and only if

(i) ge BFt1H0/t for B> 1+ (n+ 1 +a)/1;
(i) ge H® forp=14+n+1+a)/t;
(iii)) g=0for0<B <14+ m+14+a)/t.
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Proof. Assume that either (i), or (ii), or (iii) holds. We proceed to show that the
operator /g : Afx — F(p, pB —n — 1, s) is bounded. First, we consider case (i),
thatis, when 8 > 1+ (n+ 1 +a)/t. Let g € BF~("+140)/1 ' Ap easy computation
shows that R(I, f) = gRf. Hence, due to (5.4), for any f € Afx, we have

e FUE . ppn1.s)
sup / 1@ IPIRF ()P (1 — 2P~ L1 — 190 (2)1P)* du(z)

aeB,
_ 2\§
= sup [ |g<z>|P|Rf(z)|”<1—|z|2)5+”ﬁ—"—1%dv(z)
acB, JB [1—(z,a)|*s
=< ||g||35 (-+1+a)/r SUP / IRf(z )|p —la l))|23 du(z), (5.7)

where dju(z) = (1 —|z|?) @ H1H@)p/t+p+s—n=1 gy (7). By Lemma B, for any > 0,
we have

(1 —lal*)" J
ok S5, T—oayprrostrepriprs 1)
_1-12\(n+1+a)p/t+p+s—n—1
_ 2 (I —1zI9)
_as;l]é)n(l la|”) 5, |1 — (2. )1t TF@p/ittpts dv(z)
< 00. (5.8)

Notice that the application of Lemma B here is correct since if we let
t )
A=£+7 and y=— (t+a)p ’
t n+1496 A t n+1+§

then, by the condition in the theorem, A > 1, and it is easy to check that y > —1.
Also, an easy computation shows that

e+ l+ph=s+a+l+atnt=a+1+0t +pts. (59
Thus, we have

(n+1+a)§+p+s—n—1=(n+1+y),\—n—1
>n+1+y—-n—-1=y>-1.

Hence, due to (5.9), condition (5.8) means that u is a (., y)-Bergman—Carleson
measure, and so by (5.7), Corollary 5.1, and [28, Thm. 2.16] we have that

L Y T LR V.34 FUEY 3 LN 4 Lo

and so I, : AL, > F(p, pp —n — 1, s) is bounded.

Case (ii) is proved in the exactly same way as the proof for case (i) with
gl gp—n+1+a): Teplaced by || g || meo. Case (iii) is trivial.

Conversely, suppose that I, : Afx — F(p, pB —n — 1,s) is bounded. Then,
by Proposition the operator I, : A!, — B# is also bounded. For > 0 and
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a eB,, let
B (1—la»)"
fa(@) = (1 = (z,a))rt+i+a)/t”

It is easy to check that sup,cp, || fallr.e < C. An easy computation shows that

1 (1 —la|®)"
n+ (I’l +1 +a)/t (1 _ (Z, a))n+(n+l+a)/t+l .
Note that R(I, f,)(z) = Rf,(2)g(2), and therefore

(1 — la?)P~ O H/1=1 0 (a)| < |Rfo(a)l1g (@) (1 — al®)P
sup |Rfa(2)11g(@)(1 — |z[%)?

z€B,

= g fallge = CllLgll- (5.10)

This directly gives (ii), and, by the maximum principle, we also obtain (iii). Part (i)
follows from (5.4). The proof is complete. (]

Rfa(2) =

X

IA

Similarly, by a standard method, we can prove the following compactness result.

THEOREM 5.6. Let 0 < p,t,8 <00, —1 <a < 00,0 <s < oo with pf+s >n.
Let g € H(B,) and suppose that p/t +s/(n+ 1+ 8) > 1 for some § > —1. Then
I, is a compact operator from A, into F(p, pB —n — 1,s) if and only if

() ge BV " for s 1+ (n 4+ 14a)/1;
(i) g=0for0<B<l+Mn+1+a)/t.

Proof. If I, is a compact operator from A!, into F(p, pp —n — 1,s), then
Iy : AL, — B# is also compact due to Proposition 5.2. Let {a;} C B, with
lag] — 1 and, for n > 0, consider the sequence of holomorphic functions { fj}
given by

(1 — |ag|*)"
(1—(z, ak))n+(n+l+a)/t'

(@) =

As before, supy || fill;,« < C, and {fx} converges to zero uniformly on compact

subsets of B,,. Since I, is compact, from (5.10) we get
(1 = laxHP = 0= g (@) S g ficll s — 0.
This gives (ii) by the maximum principle and also (i) since, as in (5.4), for o > 1,
a function f € H(B,) is in B if and only if lim;_, - (1 — |z|2)"_1 |f(2)]=0.
Conversely, assume that (i) holds, that is, 8 > 1 + (n + 1 + &)/t and

g€ Bg_("+1+a)/t. Then, given & > 0, there is 0 < ro < 1 such that

sup (1 — |z~ (F /=l o()] < 6. (5.11)

ro<|z|<1

Let { fx} be a bounded sequence in A/, converging to zero uniformly on compact
subsets of B,,. From (5.7) we get

Ve el ppntgy = T1CK) + LK) (5.12)
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with
1— 2\s
Iy (k) := sup / |g<z)|P|Rfk<z>|P(1—|z|2)S+Pﬁ—”—l%dv(z)

aeB, J|z|<rg [T —(z,a)|*

and
2stppn—t_(1=lal®)’

k) := sup/ 18P IRA@IPA = [z TP ————du(2).

aeB, Jro<|z|<1 |1 - (Z, a>| §

Since {Rf}} also converges to zero uniformly on compact subsets of B,,, there is
a positive integer ko such that SUP|z1<, |R fr(z)| < & for k > kg. Then, using (5.4),
we easily see that

L1 (k) < CePIIgN e pouirsaryi-

On the other hand, by (5.11) and arguing as in the proof of Theorem 5.5, we obtain
(k) < CeP|| fill{ < Ce”. (5.13)

This shows that |1, fxll F(p, pg—n—1,5) — 0, proving that I, is compact. Since
case (ii) is trivial, the proof is complete. (]

5.2. Pointwise Multipliers

For an holomorphic function g in B, the pointwise multiplication operator M, is
defined as follows: M, f = gf for f € H(B,).

LEMMA 5.7. Let —1 <a < 00,0 < t, B < 00, and suppose that M, : Afx — BB
is bounded. Then

() ge BAF~nt1H+0/t jr g s 1+ (n+ 14+ a)/1;
(i) ge HXifp=1+n+1+a)/t;
(i) g=0if0<B<1+m+1+a)/t.

Proof. By definition it is easy to see that Bt € B2 for B < . Hence, in
case (iii) we may assume that | < <1+ (n+1+a)/t. Forn>0anda €B,,
let

(1 —la)"
a- <Z7a>)rl+(n+1+a)/t'

Ja(2) =

We have seen before that { f,} is uniformly bounded in A’,. Since M, : A}, — BF
is bounded, we know that

sup (1(0) fa (O] + lIgfallge) S sup |l fullr.a < 00

aeB, aeB,

However, since 8 > 1, by (5.4) we get

18(0) £ (0)| + llgfall gp = 1g(O)|(1 — |al*)" + sup |g(2)| fa(2)I(1 — |z[}P!

z€B,

> 8@l fu(@](1 — |a?)P~!
=[g(@)|(1 — |a|?)f~ 1=t IFe/t,
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Hence, we get
Z)ﬁ—l—(n+l+a)/t

sup |g(a)|(1 — |al <00,
aeB,
which gives (i) and (ii) and also gives (iii) by the maximum principle. O

Now we are ready to prove the following characterizations for bounded pointwise
multiplication operators from A/, to F(p, ¢, s) spaces.

THEOREM 5.8. Let 0 < p,t,f <00, —1 <a < 00,0 <s < oo with pf+s>n.
Let g € H(B,) and suppose that p/t +s/(n+ 1+ 8) > 1 for some § > —1. Then
M, : AL, — F(p, pB —n — 1,s) is bounded if and only if

(i) g€ BP~HFO  for B> 1+ (n+ 14+ a)/1;

(i) ge H® forp=1+n+1+a)/t;
(iii) g=0for0<B <1+ m+14+a)/t.

Proof. Suppose that either (i), or (ii), or (iii) is satisfied. Then, by Theorem
and Theorem 5.5 we know that both J, and I, are bounded from A, to F(p,
pp—n—1,s). Since
R(M, f)=fRg+gRf =Rgf)+ R(Jg[),
we easily see that M, is also bounded from A/, to F(p, pB —n —1,s).
Conversely, suppose that M, : A}, = F(p, pp —n — 1,s) is bounded. By

Proposition we know that M, : AL, — B# is also bounded, and so by
Lemma we directly get (i), (ii), and (iii). O

The result on the compactness of the multiplication operator is stated next.

THEOREM 5.9. Let 0 < p,t, <00, —1 <a < 00,0 <s < oo with pf+s >n.
Let g € H(B,) and suppose that p/t +s/(n+ 1+ 8) > 1 for some § > —1. Then
M, : AL, — F(p, pB —n —1,s) is compact if and only if

() ge B " for B> 14 (n 4 1+ )/t
(i) g=0for0<B<l+n+1+a)/t.

This follows, using standard arguments, arguing in a similar way as in Theo-
rem 5.8. We omit the proof here.

References

[1]1 A. Aleman and J. A. Cima, An integral operator on HP and Hardy’s inequality,
J. Anal. Math. 85 (2001), 157-176.

[2] A. Aleman and A. G. Siskakis, An integral operator on HP, Complex Var. Theory
Appl. 28 (1995), 149-158.

, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997),
337-356.

[4] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math.
80 (1958), 921-930.

, Interpolations by bounded analytic functions and the corona problem, Ann.

of Math. 76 (1962), 547-559.

(3]

(3]



[6]
(71
[8]
(91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]

(20]

(21]

(22]
(23]
[24]
[25]
[26]
(27]

(28]

Carleson Measures and Toeplitz Operators 795

B. R. Choe, H. Koo, and H. Yi, Positive Toepliz operators between harmonic
Bergman spaces, Potential Anal. 17 (2002), 307-335.

J. Cima and W. Wogen, A Carleson measure theorem for the Bergman space of the
ball, J. Operator Theory 7 (1982), 157-165.

C. Cowen and B. MacCluer, Composition operators on spaces of analytic functions,
CRC Press, Boca Raton, 1995.

P. Duren, Theory of HP spaces, Academic Press, New York-London, 1970, reprint:
Dover, Mineola, NY, 2000.

W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math.
Soc. 52 (1975), 237-241.

Z. Hu, Extended Cesaro operators on mixed norm spaces, Proc. Amer. Math. Soc.
131 (2003), 2171-2179.

J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in Math.,
338, Springer-Verlag, Berlin, 1973.

D. H. Luecking, A technique for characterizing Carleson measures on Bergman
spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660.

, Forward and reverse Carleson inequalities for functions in Bergman spaces
and their derivative, Amer. J. Math. 107 (1985), 85-111.

, Representations and duality in weighted spaces of analytic functions, Indi-
ana Univ. Math. J. 34 (1985), 319-336.

, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), 345-

368.

, Embedding theorems for spaces of analytic functions via Khinchine’s in-
equality, Michigan Math. J. 40 (1993), 333-358.

V. Oleinik, Embedding theorems for weighted classes of harmonic and analytic func-
tions, Investigations on linear operators and the theory of functions, V. Zap. Nauch.
Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 47, pp. 120-137, 1974, translated
in: J. Sov. Math. 9 (1978), 228-243.

J. Pau and J. A. Peldez, Volterra type operators on Bergman spaces with exponen-
tial weights, Topics in complex analysis and operator theory, Contemp. Math., 561,
pp- 239-252, Amer. Math. Soc., Providence, RI, 2012.

, Schatten classes of integration operators on Dirichlet spaces, J. Anal. Math.
120 (2013), 255-289.

A. G. Siskakis and R. Zhao, A Volterra type operator on spaces of analytic functions,
Function spaces, Contemp. Math., 232, pp. 299-311, Amer. Math. Soc., Providence,
RI, 1999.

P. Wojtaszczyk, Banach spaces for analysts, Cambridge Stud. Adv. Math., 25, Cam-
bridge University Press, Cambridge, 1991.

J. Xiao, Riemann—Stieltjes operators on weighted Bloch and Bergman spaces of the
unit ball, J. Lond. Math. Soc. 70 (2004), 199-214.

X. Zhang, C. He, and F. Cao, The equivalent norms of F(p,q,s) space in C",
J. Math. Anal. Appl. 401 (2013), 601-610.

R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss.
105 (1996), 1-56.

, New criteria of Carleson measures for Hardy spaces and their applications,
Complex Var. Elliptic Equ. 55 (2010), 633-646.

R. Zhao and K. Zhu, Theory of Bergman spaces in the unit ball of C", Mém. Soc.
Math. Fr. (N.S.) 115 (2008), vi+103 pp.

K. Zhu, Spaces of holomorphic functions in the unit ball, Springer-Verlag, New York,
2005.




796 JorDI PAU & RUHAN ZHAO

[29] , Operator theory in function spaces, second edition, Math. Surveys Monogr.,

138, American Mathematical Society, Providence, RI, 2007.

J. Pau R. Zhao

Departament de Matematica Department of Mathematics
Aplicada i Analisi SUNY Brockport

Universitat de Barcelona Brockport, NY 14420

08007 Barcelona USA

Spain


mailto:jordi.pau@ub.edu
mailto:rzhao@brockport.edu

	Introduction
	Preliminaries
	Proofs of Theorems 1.1 and 1.2
	Proof of Theorem 1.2
	(i) Implies (ii)
	(ii) Implies (i)

	A Key Lemma
	Proof of Theorem 1.1

	Vanishing (lambda,gamma)-Bergman-Carleson Measures
	Applications
	Applications to Extended Cesàro Operators
	Pointwise Multipliers

	References
	Author's Addresses

